JP5571044B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5571044B2
JP5571044B2 JP2011179461A JP2011179461A JP5571044B2 JP 5571044 B2 JP5571044 B2 JP 5571044B2 JP 2011179461 A JP2011179461 A JP 2011179461A JP 2011179461 A JP2011179461 A JP 2011179461A JP 5571044 B2 JP5571044 B2 JP 5571044B2
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
heat
temperature
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011179461A
Other languages
Japanese (ja)
Other versions
JP2013040745A (en
Inventor
昭義 大平
良二 河井
義明 藤木
浩和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011179461A priority Critical patent/JP5571044B2/en
Priority to KR1020120087136A priority patent/KR101445924B1/en
Priority to CN201210285425.2A priority patent/CN102954645B/en
Publication of JP2013040745A publication Critical patent/JP2013040745A/en
Application granted granted Critical
Publication of JP5571044B2 publication Critical patent/JP5571044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Description

本発明は冷蔵庫に係り、特に冷蔵庫の除霜運転に関する。   The present invention relates to a refrigerator, and more particularly to a defrosting operation of a refrigerator.

従来の冷蔵庫の例が特許文献1に記載されている。この公報に記載の冷却庫では、冷却器に配管接続した吸熱器を非冷凍領域(例えば、冷蔵室や野菜室、機械室)に設けている。そして除霜時には、吸熱器内に充填した不凍液を循環ポンプで循環させ、冷却器の加熱源として利用する。これにより、除霜時の消費電力量を低減している。また、吸熱器内に蓄えた熱源を利用することにより、一般的に使用される電気ヒータ(除霜ヒータ)を省いている。これにより、庫内の温度を一時的に著しく上昇させることなく、従来よりも消費電力量を低減した除霜を実施できると記載されている。   An example of a conventional refrigerator is described in Patent Document 1. In the refrigerator described in this publication, a heat absorber connected to the cooler by piping is provided in a non-freezing area (for example, a refrigerator room, a vegetable room, or a machine room). At the time of defrosting, the antifreeze liquid filled in the heat absorber is circulated by a circulation pump and used as a heat source for the cooler. Thereby, the power consumption at the time of defrosting is reduced. Moreover, the electric heater (defrost heater) generally used is omitted by utilizing the heat source stored in the heat absorber. Thus, it is described that defrosting with reduced power consumption than before can be carried out without temporarily raising the temperature inside the warehouse.

従来の冷蔵庫の他の例が、特許文献2に記載されている。この公報に記載の冷蔵庫では、冷凍サイクルの放熱器や圧縮機モータの排熱を不凍液やオイルに蓄熱し、除霜時にこの蓄熱を利用して従来の電気ヒータ(除霜ヒータ)を使用した場合に比べて消費電力量を低減している。不凍液やオイルへの蓄熱は、ヒートパイプや循環ポンプを介して冷却器に伝えられ、除霜に利用されている。   Another example of a conventional refrigerator is described in Patent Document 2. In the refrigerator described in this gazette, when the exhaust heat of the refrigeration cycle radiator or compressor motor is stored in antifreeze liquid or oil, and the conventional electric heater (defrost heater) is used by utilizing this stored heat during defrosting Compared to the power consumption is reduced. The heat storage in the antifreeze and oil is transmitted to the cooler via a heat pipe and a circulation pump and used for defrosting.

従来の冷蔵庫のさらに他の例が、特許文献3に記載されている。この公報に記載の冷蔵庫では、一般的に使用される除霜ヒータの他に、冷凍サイクルの運転期間中に圧縮機から発生する排熱を不凍液に貯えて蒸発器に付着した霜の除去に利用している。   Another example of a conventional refrigerator is described in Patent Document 3. In the refrigerator described in this publication, in addition to the generally used defrost heater, waste heat generated from the compressor during the operation period of the refrigeration cycle is stored in antifreeze and used to remove frost attached to the evaporator. doing.

特開2009−92371号公報JP 2009-92371 A 特開昭59−81479号公報JP 59-81479 A 特開平11−23135号公報Japanese Patent Laid-Open No. 11-23135

上記特許文献1に記載の冷蔵庫では、少ないエネルギーで霜を加熱(冷却器を加熱)するために非冷凍領域にタンクを設け、タンク内部に充填した不凍液に除霜時に必要なエネルギーを蓄熱している。これにより、除霜において従来使用されてきた電気ヒータを必要とせず、大幅な消費電力量の削減が可能になっている。ここで、非冷凍領域とは、例えば、冷蔵室や野菜室、機械室(圧縮機設置部)である。この公報に記載の冷蔵庫では、霜を解かすのに0℃以上の不凍液を必要としているので、不凍液を充填した吸熱器は少なくとも氷点以上の温度帯に設置する必要がある。   In the refrigerator described in Patent Document 1, a tank is provided in a non-freezing region in order to heat frost (heats a cooler) with a small amount of energy, and energy necessary for defrosting is stored in an antifreeze filled in the tank. Yes. Thereby, the electric heater conventionally used in the defrosting is not required, and the power consumption can be greatly reduced. Here, a non-freezing area | region is a refrigerator compartment, a vegetable compartment, and a machine room (compressor installation part), for example. In the refrigerator described in this publication, an antifreeze liquid of 0 ° C. or higher is required to defrost frost. Therefore, the heat absorber filled with the antifreeze liquid needs to be installed in a temperature range of at least the freezing point or higher.

しかしながら、冷蔵室や野菜室の温度は平均5℃程度であり、不凍液に蓄える熱量の確保は容易ではなく、霜を解かすのに必要な熱量を十分得ることが困難である。例えば、不凍液として一般的なブライン(主成分:エチレングリコール)を使用すると、濃度70Wt%(凍結温度約−40℃)、比熱2.891kJ/(kgK)、密度約1110kg/mとし、通常冷却時の着霜量として霜0.1kgを解かすのに要する不凍液の量を見積もると、最低でも約2L必要となる。ここで、不凍液に蓄熱される熱量が霜の融解潜熱に等しいと仮定する。不凍液に蓄熱される熱量は、冷蔵室や野菜室の室温が平均約5℃であるので、霜が解ける温度である0℃との差として温度差5Kと見積もった。 However, the average temperature of the refrigerator compartment and vegetable compartment is about 5 ° C., and it is not easy to secure the amount of heat stored in the antifreeze liquid, and it is difficult to obtain a sufficient amount of heat necessary for defrosting. For example, when general brine (main component: ethylene glycol) is used as the antifreeze, the concentration is 70 Wt% (freezing temperature -40 ° C), specific heat 2.891 kJ / (kgK), density about 1110 kg / m 3, and normal cooling Estimating the amount of antifreeze liquid required to defrost 0.1 kg of frost as the amount of frost formation at the time requires at least about 2 L. Here, it is assumed that the amount of heat stored in the antifreeze liquid is equal to the frost melting latent heat. The amount of heat stored in the antifreeze liquid was estimated to be a temperature difference of 5K as a difference from 0 ° C., which is a temperature at which frost can be dissolved, because the room temperature of the refrigerator compartment or vegetable room is about 5 ° C. on average.

これは、冷蔵庫の庫内収納スペースがそれだけ(約2L)減少することを意味するので、不凍液単独使用による加熱では利便性が低下する。また、除霜に必要な熱源を非冷凍領域に設置したタンク内に蓄熱できないと、冷却器の霜を全て解かすことができなくなる。さらに、冷蔵温度帯と冷凍温度帯を有する冷蔵庫では除霜時間も重要で、除霜時間が長くなると冷凍室の温度上昇が大きくなり、冷凍食品の保存性に悪影響を及ぼすおそれがある。このように、冷蔵庫の除霜においては、必要となる熱量だけでなく循環する不凍液と冷却器(または霜)との伝熱現象も重要になる。例えば、除霜中に不凍液を充填したタンク内の温度が低下すると霜との温度差が小さくなり、霜が融解するまでの時間が長くなる。   This means that the storage space in the refrigerator is reduced by that amount (about 2 L), so the convenience is reduced by heating using the antifreeze liquid alone. Moreover, if the heat source required for defrosting cannot be stored in the tank installed in the non-freezing region, it is impossible to defrost all the frost in the cooler. Furthermore, in a refrigerator having a refrigeration temperature zone and a freezing temperature zone, the defrosting time is also important. If the defrosting time is long, the temperature rise in the freezer compartment increases, which may adversely affect the storage stability of the frozen food. Thus, in the defrosting of the refrigerator, not only the required amount of heat but also the heat transfer phenomenon between the circulating antifreeze and the cooler (or frost) becomes important. For example, when the temperature in the tank filled with the antifreeze liquid is reduced during defrosting, the temperature difference from the frost is reduced and the time until the frost is melted is increased.

なおこの特許文献1では、除霜時に冷却器に成長した霜の冷熱エネルギーを有効利用する場合に、消費電力量まで低減することについては開示がない。また、不凍液を用いた加熱手段だけを使用するので、着霜量が多いと除霜に要する時間が長くなり、その間冷凍運転の停止により冷凍室の温度が上昇するという不具合を発生するおそれがある。したがって、着霜量に応じた除霜運転を実施できない。   In addition, in this patent document 1, when utilizing the cold energy of the frost which grew to the cooler at the time of defrost effectively, there is no indication about reducing to power consumption. Moreover, since only the heating means using the antifreeze liquid is used, if the amount of frost formation is large, the time required for defrosting becomes longer, and there is a risk that the temperature of the freezer compartment rises due to the suspension of the freezing operation during that time. . Therefore, the defrosting operation according to the amount of frost formation cannot be performed.

霜は主として冷却器に発生するが、冷却器以外の例えば冷却器が収納されている風路表面(固体壁面)あるいは庫内循環ファン近傍にも霜が成長することがある。不凍液を用いた除霜方式では、直接冷却器を加熱することができるので、加熱源(不凍液)と冷却器に付着した霜との伝熱性能は向上する。しかしながら、冷却器から離れた場所の霜については、直接加熱による効果が期待できないので、不十分にならざるを得ない。   Although frost is mainly generated in the cooler, frost may grow on the surface of the air passage (solid wall surface) in which the cooler is housed or in the vicinity of the internal circulation fan. In the defrosting method using the antifreeze liquid, the cooler can be directly heated, so that the heat transfer performance between the heating source (antifreeze liquid) and the frost attached to the cooler is improved. However, the frost in a place away from the cooler cannot be expected to be effective due to direct heating, and must be insufficient.

特許文献2に記載の冷蔵庫においても特許文献1に記載のものと同様に、冷凍サイクルの放熱器や圧縮機モータからの排熱を不凍液やオイルに蓄熱し、除霜時にこれを利用している。これにより、従来の電気ヒータ(除霜ヒータ)を省いて消費電力量を低減している。しかしながらこの公報に記載の冷蔵庫も上記特許文献1に記載の冷蔵庫と基本構成が同じであるから、上述したように大きなタンクが必要となったり、除霜時間が長くなったりするおそれがある。   In the refrigerator described in Patent Document 2, similarly to the one described in Patent Document 1, waste heat from the radiator and compressor motor of the refrigeration cycle is stored in antifreeze liquid and oil, and this is used during defrosting. . Thereby, the conventional electric heater (defrost heater) is omitted and the power consumption is reduced. However, since the basic configuration of the refrigerator described in this publication is the same as that of the refrigerator described in Patent Document 1, a large tank may be required as described above, or the defrosting time may be increased.

また、特許文献3に記載の冷蔵庫では、蒸発器周辺の空気を自然対流で加熱して霜を解かすものであり、必ずしも熱伝達が促進されず除霜に長時間を要するおそれがある。   Moreover, in the refrigerator of patent document 3, the air around an evaporator is heated by natural convection, and frost is dissolved, and heat transfer is not necessarily accelerated | stimulated and there exists a possibility that a long time may be required for defrost.

本発明は、上記従来技術の不具合に鑑みなされたものであり、その目的は、冷蔵庫を運転したときに発生し外部に排気している熱および外部が有する熱を有効利用して、除霜に要する電力量および除霜時間を低減することにある。また本発明の目的は、除霜運転に使用する不凍液が配管の途中で凍結する不具合を回避して、冷蔵庫の信頼性を高めることにある。本発明のさらに他の目的は、不凍液を収容するタンクを大型化することなく、除霜に使用する電力量および除霜時間を低減することにある。   The present invention has been made in view of the above-described problems of the prior art, and its purpose is to effectively utilize the heat generated when the refrigerator is operated and exhausted to the outside and the heat possessed by the outside for defrosting. The purpose is to reduce the amount of power required and the defrosting time. Moreover, the objective of this invention is to avoid the malfunction which the antifreeze used for a defrost operation freezes in the middle of piping, and to improve the reliability of a refrigerator. Still another object of the present invention is to reduce the amount of electric power and defrosting time used for defrosting without increasing the size of the tank for storing the antifreeze liquid.

上記目的を達成する本発明の冷蔵庫は、冷蔵室と冷凍室を有し、前記冷蔵室と前記冷凍室を冷却する冷気を発生する冷却器および圧縮機を備えた冷凍サイクルと、前記冷却器で発生した冷気を前記冷蔵室へ導く流路を開閉する第1の開閉手段と、前記冷却器で発生した冷気を前記冷凍室へ導く流路を開閉する第2の開閉手段と、前記冷却器で発生した冷気を前記冷蔵室と前記冷凍室の少なくともいずれかに送風する庫内ファンと、前記冷却器の下方に配置され電気ヒータを有する第1の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンとを含み、前記冷蔵室を流通して温度上昇した空気で前記冷却室を加熱する第2の加熱手段と、前記冷却器に当接して配置され内部を不凍液が流通する配管と不凍液を循環させる循環ポンプと前記圧縮機で発生する熱および外気の熱の少なくともいずれかを不凍液に蓄熱させる機械室ファンとを有する第3の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンと前記循環ポンプと前記機械室ファンと前記第1の加熱手段の動作を制御する制御手段とを備え、除霜運転時に前記制御手段は、前記第1ないし第3の加熱手段の少なくともいずれかを用いて前記冷却器を加熱し、この冷却器部を流通した空気で前記冷蔵室を冷却するようにしたことを特徴とする。   A refrigerator according to the present invention that achieves the above object includes a refrigerating cycle having a refrigerating room and a freezing room, the refrigerating cycle including the refrigerating room and the compressor for generating cold air that cools the freezing room, and the cooler. A first opening / closing means for opening / closing a flow path for guiding the generated cold air to the refrigerator compartment; a second opening / closing means for opening / closing a flow path for guiding the cold air generated by the cooler to the freezer room; An internal fan that blows the generated cold air to at least one of the refrigerator compartment and the freezer compartment, a first heating means disposed below the cooler and having an electric heater, and the first and second opening / closing operations Means and a fan in the cabinet, and the second heating means for heating the cooling chamber with the air whose temperature has risen through the refrigerating chamber, and the antifreeze liquid is disposed in contact with the cooler and disposed therein. Circulation pump for circulating piping and antifreeze and the pressure A third heating means having a machine room fan for storing at least one of heat generated in the machine and heat of the outside air in the antifreeze, the first and second opening / closing means, the internal fan, and the circulation pump; A control means for controlling the operation of the machine room fan and the first heating means, wherein the control means uses the at least one of the first to third heating means during the defrosting operation. And the refrigerator compartment is cooled by the air flowing through the cooler.

そしてこの特徴において、前記制御手段は除霜運転時に前記第1の加熱手段が稼動する前に前記第2および第3の加熱手段を稼動させることを特徴とする。前記制御手段は、前記第2および第3の加熱手段による加熱後、前記第1の加熱手段を作動させるものでもよく、前記第2の加熱手段は、冷蔵温度帯の庫内空気を前記庫内ファンで庫内循環させた後の空気を用いるものであり、前記第3の加熱手段は,不凍液にプラス温度帯の熱を蓄熱し、前記不凍液を前記冷却器に熱輸送するのがよい。また、前記第3の加熱手段が前記冷却器へ当接する部分の不凍液出口近傍に除霜センサを設け、この除霜センサが検出した温度が除霜開始から予め定めた時間内に氷点を超える所定温度に達しないときに、前記制御手段は、前記第2および第3の加熱手段の加熱に加え前記第1の加熱手段による加熱を作動させるものでもよい。   In this aspect, the control means operates the second and third heating means before the first heating means is operated during the defrosting operation. The control means may operate the first heating means after heating by the second and third heating means, and the second heating means sends the air in the refrigerator temperature zone to the inside of the warehouse. The air after being circulated in the cabinet by a fan is used, and the third heating means preferably stores heat in a plus temperature zone in the antifreeze liquid, and heat transports the antifreeze liquid to the cooler. In addition, a defrost sensor is provided in the vicinity of the antifreeze outlet of the portion where the third heating means contacts the cooler, and the temperature detected by the defrost sensor exceeds the freezing point within a predetermined time from the start of the defrost. When the temperature does not reach, the control means may activate heating by the first heating means in addition to heating of the second and third heating means.

また、上記特徴において、前記第3の加熱手段が前記冷却器へ当接する部分の不凍液出口近傍に除霜センサを設け、前記制御手段は、前記除霜センサが検出した温度が不凍液の凍結温度を超えるまで前記循環ポンプを作動させないことが望ましく、前記第2の加熱手段は前記冷却器の着霜をこの着霜の外表面側から除霜し、前記第3の加熱手段は前記冷却器の着霜を前記冷却器に接触する面側から除霜することが好ましい。さらに、前記制御手段は、前記第2の加熱手段で前記冷却器に付着した霜を加熱して発生した冷気を前記冷蔵室に導くよう前記第1の開閉手段を作動させるものがよい。   Further, in the above feature, a defrost sensor is provided in the vicinity of the antifreeze liquid outlet at a portion where the third heating means abuts on the cooler, and the control means detects the freezing temperature of the antifreeze liquid as the temperature detected by the defrost sensor. It is desirable that the circulating pump is not operated until the temperature exceeds, the second heating means defrosts the frosting of the cooler from the outer surface side of the frosting, and the third heating means is attached to the cooler. It is preferable to defrost frost from the surface side that contacts the cooler. Further, the control means preferably operates the first opening / closing means so as to guide the cold air generated by heating the frost attached to the cooler by the second heating means to the refrigerator compartment.

本発明によれば、冷蔵庫の除霜時に、電気(除霜ヒータ)エネルギーと庫内熱エネルギーと庫外熱エネルギーの3種の熱源を利用しているので、冷蔵庫を運転したときに発生し外部に排気している熱および外部の空気が有する熱を有効利用して、除霜に要する電力量および除霜時間を低減できる。また、除霜運転に使用する不凍液が配管の途中で凍結する不具合を回避することにより、冷蔵庫の信頼性が向上する。さらに、不凍液を収容するタンクを大型化することなく、除霜に使用する電力量および除霜時間を低減できる。   According to the present invention, when the refrigerator is defrosted, three kinds of heat sources of electric (defrost heater) energy, internal heat energy, and external heat energy are used. The amount of power required for defrosting and the defrosting time can be reduced by effectively using the heat exhausted to the outside and the heat of the external air. Moreover, the reliability of a refrigerator improves by avoiding the malfunction which the antifreeze liquid used for a defrost operation freezes in the middle of piping. Furthermore, the amount of electric power used for defrosting and the defrosting time can be reduced without increasing the size of the tank for storing the antifreeze liquid.

本発明に係る冷蔵庫の一実施例の正面図である。It is a front view of one Example of the refrigerator which concerns on this invention. 図1に示した冷蔵庫の側面縦断面図である。It is a side surface longitudinal cross-sectional view of the refrigerator shown in FIG. 図1に示した冷蔵庫の側面縦断面図であり、図2とその幅方向位置を変えた図である。It is the side surface longitudinal cross-sectional view of the refrigerator shown in FIG. 1, and is the figure which changed FIG. 2 and its width direction position. 図1に示した冷蔵庫が備える冷却器周辺の図であり、背面側断面図である。It is a figure of the cooler periphery with which the refrigerator shown in FIG. 1 is provided, and is a back side sectional drawing. 除霜に必要な熱量を説明するグラフである。It is a graph explaining the calorie | heat amount required for a defrost. 除霜に必要な電力量を説明するグラフである。It is a graph explaining the electric energy required for a defrost. 除霜運転の一実施例のタイムチャートである。It is a time chart of one Example of a defrost operation. 図7に示した除霜運転のフローチャートである。It is a flowchart of the defrost operation shown in FIG. 冷却器における霜の融解状況を説明する図である。It is a figure explaining the melting condition of the frost in a cooler. 除霜運転の他の実施例のタイムチャートである。It is a time chart of the other Example of a defrost operation. 図10に示した除霜運転のフローチャートである。It is a flowchart of the defrost operation shown in FIG. 除霜運転のさらに他の実施例のタイムチャートである。It is a time chart of the further another Example of a defrost operation. 除霜運転のさらに他の実施例のタイムチャートである。It is a time chart of the further another Example of a defrost operation. 図13に示した除霜運転のフローチャートである。It is a flowchart of the defrost operation shown in FIG.

初めに、本発明に係る冷蔵庫の主たる特徴を述べる。本発明の冷蔵庫1は、第1に電気エネルギー(除霜ヒータ)、第2に庫内熱エネルギー、第3に庫外熱エネルギーの3種の熱源を用いて除霜する。第1の電気エネルギーによる除霜は、従来から用いている電気ヒータ(例えば、冷却器の下部に設けたガラス管ヒータ)による加熱であるが、その除霜の態様は、以下に詳述するように従来とは異なっている。電気ヒータは、冷却器周囲の空気を加熱し、空気を媒介して間接的に霜を解かす。第2の庫内熱エネルギーによる除霜では、庫内ファンを用いて氷点以上のプラス温度帯に維持された冷蔵室(野菜室含む)の空気を循環して、冷却器に付着した霜を解かす。冷蔵室の庫内熱エネルギーとは、言い換えると、冷蔵室の壁面を伝わって庫外から侵入してくる熱を除霜時の熱源として有効に活用するエネルギーである。第3の庫外熱エネルギーによる除霜では、庫外の熱あるいは機械室に設けた圧縮機や放熱器の熱を、新たに設けたタンク内の蓄熱媒体に蓄熱し、除霜時にその熱を利用する。   First, main features of the refrigerator according to the present invention will be described. The refrigerator 1 of the present invention defrosts using three types of heat sources: first, electrical energy (defrost heater), second, internal heat energy, and third, external heat energy. The defrosting by the first electric energy is heating by an electric heater conventionally used (for example, a glass tube heater provided at the lower part of the cooler), and the mode of the defrosting will be described in detail below. It is different from the conventional one. The electric heater heats the air around the cooler and indirectly defrosts through the air. In the defrosting using the second internal heat energy, the air in the refrigerator compartment (including the vegetable compartment) maintained in the plus temperature range above the freezing point is circulated using the internal fan to remove the frost adhering to the cooler. Lend. In other words, the internal heat energy of the refrigerator compartment is energy that effectively uses the heat that enters the outside of the refrigerator through the wall surface of the refrigerator compartment as a heat source during defrosting. In the defrosting by the third external heat energy, the heat outside the storage or the heat of the compressor or radiator provided in the machine room is stored in the heat storage medium in the newly provided tank, and that heat is defrosted. Use.

前述した特許文献1、2に記述されているように、庫外熱エネルギー単独で除霜すると、除霜時に必要となる熱量を得るには、タンク内に充填する不凍液温度(蓄熱時の温度)を上げるかまたは不凍液の量を増やして、蓄熱量すなわち加熱量を増やすしかない。   As described in Patent Documents 1 and 2, as described above, when defrosting is performed using only the external heat energy, in order to obtain the amount of heat necessary for defrosting, the temperature of the antifreeze liquid to be filled in the tank (temperature during heat storage) Or increase the amount of antifreeze to increase the amount of heat storage, that is, the amount of heating.

ところで、冷蔵庫の除霜は通常1日に1回であるから、不凍液を充填したタンクを庫外に設置すれば、除霜のインターバルの1日間に不凍液を循環させなければ外気温度(例えば30℃)と等しくすることは可能である。しかし、庫外の温度以上に不凍液の温度を高めるためには、圧縮機や放熱器から放熱される熱の再利用(熱回収)が必要となる。なお、第3の庫外熱エネルギー単独での除霜は、不凍液を充填したタンクの設置場所や除霜時間の問題が生じる。本発明ではこれらの不具合を解決するために、除霜手段として第1、第2、第3の手段を有し、これら3種の手段を効率的に組み合わせ、除霜時の消費電力量の低減と同時に、除霜中に霜の冷熱エネルギーを利用する際の投入エネルギーを少なくして冷蔵室を冷却している。   By the way, since the defrosting of the refrigerator is normally performed once a day, if the tank filled with the antifreeze liquid is installed outside the refrigerator, the outside air temperature (for example, 30 ° C.) is not used unless the antifreeze liquid is circulated for one day of the defrosting interval. ) Is possible. However, in order to raise the temperature of the antifreeze liquid above the outside temperature, it is necessary to reuse (heat recovery) the heat radiated from the compressor and the radiator. Note that the defrosting with the third external heat energy alone causes problems of the installation location of the tank filled with the antifreeze liquid and the defrosting time. In order to solve these problems, the present invention has first, second, and third means as defrosting means, and efficiently combines these three kinds of means to reduce the power consumption during defrosting. At the same time, the refrigerating room is cooled by reducing the input energy when using the frost's cold energy during defrosting.

また、不凍液の凍結温度以下に到達する急速冷凍後に除霜運転を行う際には、庫外熱エネルギーを蓄熱した不凍液が凍結温度以下で循環することがないように、冷却器の温度が不凍液の凍結温度以上になってから不凍液を循環させている。したがって、不凍液が凍結温度低下になって生じる、ポンプ動力の増加を抑制でき、消費電力量を低減できる。さらに、比熱の低下による不凍液タンクの大型化も抑制できる。   Also, when performing the defrosting operation after quick freezing that reaches below the freezing temperature of the antifreeze liquid, the cooler temperature of the antifreeze liquid is kept so that the antifreeze liquid that stores the external heat energy does not circulate below the freezing temperature. The antifreeze is circulated after the freezing temperature is exceeded. Therefore, it is possible to suppress an increase in pump power that occurs when the antifreeze liquid is lowered in the freezing temperature, and to reduce power consumption. Furthermore, the increase in the size of the antifreeze liquid tank due to a decrease in specific heat can also be suppressed.

以下に、本発明に係る冷蔵庫の一実施例を、具体的に図面を用いて説明する。図1は、冷蔵庫1の正面図である。冷蔵庫1は、上方から冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6を備えて構成されている。冷蔵室2は、左右に分割された形状の冷蔵室扉2a、2bを備え、製氷室3および上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a、2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを、単に扉2a〜6aと称す。   Below, one Example of the refrigerator which concerns on this invention is described concretely using drawing. FIG. 1 is a front view of the refrigerator 1. The refrigerator 1 includes a refrigerator room 2, an ice making room 3, an upper freezer room 4, a lower freezer room 5, and a vegetable room 6 from above. The refrigerating room 2 includes left and right refrigerating room doors 2a and 2b. The ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are a drawer type ice making room door 3a and an upper stage, respectively. A freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a are provided. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a to 6a.

また、冷蔵庫1には、各扉2a〜6aの開閉状態をそれぞれ検出する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に使用者に報知する図示しないアラームと、冷蔵室2や冷凍室5の温度設定をする図示しない温度設定器等が備えられている。   In addition, the refrigerator 1 provides a user with a door sensor (not shown) that detects the open / closed state of each door 2a to 6a and a state in which the door is determined to be open for a predetermined time, for example, 1 minute or longer. An alarm (not shown) for notification and a temperature setter (not shown) for setting the temperature of the refrigerator compartment 2 and the freezer compartment 5 are provided.

図2に、図1に示した冷蔵庫1の側面断面図(同図(a))、および機械室56部分の縦断面図を示す。図2(a)に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材を充填して形成された断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10は、複数の真空断熱材25を実装している。庫内は、上方に配置した断熱仕切壁28により、冷蔵室2と上段冷凍室4及び製氷室3(図1参照)に仕切られている。また、下方に配置した断熱仕切壁29により、下段冷凍室5と野菜室6とに仕切られている。冷蔵室2の扉2a、2bの庫内側には、複数の扉ポケット32が備えられ、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。上段冷凍室4と下段冷凍室5の間には、冷凍室前面仕切り40が設けられている。   FIG. 2 shows a side sectional view of the refrigerator 1 shown in FIG. 1 (FIG. 2A) and a longitudinal sectional view of the machine room 56 portion. As shown in FIG. 2 (a), the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material. The heat insulating box 10 of the refrigerator 1 has a plurality of vacuum heat insulating materials 25 mounted thereon. The interior of the refrigerator is partitioned into a refrigerator compartment 2, an upper freezer compartment 4, and an ice making compartment 3 (see FIG. 1) by a heat insulating partition wall 28 disposed above. Further, the lower freezer compartment 5 and the vegetable compartment 6 are partitioned by a heat insulating partition wall 29 arranged below. A plurality of door pockets 32 are provided inside the doors 2 a and 2 b of the refrigerator compartment 2, and the refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36. A freezer compartment front partition 40 is provided between the upper freezer compartment 4 and the lower freezer compartment 5.

製氷室3、および上段冷凍室4、下段冷凍室5、野菜室6では、各室3〜6の前方に備えられた扉3a〜6aと一体に収納容器3b〜6bがそれぞれ設けられており、扉3a〜6aの取手部(図示せず)に手を掛けて手前側に引き出すことにより収納容器3b〜6bが引き出せるようになっている。なお、図2では製氷室3が示されていないが、上述したとおり、製氷室3も同様の構成となっている。   In the ice making room 3, and the upper freezing room 4, the lower freezing room 5, and the vegetable room 6, storage containers 3b to 6b are provided integrally with doors 3a to 6a provided in front of the respective rooms 3 to 6, respectively. The storage containers 3b to 6b can be pulled out by placing a hand on a handle (not shown) of the doors 3a to 6a and pulling it out to the front side. Although the ice making chamber 3 is not shown in FIG. 2, the ice making chamber 3 has the same configuration as described above.

下段冷凍室5の略背部には冷却器収納室8が形成されており、この冷却機収納室8内に冷却器7が設けられている。冷却器7の上方には庫内ファン9が設けられている。この庫内ファン9により冷却器7に送風された空気が、冷却器7と熱交換して冷やされ冷気となって、冷蔵庫1の各部に送られる。すなわち、冷蔵室送風ダクト11および上段冷凍室送風ダクト12、下段冷凍室送風ダクト13、図示しない製氷室送風ダクトを介して、冷蔵室2および上段冷凍室4、下段冷凍室5、製氷室3の各室へ冷気が送られる。   A cooler storage chamber 8 is formed substantially at the back of the lower freezing chamber 5, and a cooler 7 is provided in the cooler storage chamber 8. An internal fan 9 is provided above the cooler 7. The air blown to the cooler 7 by the internal fan 9 is cooled by exchanging heat with the cooler 7 to be cooled and sent to each part of the refrigerator 1. That is, the refrigerating room 2, the upper freezing room 4, the lower freezing room 5, and the ice making room 3 are passed through the refrigerating room air duct 11, the upper freezer room air duct 12, the lower freezer room air duct 13, and the ice making room air duct (not shown). Cold air is sent to each room.

冷蔵庫1内の循環空気による冷却の様子を、図3を併用して説明する。図3は、図2(a)と異なる断面位置での冷蔵庫1の側面断面図である。各室2〜5への冷気の送風は、冷蔵室ダンパ(以下Rダンパとも称す)20と冷凍室ダンパ(以下Fダンパとも称す)50の開閉により制御される。具体的には、Rダンパ20が開状態でFダンパ50が閉状態の時には、冷気は冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られる。冷蔵室2の背面側から前面側へ流れた冷気71は、冷蔵室2の冷却を終えた後、冷蔵室2の下部に設けた図示しない冷蔵室戻り口に流入し、その後冷却器7に戻される。   A state of cooling by the circulating air in the refrigerator 1 will be described with reference to FIG. FIG. 3 is a side cross-sectional view of the refrigerator 1 at a different cross-sectional position from FIG. The blowing of cool air to each of the chambers 2 to 5 is controlled by opening / closing a refrigerator compartment damper (hereinafter also referred to as “R damper”) 20 and a freezer compartment damper (hereinafter also referred to as “F damper”) 50. Specifically, when the R damper 20 is in the open state and the F damper 50 is in the closed state, the cold air is sent to the refrigerating room 2 through the refrigerating room air duct 11 through the blowout ports 2c provided in multiple stages. The cold air 71 flowing from the back side to the front side of the refrigerator compartment 2 is cooled to the refrigerator compartment 2, and then flows into a refrigerator outlet (not shown) provided in the lower part of the refrigerator compartment 2 and then returned to the cooler 7. It is.

野菜室6の冷却については種々の方法がある。例えば、冷蔵室2を冷却した後に野菜室6に冷気を直接送る方法や、冷却器7で発生した冷気を冷蔵室2を経由しないで野菜室6に単独で送る方法がある。後者の場合には、野菜室6に供給する冷気を制御するために、野菜室6の専用のダンパを必要とする。本実施例では、野菜室6に流入した冷気73を、断熱仕切壁29の下部前方に設けた野菜室戻り口6dから野菜室戻りダクト18を介して、野菜室戻り吐出口18aに導き、冷却器7へ流入させている。   There are various methods for cooling the vegetable compartment 6. For example, there is a method of directly sending cold air to the vegetable compartment 6 after cooling the refrigerator compartment 2 or a method of sending cold air generated by the cooler 7 to the vegetable compartment 6 alone without going through the refrigerator compartment 2. In the latter case, a dedicated damper for the vegetable compartment 6 is required to control the cool air supplied to the vegetable compartment 6. In the present embodiment, the cold air 73 that has flowed into the vegetable compartment 6 is guided from the vegetable compartment return port 6d provided in front of the lower part of the heat insulating partition wall 29 to the vegetable compartment return discharge port 18a via the vegetable compartment return duct 18 and cooled. It flows into the vessel 7.

冷凍室3に導かれた冷気72は、上段冷凍室4および下段冷凍室5、製氷室3を順次冷却した後、冷凍室戻り口17から冷却器7に戻される。冷却器7の下部には除霜ヒータ22が設けられている。除霜時に発生したドレン水は樋23に一旦落下した後、ドレン孔27を通じて機械室56に配置した圧縮機24の頭部に設けた蒸発皿21に放出される。機械室56は、冷蔵庫1の背面の最下部であって、断熱箱体10の外側に形成されており、機械室カバー91で覆われている。   The cool air 72 guided to the freezer compartment 3 is sequentially cooled in the upper freezer compartment 4, the lower freezer compartment 5, and the ice making chamber 3, and then returned to the cooler 7 from the freezer return port 17. A defrost heater 22 is provided at the lower part of the cooler 7. The drain water generated at the time of defrosting is once dropped on the trough 23 and then discharged through the drain hole 27 to the evaporating dish 21 provided at the head of the compressor 24 disposed in the machine chamber 56. The machine room 56 is the lowermost part of the rear surface of the refrigerator 1, is formed outside the heat insulating box 10, and is covered with a machine room cover 91.

図2(b)に、機械室カバー91を取り去った機械室56部分を、背面図で示す。機械室カバー91には機械室56に外気を取り込むための吸入口96と、機械室56内の空気を外部へ放出するための吐出口97が形成されている。これらは、図示を省略したが、鎧板構造になっており、空気以外のものが流通するのを防いでいる。   FIG. 2B is a rear view showing the machine room 56 part from which the machine room cover 91 has been removed. The machine room cover 91 is formed with a suction port 96 for taking outside air into the machine room 56 and a discharge port 97 for releasing the air in the machine room 56 to the outside. Although not shown in the drawings, these have an armor plate structure, and prevent anything other than air from circulating.

吸入口92から流入した空気は、図2(b)で矢印で示したように、冷凍サイクルを形成する放熱器92と熱交換した後、機械室ファン68により圧縮機24側へ送風される。圧縮機支持部93で支持された圧縮機24は、回転数の上昇とともに増大する熱を発生する。機械室56に送られた外気は、この圧縮機24が発生した熱を吸収してさらに温度上昇し、その熱を蓄熱タンク52に貯えられた不凍液に蓄熱タンク52の容器壁から伝熱する。その後、機械室カバー91に形成された吐出口97から冷蔵庫1外へ放出される。この一連の外気の流れは、主として機械室ファン68が引き起こす。   The air flowing in from the suction port 92 exchanges heat with the radiator 92 that forms the refrigeration cycle, as shown by an arrow in FIG. 2B, and then is blown to the compressor 24 side by the machine room fan 68. The compressor 24 supported by the compressor support portion 93 generates heat that increases as the rotational speed increases. The outside air sent to the machine room 56 absorbs the heat generated by the compressor 24 and further rises in temperature, and the heat is transferred from the container wall of the heat storage tank 52 to the antifreeze stored in the heat storage tank 52. Thereafter, the product is discharged from the discharge port 97 formed in the machine room cover 91 to the outside of the refrigerator 1. This series of outside air flow is mainly caused by the machine room fan 68.

図3は、庫外熱エネルギーを利用する構造を説明するための図である。上述したように、機械室56には不凍液57を充填した蓄熱タンク52が設けられている。蓄熱タンク52は、圧縮機24および/または機械室56に設けた放熱器92から放熱される熱を不凍液57に回収するものであるから、機械室56内に設けた方が蓄熱量を増やし易い。蓄熱タンク52を機械室56に設置すると、例えば室温30℃の場合、少なくとも庫外温度である30℃まで蓄熱タンク52内の不凍液57の温度を上昇させることができる。なお、図2(b)に示す圧縮機24と蓄熱タンク52、機械室ファン68の配置は一例に過ぎず、冷蔵庫1の容量等により最適な配置が決定される。   FIG. 3 is a diagram for explaining a structure using external heat energy. As described above, the heat storage tank 52 filled with the antifreeze liquid 57 is provided in the machine room 56. Since the heat storage tank 52 collects the heat radiated from the radiator 92 provided in the compressor 24 and / or the machine room 56 in the antifreeze liquid 57, the heat storage tank 52 is likely to increase the amount of heat storage when provided in the machine room 56. . When the heat storage tank 52 is installed in the machine room 56, for example, when the room temperature is 30 ° C., the temperature of the antifreeze liquid 57 in the heat storage tank 52 can be increased to at least 30 ° C. that is the outside temperature. The arrangement of the compressor 24, the heat storage tank 52, and the machine room fan 68 shown in FIG. 2B is merely an example, and the optimum arrangement is determined depending on the capacity of the refrigerator 1 and the like.

通常の冷蔵庫1では、1日に1回除霜運転を実施する。庫外熱エネルギー利用除霜モードである不凍液57を使う冷蔵庫1の運転では、除霜を実施した後でも不凍液57の温度を室温レベルにまで昇温させることが可能である。不凍液57に室温以上の熱量を蓄熱するには、機械室56に設置した圧縮機24や図示しない放熱器からの放熱を積極的に不凍液57に蓄熱させる。例えば、圧縮機24の吐出パイプあるいは圧縮機24から放出される熱を、蓄熱タンク52内の不凍液57と熱交換させて熱回収することにより、不凍液57に蓄熱することができる。また、機械室56に設ける放熱器92には、放熱を促進させるファンが付設されることが多い。そこで、ファンにより送風され放熱器を通過した昇温空気と熱交換可能な場所に、蓄熱タンク52を設置する。   In the normal refrigerator 1, a defrosting operation is performed once a day. In the operation of the refrigerator 1 using the antifreeze liquid 57 in the defrosting mode using the external heat energy, the temperature of the antifreeze liquid 57 can be raised to the room temperature level even after the defrosting is performed. In order to store the amount of heat above room temperature in the antifreeze liquid 57, heat from the compressor 24 installed in the machine room 56 or a radiator (not shown) is positively stored in the antifreeze liquid 57. For example, the heat released from the discharge pipe of the compressor 24 or the compressor 24 can be stored in the antifreeze liquid 57 by exchanging heat with the antifreeze liquid 57 in the heat storage tank 52 to recover the heat. The radiator 92 provided in the machine room 56 is often provided with a fan that promotes heat dissipation. Therefore, the heat storage tank 52 is installed in a place where heat exchange is possible with the heated air that has been blown by the fan and passed through the radiator.

すなわち、パイプ55で蓄熱タンク52と循環ポンプ51を、パイプ53で循環ポンプ51の吐出口と冷却器7を、パイプ52で冷却器7と蓄熱タンク52とを、それぞれ接続する。冷却器7と熱交換した後の不凍液57が、パイプ54内を流れている。蓄熱タンク52内に充填された不凍液57の液面が、パイプ54と蓄熱タンク52の接続位置よりも下にあれば、循環ポンプ51を逆回転させて不凍液循環パイプ58(図4参照)内の不凍液57を回収することもできる。ここで、不凍液循環パイプ58は、冷却器7に直接接触させて設けられている。循環ポンプ51の逆回転により不凍液循環パイプ58内に不凍液57が残らず、冷却運転中の凍結防止や除霜ヒータ22で冷却器7を単独加熱をする際の加熱負荷の低減が可能になる。   That is, the heat storage tank 52 and the circulation pump 51 are connected by the pipe 55, the discharge port of the circulation pump 51 and the cooler 7 are connected by the pipe 53, and the cooler 7 and the heat storage tank 52 are connected by the pipe 52, respectively. The antifreeze 57 after heat exchange with the cooler 7 flows in the pipe 54. If the level of the antifreeze liquid 57 filled in the heat storage tank 52 is below the connection position between the pipe 54 and the heat storage tank 52, the circulation pump 51 is rotated in the reverse direction so that the antifreeze liquid circulation pipe 58 (see FIG. 4) The antifreeze liquid 57 can also be recovered. Here, the antifreeze circulating pipe 58 is provided in direct contact with the cooler 7. Due to the reverse rotation of the circulation pump 51, the antifreeze liquid 57 does not remain in the antifreeze circulation pipe 58, and it becomes possible to prevent freezing during the cooling operation and to reduce the heating load when the cooler 7 is heated by the defrost heater 22 alone.

図4に、冷蔵庫1の下段冷凍室5の背面側に配置される冷却器7の周辺部を、背面側断面図で示す。冷却器7の上部に除霜センサ41が設置されており、除霜センサ41が検出した温度に基づいて除霜運転に関する制御判定を、制御手段66(図3参照)が実行する。冷却器7の下部には、従来から用いている除霜ヒータ22を配置している。除霜ヒータ22は、電気ヒータを内部に有するガラス管44とガラス管44の周囲に設けた金属の放熱フィン45から構成されている。金属フィン45の代わりに、ガラス管44を二重ガラス管にしてもよい。いずれの除霜ヒータ22も、可燃性冷媒を使用する冷蔵庫1で採用される。庫内で可燃性冷媒が漏れても、外側のガラス管表面温度が可燃性冷媒の発火点温度より低いので、可燃性冷媒の発火を防止できる。ガラス管44の上部には、除霜水滴下防止部43が設けられている。高温に加熱されたガラス管44に除霜水が直接滴下して、急激な温度変化によりガラス管が破損するのを防止する。   In FIG. 4, the peripheral part of the cooler 7 arrange | positioned at the back side of the lower stage freezer compartment 5 of the refrigerator 1 is shown with a back side sectional drawing. The defrost sensor 41 is installed in the upper part of the cooler 7, and the control means 66 (refer FIG. 3) performs the control determination regarding a defrost operation based on the temperature which the defrost sensor 41 detected. A defrost heater 22 that has been conventionally used is disposed below the cooler 7. The defrosting heater 22 includes a glass tube 44 having an electric heater inside and a metal radiation fin 45 provided around the glass tube 44. Instead of the metal fin 45, the glass tube 44 may be a double glass tube. Any defrosting heater 22 is employ | adopted with the refrigerator 1 which uses a combustible refrigerant | coolant. Even if the flammable refrigerant leaks in the chamber, the temperature of the outer glass tube surface is lower than the ignition point temperature of the flammable refrigerant, so that the flammable refrigerant can be prevented from firing. A defrosted water dripping preventing portion 43 is provided on the upper portion of the glass tube 44. The defrost water is directly dropped on the glass tube 44 heated to a high temperature to prevent the glass tube from being damaged due to a rapid temperature change.

冷却器7と不凍液57を熱交換させて冷却器7を加熱するために、冷凍サイクルの冷媒配管とは別に、冷却器7に直接接触するように不凍液循環パイプ58を設けている。そして、この不凍液パイプ58を、冷却器7を構成する各段のフィン間にかしめ加工している。不凍液循環パイプ58内の不凍液52の流れ方向には、上側から下側へあるいは下側から上側へがあるが、本実施例では以下の理由により下側から上側へ流している。   In order to heat the cooler 7 by exchanging heat between the cooler 7 and the antifreeze liquid 57, an antifreeze liquid circulation pipe 58 is provided so as to be in direct contact with the cooler 7 separately from the refrigerant pipe of the refrigeration cycle. The antifreeze pipe 58 is caulked between the fins of each stage constituting the cooler 7. The flow direction of the antifreeze liquid 52 in the antifreeze liquid circulation pipe 58 is from the upper side to the lower side or from the lower side to the upper side. In this embodiment, it flows from the lower side to the upper side for the following reason.

本実施例では、冷却器7に付着した霜が完全に解けた後に、除霜時の信頼性を高めるためさらに除霜ヒータ22単独で冷却器7を加熱している。不凍液循環パイプ58の不凍液流入部を冷却器7の下部に設けているので、冷却器7の下部の温度を上部の温度よりも高くすることができる。すなわち、除霜ヒータ22がONになり、単独加熱に切り替わると、冷却器7では下部から順次上部に向けて温度が上昇し始める。冷却器7の上部に設けた除霜センサ41が所定の温度を検出すると、除霜ヒータ22による加熱が終了する。したがって、除霜ヒータ22が単独加熱に切り替わる前に、冷却器7の下部の温度を高めておけば、消費電力量に大きく影響する除霜ヒータ22による単独加熱時間を短くできる。   In the present embodiment, after the frost attached to the cooler 7 is completely melted, the cooler 7 is further heated by the defrost heater 22 alone in order to increase the reliability at the time of defrosting. Since the antifreeze inflow portion of the antifreeze circulation pipe 58 is provided in the lower part of the cooler 7, the temperature of the lower part of the cooler 7 can be made higher than the temperature of the upper part. That is, when the defrost heater 22 is turned on and switched to single heating, the cooler 7 starts to rise in temperature from the lower part toward the upper part. When the defrost sensor 41 provided in the upper part of the cooler 7 detects a predetermined temperature, the heating by the defrost heater 22 ends. Therefore, if the temperature of the lower part of the cooler 7 is increased before the defrost heater 22 is switched to the single heating, the single heating time by the defrost heater 22 that greatly affects the power consumption can be shortened.

このように構成した冷却器7および除霜ヒータ22を用いた除霜運転について、以下に説明する。循環ポンプ51を運転すると、蓄熱タンク52内の不凍液57は配管55、53を経由して冷却器7に設けた不凍液循環パイプ58に流入する。その際、冷却器7に付着した霜と熱交換して霜を解かす。冷却器7で熱交換した不凍液57の温度は低下する。冷却器7を経た不凍液57は蓄熱タンク52に戻され、再び同じ経路を所定時間だけ循環する。   Defrosting operation using the cooler 7 and the defrost heater 22 configured as described above will be described below. When the circulation pump 51 is operated, the antifreeze liquid 57 in the heat storage tank 52 flows into the antifreeze liquid circulation pipe 58 provided in the cooler 7 via the pipes 55 and 53. At that time, heat exchange with the frost attached to the cooler 7 is performed to defrost. The temperature of the antifreeze liquid 57 that has exchanged heat with the cooler 7 decreases. The antifreeze liquid 57 that has passed through the cooler 7 is returned to the heat storage tank 52 and circulates again through the same path for a predetermined time.

蓄熱タンク52に戻るパイプ54の蓄熱タンク52側の接続部は、不凍液57の液面よりも上の位置に設けている。そのため、循環ポンプ51を逆回転させると循環ポンプ51は不凍液57ではなく空気を送風するので、冷却器7に直接接触している不凍液循環パイプ58内の不凍液57は送風力で蓄熱タンク内52内に押し戻される。これにより、不凍液循環パイプ58内から不凍液57を完全に回収にすることができ、不凍液循環パイプ58内の不凍液57の凍結が防止される。さらに、不凍液循環パイプ58内に不凍液57を残さないので、冷却運転中の凍結防止に加え循環ポンプ51を停止した除霜ヒータ22単独で冷却器7を加熱する時に負荷を低減できる。   The connecting portion on the heat storage tank 52 side of the pipe 54 returning to the heat storage tank 52 is provided at a position above the liquid surface of the antifreeze liquid 57. Therefore, when the circulation pump 51 is rotated in the reverse direction, the circulation pump 51 blows air instead of the antifreeze liquid 57, so that the antifreeze liquid 57 in the antifreeze circulation pipe 58 that is in direct contact with the cooler 7 is blown into the heat storage tank 52. Pushed back. Thereby, the antifreeze liquid 57 can be completely recovered from the antifreeze liquid circulation pipe 58, and the freezing of the antifreeze liquid 57 in the antifreeze liquid circulation pipe 58 is prevented. Furthermore, since the antifreeze liquid 57 is not left in the antifreeze circulation pipe 58, in addition to preventing freezing during the cooling operation, the load can be reduced when the cooler 7 is heated by the defrost heater 22 alone with the circulation pump 51 stopped.

以上述べた本発明に係る冷蔵庫1における省エネの様子を図5および図6を用いて説明する。図5は、除霜時に必要な熱量を模式的に示したグラフであり、図6は、除霜時に必要な電力量を示した図である。従来方式では、冷却器7の下部に設けた除霜ヒータ(電気ヒータ)だけから除霜に必要な熱量Qを得て、冷却器7を加熱・除霜していた。したがって、除霜ヒータが加熱する熱量Qeが、除霜に必要な熱量Qに等しい。   The state of energy saving in the refrigerator 1 according to the present invention described above will be described with reference to FIGS. FIG. 5 is a graph schematically showing the amount of heat required for defrosting, and FIG. 6 is a diagram showing the amount of power required for defrosting. In the conventional method, the amount of heat Q required for defrosting is obtained only from the defrosting heater (electric heater) provided at the lower part of the cooler 7, and the cooler 7 is heated and defrosted. Therefore, the amount of heat Qe heated by the defrost heater is equal to the amount of heat Q required for defrosting.

これに対して本発明の冷蔵庫1では上述したように、除霜ヒータ22以外の加熱源、すなわち庫内熱エネルギーQinと庫外熱エネルギーQexを利用している。したがって、除霜に用いる熱量Qは、これらの熱源を含んで、Q=Qe’+Qin+Qexとなる。これら3種類の加熱源では、電気ヒータ22による加熱が最も消費電力が大きい。   On the other hand, as described above, the refrigerator 1 of the present invention uses a heat source other than the defrost heater 22, that is, the internal heat energy Qin and the external heat energy Qex. Therefore, the heat quantity Q used for defrosting is Q = Qe ′ + Qin + Qex including these heat sources. With these three types of heating sources, heating by the electric heater 22 consumes the largest amount of power.

本発明の冷蔵庫1では、除霜ヒータ22以外に加熱源を有しているので、電気ヒータ22による加熱量Qeをこの加熱量Qeよりも少ない加熱量Qe’とすることができ、除霜に必要な熱量Qがたとえ同じであっても、消費電力量Eは低減可能である。また、庫内熱エネルギーと庫外熱エネルギーを利用した除霜とすることができるので、加熱源と霜との伝熱現象が促進され、除霜に必要な熱量QをQ’に減少させることもできる。これにより、さらに除霜時の消費電力量を低減可能である。   In the refrigerator 1 of the present invention, since the heating source is provided in addition to the defrosting heater 22, the heating amount Qe by the electric heater 22 can be set to a heating amount Qe ′ smaller than the heating amount Qe. Even if the required amount of heat Q is the same, the power consumption E can be reduced. Moreover, since it can be set as defrost using the heat energy in a store | warehouse | chamber and the heat energy outside a store | warehouse | chamber, the heat-transfer phenomenon with a heating source and frost is accelerated | stimulated, and heat quantity Q required for defrost is reduced to Q '. You can also. Thereby, the power consumption at the time of defrosting can be reduced further.

ここで、庫内熱エネルギーQinにより冷却器7を加熱するときは、野菜室6含む冷蔵室2内の空気自体が熱源となる。庫内熱エネルギーQinを得るために必要なエネルギーは、庫内ファン9を稼働させる時のファン動力のみである。庫内ファン9が稼働すると、野菜室6を含む冷蔵室2の空気が冷却器7部に送風されて霜を解かす際の熱源になる。それとともに霜を解かして熱交換して冷気となり、野菜室6を含む冷蔵室2へ戻って冷却源となる。庫外熱エネルギーQexにより冷却器7を加熱するときは、基本的に庫外の空気を熱源としているので、必要な電力は循環ポンプ51を稼働させる時のポンプ動力だけとなる。   Here, when the cooler 7 is heated by the internal heat energy Qin, the air itself in the refrigerator compartment 2 including the vegetable compartment 6 becomes a heat source. The energy required to obtain the internal heat energy Qin is only the fan power when operating the internal fan 9. When the internal fan 9 is in operation, the air in the refrigerator compartment 2 including the vegetable compartment 6 is blown to the cooler 7 and becomes a heat source for defrosting. At the same time, the frost is melted and heat is exchanged to become cold air, which returns to the refrigerator compartment 2 including the vegetable compartment 6 to become a cooling source. When the cooler 7 is heated by the external heat energy Qex, air outside the storage is basically used as a heat source, so that the necessary electric power is only the pump power when the circulation pump 51 is operated.

従来方式の電力量をEe(=Qe)とすると、上述したように、この電力量値Eeは除霜ヒータにより費やされる電気ヒータの電力量と等しい。一方、本発明の冷蔵庫1では、除霜ヒータ22の電力量は熱量Qe’に相当し、庫内ファン9の電力量は熱量Qinに相当し、循環ポンプ51の電力量は熱量Qexに相当するから、費やされる電力量Ee’は、上記3種の電力量の和に等しくなる。   Assuming that the electric energy of the conventional method is Ee (= Qe), as described above, this electric energy value Ee is equal to the electric energy of the electric heater consumed by the defrost heater. On the other hand, in the refrigerator 1 of the present invention, the power amount of the defrost heater 22 corresponds to the heat amount Qe ′, the power amount of the internal fan 9 corresponds to the heat amount Qin, and the power amount of the circulation pump 51 corresponds to the heat amount Qex. Therefore, the consumed electric energy Ee ′ is equal to the sum of the three kinds of electric energy.

ここで、除霜ヒータ22による消費電力量は150W程度であるのに対して、庫内ファン9および循環ポンプ51での消費電力量はそれぞれ数W程度であるから、除霜ヒータ22の電力量を削減することが、除霜時の消費電力量の低減に大きく寄与する。したがって、除霜ヒータ22以外の加熱手段により加熱するモードを有している本発明では、除霜ヒータ22で消費される電力量を低減するので、除霜における冷蔵庫1全体の消費電力量をEe’に削減することが可能となる。   Here, the amount of power consumed by the defrost heater 22 is about 150 W, whereas the amount of power consumed by the internal fan 9 and the circulation pump 51 is about several watts. This greatly contributes to the reduction of power consumption during defrosting. Therefore, in this invention which has the mode heated by heating means other than the defrost heater 22, since the electric energy consumed with the defrost heater 22 is reduced, the electric power consumption of the refrigerator 1 whole in defrost is set to Ee. It becomes possible to reduce to '.

次に、図7〜図14を用いて、除霜運転の各種運転モードについて説明する。
[第1モード]
図7および図8は、除霜運転の第1の運転モードについて説明するための図であり、図7は除霜運転のタイムチャート、図8は除霜運転の制御フローチャートである。図7では、冷蔵室ダンパ(Rダンパ)20および冷凍室ダンパ(Fダンパ)50、庫内ファン9、循環ポンプ51、機械室ファン68、除霜ヒータ22を制御手段66が制御したときの、除霜センサ温度Tsおよび冷蔵室温度Tを、各制御機器の動作状態とともに示している。なお制御手段66は、図3に示すように、冷蔵庫1の上部背面側の角部に設けられており、CPU66aや記憶手段66bを有している。
Next, various operation modes of the defrosting operation will be described with reference to FIGS.
[First mode]
7 and 8 are diagrams for explaining the first operation mode of the defrosting operation, FIG. 7 is a time chart of the defrosting operation, and FIG. 8 is a control flowchart of the defrosting operation. In FIG. 7, when the control means 66 controls the refrigerator compartment damper (R damper) 20 and the freezer compartment damper (F damper) 50, the internal fan 9, the circulation pump 51, the machine room fan 68, and the defrost heater 22, the defrost sensor temperature Ts and the refrigerating compartment temperature T R, are shown with the operating state of each control device. In addition, as shown in FIG. 3, the control means 66 is provided in the corner | angular part of the upper back side of the refrigerator 1, and has CPU66a and the memory | storage means 66b.

時刻t1は除霜運転開始時であり、時刻t2は除霜ヒータ22の単独加熱に切り替わる時刻であり、時刻t3は除霜運転が終了する時刻である。1日1回、予め定めた時間または圧縮機24の動作時間が所定時間になる(時刻t1)と、冷蔵庫1の除霜運転が開始される(ステップS1)。このとき、除霜センサ41が検出した温度TsはTs=T1である。   Time t1 is the time when the defrosting operation is started, time t2 is the time when the defrosting heater 22 is switched to individual heating, and time t3 is the time when the defrosting operation ends. Once a day, when the predetermined time or the operation time of the compressor 24 reaches a predetermined time (time t1), the defrosting operation of the refrigerator 1 is started (step S1). At this time, the temperature Ts detected by the defrost sensor 41 is Ts = T1.

ところで、除霜運転が開始される時刻t1よりも前の冷蔵庫1の運転状態は、一般的には冷却運転である。その際、冷蔵室ダンパ(Rダンパ)20を開き冷凍室ダンパ(Fダンパ)50を閉じる冷蔵室冷却運転とするか、冷蔵室ダンパ(Rダンパ)20を閉じ冷凍室ダンパ(Fダンパ)50を開く冷凍室冷却運転をするか、あるいは冷蔵室ダンパ(Rダンパ)20と冷凍室ダンパ(Fダンパ)50の双方を開いて冷蔵室2(野菜室6を含む)と冷凍室4、5の両方とも冷却運転をするのかは、その時の冷蔵庫1内の温度状態により決定される。いずれの状態でも、庫内ファン9はONである。また機械室ファン68は、機械室56に設けたセンサ60が検出した温度に応じて、ONまたはOFFになっており、外気温が高ければ通常ON状態である。   By the way, the operation state of the refrigerator 1 before the time t1 when the defrosting operation is started is generally a cooling operation. At that time, the refrigerator compartment cooling (R damper) 20 is opened and the freezer compartment damper (F damper) 50 is closed, or the refrigerator compartment damper (R damper) 20 is closed and the refrigerator compartment damper (F damper) 50 is closed. Either open the freezer cooling operation or open both the freezer damper (R damper) 20 and the freezer damper (F damper) 50 and both the freezer room 2 (including the vegetable room 6) and the freezer rooms 4, 5 Whether or not to perform the cooling operation is determined by the temperature state in the refrigerator 1 at that time. In any state, the internal fan 9 is ON. The machine room fan 68 is turned on or off according to the temperature detected by the sensor 60 provided in the machine room 56, and is normally on when the outside air temperature is high.

本実施例では、冷蔵室2温度が除霜運転開始の時刻t1前に上昇しているので、冷凍室冷却を実施している。つまり、冷蔵室ダンパ(Rダンパ)20を閉、冷凍室ダンパ(Fダンパ)50を開、庫内ファン9をON、機械室ファン68をONにしている。   In the present embodiment, since the temperature of the refrigerator compartment 2 has risen before the time t1 of the start of the defrosting operation, the freezer compartment is cooled. That is, the refrigerator compartment damper (R damper) 20 is closed, the freezer compartment damper (F damper) 50 is opened, the internal fan 9 is turned on, and the machine room fan 68 is turned on.

制御手段66は、Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をON、機械室ファン68をON、除霜ヒータ22をOFFに設定する(ステップS2)。すなわち、冷却器7で発生した冷気を冷蔵室2および野菜室6にだけ導き、上下段冷凍室4、5へは導かない。上述したように、除霜運転中は冷却器7が加熱されるので冷却器7が冷凍温度を実現できないおそれがあるからである。   The control means 66 opens the R damper 20, closes the F damper 50, turns on the internal fan 9, turns on the circulation pump 51, turns on the machine room fan 68, and turns off the defrost heater 22 (step S2). . That is, the cool air generated in the cooler 7 is guided only to the refrigerator compartment 2 and the vegetable compartment 6 and not to the upper and lower freezer compartments 4 and 5. This is because, as described above, the cooler 7 is heated during the defrosting operation, so that the cooler 7 may not be able to achieve the refrigeration temperature.

この除霜運転は、庫内ファン9稼働による庫内熱エネルギーと、循環ポンプ稼働51による庫外熱エネルギーを利用した除霜運転である。循環ポンプ51を稼働させると、不凍液循環パイプ58を介して霜が加熱される。その結果、不凍液57の温度が低下する。不凍液循環パイプ58から霜に放熱した分を補うため、機械室ファン68を稼働させて庫外の熱エネルギーの不凍液57への蓄熱を促進させる。蓄熱タンク52には温度センサ60が設けられている。不凍液57の温度を検出して、除霜中の機械室ファン68を制御手段66が制御する。除霜運転中であって外気温度よりも不凍液57の温度が低い場合には、機械室ファン68を稼働させる。   This defrosting operation is a defrosting operation using the internal heat energy by the operation of the internal fan 9 and the external heat energy by the circulation pump operation 51. When the circulation pump 51 is operated, frost is heated through the antifreeze circulation pipe 58. As a result, the temperature of the antifreeze liquid 57 decreases. In order to make up for the amount of heat released from the antifreeze circulating pipe 58 to the frost, the machine room fan 68 is operated to promote the heat storage of the heat energy outside the refrigerator in the antifreeze liquid 57. The heat storage tank 52 is provided with a temperature sensor 60. The temperature of the antifreeze liquid 57 is detected, and the control means 66 controls the machine room fan 68 during defrosting. If the temperature of the antifreeze liquid 57 is lower than the outside air temperature during the defrosting operation, the machine room fan 68 is operated.

この除霜運転状態時における冷却器7での着霜及び融解状態を、模式的に図9(a)に示す。除霜運転開始時刻t1から除霜ヒータ22による単独加熱に切り替わる時刻t2までの間、庫内ファン9を稼働させて庫内熱エネルギーを利用する除霜では、冷却器7に成長した霜層を主に外側から加熱する。野菜室6を含む冷蔵室2へ循環する循環空気61は霜層内部も通過するが、霜は外側から融解する。一方、循環ポンプ51を稼働させて庫外熱エネルギーを利用する除霜では、冷却器7に設けた不凍液循環パイプ58から霜を加熱する。これにより霜を内側から解かし、融解部分63が形成される。したがって、冷却器7に付着した霜層の外側と内側から融解が生じ、また冷却器7を通過する強制対流によって空気と霜との伝熱が促進され、霜を速く均一に解かすことができる。   FIG. 9A schematically shows the frost formation and melting state in the cooler 7 during this defrosting operation state. In the defrosting in which the internal fan 9 is operated and the internal heat energy is used from the start time t1 of the defrosting operation to the time t2 when switching to the single heating by the defrosting heater 22, the frost layer grown on the cooler 7 is used. Heat mainly from outside. Circulating air 61 circulating to the refrigerator compartment 2 including the vegetable compartment 6 also passes through the inside of the frost layer, but the frost melts from the outside. On the other hand, in the defrost using the circulation pump 51 and utilizing the external heat energy, the frost is heated from the antifreeze circulating pipe 58 provided in the cooler 7. Thereby, frost is thawed from the inside, and a melting portion 63 is formed. Therefore, melting occurs from the outside and inside of the frost layer adhering to the cooler 7, and heat transfer between the air and the frost is promoted by forced convection passing through the cooler 7, so that the frost can be solved quickly and uniformly. .

図7に戻り、除霜センサ41が検出する温度Tsは冷却器7の温度であるから、除霜運転が始まると不凍液循環パイプ58内の不凍液57等によりその温度TsはTs=T1から霜が解け始めるTs=0℃まで上昇する。ここで、時刻t4からt5までの間は霜が融解している時間で、霜から水に相変化しているので除霜センサ温度TsはほぼTs=0℃=一定となる。この間、庫内ファン9が稼働しているので融解潜熱を循環空気61から奪い、冷却器7を通過した循環空気61が冷却され、循環空気61は野菜室6および冷蔵室2へ導かれて野菜室6および冷蔵室2を冷却する。ここで、庫内ファン9が稼働しているので冷蔵室温度Tは低下する。そして、霜が解けている時刻t4〜t5の間は、安定した冷蔵温度を保つ。 Returning to FIG. 7, since the temperature Ts detected by the defrost sensor 41 is the temperature of the cooler 7, when the defrost operation is started, the temperature Ts is reduced from Ts = T1 by the antifreeze liquid 57 etc. in the antifreeze liquid circulation pipe 58. Ts starts to melt and rises to 0 ° C. Here, the period from time t4 to t5 is the time during which the frost is melting, and since the phase changes from frost to water, the defrost sensor temperature Ts is approximately Ts = 0 ° C. = constant. During this time, since the internal fan 9 is operating, the latent heat of melting is taken from the circulating air 61, the circulating air 61 that has passed through the cooler 7 is cooled, and the circulating air 61 is guided to the vegetable compartment 6 and the refrigerator compartment 2 to produce vegetables. The chamber 6 and the refrigerator compartment 2 are cooled. Here, the refrigerating compartment temperature T R so the internal fan 9 is running decreases. And the stable refrigeration temperature is maintained between the time t4-t5 when the frost is thawed.

庫内エネルギーと庫外エネルギーを利用した除霜運転を継続した結果、除霜センサ41が検出する温度Tsが氷点温度以上の温度になったら、すなわちTs=T2になったら(ステップS3)、冷却器7に付着した霜が消失したものとして、冷却器7周辺に残ったおそれのある霜を融解させるために、除霜ヒータ22の除霜運転に切替える(ステップS4)。この温度T2は、例えば霜の融解終了直後の温度1℃とする。   As a result of continuing the defrosting operation using the internal energy and the external energy, if the temperature Ts detected by the defrost sensor 41 is equal to or higher than the freezing point temperature, that is, Ts = T2 (step S3), cooling is performed. In order to melt the frost that may remain in the vicinity of the cooler 7 assuming that the frost attached to the cooler 7 has disappeared, the defrosting operation of the defrost heater 22 is switched (step S4). This temperature T2 is, for example, 1 ° C. immediately after the end of frost melting.

すなわち、霜の融解が完了したため、Rダンパ20を閉、Fダンパ50を開、庫内ファン9をOFF、循環ポンプ51をOFF、機械室ファン68をOFF、除霜ヒータ22をONの状態に制御手段66が切替える。除霜センサ温度TsがTs=T2に到達した時点で冷却器7の霜は解けているが、冷却器7以外の周辺部に霜が残っている場合もあるので、信頼性の確保を目的に冷却器7の下部に設置した除霜ヒータ22で単独除霜する。   That is, since the melting of frost is completed, the R damper 20 is closed, the F damper 50 is opened, the internal fan 9 is turned off, the circulation pump 51 is turned off, the machine room fan 68 is turned off, and the defrosting heater 22 is turned on. The control means 66 is switched. When the defrost sensor temperature Ts reaches Ts = T2, the frost of the cooler 7 is dissolved, but frost may remain in the peripheral portion other than the cooler 7, so that the reliability is ensured. The defrosting is performed by the defrosting heater 22 installed at the lower part of the cooler 7.

本実施例では、ヒータ22で単独除霜する場合には、ヒータ22によって加熱された冷却器7周囲の空気の自然対流を促進するため、冷凍室ダンパ(Fダンパ)50を開く。これにより、冷却器7⇒冷凍室ダンパ(Fダンパ)50⇒冷凍室4、5⇒冷凍室戻り口17⇒冷却器7と流れる自然対流による循環流を発生させる。   In this embodiment, in the case where the heater 22 performs defrosting alone, the freezer damper (F damper) 50 is opened to promote natural convection of the air around the cooler 7 heated by the heater 22. As a result, a circulating flow is generated by natural convection flowing through the cooler 7 ⇒ freezer compartment damper (F damper) 50 ⇒ freezer compartment 4, 5 ⇒ freezer compartment return port 17 ⇒ cooler 7.

加熱された空気が冷凍室ダンパ(Fダンパ)50を通過して冷凍室4、5に流入するので、冷凍室4、5の熱負荷は増大する。しかしながら、ヒータ22で単独除霜する時間はあくまでも冷却器7の霜が解けた後の僅かの時間であり、冷凍室4、5に加熱された空気が流入する時間も従来のヒータ単独除霜時間とは比較にならない短い時間であり、トータルでは冷凍室ダンパ(Fダンパ)50を開けた方が効果的に除霜できる。なお、冷凍室4、5側では上記のように循環流を発生させ易いが、冷蔵室2側には循環流を発生させ難いので、冷蔵室ダンパ(Rダンパ)20は閉にする。庫内ファン9はOFFとする。   Since the heated air passes through the freezer compartment damper (F damper) 50 and flows into the freezer compartments 4 and 5, the heat load of the freezer compartments 4 and 5 increases. However, the time for the individual defrosting by the heater 22 is only a short time after the frost of the cooler 7 is thawed, and the time for the heated air to flow into the freezer compartments 4 and 5 is also the conventional heater single defrosting time. Is a short time that cannot be compared, and in total, defrosting can be effectively performed by opening the freezer compartment damper (F damper) 50. In addition, although it is easy to generate | occur | produce a circulating flow on the freezer compartments 4 and 5 side as mentioned above, since it is hard to generate a circulating flow on the refrigerator compartment 2 side, the refrigerator compartment damper (R damper) 20 is closed. The internal fan 9 is turned off.

除霜ヒータ22による加熱では、不凍液循環パイプ58内に不凍液57が残った状態では加熱負荷が増すことになる。そこで、除霜センサ温度TsがTs=T2になった時点で循環ポンプ51を逆回転させる。これにより、不凍液循環パイプ58内の不凍液を蓄熱タンク52に回収できる。除霜終了時の冷却器7の温度は、冷却器7の上部の除霜センサ温度TsがTS=約10℃であるが、除霜ヒータ22に近い冷却器7の下部では40℃近くになっている場合がある。庫外熱エネルギーを利用した後の不凍液57の温度は、霜を解かしたので低下している。除霜センサ温度Tsが蓄熱タンク52に設けた温度センサ60で計測される不凍液57の温度よりも高い場合には、循環ポンプ51を稼働させて冷却器7の熱を回収するのがよい。これにより、除霜運転から通常の冷却運転に戻る際に、圧縮機24を運転する前に冷却器7の温度を下げることができ、再冷却時間を短縮できる。   In the heating by the defrosting heater 22, the heating load increases when the antifreeze liquid 57 remains in the antifreeze circulation pipe 58. Therefore, when the defrost sensor temperature Ts reaches Ts = T2, the circulation pump 51 is reversely rotated. As a result, the antifreeze liquid in the antifreeze liquid circulation pipe 58 can be collected in the heat storage tank 52. At the end of the defrosting, the temperature of the cooler 7 is such that the defrost sensor temperature Ts at the top of the cooler 7 is TS = about 10 ° C., but at the bottom of the cooler 7 close to the defrost heater 22 is close to 40 ° C. There may be. The temperature of the antifreeze liquid 57 after using the external heat energy is reduced because the frost is released. When the defrost sensor temperature Ts is higher than the temperature of the antifreeze liquid 57 measured by the temperature sensor 60 provided in the heat storage tank 52, the circulation pump 51 may be operated to recover the heat of the cooler 7. Thus, when returning from the defrosting operation to the normal cooling operation, the temperature of the cooler 7 can be lowered before the compressor 24 is operated, and the recooling time can be shortened.

除霜ヒータ22単独で冷却器7を加熱する時の冷却器7周りの様子を、図9(b)に模式的に示す。この図9(b)は図9(a)と同様の除霜中の冷却器7の図である。この状態では、冷却器7には着霜は見られず、除霜ヒータ22で加熱された冷却器7の下部周辺の空気62が下方から上方に向けて流れている。このとき、冷却器7の上部に向かい温度が上昇し始め、同時に冷却器7の周辺部の壁面も加熱され、霜の解け残りがなくなる。   FIG. 9B schematically shows the surroundings of the cooler 7 when the cooler 7 is heated by the defrost heater 22 alone. FIG. 9B is a view of the cooler 7 during defrosting similar to FIG. 9A. In this state, no frost formation is seen in the cooler 7, and the air 62 around the lower part of the cooler 7 heated by the defrost heater 22 flows from the lower side to the upper side. At this time, the temperature starts to rise toward the upper part of the cooler 7, and at the same time, the wall surface of the peripheral part of the cooler 7 is also heated, so that there is no frost remaining.

除霜センサ温度TsがTs=T3になったら(ステップS5)、除霜ヒータ22での単独の除霜運転を終了する(ステップS6)。   When the defrost sensor temperature Ts reaches Ts = T3 (step S5), the single defrost operation at the defrost heater 22 is terminated (step S6).

除霜運転が終了すると、冷却運転を再開する。そのため、庫内ファンをONにする。除霜運転前と同様、除霜運転終了後の冷蔵庫1の庫内温度に応じて冷却運転の状態は相違するが、本実施例では、冷蔵室4(野菜室6を含む)および冷凍室4、5のいずれをも冷却運転するものとし、冷蔵室ダンパ(Rダンパ)20、冷凍室ダンパ(Fダンパ)50の双方を開き、庫内ファン9をON,機械室ファン68をONにする。   When the defrosting operation is completed, the cooling operation is resumed. Therefore, the internal fan is turned on. As in the case before the defrosting operation, the state of the cooling operation differs depending on the temperature inside the refrigerator 1 after the completion of the defrosting operation, but in this embodiment, the refrigerator compartment 4 (including the vegetable compartment 6) and the freezer compartment 4 5 is to be cooled, both the refrigerator compartment damper (R damper) 20 and the freezer compartment damper (F damper) 50 are opened, the internal fan 9 is turned on, and the machine room fan 68 is turned on.

本実施例によれば、電気エネルギーを使用する除霜ヒータ以外の加熱源、すなわち、消費電力量が少ない庫内熱エネルギーと庫外熱エネルギーを加熱源とした除霜ができる。換言すれば、霜の融解潜熱を利用した冷蔵室の冷却を行なう際、従来の除霜ヒータ22を加熱源とせずに、霜を庫内熱エネルギーを利用して冷却器表面側(外側)から、および庫外熱エネルギーを利用して霜の外部表面側(内側)から解かす加熱手段を用いているので、投入エネルギーを少なくして効率的に霜の融解潜熱を利用した冷却が可能になる。
[第2モード]
図10および図1を用いて、本発明に係る除霜運転の第2モードについて説明する。図10は、図7に示したと同様の除霜運転のタイムチャートであり、図11は除霜運転制御のフローチャートである。本モードは、着霜量が多い場合に好適なモードである。上記第1モードと異なるのは、除霜ヒータ22による加熱開始を早めて、庫内ファン9稼働による庫内熱エネルギーと、循環ポンプ51の稼働による庫外熱エネルギーを利用した除霜が終了する前に、除霜ヒータ22をONさせている。着霜量が多い場合、すなわち霜の融解が終了する時刻t5まで時間がかかる場合は、庫内熱エネルギーと庫外熱エネルギーだけでは熱源が不足し、霜が解けるまでに冷凍室4、5の温度が限界温度より上昇する恐れが生じる。そこで第2モードでは、時刻t2に達する前に、除霜ヒータ22を加熱源として作動させ、除霜時間の短縮を図っている。除霜運転の前後の冷蔵庫1内の温度および動作状態は、上記図7の実施例と同じである。
According to the present embodiment, defrosting can be performed using a heating source other than the defrosting heater that uses electrical energy, that is, the internal heat energy and the external heat energy with small power consumption. In other words, when cooling the refrigerator compartment using the melting latent heat of frost, the frost is used from the cooler surface side (outside) using the internal heat energy without using the conventional defrost heater 22 as a heating source. And heating means that uses the outside heat energy from the outside surface side (inside) of the frost is used, so that cooling using the frost melting latent heat can be efficiently performed with less input energy. .
[Second mode]
The second mode of the defrosting operation according to the present invention will be described using FIG. 10 and FIG. FIG. 10 is a time chart of the same defrosting operation as shown in FIG. 7, and FIG. 11 is a flowchart of the defrosting operation control. This mode is a mode suitable when the amount of frost formation is large. The difference from the first mode is that the heating start by the defrost heater 22 is advanced, and the defrosting using the internal heat energy by the operation of the internal fan 9 and the external heat energy by the operation of the circulation pump 51 is completed. Before, the defrost heater 22 is turned ON. When the amount of frost formation is large, that is, when it takes time until time t5 when frost melting ends, the heat source is insufficient with only the internal heat energy and the external heat energy, and the freezing rooms 4 and 5 The temperature may rise above the limit temperature. Therefore, in the second mode, before the time t2 is reached, the defrost heater 22 is operated as a heating source to shorten the defrost time. The temperature and operation state in the refrigerator 1 before and after the defrosting operation are the same as those in the embodiment of FIG.

さらに具体的に説明すると、1日1回または圧縮機24の運転時間が所定時間になると、除霜運転モードが開始される(ステップS7)。この時刻が時刻t1である。Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をON、機械室ファン66をON、除霜ヒータ22をOFFにして(ステップS8)、除霜運転を開始する。霜の融解が完了する時刻t5よりも前の時間中に、冷凍室2の温度TがT=TF2以上になったら(ステップS9)、冷凍室4、5に保存した食品の保存性の悪化が懸念されるので、霜の融解途中ではあるが除霜ヒータをONにする(ステップS10)。ここで、時刻t5は、霜の融解が完了する時刻であり、時刻t6は冷凍室温度TがT=TF2となる時刻である。 More specifically, the defrosting operation mode is started once a day or when the operation time of the compressor 24 reaches a predetermined time (step S7). This time is time t1. The R damper 20 is opened, the F damper 50 is closed, the internal fan 9 is turned on, the circulation pump 51 is turned on, the machine room fan 66 is turned on, the defrosting heater 22 is turned off (step S8), and the defrosting operation is started. To do. If the temperature T R of the freezer compartment 2 becomes equal to or higher than T R = TF2 before the time t5 when the frost is completely thawed (step S9), the preservability of the food stored in the freezer compartments 4 and 5 is increased. Since there is a concern about deterioration, the defrost heater is turned on although the frost is being melted (step S10). Here, time t5 is a time when frost melting is completed, and time t6 is a time when the freezer compartment temperature T R becomes T R = TF2.

除霜センサ温度TsがTs=T2になったら、Rダンパ20を閉、Fダンパ50を開、庫内ファン9をOFF、循環ポンプ51をOFF、機械室ファン66をOFFに切り替え、除霜ヒータ22はON状態を継続する(ステップS12)。除霜センサ温度Tsが氷点以上の温度であるTs=T3になるまで、除霜ヒータ22を単独使用して冷却器7を加熱する。   When the defrost sensor temperature Ts reaches Ts = T2, the R damper 20 is closed, the F damper 50 is opened, the internal fan 9 is turned off, the circulation pump 51 is turned off, the machine room fan 66 is turned off, and the defrost heater is turned on. 22 continues the ON state (step S12). The cooler 7 is heated using the defrost heater 22 alone until the defrost sensor temperature Ts reaches Ts = T3, which is a temperature equal to or higher than the freezing point.

本除霜運転モードでは、霜の融解潜熱を利用して冷蔵室2を冷却するために、投入エネルギーをできるだけ少なくし、庫内熱エネルギーと庫外熱エネルギーを熱源とした除霜運転(t4〜t5)を実行することにより、霜の融解潜熱を利用した冷蔵室2の冷却を実現している。着霜量が多い場合は、霜が完全に解ける前に除霜ヒータ22を加熱源に追加して、霜が完全に融解する時間(〜t5)を短縮できる。
[第3モード]
本発明に係る除霜運転の他のモードを図12を用いて説明する。図12は、図7、10と同様の除霜運転のタイムチャートである。着霜量が少ない場合に好適な除霜運転モードである。着霜量が少ないと、霜が解ける時間間隔t4〜t5が短い。また、除霜センサ41が検出する温度Tsの上昇が速い。そこで、霜が少ない場合の、除霜開始から霜の融解開始までの温度勾配を予め測定する。そしてこの値を基準値としてこれよりも温度勾配が小さい場合は霜が少ないと判断する。除霜運転の前後の冷蔵庫1内の温度および動作状態は、上記図7の実施例と同じである。
In this defrosting operation mode, in order to cool the refrigerator compartment 2 using the frost melting latent heat, the input energy is reduced as much as possible, and the defrosting operation using the internal heat energy and the external heat energy as heat sources (t4 to t4). By performing t5), cooling of the refrigerator compartment 2 using the frost melting latent heat is realized. When the amount of frost formation is large, the defrosting heater 22 is added to the heating source before the frost is completely melted, so that the time (˜t5) during which the frost is completely melted can be shortened.
[Third mode]
Another mode of the defrosting operation according to the present invention will be described with reference to FIG. FIG. 12 is a time chart of the defrosting operation similar to FIGS. This is a defrosting operation mode suitable when the amount of frost formation is small. When the amount of frost formation is small, the time interval t4 to t5 at which frost is released is short. Further, the temperature Ts detected by the defrost sensor 41 is rapidly increased. Therefore, the temperature gradient from the start of defrosting to the start of frost melting is measured in advance when there is little frost. If this value is used as a reference value and the temperature gradient is smaller than this, it is determined that there is little frost. The temperature and operation state in the refrigerator 1 before and after the defrosting operation are the same as those in the embodiment of FIG.

着霜量が少ないと判断されたときには、時刻t1〜t4まで庫内ファン9を稼働して、庫内熱エネルギーによる除霜を実施する。温度勾配がこの基準値より多く、着霜量が少ない状態ではないと判断されたときは、図7に示した第1の除霜運転モードになる。具体的には、着霜量を判断する時刻t7までは第1の除霜運転モードと同じく、Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をON、機械室ファン68をON、除霜ヒータOFFとして、除霜運転を開始する。ここで除霜運転開始時刻t1は、1日1回の定められた時刻、または圧縮機の動作時間等から定める。   When it is determined that the amount of frost formation is small, the internal fan 9 is operated from time t1 to time t4 to perform defrosting with internal thermal energy. When it is determined that the temperature gradient is greater than the reference value and the amount of frost formation is not small, the first defrosting operation mode shown in FIG. 7 is entered. Specifically, until time t7 when the amount of frost formation is determined, as in the first defrosting operation mode, the R damper 20 is opened, the F damper 50 is closed, the internal fan 9 is turned on, the circulation pump 51 is turned on, The machine room fan 68 is turned on and the defrosting heater is turned off to start the defrosting operation. Here, the defrosting operation start time t1 is determined from a predetermined time once a day, an operating time of the compressor, or the like.

除霜センサ温度Tsがまだ氷点以下である着霜量の判断時刻t7において、除霜センサ温度Tsが予め定めた基準値T7以下であれば、除霜センサ温度Tsが氷点温度になるまで、すなわち霜が融解し始めるまで、循環ポン51をOFFに、機械室ファン66をOFFに切替え、庫内ファンによる冷気の循環だけで冷却器7を加熱する。除霜センサ温度Tsが氷点温度となる時刻t4で、加熱量の不足を補うために、再び循環ポンプ51をON、機械室ファン66をONに切替える。以後は、図7に示した第1の除霜運転モードと同じである。
[第4のモード]
図13および図14を用いて、本発明に係る第4の除霜運転モードについて説明する。図13は、除霜運転のタイムチャートであり、図14は除霜運転の制御フローチャートである。本除霜運転モードは、除霜センサ温度Tsが下限温度T0に達したときに、除霜運転を起動させるモードである。蓄熱タンク52に充填した不凍液57の濃度を調整して、不凍液57の凍結温度が決まる。除霜運転の前後の冷蔵庫1内の温度および動作状態は、上記図7の実施例と同じである。
If the defrost sensor temperature Ts is equal to or lower than a predetermined reference value T7 at the defrosting amount determination time t7 when the defrost sensor temperature Ts is still below the freezing point, that is, until the defrost sensor temperature Ts reaches the freezing point temperature, that is, Until the frost begins to melt, the circulation pump 51 is turned off and the machine room fan 66 is turned off, and the cooler 7 is heated only by the circulation of the cool air by the internal fan. At time t4 when the defrost sensor temperature Ts reaches the freezing point temperature, the circulation pump 51 is turned on again and the machine room fan 66 is turned on again in order to compensate for the shortage of heating. The subsequent steps are the same as those in the first defrosting operation mode shown in FIG.
[Fourth mode]
The 4th defrosting operation mode which concerns on this invention is demonstrated using FIG. 13 and FIG. FIG. 13 is a time chart of the defrosting operation, and FIG. 14 is a control flowchart of the defrosting operation. The defrosting operation mode is a mode for starting the defrosting operation when the defrosting sensor temperature Ts reaches the lower limit temperature T0. The freezing temperature of the antifreeze liquid 57 is determined by adjusting the concentration of the antifreeze liquid 57 filled in the heat storage tank 52. The temperature and operation state in the refrigerator 1 before and after the defrosting operation are the same as those in the embodiment of FIG.

ところで、不凍液57の凍結温度を下げるためには、不凍液57の濃度を濃くする必要があるが、濃度を濃くすると不凍液の粘度が高くなりすぎ循環ポンプ51の動力が増加する。その結果、庫外熱エネルギーにより蓄えた熱を不凍液循環パイプ58に輸送する際の消費電力量が増加する。さらに比熱が小さくなり、蓄熱タンク52の容量が増大し設置性が悪化する。   By the way, in order to lower the freezing temperature of the antifreeze liquid 57, it is necessary to increase the concentration of the antifreeze liquid 57, but when the concentration is increased, the viscosity of the antifreeze liquid becomes too high and the power of the circulation pump 51 increases. As a result, the amount of power consumed when the heat stored by the external heat energy is transported to the antifreeze circulating pipe 58 is increased. Furthermore, specific heat becomes small, the capacity | capacitance of the thermal storage tank 52 increases, and installation property deteriorates.

また、冷蔵庫1では、急速に冷凍させる場合に急速冷凍運転を実施するが、この急速冷凍運転では通常冷却運転に比べて冷却器7の温度が低下するので、一般的には不凍液57の濃度を高めて不凍液57の凍結防止をしている。このような不凍液57の濃度変化での対応による従来の除霜運転における不具合を解消するため、本第4の除霜運転モードでは、不凍液の濃度を高めることなく配管内の凍結防止を可能にしている。   In the refrigerator 1, the quick freezing operation is performed when rapidly freezing. In this quick freezing operation, the temperature of the cooler 7 is lower than that in the normal cooling operation. The antifreeze liquid 57 is prevented from freezing. In order to eliminate the problem in the conventional defrosting operation due to the change in the concentration of the antifreeze liquid 57, in the fourth defrosting operation mode, it is possible to prevent freezing in the pipe without increasing the concentration of the antifreeze liquid. Yes.

蓄熱タンク52に充填されている不凍液57の凍結温度以下の所定温度T0で、除霜を開始する(ステップS15)。この温度で循環ポンプ51を稼働させると、配管内で不凍液が凍結する恐れがある。そこで制御手段66は、Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をOFF、機械室ファン68をOFF、除霜ヒータ22をOFFに切替える(ステップS16)。つまり、図7に示した第1の除霜運転モードとは、循環ポンプ51をOFFにする点だけ相違する。この庫内ファン9による庫内エネルギと機械室ファン68による庫外エネルギの蓄熱だけにより除霜運転をしばらく続ける。そして除霜センサ温度Tsが不凍液52の凍結温度を超える温度T1にまで上昇したら(ステップS17)、循環ポンプ51をONにして不凍液52で冷却器7を加熱する(ステップS18)。その後は図7に示した第1の除霜運転モードと同じである(ステップS20〜ステップS24)。なお、ステップ16の代わりに、除霜運転開始後しばらく庫内ファン9と循環ポンプ51を停止状態にしておき、除霜センサ温度Tsが上昇するのを待つようにしてもよい。   Defrosting is started at a predetermined temperature T0 that is equal to or lower than the freezing temperature of the antifreeze liquid 57 filled in the heat storage tank 52 (step S15). If the circulation pump 51 is operated at this temperature, the antifreeze liquid may freeze in the pipe. Therefore, the control means 66 opens the R damper 20, closes the F damper 50, turns on the internal fan 9, turns off the circulation pump 51, turns off the machine room fan 68, and turns off the defrosting heater 22 (step S16). . That is, it differs from the first defrosting operation mode shown in FIG. 7 only in that the circulation pump 51 is turned off. The defrosting operation is continued for a while only by storing the internal energy by the internal fan 9 and the external energy by the mechanical room fan 68. When the defrost sensor temperature Ts rises to a temperature T1 that exceeds the freezing temperature of the antifreeze liquid 52 (step S17), the circulation pump 51 is turned on to heat the cooler 7 with the antifreeze liquid 52 (step S18). After that, it is the same as the 1st defrosting operation mode shown in FIG. 7 (step S20-step S24). Instead of step 16, the internal fan 9 and the circulation pump 51 may be stopped for a while after the start of the defrosting operation to wait for the defrosting sensor temperature Ts to rise.

また、図10および図11に示す第2の除霜運転モードにおけると同様に、着霜が多すぎて霜の融解が終了(時刻t5)する前に冷凍室温度がTF2を超えて上昇するような場合には、除霜ヒータ22の加熱開始を早めてONにする。すなわち、冷凍運転が長時間にわたり停止される場合(ステップS19)には、霜の融解を加速させるために、除霜ヒータをONにする(ステップS20)。除霜センサ温度TsがT2に到達したら(ステップS21)、除霜ヒータ22の単独加熱に切替える(ステップS22)。除霜ヒータ22の単独加熱によって除霜センサ温度TsをT3まで高め(ステップS23)、その後除霜運転を終了する(ステップS24)。   Further, as in the second defrosting operation mode shown in FIGS. 10 and 11, the freezing room temperature rises above TF2 before frosting is excessive and frost melting ends (time t5). In such a case, the heating start of the defrost heater 22 is turned on early. That is, when the refrigeration operation is stopped for a long time (step S19), the defrosting heater is turned on to accelerate frost melting (step S20). When the defrost sensor temperature Ts reaches T2 (step S21), the defrost sensor 22 is switched to single heating (step S22). The defrosting sensor temperature Ts is raised to T3 by single heating of the defrosting heater 22 (step S23), and then the defrosting operation is terminated (step S24).

以上述べた本発明の各実施例および除霜運転モードによれば、除霜時に冷却器に成長した霜の冷熱エネルギーを有効利用しているので、投入エネルギーが少ない除霜をしながら霜の融解潜熱を利用した冷却も実施可能であり、消費電力量を低減できる。また、従来は不凍液を用いた加熱手段しか有していないので、着霜量が多い場合に冷凍室の温度上昇を抑制することが困難であった。上記各実施例によれば、着霜量に応じた除霜が可能なので、着霜量が少ない場合には除霜時間を短縮できるし、着霜量が多い場合には冷凍室温度の温度上昇を抑制できるとともに不凍液の凍結等の不具合を防止できる。   According to each embodiment and the defrosting operation mode of the present invention described above, the frost cooling energy that has grown in the cooler during defrosting is effectively utilized, so that the frost can be melted while defrosting with less input energy. Cooling using latent heat can also be performed, and power consumption can be reduced. In addition, since only a heating means using an antifreeze liquid is conventionally provided, it is difficult to suppress an increase in the temperature of the freezer compartment when the amount of frost formation is large. According to each of the above embodiments, defrosting according to the amount of frost formation is possible. Therefore, when the amount of frost formation is small, the defrosting time can be shortened, and when the amount of frost formation is large, the temperature of the freezer compartment increases. Can be prevented, and troubles such as freezing of the antifreeze can be prevented.

また、冷蔵庫では、霜は主に冷却器に発生するが、冷却器以外、例えば、冷却器が収納されている風路表面(固体壁面)あるいは庫内循環ファン近傍にも霜が成長する場合がある。従来の不凍液を用いた除霜では、直接冷却器を加熱するので、加熱源である不凍液と冷却器に付着した霜との伝熱は促進されるが、冷却器から離れた場所の霜を確実に解かすことが困難であった。本実施例では、除霜ヒータを主として冷却器から離れた場所の除霜に利用しているので、電力量も僅かで済む上、確実に冷蔵庫各部の着霜を除霜できる。   In refrigerators, frost is mainly generated in the cooler, but frost may grow on the surface of the air passage (solid wall surface) in which the cooler is housed or in the vicinity of the internal circulation fan. is there. In conventional defrosting using antifreeze, the cooler is directly heated, so heat transfer between the antifreeze that is the heating source and the frost attached to the cooler is promoted, but frost in a location away from the cooler is surely secured. It was difficult to solve. In this embodiment, since the defrost heater is mainly used for defrosting at a place away from the cooler, the amount of electric power is small, and frost formation in each part of the refrigerator can be reliably defrosted.

また、上記実施例に示す冷蔵庫では、除霜ヒータ(電気エネルギー)以外の加熱源、すなわち、消費電力量が少ない庫内熱エネルギーと庫外熱エネルギーを加熱源とした除霜を実施するので省エネルギーとなる。   Moreover, in the refrigerator shown in the above embodiment, energy is saved because the heating source other than the defrosting heater (electric energy), that is, the defrosting is performed using the internal heat energy and the external heat energy with low power consumption as the heating sources. It becomes.

1…冷蔵庫、2…冷蔵室、2a、2b…扉、2c…吹き出し口、3…製氷室、3a…扉、3b…収納容器、4…上段冷凍室、4a…扉、4b…収納容器、5…下段冷凍室、5a…扉、5b…収納容器、6…野菜室、6a…扉、6b…収納容器、6d…野菜室戻り口、7…冷却器、8…冷却器収納室、9…庫内ファン、10…断熱箱体、11…冷蔵室送風ダクト、12…上段冷凍室送風ダクト、13…下段冷凍室送風ダクト、17…冷凍室戻り口、18…野菜室戻りダクト、18a…野菜室戻り吐出口、20…冷蔵室ダンパ(Rダンパ、第1の開閉手段)、21…蒸発皿、22…除霜ヒータ(第1の加熱手段)、23…樋、24…圧縮機、25…真空断熱材、27…ドレン孔、28、29…断熱仕切壁、32…扉ポケット、36…棚、40…冷凍室前面仕切り、41…除霜センサ、43…除霜水滴下防止部、44…ガラス管、45…金属フィン(放熱フィン)、46…冷蔵室冷気戻り風路、50…冷凍室ダンパ(Fダンパ、第2の開閉手段)、51…循環ポンプ、52…蓄熱タンク、53〜55…パイプ、56…機械室、57…不凍液、58…不凍液循環パイプ、59…霜、60…センサ、61…循環空気、62… 加熱空気、63… 融解部分、66…制御手段、66a…CPU、66b…記憶手段、68…機械室ファン、71〜73…冷気(の流れ)、91…機械室カバー、92…放熱器、93…圧縮機支持部、94…機械室ベース、96…吸入口、97…吐出口。   DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Cold room, 2a, 2b ... Door, 2c ... Outlet, 3 ... Ice making room, 3a ... Door, 3b ... Storage container, 4 ... Upper stage freezer room, 4a ... Door, 4b ... Storage container, 5 ... lower freezing room, 5a ... door, 5b ... storage container, 6 ... vegetable room, 6a ... door, 6b ... storage container, 6d ... vegetable room return port, 7 ... cooler, 8 ... cooler storage room, 9 ... storage Inner fan, 10 ... heat insulation box, 11 ... refrigerator compartment air duct, 12 ... upper freezer compartment air duct, 13 ... lower freezer compartment air duct, 17 ... freezer compartment return port, 18 ... vegetable compartment return duct, 18a ... vegetable compartment Return discharge port, 20 ... refrigerator (R damper, first opening / closing means), 21 ... evaporating dish, 22 ... defrosting heater (first heating means), 23 ... soot, 24 ... compressor, 25 ... vacuum Insulating material, 27 ... Drain hole, 28, 29 ... Insulating partition wall, 32 ... Door pocket, 36 ... Shelf, 40 ... Front compartment of freezer compartment DESCRIPTION OF SYMBOLS 41 ... Defrost sensor, 43 ... Defrost water dripping prevention part, 44 ... Glass tube, 45 ... Metal fin (radiation fin), 46 ... Cold room cold air return air path, 50 ... Freezer compartment damper (F damper, 2nd Opening and closing means), 51 ... circulation pump, 52 ... heat storage tank, 53-55 ... pipe, 56 ... machine room, 57 ... antifreeze liquid, 58 ... antifreeze liquid circulation pipe, 59 ... frost, 60 ... sensor, 61 ... circulating air, 62 ... Heated air, 63 ... melting portion, 66 ... control means, 66a ... CPU, 66b ... storage means, 68 ... machine room fan, 71-73 ... cold air (flow), 91 ... machine room cover, 92 ... radiator, 93 Compressor support, 94 ... machine room base, 96 ... suction port, 97 ... discharge port.

Claims (7)

冷蔵室と冷凍室を有し、前記冷蔵室と前記冷凍室を冷却する冷気を発生する冷却器および圧縮機を備えた冷凍サイクルと、前記冷却器で発生した冷気を前記冷蔵室へ導く流路を開閉する第1の開閉手段と、前記冷却器で発生した冷気を前記冷凍室へ導く流路を開閉する第2の開閉手段と、前記冷却器で発生した冷気を前記冷蔵室と前記冷凍室の少なくともいずれかに送風する庫内ファンと、前記冷却器の下方に配置され電気ヒータを有する第1の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンとを含み、前記冷蔵室を流通して温度上昇した空気で前記冷却器を加熱する第2の加熱手段と、前記冷却器に当接して配置され内部を不凍液が流通する配管と不凍液を循環させる循環ポンプと前記圧縮機で発生する熱および外気の熱の少なくともいずれかを不凍液に蓄熱させる蓄熱タンク及び機械室ファンとを有する第3の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンと前記循環ポンプと前記機械室ファンと前記第1の加熱手段の動作を制御する制御手段とを備え、除霜運転時に前記制御手段は、前記第1ないし第3の加熱手段の少なくともいずれかを用いて前記冷却器を加熱し、この冷却器部を流通した空気で前記冷蔵室を冷却すると共に、前記第3の加熱手段が前記冷却器へ当接する部分の不凍液出口近傍に除霜センサを設け、前記制御手段は、前記除霜センサが検出した温度が前記不凍液の凍結温度を超えるまで前記循環ポンプを作動させず、前記循環ポンプを逆回転させて前記配管内の前記不凍液を前記蓄熱タンクに回収する運転を有することを特徴とする冷蔵庫。 A refrigeration cycle having a refrigerator compartment and a freezer compartment, including a refrigerator and a compressor for generating cold air for cooling the refrigerator compartment and the freezer compartment, and a flow path for guiding the cold air generated by the cooler to the refrigerator compartment A first opening / closing means for opening / closing the air, a second opening / closing means for opening / closing a flow path for guiding the cool air generated by the cooler to the freezer compartment, and the cooler chamber and the freezer compartment for the cool air generated by the cooler. An internal fan that blows air to at least one of the above, a first heating means that is disposed below the cooler and has an electric heater, the first and second opening / closing means, and the internal fan, A second heating means for heating the cooler with the air whose temperature has risen through the refrigerating chamber; a pipe which is disposed in contact with the cooler and through which the antifreeze liquid flows; a circulation pump for circulating the antifreeze liquid; and the compression Less heat generated in the machine and heat from the outside Wherein the third heating means having a heat storage tank and the machine compartment fan to the heat storage either in antifreeze also the first, and second switching means the in-compartment fan and the circulating pump and the machine compartment fan first Control means for controlling the operation of one heating means, and during the defrosting operation, the control means heats the cooler using at least one of the first to third heating means, and this cooler The refrigeration chamber is cooled with the air flowing through the section, and a defrost sensor is provided in the vicinity of the antifreeze outlet of the portion where the third heating means contacts the cooler, and the control means is detected by the defrost sensor. wherein the temperature was having a operation for recovering the heat storage tank the antifreeze in the pipe without operating the circulation pump to above freezing temperature, by reversely rotating the circulation pump of the antifreeze Built warehouse. 前記制御手段は、除霜運転時に、前記第1の加熱手段が稼動する前に前記第2および第3の加熱手段を稼動させることを特徴とする請求項1に記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein the control unit operates the second and third heating units before the first heating unit is operated during the defrosting operation. 前記制御手段は、前記第2および第3の加熱手段による加熱後、前記第1の加熱手段を作動させることを特徴とする請求項1または2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the control means activates the first heating means after heating by the second and third heating means. 前記第2の加熱手段は、冷蔵温度帯の庫内空気を前記庫内ファンで庫内循環させた後の空気を用いるものであり、前記第3の加熱手段は,不凍液にプラス温度帯の熱を蓄熱し、前記不凍液を前記冷却器に熱輸送するものであることを特徴とする請求項1ないし3の何れか1項に記載の冷蔵庫。   The second heating means uses air after the inside air in a refrigerator temperature zone is circulated in the warehouse by the inside fan, and the third heating means is a heat in a plus temperature zone for the antifreeze liquid. The refrigerator according to any one of claims 1 to 3, wherein the refrigerator is configured to store heat and transport the antifreeze liquid to the cooler. 前記除霜センサが検出した温度が除霜開始から予め定めた時間内に氷点を超える所定温度に達しないときに、前記制御手段は、前記第2および第3の加熱手段の加熱に加え前記第1の加熱手段による加熱を作動させることを特徴とする請求項1ないし4の何れか1項に記載の冷蔵庫。 When the temperature detected by the defrost sensor does not reach a predetermined temperature exceeding the freezing point within a predetermined time from the start of defrosting, the control means adds the second and third heating means in addition to the heating of the second and third heating means. The refrigerator according to any one of claims 1 to 4, wherein heating by one heating means is activated. 前記第2の加熱手段は前記冷却器の着霜をこの着霜の外表面側から除霜し、前記第3の加熱手段は前記冷却器の着霜を前記冷却器に接触する面側から除霜することを特徴とする請求項1ないし5の何れか1項に記載の冷蔵庫 The second heating means defrosts the frost on the cooler from the outer surface side of the frost, and the third heating means removes the frost on the cooler from the surface side in contact with the cooler. The refrigerator according to any one of claims 1 to 5, wherein the refrigerator is frosted . 前記制御手段は、前記第2の加熱手段で前記冷却器に付着した霜を加熱して発生した冷気を前記冷蔵室に導くよう前記第1の開閉手段を作動させることを特徴とする請求項1ないし6の何れか1項に記載の冷蔵庫 2. The control means operates the first opening / closing means so as to guide the cold air generated by heating the frost attached to the cooler by the second heating means to the refrigerator compartment. The refrigerator of any one of thru | or 6 .
JP2011179461A 2011-08-19 2011-08-19 refrigerator Expired - Fee Related JP5571044B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011179461A JP5571044B2 (en) 2011-08-19 2011-08-19 refrigerator
KR1020120087136A KR101445924B1 (en) 2011-08-19 2012-08-09 Refrigerator
CN201210285425.2A CN102954645B (en) 2011-08-19 2012-08-10 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179461A JP5571044B2 (en) 2011-08-19 2011-08-19 refrigerator

Publications (2)

Publication Number Publication Date
JP2013040745A JP2013040745A (en) 2013-02-28
JP5571044B2 true JP5571044B2 (en) 2014-08-13

Family

ID=47763783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179461A Expired - Fee Related JP5571044B2 (en) 2011-08-19 2011-08-19 refrigerator

Country Status (3)

Country Link
JP (1) JP5571044B2 (en)
KR (1) KR101445924B1 (en)
CN (1) CN102954645B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731369A (en) * 2017-04-18 2018-11-02 Bsh家用电器有限公司 Refrigerating appliance and its operation method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026966B2 (en) * 2013-06-28 2016-11-16 アクア株式会社 refrigerator
CN103851865A (en) * 2014-01-08 2014-06-11 杭州凡米林电子科技有限公司 Cold storage multifunctional refrigerator structure
JP5744265B1 (en) * 2014-02-28 2015-07-08 シャープ株式会社 refrigerator
JP6364221B2 (en) * 2014-04-17 2018-07-25 日立アプライアンス株式会社 refrigerator
KR102508224B1 (en) * 2015-08-28 2023-03-09 삼성전자주식회사 Refrigerator
US10288338B2 (en) 2015-08-28 2019-05-14 Samsung Electronics Co., Ltd. Refrigerator
CN106813440B (en) * 2015-11-27 2019-10-29 日立环球生活方案株式会社 Refrigerator
CN105674670B (en) * 2016-02-04 2018-07-13 青岛海尔股份有限公司 Refrigerator
WO2017179500A1 (en) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 Refrigerator and cooling system
CN106989560A (en) * 2017-04-24 2017-07-28 青岛海尔股份有限公司 The dew removing method of refrigerator and refrigerator door seal
CN107606844B (en) * 2017-08-18 2022-01-25 海尔智家股份有限公司 Refrigerator with a door
CN110094918B (en) * 2018-01-31 2021-10-26 日立环球生活方案株式会社 Refrigerator with a door
CN109028723A (en) * 2018-07-12 2018-12-18 方碧水 A kind of defroster of cold compartment of refrigerator
KR20200065251A (en) * 2018-11-30 2020-06-09 삼성전자주식회사 Refrigerator and controlling method thereof
KR102166433B1 (en) * 2019-01-14 2020-10-15 엘지전자 주식회사 Refrigerator and method for controlling compressor of refrigerator
JP7191715B2 (en) * 2019-02-18 2022-12-19 日立グローバルライフソリューションズ株式会社 refrigerator
KR20220018178A (en) * 2020-08-06 2022-02-15 엘지전자 주식회사 refrigerator and operating method thereof
CN112033071B (en) * 2020-08-17 2022-03-18 珠海格力电器股份有限公司 Refrigerator and defrosting method thereof
CN113883800B (en) * 2021-10-28 2023-03-14 澳柯玛股份有限公司 Refrigeration and defrosting control method of double-system refrigeration refrigerator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149147U (en) * 1979-04-12 1980-10-27
JPS5981479A (en) * 1982-10-30 1984-05-11 鈴木 樹雄 Refrigerator which accumulate waste heat in liquid and utilize it as heat source for defrostation and refrigerator
JPH071140B2 (en) * 1988-10-07 1995-01-11 ホシザキ電機株式会社 Operation control method for constant temperature and humidity refrigerator
KR19990005704A (en) * 1997-06-30 1999-01-25 배순훈 Defroster of the refrigerator
JP2002373031A (en) * 2001-06-18 2002-12-26 Hitachi Ltd Control method for liquid cooling system when frozen
JP4310947B2 (en) * 2001-09-06 2009-08-12 三菱電機株式会社 Control device for refrigerator
JP2003322454A (en) * 2002-04-26 2003-11-14 Hitachi Home & Life Solutions Inc Refrigerator
JP4356379B2 (en) * 2003-07-16 2009-11-04 三菱電機株式会社 Refrigerator, how to operate the refrigerator
JP2009092371A (en) * 2007-09-20 2009-04-30 Sharp Corp Chiller
JP4644271B2 (en) * 2008-06-09 2011-03-02 日立アプライアンス株式会社 refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731369A (en) * 2017-04-18 2018-11-02 Bsh家用电器有限公司 Refrigerating appliance and its operation method

Also Published As

Publication number Publication date
CN102954645A (en) 2013-03-06
KR20130020571A (en) 2013-02-27
KR101445924B1 (en) 2014-09-29
JP2013040745A (en) 2013-02-28
CN102954645B (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5571044B2 (en) refrigerator
JP5017340B2 (en) refrigerator
AU2013242698B2 (en) Refrigerator and working method thereof
JP2012007760A (en) Refrigerator
JP2006226635A (en) Refrigerator
JP2011038715A (en) Refrigerator
JP2018071874A (en) refrigerator
JP6360717B2 (en) refrigerator
JP2019138510A (en) refrigerator
JP2009092371A (en) Chiller
JP5105276B2 (en) refrigerator
KR101698101B1 (en) Refrigerator and conrtol method thereof
JP4982537B2 (en) refrigerator
KR20200105298A (en) Control method for refrigerator
JP2012047362A (en) Refrigerator
JP6492291B2 (en) refrigerator
JP2015143579A (en) refrigerator
JP6186187B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP5376796B2 (en) refrigerator
JP6017886B2 (en) refrigerator
JP2007113854A (en) Refrigerator
JP2019132493A (en) refrigerator
JP2017172849A (en) refrigerator
JP2022063354A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R150 Certificate of patent or registration of utility model

Ref document number: 5571044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees