JP2018071874A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2018071874A
JP2018071874A JP2016211203A JP2016211203A JP2018071874A JP 2018071874 A JP2018071874 A JP 2018071874A JP 2016211203 A JP2016211203 A JP 2016211203A JP 2016211203 A JP2016211203 A JP 2016211203A JP 2018071874 A JP2018071874 A JP 2018071874A
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
storage chamber
temperature
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016211203A
Other languages
Japanese (ja)
Other versions
JP6752107B2 (en
Inventor
良二 河井
Ryoji Kawai
良二 河井
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
晴樹 額賀
Haruki Nukaga
晴樹 額賀
暢志郎 小池
Nobushiro Koike
暢志郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2016211203A priority Critical patent/JP6752107B2/en
Publication of JP2018071874A publication Critical patent/JP2018071874A/en
Application granted granted Critical
Publication of JP6752107B2 publication Critical patent/JP6752107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator improved in energy-saving performance by suppressing super heating while securing reliability by accurately detecting a melting state of frost growing in a cooler and a wall surface around the cooler.SOLUTION: A refrigerator includes: a food storage chamber; a compressor; a radiator heat-exchanging a coolant compressed with the compressor with outside air; a decompression means for decompressing the coolant; a cooler 21 heat-exchanging the decompressed coolant with air in the food storage chamber; a cooler storage chamber 9 storing the cooler 21; a draft air duct extending from the cooler storage chamber 9 to the food storage chamber; a return air duct extending from the food storage chamber to the cooler storage chamber 9; and an internal blower 22 blowing air heat-exchanged by the cooler 21 to the food storage chamber. There are arranged a first temperature sensor 44 detecting a temperature of the cooler 21, and a second temperature sensor 45 in the cooler storage chamber 9 at a downstream side than the cooler 21, or the draft air duct.SELECTED DRAWING: Figure 5

Description

本発明は,冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として,例えば特開2006−266617号公報(特許文献1)及び特開2012―255572号公報(特許文献2)がある。   As background arts in this technical field, there are, for example, Japanese Unexamined Patent Application Publication No. 2006-266617 (Patent Document 1) and Japanese Unexamined Patent Application Publication No. 2012-255572 (Patent Document 2).

一般に冷蔵庫は、氷点以下の冷却器と庫内の空気が熱交換することで,貯蔵室を所望の温度に冷却する機器であり,冷却器の表面には霜が成長する。霜の成長は熱抵抗や通風抵抗の増加をもたらすため,霜が成長するにつれて冷却器における熱交換性能が低下する。よって,熱交換性能を回復するために霜を融解して除去する除霜運転が行われる。除霜運転は除霜ヒータによる加熱によって行われ,温度センサにより除霜の完了が判定される。   Generally, a refrigerator is a device that cools a storage room to a desired temperature by heat exchange between a cooler below freezing point and air in the cabinet, and frost grows on the surface of the cooler. The growth of frost causes an increase in thermal resistance and ventilation resistance, so the heat exchange performance in the cooler decreases as the frost grows. Therefore, a defrosting operation is performed in which frost is melted and removed in order to recover the heat exchange performance. The defrosting operation is performed by heating with a defrosting heater, and the completion of defrosting is determined by a temperature sensor.

特許文献1に記載の冷蔵庫は,冷蔵庫の本体庫内において、内箱の冷却器後方の箇所に、温度センサである除霜判定センサを設けている。除霜動作の終了のタイミングは、除霜判定センサにより決定される。すなわち、除霜判定センサにより、その周囲が所定の温度まで上昇した時点で除霜が完了したと判定し、除霜ヒータへの通電を止めて除霜動作を終了する。   The refrigerator described in Patent Document 1 is provided with a defrost determination sensor, which is a temperature sensor, at a location behind the cooler of the inner box in the refrigerator main body. The end timing of the defrosting operation is determined by a defrosting determination sensor. That is, the defrosting determination sensor determines that the defrosting is completed when the surrounding area rises to a predetermined temperature, stops energization of the defrosting heater, and ends the defrosting operation.

また,特許文献2に記載の冷蔵庫は,冷気を生成する冷却器と、冷却器を配して冷気が流通する冷気ダクトと、冷気ダクト内で冷却器の下方に配して冷却器を除霜する除霜ヒータと、冷却器の上方で,冷気ダクト内で冷却器の前後方向の略中央部に配置され,温度検知して除霜ヒータの停止時期を検出する温度センサと、冷気ダクトの前壁に設けられるとともに、温度センサを保持する保持部とを備え、保持部によって温度センサの上方を覆っている。除霜ヒータは温度センサの検知温度が所定温度になると停止される。   In addition, the refrigerator described in Patent Document 2 includes a cooler that generates cold air, a cool air duct in which the cooler is circulated through the cool air, and a cooler duct that is disposed below the cooler in the cool air duct to defrost the cooler. A defrosting heater, a temperature sensor that is disposed above the cooler and in the center of the cooler in the front-rear direction of the cooler, detects temperature and detects when the defrosting heater is stopped, and in front of the cooler duct It is provided on the wall and includes a holding unit that holds the temperature sensor. The holding unit covers the upper side of the temperature sensor. The defrosting heater is stopped when the temperature detected by the temperature sensor reaches a predetermined temperature.

特開2006−266617号公報JP 2006-266617 A 特開2012―255572号公報JP 2012-255572 A

霜は,冷却器だけでなく,周辺の壁面にも成長することがある。特許文献1あるいは特許文献2に記載の従来技術では,冷却器や冷却器の周辺の壁面に成長した霜の融解状態を的確に検知できず,信頼性を確保するためには除霜の完了判定を霜(氷)の融点よりも十分高い温度に設定する必要があった。そのため,省エネルギー性能を十分高くできていなかった。   Frost may grow not only on the cooler but also on the surrounding walls. In the prior art described in Patent Document 1 or Patent Document 2, the melting state of frost that has grown on the cooler and the wall surface around the cooler cannot be accurately detected. Must be set to a temperature sufficiently higher than the melting point of frost (ice). As a result, the energy-saving performance was not sufficiently high.

本発明は上記課題に鑑みてなされたものであり,冷却器や冷却器の周辺の壁面に成長した霜の融解状態を的確に検知することにより,信頼性を確保しつつ過熱を抑えた省エネルギー性能が高い冷蔵庫を提供することを目的とする。   The present invention has been made in view of the above problems, and by accurately detecting the melting state of the frost grown on the cooler and the wall surface around the cooler, energy saving performance that suppresses overheating while ensuring reliability. The purpose is to provide a high refrigerator.

上記課題を解決するために,例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,食品貯蔵室と,圧縮機と,該圧縮機で圧縮された冷媒と庫外の空気と熱交換する放熱器と,前記冷媒を減圧する減圧手段と,減圧された前記冷媒と前記食品貯蔵室内の空気と熱交換する冷却器と,該冷却器を収納する冷却器収納室と,該冷却器収納室から前記食品貯蔵室に至る送風路と,前記食品貯蔵室から前記冷却器収納室に至る戻り風路と,前記冷却器で熱交換した空気を前記食品貯蔵室に送風する庫内送風機とを備え,前記冷却器の温度を検知する第一の温度センサと,前記冷却器より下流側の前記冷却器収納室または前記送風路に第二の温度センサを配設したことを特徴とする。   The present application includes a plurality of means for solving the above-mentioned problems. For example, a food storage room, a compressor, a refrigerant compressed by the compressor, and a radiator that exchanges heat with air outside the warehouse. A decompression means for decompressing the refrigerant, a cooler for exchanging heat with the decompressed refrigerant and air in the food storage chamber, a cooler storage chamber for storing the cooler, and the cooler storage chamber from the cooler storage chamber An air passage leading to the food storage chamber, a return air passage extending from the food storage chamber to the cooler storage chamber, and an internal fan for blowing air exchanged with the cooler to the food storage chamber, A first temperature sensor for detecting the temperature of the cooler and a second temperature sensor are disposed in the cooler housing chamber or the air passage downstream of the cooler.

本発明によれば,冷却器や冷却器の周辺の壁面に成長した霜の融解状態を的確に検知することにより,信頼性を確保しつつ過熱を抑えることで省エネルギー性能が高い冷蔵庫を提供することができる。   According to the present invention, it is possible to provide a refrigerator with high energy saving performance by suppressing overheating while ensuring reliability by accurately detecting the melting state of the frost grown on the cooler and the wall surface around the cooler. Can do.

本発明の実施形態例に係る冷蔵庫の正面外形図。The front external view of the refrigerator which concerns on the embodiment of this invention. 本発明の実施形態例に係る冷蔵庫の図1におけるA−A矢視方向断面図。The AA arrow direction sectional view in Drawing 1 of the refrigerator concerning the example of an embodiment of the present invention. 本発明の実施形態例に係る冷蔵庫の冷凍サイクル構成を表す図。The figure showing the refrigerating cycle structure of the refrigerator which concerns on the example of embodiment of this invention. 本発明の実施形態例に係る冷蔵庫の冷却器付近の拡大断面図。The expanded sectional view near the cooler of the refrigerator which concerns on the example of embodiment of this invention. 本発明の実施形態例に係る冷蔵庫の図4におけるB−B矢視方向断面図。BB arrow direction sectional drawing in FIG. 4 of the refrigerator which concerns on the embodiment of this invention. 本発明の実施形態例に係る冷蔵庫の制御を表すフローチャート。The flowchart showing control of the refrigerator which concerns on the embodiment of this invention. 本発明の実施形態例に係る冷蔵庫の制御を表すタイムチャート。The time chart showing control of the refrigerator which concerns on the embodiment of this invention. 本発明の実施形態例に係る冷蔵庫の除霜開始条件が成立する条件を示す表。The table | surface which shows the conditions with which the defrost start conditions of the refrigerator which concern on the example of embodiment of this invention are materialized.

本発明に係る冷蔵庫の実施形態例を,図1〜図8を参照しながら説明する。まず,本実施形態例の冷蔵庫の構成を,図1〜図5を参照しながら説明する。図1は本実施形態例の冷蔵庫の正面外形図,図2は本実施形態例の冷蔵庫の庫内の構成を表す断面図であり,図1中に示すA−A断面を矢視方向に見た図である。図3は本実施形態例の冷蔵庫の冷凍サイクル構成を表す図である。図4は本実施形態例の冷蔵庫の冷却器付近の構成を表す拡大断面図,図5は本実施形態例の冷蔵庫の冷却器付近の構成を表す拡大断面図であり,図4中に示すB−B断面を矢視方向に見た図である。   An embodiment of a refrigerator according to the present invention will be described with reference to FIGS. First, the structure of the refrigerator of the present embodiment will be described with reference to FIGS. FIG. 1 is a front outline view of a refrigerator according to the present embodiment, and FIG. 2 is a cross-sectional view illustrating a configuration inside the refrigerator of the present embodiment. A cross section AA shown in FIG. It is a figure. FIG. 3 is a diagram showing the refrigeration cycle configuration of the refrigerator of this embodiment. FIG. 4 is an enlarged cross-sectional view showing the configuration of the vicinity of the refrigerator cooler of the embodiment, and FIG. 5 is an enlarged cross-sectional view of the configuration of the vicinity of the refrigerator cooler of the embodiment, which is shown in FIG. It is the figure which looked at -B cross section in the arrow direction.

図1に示すように本実施形態例の冷蔵庫は、冷蔵庫本体1に上方から,冷蔵室2,製氷室4及び上段冷凍室5,下段冷凍室6,野菜室8を備えている。製氷室4と上段冷凍室5は,冷蔵室2と下段冷凍室6との間に左右に並べて設けられている。冷蔵室2及び野菜室8は,4℃程度の冷蔵温度帯の貯蔵室である。また,製氷室4,上段冷凍室5及び下段冷凍室6は,−18℃程度の冷凍温度帯の貯蔵室である(以下,製氷室4,上段冷凍室5,下段冷凍室6の総称を冷凍室7とする)。   As shown in FIG. 1, the refrigerator according to this embodiment includes a refrigerator body 1, a refrigerator compartment 2, an ice making compartment 4, an upper freezer compartment 5, a lower freezer compartment 6, and a vegetable compartment 8 from above. The ice making chamber 4 and the upper freezer compartment 5 are provided side by side between the refrigerator compartment 2 and the lower freezer compartment 6. The refrigerator compartment 2 and the vegetable compartment 8 are storage rooms in a refrigerator temperature zone of about 4 ° C. The ice making room 4, the upper freezing room 5 and the lower freezing room 6 are storage rooms having a freezing temperature range of about −18 ° C. (hereinafter, the ice making room 4, the upper freezing room 5, and the lower freezing room 6 are collectively frozen). Room 7).

冷蔵室2には,前方に左右に分割された観音開き型の冷蔵室扉2a,2bが備えられている。製氷室4,上段冷凍室5,下段冷凍室6,野菜室8には,それぞれ引き出し式の製氷室扉4a,上段冷凍室扉5a,下段冷凍室扉6a,野菜室扉8aが備えられている。   The refrigerating room 2 is provided with double door refrigerating room doors 2a and 2b that are divided into front and left sides. The ice making room 4, the upper freezing room 5, the lower freezing room 6, and the vegetable room 8 are provided with a drawer type ice making room door 4a, an upper freezing room door 5a, a lower freezing room door 6a, and a vegetable room door 8a, respectively. .

図2に示すように,本実施形態例の冷蔵庫の庫外と庫内は,外箱1aと内箱1bとの間に発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体50により隔てられている。また,本実施形態例の冷蔵庫には,背面,両側面に真空断熱材60が実装されている(両側面は不図示)。   As shown in FIG. 2, the outside of the refrigerator and the inside of the refrigerator of this embodiment are insulated by filling a foam insulation (foamed polyurethane) between the outer box 1a and the inner box 1b. 50. Moreover, the refrigerator of this embodiment is mounted with a vacuum heat insulating material 60 on the back and both sides (both sides are not shown).

冷蔵室扉2a,2bの貯蔵室内側には,複数の扉ポケット47,冷蔵室2内には複数の棚46が備えられている。また,製氷室4,上段冷凍室5,下段冷凍室6及び野菜室8は,それぞれの貯蔵室の前方に備えられた扉4a,5a,6a,8aと一体に前後方向に移動する収納容器4b,5b,6b,8bが備えられている。扉4a,5a,6a,8aは,それぞれ図示しない取手部に手を掛けて手前側に引き出すことにより,収納容器4b,5b,6b,8bが引き出せるようになっている。   A plurality of door pockets 47 and a plurality of shelves 46 are provided in the refrigerator compartment 2 on the storage compartment side of the refrigerator compartment doors 2a and 2b. The ice making room 4, the upper freezing room 5, the lower freezing room 6 and the vegetable room 8 include a storage container 4b that moves in the front-rear direction integrally with the doors 4a, 5a, 6a, 8a provided in front of the respective storage rooms. , 5b, 6b, 8b. The doors 4a, 5a, 6a, and 8a can be pulled out of the storage containers 4b, 5b, 6b, and 8b by putting a hand on a handle portion (not shown) and pulling it out to the front side.

図2に示すように本実施形態例の冷蔵庫では,冷蔵室2と,上段冷凍室5及び製氷室4(図1参照)とが上部断熱仕切壁51によって隔てられ,下段冷凍室6と野菜室8とが下部断熱仕切壁52によって断熱的に隔てられている。なお,冷蔵室2の最下段(上側断熱仕切り壁51の上部)には,−1〜+1℃程度に維持されるチルド室3が備えられている。また、冷凍室7の背部に冷却器収納室9を備え,冷却器収納室9内には冷却手段として冷却器21を備えている。また,冷却器21の上方には,送風手段として庫内送風機22を備えている。冷蔵室2,冷凍室7,野菜室8への送風経路には,それぞれ冷蔵室ダンパ24,冷凍室ダンパ26,野菜室ダンパ(不図示)を備えており,各室への送風が制御される。   As shown in FIG. 2, in the refrigerator of this embodiment, the refrigerator compartment 2, the upper freezer compartment 5, and the ice making room 4 (see FIG. 1) are separated by an upper heat insulating partition wall 51, and the lower freezer compartment 6 and the vegetable compartment. 8 is adiabatically separated by a lower heat insulating partition wall 52. Note that a chilled chamber 3 maintained at about −1 to + 1 ° C. is provided at the lowermost stage of the refrigerating chamber 2 (the upper portion of the upper heat insulating partition wall 51). In addition, a cooler storage chamber 9 is provided at the back of the freezer compartment 7, and a cooler 21 is provided in the cooler storage chamber 9 as a cooling means. In addition, an internal fan 22 is provided above the cooler 21 as a blowing means. The ventilation path to the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 8 is provided with a refrigerator compartment damper 24, a freezer compartment damper 26, and a vegetable compartment damper (not shown), respectively, and the air supply to each compartment is controlled. .

冷蔵室ダンパ24が開放状態の場合,庫内送風機22により昇圧された冷気は,冷蔵室送風ダクト11を流れ,冷蔵室吐出口31から冷蔵室2に吹き出す。冷蔵室2を冷却して温度が上昇した冷気は,冷蔵室戻り口(不図示),冷蔵室戻りダクト12(図5参照)を介して冷却器収納室9に戻り,冷却器21と熱交換して再び低温冷気となる。   When the refrigerator compartment damper 24 is in an open state, the cold air boosted by the internal fan 22 flows through the refrigerator compartment air duct 11 and blows out from the refrigerator compartment outlet 31 to the refrigerator compartment 2. The cool air whose temperature has increased by cooling the refrigerator compartment 2 returns to the cooler storage chamber 9 via the refrigerator compartment return port (not shown) and the refrigerator compartment return duct 12 (see FIG. 5), and exchanges heat with the cooler 21. Then it becomes low temperature cold again.

冷凍室ダンパ26が開放状態の場合,庫内送風機22により昇圧された低温冷気は,冷凍室送風ダクト13を流れ,冷凍室吐出口33から冷凍室7に吹き出す。冷凍室7を冷却して温度が上昇した冷気は,冷凍室戻り口36を介して冷却器収納室9に戻り,冷却器21と熱交換して再び低温冷気となる。   When the freezer compartment damper 26 is in an open state, the low-temperature cold air boosted by the internal fan 22 flows through the freezer compartment air duct 13 and blows out from the freezer compartment outlet 33 to the freezer compartment 7. The cool air whose temperature has risen by cooling the freezer compartment 7 returns to the cooler storage chamber 9 via the freezer return port 36 and exchanges heat with the cooler 21 to become low-temperature cool air again.

野菜室ダンパ(不図示)が開放状態の場合,庫内送風機22により昇圧された低温冷気は,野菜室送風ダクト(不図示)を流れ,野菜室吐出口(不図示)から野菜室8に吹き出す。野菜室8を冷却して温度が上昇した冷気は,野菜室戻り口37,野菜室戻りダクト17を介して冷却器収納室9に戻り,冷却器21と熱交換して再び低温冷気となる。   When the vegetable room damper (not shown) is in an open state, the low temperature cold air pressurized by the internal fan 22 flows through the vegetable room air duct (not shown) and blows out from the vegetable room outlet (not shown) to the vegetable room 8. . The cool air whose temperature has risen by cooling the vegetable room 8 returns to the cooler storage room 9 via the vegetable room return port 37 and the vegetable room return duct 17 and exchanges heat with the cooler 21 to become low-temperature cold again.

冷蔵室2の背部,冷凍室7の背部,野菜室8の背部には,それぞれ冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43が備えられており,各室の温度を検知できるようになっている。断熱箱体50の天井面前方には,庫外の温湿度を検知する庫外温湿度センサ(不図示)が備えられている。また,冷蔵室扉2a,2b,製氷室扉4a,上段冷凍室扉5a,下段冷凍室扉6a,野菜室扉8の各扉の開閉状態は,冷蔵室扉センサ(不図示),製氷室扉センサ(不図示),上段冷凍室扉センサ(不図示),下段冷凍室扉センサ(不図示),野菜室扉センサ(不図示)により検知できるようになっている。   The back of the refrigerator compartment 2, the back of the freezer compartment 7, and the back of the vegetable compartment 8 are provided with a refrigerator compartment temperature sensor 41, a freezer compartment temperature sensor 42, and a vegetable compartment temperature sensor 43, respectively, for detecting the temperature of each compartment. It can be done. An outside temperature / humidity sensor (not shown) for detecting outside temperature / humidity is provided in front of the ceiling surface of the heat insulation box 50. The open / close states of the refrigerator compartment doors 2a and 2b, the ice compartment door 4a, the upper freezer compartment door 5a, the lower compartment freezer door 6a, and the vegetable compartment door 8 are the refrigerator compartment door sensor (not shown) and the ice compartment door. It can be detected by a sensor (not shown), an upper freezer compartment door sensor (not shown), a lower freezer compartment door sensor (not shown), and a vegetable compartment door sensor (not shown).

なお,上部断熱仕切壁51により区画された領域の左端には,製氷用の水を貯留する製氷水タンク(不図示)が備えられている。製氷水タンク内の水は,ポンプ(不図示)を駆動することにより,配管(不図示)を介して製氷室4内に備えられた製氷皿(図示せず)に供給される。   An ice making water tank (not shown) for storing ice making water is provided at the left end of the area partitioned by the upper heat insulating partition wall 51. The water in the ice making water tank is supplied to an ice making tray (not shown) provided in the ice making chamber 4 through a pipe (not shown) by driving a pump (not shown).

図3に示すように,本実施形態例の冷蔵庫の冷凍サイクルは,圧縮機23,放熱器70(フィンチューブ型熱交換器),放熱パイプ71,結露抑制パイプ72,キャピラリチューブ74(以下,放熱器70,放熱パイプ71,結露防止パイプ72の総称として放熱手段73と呼ぶことがある),冷却器21が冷媒配管77で接続されることで構成される。冷却器21出口から圧縮機23に向かう配管の一部77aはキャピラリチューブ74と接触させて熱交換するようにしている。なお,放熱パイプ71とは,外箱1aと内箱1bの間であって外箱1a面に接するように備えられた冷媒管(図2中に不図示)である。また,結露抑制パイプ72とは,断熱箱体10の上部断熱仕切壁51の前面や下部断熱仕切壁52の前面等に配設された冷媒管(図2参照)であり,管内を流れる高温冷媒による加熱作用で結露を抑制するために配設されるものである。   As shown in FIG. 3, the refrigeration cycle of the refrigerator of this embodiment includes a compressor 23, a radiator 70 (fin tube heat exchanger), a heat radiating pipe 71, a dew condensation suppression pipe 72, and a capillary tube 74 (hereinafter referred to as heat radiating). The condenser 70, the heat radiation pipe 71, and the dew condensation prevention pipe 72 may be collectively referred to as heat radiation means 73), and the cooler 21 is connected by the refrigerant pipe 77. A part 77a of the piping from the outlet of the cooler 21 to the compressor 23 is brought into contact with the capillary tube 74 to exchange heat. The heat radiating pipe 71 is a refrigerant pipe (not shown in FIG. 2) provided between the outer box 1a and the inner box 1b and in contact with the surface of the outer box 1a. Further, the dew condensation suppression pipe 72 is a refrigerant pipe (see FIG. 2) disposed on the front surface of the upper heat insulating partition wall 51, the front surface of the lower heat insulating partition wall 52, or the like of the heat insulating box 10, and the high temperature refrigerant flowing in the pipe. It is arranged to suppress dew condensation by the heating action.

圧縮機23により昇圧された高温高圧冷媒は,放熱手段73を流れて放熱し,減圧手段であるキャピラリチューブで減圧されることで低温低圧冷媒となる。低温低圧冷媒が冷却器21に流れ,空気と熱交換して各貯蔵室を冷却するための低温冷気が生成される。なお,冷媒はイソブタンを例にして説明する。   The high-temperature and high-pressure refrigerant pressurized by the compressor 23 flows through the heat dissipating means 73, dissipates heat, and is decompressed by a capillary tube as a decompression means, thereby becoming a low-temperature and low-pressure refrigerant. The low-temperature and low-pressure refrigerant flows into the cooler 21, and low-temperature cold air for cooling each storage chamber is generated by exchanging heat with air. The refrigerant will be described using isobutane as an example.

図4に示すように,冷却器収納室9は,背面側の内箱1b,前面側の前面仕切壁27の間に形成される。冷却器収納室9に収納されている冷却器21は流れ方向に7段で,高さ寸法Hより,奥行き寸法Dが小さいフィンチューブ型熱交換器である(本実施形態例の冷蔵庫ではH=210mm、D=77mm)。このように高さ寸法Hより奥行き寸法Dを小さくすることで,冷却器収納室9の前方の貯蔵室(本実施形態例の冷蔵庫では冷凍室7)の有効内容積を大きくできる。   As shown in FIG. 4, the cooler storage chamber 9 is formed between the inner box 1b on the back side and the front partition wall 27 on the front side. The cooler 21 housed in the cooler storage chamber 9 is a finned tube heat exchanger having seven stages in the flow direction and a depth dimension D smaller than the height dimension H (in the refrigerator of this embodiment, H = 210 mm, D = 77 mm). Thus, by making the depth dimension D smaller than the height dimension H, the effective internal volume of the storage chamber (freezer compartment 7 in the refrigerator of the present embodiment) in front of the cooler housing chamber 9 can be increased.

冷却器21下部の前面側には前面仕切壁27と冷却器21の間にバイパス流路55aが,背面側には内箱1bと冷却器21の間にバイパス流路55bがそれぞれ設けられている。なお,本実施形態例の冷蔵庫1では,バイパス流路55aの流路幅L1=5mm,バイパス流路56bの流路幅L2=7mmである。このようにバイパス流路の流路幅を冷却器の奥行き寸法D(=77mm)の10%以下の寸法にしているので、冷却器21への着霜量が少ない状態において,多くの気流が冷却器21をバイパスして流れることによる冷却効率低下を抑えられる。   A bypass channel 55 a is provided between the front partition wall 27 and the cooler 21 on the front side below the cooler 21, and a bypass channel 55 b is provided between the inner box 1 b and the cooler 21 on the rear side. . In the refrigerator 1 of the present embodiment, the channel width L1 of the bypass channel 55a is 5 mm, and the channel width L2 of the bypass channel 56b is 7 mm. As described above, since the flow path width of the bypass flow path is 10% or less of the depth dimension D (= 77 mm) of the cooler, a large amount of airflow is cooled in a state where the amount of frost on the cooler 21 is small. The cooling efficiency decline by flowing by bypassing the vessel 21 can be suppressed.

図5に示すように,本実施形態例の冷蔵庫1は,冷却器21の下方に除霜ヒータ56を備えている。ここで,除霜ヒータ56の幅寸法W2を,冷却器21のフィン設置部21aの幅寸法W1より長くしている(W2>W1)。これにより冷却器21の全体を効率良く加熱できるようにしている。なお,本実施形態の冷蔵庫1では,W1=335mm,W2=350mmである。   As shown in FIG. 5, the refrigerator 1 according to this embodiment includes a defrost heater 56 below the cooler 21. Here, the width dimension W2 of the defrost heater 56 is made longer than the width dimension W1 of the fin installation part 21a of the cooler 21 (W2> W1). Thereby, the whole cooler 21 can be efficiently heated. In the refrigerator 1 of the present embodiment, W1 = 335 mm and W2 = 350 mm.

除霜ヒータ56は,抵抗線をガラス管56aで覆い,さらにガラス管56aの外周にアルミニウム製の放熱フィン56bを配設することにより,除霜ヒータ通電中にガラス管表面温度がイソブタンの発火温度(約460℃)より低い温度に抑えるようにしている。   The defrosting heater 56 covers the resistance wire with the glass tube 56a, and further, by disposing aluminum radiating fins 56b on the outer periphery of the glass tube 56a, the surface temperature of the glass tube becomes the ignition temperature of isobutane during energization of the defrosting heater. The temperature is lower than (about 460 ° C.).

霜が融解することで生じた除霜水は,冷却器収納室9の下部に備えられた樋57に流れ落ち,排水管58(図2参照)を介して機械室10(図2参照)に備えられた蒸発皿59(図2参照)に達する。蒸発皿59内の除霜水は,機械室10内に備えられた圧縮機23(図2参照)及び放熱器70(図3参照)の放熱と,機械室10内に備えられた庫外送風機(不図示)による通風作用により蒸発する。なお,除霜ヒータ56の上部には上部カバー53が備えられており,融解水や冷却器21から離脱した霜が除霜ヒータ56のガラス管56aに当たることを防いでいる。   The defrost water generated by the melting of the frost flows down to the trough 57 provided at the lower part of the cooler housing chamber 9 and is provided in the machine room 10 (see FIG. 2) through the drain pipe 58 (see FIG. 2). The obtained evaporating dish 59 (see FIG. 2) is reached. The defrosted water in the evaporating dish 59 is discharged from the compressor 23 (see FIG. 2) and the radiator 70 (see FIG. 3) provided in the machine room 10 and the outside fan provided in the machine room 10. It evaporates due to the ventilation effect (not shown). An upper cover 53 is provided on the upper portion of the defrost heater 56 to prevent molten water or frost released from the cooler 21 from hitting the glass tube 56 a of the defrost heater 56.

冷却器21の1段目(最上流の段)のフィンピッチは,2段目以降の段(2〜7段)のフィンピッチより大きくしている(本実施形態例の冷蔵庫1では1段目のフィンピッチは10mm,2〜7段目のフィンピッチは5mm)。冷却器21の1段目は,物質伝達率が高く,高湿な空気が流入することから霜が成長しやすいので,フィン間の隙間を2段目以降より大きくすることでフィン間の流路が閉塞し難くして,熱交換性能をより長い時間維持できるようにしている。なお,フィン間の流路が閉塞し難くするには,少なくとも,最上流の段(1段目)のフィンピッチを,最下流の段(本実施形態例の冷蔵庫1では7段目)のフィンピッチ以上とすれば良く,本実施形態例の構成に限定されるものではない。
キャピラリチューブ74(図3参照)により減圧された低温低圧冷媒は,冷却器21の背面側上部の配管から入り,冷却器21の背面側に左右にわたって設けられた配管を上方から下方に順次流れ,1段目(最下段)において冷却器21の前面側の配管に移る。続いて,冷却器21の前面側に左右にわたって設けられた配管を下方から上方に順次流れて冷却器21の前面側上部から流れ出る。なお,冷却器21の出口配管には気液分離器28が備えられており,液冷媒が圧縮機23に吸い込まれて圧縮されることを防いでいる。
The fin pitch of the first stage (uppermost stage) of the cooler 21 is larger than the fin pitch of the second stage and subsequent stages (2 to 7 stages) (in the refrigerator 1 of the present embodiment, the first stage). The fin pitch is 10 mm, and the 2nd to 7th fin pitch is 5 mm). Since the first stage of the cooler 21 has a high mass transfer rate and high humidity air flows in, frost is likely to grow. The heat exchange performance can be maintained for a longer time. In order to make the flow path between the fins difficult to block, at least the fin pitch of the most upstream stage (first stage) is set to the fin of the most downstream stage (seventh stage in the refrigerator 1 of the present embodiment). The pitch may be greater than or equal to the pitch, and is not limited to the configuration of the present embodiment.
The low-temperature and low-pressure refrigerant depressurized by the capillary tube 74 (see FIG. 3) enters from the upper pipe on the back side of the cooler 21 and sequentially flows from the upper side to the lower side on the rear side of the cooler 21. The first stage (bottom stage) moves to the pipe on the front side of the cooler 21. Subsequently, the pipes provided on the left and right sides on the front side of the cooler 21 sequentially flow from the bottom to the top and flow out from the front side upper part of the cooler 21. The outlet pipe of the cooler 21 is provided with a gas-liquid separator 28 to prevent liquid refrigerant from being sucked into the compressor 23 and compressed.

冷蔵室2からの戻り空気は,冷蔵室戻りダクト12を流れ,冷蔵室戻りダクト開口12aを介して,冷却器21の下部側方から冷却器収納室9に流入する。冷凍室7からの戻り空気は,冷却器21の下部前方の冷凍室戻り口36(図4参照)から冷却器収納室9に流入する。また,野菜室8からの戻り空気は野菜室戻りダクト17(図2参照)を介して冷却器21の下部前方右側(正面から見た場合は左側)の野菜室戻りダクト開口17aから冷却器収納室9に流入する。   The return air from the refrigerator compartment 2 flows through the refrigerator compartment return duct 12 and flows into the cooler storage chamber 9 from the lower side of the cooler 21 through the refrigerator compartment return duct opening 12a. Return air from the freezer compartment 7 flows into the cooler storage chamber 9 from the freezer compartment return port 36 (see FIG. 4) in front of the lower portion of the cooler 21. The return air from the vegetable compartment 8 is stored in the cooler through the vegetable compartment return duct opening 17a on the lower front right side (left side when viewed from the front) of the cooler 21 via the vegetable compartment return duct 17 (see FIG. 2). It flows into the chamber 9.

本実施形態例の冷蔵庫1は,冷蔵温度帯の冷蔵室2と野菜室8への送風量と,冷凍温度帯の冷凍室7への送風量の比率は約3:7であり,低温に維持される冷凍室7への送風量が多くなるようにしている。また,冷凍室戻り口36の開口幅寸法W3を,冷却器21のフィン設置部21aの幅寸法W1よりも大きくすることで(W3>W1),特に送風量が多い冷凍室7からの戻り空気が効率良く冷却器7で熱交換できるようにしている。   In the refrigerator 1 of this embodiment, the ratio of the amount of air sent to the refrigerator compartment 2 and the vegetable compartment 8 in the refrigerated temperature zone and the amount of air sent to the freezer compartment 7 in the freezer temperature zone is about 3: 7, and is kept at a low temperature. The amount of air blown to the freezer compartment 7 is increased. Further, by making the opening width W3 of the freezer compartment return port 36 larger than the width dimension W1 of the fin installation portion 21a of the cooler 21 (W3> W1), the return air from the freezer compartment 7 having a particularly large air flow rate. However, heat can be efficiently exchanged by the cooler 7.

また,本実施形態例の冷蔵庫1は,冷蔵室戻りダクト開口12aを,冷却器21の幅W1(フィン設置部幅)の中心面S1より右(正面から見た場合は左)に設け,野菜室戻りダクト開口17aを中心面S1より左(正面から見た場合は右)に設けている。これにより,冷却器21に偏った着霜が生じることを抑制している。   Moreover, the refrigerator 1 of this embodiment provides the refrigerator compartment return duct opening 12a on the right (left when viewed from the front) of the center surface S1 of the width W1 of the cooler 21 (the width of the fin installation portion). The chamber return duct opening 17a is provided to the left of the center plane S1 (right when viewed from the front). As a result, the occurrence of uneven frost formation in the cooler 21 is suppressed.

冷却器21上方には庫内送風機22が設置され,その設置位置は,中心面S1に略一致するようにしている。具体的には冷却器の中心面S1が庫内送風機22の翼幅W4の範囲を通過するようにしている。これにより,冷却器21における冷気流れの偏りが生じ難くなる。   An internal fan 22 is installed above the cooler 21 and its installation position is made to substantially coincide with the center plane S1. Specifically, the center surface S1 of the cooler passes through the range of the blade width W4 of the internal fan 22. This makes it difficult for the cool air flow in the cooler 21 to be biased.

冷却器21の両側には,戻り空気が冷却器21のフィン設置部21aに流入せずに,冷却器21の両側の配管ターン部21bを流れたり,フィン設置部21aに流入した空気が配管ターン部21bに漏れることを抑制するための冷却器流路仕切部材21c(アルミニウム製)を備えている。これにより,冷却器21と空気の間の熱交換効率を高めている。   On both sides of the cooler 21, the return air does not flow into the fin installation part 21a of the cooler 21, but flows through the pipe turn parts 21b on both sides of the cooler 21, or the air flowing into the fin installation part 21a flows into the pipe turn. A cooler channel partition member 21c (made of aluminum) is provided for suppressing leakage to the portion 21b. Thereby, the heat exchange efficiency between the cooler 21 and air is improved.

中心面S1より右側の冷却器21の上部の吸込配管(正面から見た場合は左側)には冷却器温度センサ44(第一除霜完了検知手段)が備えられており,冷却器の温度を検知できるようになっている。また,冷却器21の下流の中心面S1より左側(正面から見た場合は右側)の前面仕切壁27表面には,庫内送風機22近傍の前面仕切壁の温度を検知する前面仕切壁温度センサ45(第二除霜完了検知手段)が備えられている。なお,本実施形態例の冷蔵庫1では,後述する除霜完了(ヒータ通電終了)時の前面仕切壁温度センサ45の検知温度と,庫内送風機22のマウスリング22aの表面温度が3℃以内で一致する位置に前面仕切壁温度センサ45を設けている。   A suction pipe (on the left side when viewed from the front) of the upper side of the cooler 21 on the right side of the center plane S1 is provided with a cooler temperature sensor 44 (first defrosting completion detecting means), which controls the temperature of the cooler. It can be detected. Further, a front partition wall temperature sensor for detecting the temperature of the front partition wall in the vicinity of the internal fan 22 is provided on the surface of the front partition wall 27 on the left side (right side when viewed from the front) of the center plane S1 downstream of the cooler 21. 45 (second defrosting completion detecting means) is provided. In the refrigerator 1 of the present embodiment, the temperature detected by the front partition wall temperature sensor 45 when defrosting is completed (heater energization is completed) and the surface temperature of the mouth ring 22a of the internal fan 22 are within 3 ° C. A front partition wall temperature sensor 45 is provided at the matching position.

本実施形態例の冷蔵庫1は,冷蔵室ダンパ24(図2参照),野菜室ダンパ(不図示),冷凍室ダンパ26(図2参照)の開閉状態によって冷蔵室2,野菜室8,冷凍室7への送風が制御され,冷蔵室のみに送風する「冷蔵室単独運転」,野菜室のみに送風する「野菜室単独運転」,冷凍室のみに送風する「冷凍室単独運転」,冷蔵室と野菜室に送風する「冷蔵野菜運転」,冷蔵室,野菜室,冷凍室の全てに送風する「冷蔵野菜冷凍運転」の5種類の冷却運転モードを備えている。冷蔵室2,野菜室8,冷凍室7の各室は,これらの5つの冷却運転モードを,冷蔵室温度センサ41,野菜室温度センサ43,冷凍室温度センサ42の検知情報に基づいて適宜切り替えることで所望の温度帯に維持される。   The refrigerator 1 according to this embodiment includes a refrigerator compartment 2 (see FIG. 2), a vegetable compartment damper (not shown), a freezer compartment damper 26 (see FIG. 2), and a refrigerator compartment 2, a vegetable compartment 8, and a freezer compartment. 7 is controlled, “cooling room single operation” to blow only to the refrigerator room, “vegetable room single operation” to blow only to the vegetable room, “freezer room single operation” to blow only to the freezer room, There are five cooling operation modes: “refrigerated vegetable operation” for blowing air to the vegetable room, and “refrigerated vegetable freezing operation” for airing all of the refrigerator room, vegetable room, and freezer room. In each of the refrigerator compartment 2, the vegetable compartment 8, and the freezer compartment 7, these five cooling operation modes are appropriately switched based on the detection information of the refrigerator compartment temperature sensor 41, the vegetable compartment temperature sensor 43, and the freezer compartment temperature sensor 42. Thus, the desired temperature range is maintained.

本実施形態例の冷蔵庫は,冷蔵室2,チルド室3,冷凍室7や野菜室8の温度設定をする温度設定器等(図示せず)を備えている。   The refrigerator according to this embodiment includes a temperature setting device (not shown) for setting the temperatures of the refrigerator compartment 2, the chilled compartment 3, the freezer compartment 7, and the vegetable compartment 8.

また冷蔵庫本体1の天井壁上面側にはCPU,ROMやRAM等のメモリ,インターフェース回路等を搭載した制御基板49が配置されている(図2参照)。制御基板49は,前記した冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43,庫外温湿度センサ,冷却器温度センサ44,前面仕切壁温度センサ45,及び,各扉センサ、冷蔵室扉2aaに設けられた温度設定器等と接続される。圧縮機23のON/OFFや回転速度制御,冷蔵室ダンパ24,冷凍室ダンパ26,及び,野菜室ダンパ27を個別に駆動するアクチュエータ(不図示)の制御,庫内送風機22のON/OFF制御や回転速度制御,前記した扉開放状態を報知するアラームのON/OFF等の制御は,前記ROMに予め搭載されたプログラムにより行われる。   A control board 49 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted is disposed on the top surface of the refrigerator body 1 (see FIG. 2). The control board 49 includes the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, the outside temperature and humidity sensor, the cooler temperature sensor 44, the front partition wall temperature sensor 45, and each door sensor. It is connected to a temperature setter provided in the refrigerator compartment door 2aa. ON / OFF of compressor 23, rotation speed control, control of actuator (not shown) for individually driving refrigerator compartment damper 24, freezer compartment damper 26, and vegetable compartment damper 27, ON / OFF control of internal fan 22 Further, control such as rotation speed control and ON / OFF of an alarm for notifying the door open state described above is performed by a program preinstalled in the ROM.

次に,本実施形態例の冷蔵庫の制御について図6〜図8を参照しながら説明する。図6は本実施形態例の冷蔵庫の制御を表すフローチャート,図7は本実施形態例の冷蔵庫の制御を表すタイムチャートである。図8は除霜開始条件が成立する条件を示す表である。   Next, control of the refrigerator according to the present embodiment will be described with reference to FIGS. FIG. 6 is a flowchart showing the control of the refrigerator of this embodiment, and FIG. 7 is a time chart showing the control of the refrigerator of this embodiment. FIG. 8 is a table showing conditions for satisfying the defrosting start condition.

図6に示すように,本実施形態例の冷蔵庫は,電源の投入により(スタート),圧縮機23が駆動して冷却運転を開始する(ステップS101)。   As shown in FIG. 6, the refrigerator of the present embodiment starts the cooling operation by driving the compressor 23 when the power is turned on (start) (step S101).

本実施形態例の冷蔵庫の冷却運転は,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43及び庫外温湿度センサの検知情報に基づいて圧縮機23,庫内送風機22,庫外送風機のオン/オフ制御や回転速度制御と,冷蔵室ダンパ24,冷凍室ダンパ26,野菜室ダンパの開閉状態の制御によって,各室を設定温度(例えば,冷蔵室,野菜室は4℃程度,冷凍室は−18℃程度)に維持する運転が行われる。   The cooling operation of the refrigerator according to the present embodiment is performed by the compressor 23, the internal fan 22, and the refrigerator based on the detection information of the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, and the outside temperature and humidity sensor. Each room is set to a set temperature (for example, about 4 ° C. in the refrigerator room and vegetable room) by controlling the on / off control and rotation speed control of the external blower and the open / close state of the refrigerator compartment damper 24, freezer compartment damper 26 and vegetable compartment damper. The operation of maintaining the freezing room at about −18 ° C. is performed.

冷却運転中には,除霜開始条件の判別が行われる(ステップS102)。本実施形態例の冷蔵庫1では,図8に示す条件が満たされた場合に除霜開始条件が成立する(ステップS102がYes)。ステップS102が不成立の場合,冷却運転が継続される(ステップS101に戻る)。   During the cooling operation, the defrosting start condition is determined (step S102). In the refrigerator 1 of the present embodiment, the defrosting start condition is satisfied when the condition shown in FIG. 8 is satisfied (Yes in step S102). If step S102 is not established, the cooling operation is continued (return to step S101).

例えば,(a)庫外温度(Tout)がTout>35℃,庫外湿度(相対湿度)(RHout)がRHout≦50%において,扉開閉累積時間(t1)がt1≧20分且つ冷却運転継続時間(t2)(前回の除霜完了後からの経過時間,または,除霜運転未実施の場合の電源投入後からの経過時間)がt2≧12時間の場合,または,冷却運転継続時間(t2)がt2≧48時間の何れかが満足された場合に除霜開始条件が成立する。他の成立条件は,(b)Tout>35℃,50<RHout≦80%において,t1≧15分且つt2≧12時間,または,t2≧48時間の何れかが満足された場合,(c)Tout>35℃,RHout>80%において,t1≧10分且つt3≧12時間,または,t2≧48時間の何れかが満足された場合,(d)20℃<Tout≦35℃,RHout≦50%において,t1≧25分且つt2≧12時間,または,t2≧72時間の何れかが満足された場合,(e)20℃<Tout≦35℃,50<RHout≦80%において,t1≧20分且つt3≧12時間,または,t2≧72時間の何れかが満足された場合,(f)20℃<Tout≦35℃,RHout>80%において,t1≧15分且つt3≧12時間,または,t2≧72時間の何れかが満足された場合,(g)Tout≦20℃,RHout≦50%において,t1≧50分且つt3≧12時間,または,t2≧96時間の何れかが満足された場合,(h)Tout≦20℃,50<RHout≦80%において,t1≧40分且つt3≧12時間,または,t2≧96時間の何れかが満足された場合,(i)Tout≦20℃,RHout>80%において,t1≧30分且つt3≧12時間,または,t2≧96時間の何れかが満足された場合である。   For example, (a) When the outside temperature (Tout) is Tout> 35 ° C., the outside humidity (relative humidity) (RHout) is RHout ≦ 50%, the door opening / closing cumulative time (t1) is t1 ≧ 20 minutes, and the cooling operation is continued. When the time (t2) (elapsed time since the completion of the previous defrosting, or the elapsed time since the power was turned on when the defrosting operation has not been performed) is t2 ≧ 12 hours, or the cooling operation duration (t2 ) Is satisfied when any of t2 ≧ 48 hours is satisfied. The other conditions are as follows: (b) When Tout> 35 ° C. and 50 <RHout ≦ 80%, when either t1 ≧ 15 minutes and t2 ≧ 12 hours or t2 ≧ 48 hours is satisfied, (c) When either T1 ≧ 10 minutes and t3 ≧ 12 hours or t2 ≧ 48 hours is satisfied at Tout> 35 ° C. and RHout> 80%, (d) 20 ° C. <Tout ≦ 35 ° C., RHout ≦ 50 %, When either t1 ≧ 25 minutes and t2 ≧ 12 hours or t2 ≧ 72 hours are satisfied, (e) at 20 ° C. <Tout ≦ 35 ° C., 50 <RHout ≦ 80%, t1 ≧ 20 Minutes and t3 ≧ 12 hours, or t2 ≧ 72 hours, (f) t1 ≧ 15 minutes and t3 ≧ 12 hours at 20 ° C. <Tout ≦ 35 ° C. and RHout> 80%. If any of t2 ≧ 72 hours is satisfied, (g) At Tout ≦ 20 ° C. and RHout ≦ 50%, either t1 ≧ 50 minutes and t3 ≧ 12 hours or t2 ≧ 96 hours is satisfied When (h) Tout ≦ 20 ° C. and 50 <RHout ≦ 80%, either t1 ≧ 40 minutes and t3 ≧ 12 hours or t2 ≧ 96 hours are satisfied, (i) Tout ≦ This is a case where t1 ≧ 30 minutes and t3 ≧ 12 hours or t2 ≧ 96 hours are satisfied at 20 ° C. and RHout> 80%.

本実施形態例の冷蔵庫1は,3つの除霜手段(除霜手段1、除霜手段2、除霜手段3)を備えている。1つ目の除霜手段(除霜手段1)は、庫内送風機22を駆動することによって冷蔵室と野菜室を冷却しながら除霜するものであり、「圧縮機停止状態、庫内送風機駆動状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ閉鎖状態」にて霜を解かすものである。2つ目の除霜手段(除霜手段2)は、除霜ヒータ56通電状態で庫内送風機22を駆動し,冷蔵室と野菜室を冷却しながら除霜するものであり、「圧縮機停止状態、庫内送風機駆動状態,除霜ヒータ通電状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍温室ダンパ閉鎖状態」にて霜を解かすものである。3つ目の除霜手段(除霜手段3)は、除霜ヒータ22の通電のみによって除霜するものであり、「圧縮機停止状態、庫内送風機停止状態,除霜ヒータ通電状態、冷蔵室ダンパ閉鎖状態、冷凍室ダンパ開放状態」にて霜を解かすものである。   The refrigerator 1 of the present embodiment includes three defrosting means (defrosting means 1, defrosting means 2, and defrosting means 3). The first defrosting means (defrosting means 1) is for defrosting while cooling the refrigerator compartment and the vegetable compartment by driving the internal blower 22, and "compressor stopped state, internal blower drive" Frost is defrosted in the "state, defrost heater stopped state, refrigerator compartment damper open state, vegetable compartment damper open state, freezer compartment damper closed state". The second defrosting means (defrosting means 2) drives the internal blower 22 with the defrosting heater 56 energized to defrost while cooling the refrigerator compartment and the vegetable compartment. The frost is released in the "state, fan operation state in the refrigerator, defrost heater energized state, refrigerator compartment damper open state, vegetable compartment damper open state, frozen greenhouse damper closed state". The third defrosting means (defrosting means 3) performs defrosting only by energization of the defrosting heater 22, and “compressor stopped state, internal fan stop state, defrosting heater energized state, refrigerator compartment” The frost is defrosted when the damper is closed and the freezer damper is opened.

本実施形態例の冷蔵庫1は,上記除霜手段1〜3を順次切り替える「省エネ除霜モード」と,除霜手段3のみによる「高信頼性除霜モード」の2つの除霜モードを備えており,図8の(d)(e)(g)(h)(i)が成立した場合には「省エネルギー除霜モード」,(a)(b)(c)(f)が成立した場合には「高信頼性除霜モード」が選択される。   The refrigerator 1 of the present embodiment includes two defrosting modes of “energy saving defrosting mode” for sequentially switching the defrosting means 1 to 3 and “high reliability defrosting mode” by only the defrosting means 3. When (d), (e), (g), (h), and (i) in FIG. 8 are established, “energy saving defrosting mode”, and (a), (b), (c), and (f) are established. “Reliable defrosting mode” is selected.

「省エネ除霜モード」の場合(ステップS103がNo),続いて「圧縮機駆動状態、庫内送風機駆動状態,除霜ヒータ停止状態、冷蔵室ダンパ閉鎖状態、野菜室ダンパ閉鎖状態,冷凍室ダンパ開放状態」で冷凍室プリクール運転が実施される(ステップS104)。これにより除霜中に冷却されない冷凍室7を事前に十分冷却することができ,除霜中に冷凍食品や氷が解けるといった不具合が生じ難くなる。   In the case of “energy saving defrost mode” (No in step S103), then “compressor driving state, internal fan driving state, defrosting heater stopped state, refrigerator compartment damper closed state, vegetable compartment damper closed state, freezer compartment damper The freezer compartment pre-cooling operation is performed in the “open state” (step S104). As a result, the freezer compartment 7 that is not cooled during the defrosting can be sufficiently cooled in advance, and it becomes difficult to cause problems such as freezing of frozen food and ice during the defrosting.

冷凍室プリクール運転を所定時間(本実施形態例の冷蔵庫1では30分)実施後,続いて除霜手段1(圧縮機停止状態、庫内送風機駆動状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ閉鎖状態)による除霜運転が実施される(ステップS105)。冷却器温度センサ44の検知温度TD1が−3℃に到達すると(ステップS106),除霜手段2(圧縮機停止状態、庫内送風機駆動状態,除霜ヒータ通電状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍温室ダンパ閉鎖状態)による除霜運転に移行する(ステップS107)。冷却器温度センサ44の検知温度TD1が+2℃に到達すると(ステップS108),さらに除霜手段3(圧縮機停止状態、庫内送風機停止状態,除霜ヒータ通電状態、冷蔵室ダンパ閉鎖状態、冷凍室ダンパ開放状態)に移行する(ステップS109)。除霜手段3による除霜は,冷却器温度センサ44の検知温度TD1が+5℃以上,且つ,前面仕切壁温度センサ45の検知温度TD2が+3℃以上になった場合に除霜完了と判定し(ステップS110),冷却器収納室9内の融解水の排水を促すために「圧縮機停止状態、庫内送風機停止状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ開放状態」とする「オフタイム」を所定時間(本実施形態例の冷蔵庫1では3分間)確保する(ステップS111)。なお,除霜完了の判定は,「冷却器温度センサ44の検知温度TD1と,前面仕切壁温度センサ45の検知温度TD2の両者が0℃より高い」という条件を満足していれば良く,本実施形態例の冷蔵庫1とは異なる温度であっても良い。ただし,除霜ヒータ56からの距離が遠い前面仕切壁温度センサ45TD2の判定基準温度を,冷却器温度センサ44の検知温度TD1より低くすることで,過熱を抑えることができ,省エネルギー性能を高くすることができる。   After the freezer compartment pre-cooling operation is performed for a predetermined time (30 minutes in the refrigerator 1 of the present embodiment), the defrosting means 1 (compressor stopped state, internal fan drive state, defrost heater stopped state, refrigerator compartment damper opened) The defrosting operation is performed according to the state, the vegetable room damper open state, and the freezer compartment damper closed state (step S105). When the detected temperature TD1 of the cooler temperature sensor 44 reaches −3 ° C. (step S106), the defrosting means 2 (compressor stopped state, internal fan drive state, defrost heater energized state, refrigerator compartment damper open state, vegetable) The operation proceeds to the defrosting operation in the room damper open state and the freezing greenhouse damper closed state (step S107). When the detected temperature TD1 of the cooler temperature sensor 44 reaches + 2 ° C. (step S108), the defrosting means 3 (compressor stopped state, internal fan stop state, defrost heater energized state, refrigerator compartment damper closed state, freezing) The operation proceeds to the chamber damper open state (step S109). Defrosting by the defrosting means 3 is determined as defrosting completion when the detected temperature TD1 of the cooler temperature sensor 44 is + 5 ° C. or higher and the detected temperature TD2 of the front partition wall temperature sensor 45 is + 3 ° C. or higher. (Step S110), in order to encourage drainage of the molten water in the cooler storage chamber 9, "compressor stopped state, internal fan stop state, defrost heater stopped state, refrigerator compartment damper open state, vegetable compartment damper open state, A “off time” for setting the “freezer compartment damper open state” is secured for a predetermined time (3 minutes in the refrigerator 1 of the present embodiment) (step S111). The determination of the completion of defrosting is sufficient if the condition that “the detected temperature TD1 of the cooler temperature sensor 44 and the detected temperature TD2 of the front partition wall temperature sensor 45 are both higher than 0 ° C.” is satisfied. The temperature may be different from that of the refrigerator 1 of the embodiment. However, by making the determination reference temperature of the front partition wall temperature sensor 45TD2 far from the defrost heater 56 lower than the detection temperature TD1 of the cooler temperature sensor 44, overheating can be suppressed and energy saving performance is improved. be able to.

続いて貯蔵室に高温空気が送風されることを避けるために,庫内送風機22停止状態で圧縮機を駆動し,「圧縮機停止駆動状態、庫内送風機停止状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ開放状態」とすることで冷却器収納室9内の冷却を行う「庫内送風機停止運転」を所定時間(本実施形態例の冷蔵庫1では2分間)(ステップS112)実施後,冷却運転を再開する(ステップS101)。   Subsequently, in order to avoid high temperature air being blown into the storage room, the compressor is driven while the internal fan 22 is stopped, “compressor stopped drive state, internal fan stop state, defrost heater stopped state, refrigeration “Cavity fan damper open state, vegetable compartment damper open state, freezer compartment damper open state” for “cooling in the refrigerator storage chamber 9” for cooling the inside of the cooler storage chamber 9 for a predetermined time (in the refrigerator 1 of this embodiment) After 2 minutes (step S112), the cooling operation is restarted (step S101).

ステップS103において「高信頼性除霜モード」が成立した場合(ステップS103がYes),続いて,「圧縮機駆動状態、庫内送風機駆動状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ開放状態」で全室プリクール運転が実施される(ステップS201)。「高信頼性除霜モード」では,除霜運転中に貯蔵室の冷却は行われないが,全室プリクールにより除霜中に冷却されない冷凍室7を事前に十分冷却することができ,除霜中に各貯蔵室の温度が過度に上昇することを防ぐことができる。   When “high reliability defrosting mode” is established in step S103 (Yes in step S103), “compressor driving state, internal fan driving state, defrosting heater stopped state, refrigerator freezer state, vegetable All-room precooling operation is performed in the “room damper open state, freezer compartment damper open state” (step S201). In the “high reliability defrosting mode”, the storage room is not cooled during the defrosting operation, but the freezing room 7 that is not cooled during the defrosting can be sufficiently cooled in advance by the precooling of all the rooms. It is possible to prevent the temperature of each storage room from rising excessively.

全室プリクール運転を所定時間(本実施形態例の冷蔵庫1では30分)実施後,ステップS109に移行し,除霜手段3(圧縮機停止状態、庫内送風機停止状態,除霜ヒータ通電状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ開放状態)による除霜運転が実施される。以後は「省エネ除霜モード」と同様の制御ステップとなる。   After performing the all-room precool operation for a predetermined time (30 minutes in the refrigerator 1 of the present embodiment), the process proceeds to step S109, and the defrosting means 3 (compressor stopped state, internal fan stop state, defrost heater energized state, The defrosting operation is performed in the refrigerator compartment damper open state, the vegetable compartment damper open state, and the freezer compartment damper open state. Thereafter, the control steps are the same as those in the “energy saving defrost mode”.

図7は,冷蔵庫を32℃,相対湿度70%の室内に設置した際の制御状態と庫内要部の温度変化を表すタイムチャートである。   FIG. 7 is a time chart showing the control state and the temperature change in the main part of the refrigerator when the refrigerator is installed in a room at 32 ° C. and a relative humidity of 70%.

図7に示すように,経過時間tにおいて除霜開始条件が満足され(ここでは冷却運転継続時間t2が48hに達し,除霜運転開始条件が成立している(図8の(e)の条件により図5のステップ102がYes)。図8の(d)(e)(g)(h)(i)が成立した場合には「省エネルギー除霜モード」が選択されるので(図6ステップS103がNo),続いて「圧縮機駆動状態、庫内送風機駆動状態,除霜ヒータ停止状態、冷蔵室ダンパ閉鎖状態、野菜室ダンパ閉鎖状態,冷凍室ダンパ開放状態」で冷凍室プリクール運転が実施される(図6のステップS104)。これにより冷凍室7が冷却されて温度が下がり,冷却されない冷蔵室2,野菜室8の温度が上昇する。 As shown in FIG. 7, is satisfied defrosting start condition is at the elapsed time t a (cooling operation continuation time t2 reaches 48h here, defrosting operation start conditions are satisfied (in FIG. 8 (e) 5 is Yes depending on the conditions.) When (d), (e), (g), (h), and (i) in FIG.8 are established, the “energy saving defrosting mode” is selected (step in FIG. 6). S103 is No), followed by freezer compartment precool operation in "compressor drive state, internal fan drive state, defrost heater stop state, refrigerator compartment damper closed state, vegetable compartment damper closed state, freezer compartment damper open state" 6 (step S104 in FIG. 6), the freezer compartment 7 is cooled and the temperature is lowered, and the temperatures of the refrigerator compartment 2 and the vegetable compartment 8 that are not cooled are raised.

経過時間tbにおいて冷凍室プリクール運転継続時間(30分)が経過し,除霜手段1(圧縮機停止状態、庫内送風機駆動状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ閉鎖状態)による除霜運転が実施される(図6のステップS105)。除霜手段1による除霜では,主に霜の顕熱と熱交換した空気で冷蔵室2,野菜室8を冷却するように庫内送風機22を制御(具体的には1500min-1で駆動)するので,除霜手段1による除霜中の冷蔵室2,野菜室8の温度は低下している。これは,ヒータを用いずに庫内の熱負荷で霜を加熱している状態となるため省エネルギー性能が高い除霜となる。 In the elapsed time tb, the freezer compartment precooling operation continuation time (30 minutes) has elapsed, and the defrosting means 1 (compressor stopped state, internal fan drive state, defrost heater stopped state, refrigerator compartment damper open state, vegetable compartment damper open) The defrosting operation is performed according to the state (freezer compartment damper closed state) (step S105 in FIG. 6). In the defrosting by the defrosting means 1, the internal fan 22 is controlled so as to cool the refrigerator compartment 2 and the vegetable compartment 8 mainly by air exchanged with sensible heat of the frost (specifically, driven at 1500 min −1 ). Therefore, the temperature of the refrigerator compartment 2 and the vegetable compartment 8 during the defrosting by the defrosting means 1 is falling. This is a defrosting with high energy saving performance because the frost is heated by the heat load in the cabinet without using a heater.

経過時間tcにおいて,冷却器温度センサ44の検知温度TD1が−3℃に到達し(図6のステップS106がYes),除霜手段2(圧縮機停止状態、庫内送風機駆動状態,除霜ヒータ通電状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍温室ダンパ閉鎖状態)による除霜に移行している(図6のステップS107)。除霜手段2による除霜では,除霜ヒータ56に通電することにより除霜を加速しつつ,主に霜の潜熱(冷却器温度(霜温度)が0℃でほぼ一定)と熱交換した空気で冷蔵室2,野菜室8を冷却するように除霜ヒータと庫内送風機22を制御(具体的には除霜ヒータ通電量を150W,庫内送風機回転数を1200min-1で駆動)するので,除霜手段2による除霜中の冷蔵室2,野菜室8の温度は維持されている。除霜手段2による除霜中の冷蔵室2,野菜室8は冷却されることで維持されている。これは,ヒータに通電しながら庫内の熱負荷も利用して霜を加熱している状態となるため省エネルギー性能が高く,また,比較的短い時間で霜の融解に必要な熱量を与えることが可能となる。 At the elapsed time tc, the detection temperature TD1 of the cooler temperature sensor 44 reaches −3 ° C. (Yes in step S106 in FIG. 6), and the defrosting means 2 (compressor stopped state, internal fan drive state, defrost heater) Transition to defrosting by energized state, refrigerator compartment damper open state, vegetable compartment damper open state, frozen greenhouse damper closed state (step S107 in FIG. 6). In the defrosting by the defrosting means 2, the defrosting heater 56 is energized to accelerate the defrosting, and the air is mainly heat-exchanged with the latent heat of the frost (cooler temperature (frost temperature) is almost constant at 0 ° C). Therefore, the defrost heater and the internal fan 22 are controlled so as to cool the refrigerator compartment 2 and the vegetable compartment 8 (specifically, the defrost heater energization amount is 150 W and the internal fan rotational speed is driven at 1200 min −1 ). The temperature of the refrigerator compartment 2 and the vegetable compartment 8 during the defrosting by the defrosting means 2 is maintained. The refrigerator compartment 2 and the vegetable compartment 8 during the defrosting by the defrosting means 2 are maintained by being cooled. This is because the frost is heated using the heat load in the cabinet while the heater is energized, so energy saving performance is high, and the amount of heat necessary for melting the frost can be given in a relatively short time. It becomes possible.

経過時間tdにおいて,冷却器温度センサ44の検知温度TD1が+2℃に到達し(図6のステップS108がYes),除霜手段3(圧縮機停止状態、庫内送風機停止状態,除霜ヒータ通電状態、冷蔵室ダンパ閉鎖状態、冷凍室ダンパ開放状態)による除霜に移行している(図6のステップS109)。除霜手段2は除霜ヒータ56への通電のみによる除霜となるため,冷蔵室2,野菜室8,冷凍室7は冷却されず温度は上昇する。また,冷却器温度は除霜ヒータ56により加熱されるので温度が上昇する。また,前面仕切壁温度センサ45の検知温度TD2は,経過時間tdにおいては約0℃となっているが,除霜手段3による除霜運転中にプラス温度に上昇しはじめている。   At the elapsed time td, the detected temperature TD1 of the cooler temperature sensor 44 reaches + 2 ° C. (Yes in step S108 in FIG. 6), and the defrosting means 3 (compressor stopped state, internal fan stop state, defrost heater energized) The process is shifted to defrosting by the state, the refrigerator compartment damper closed state, and the freezer compartment damper opened state (step S109 in FIG. 6). Since the defrosting means 2 performs defrosting only by energizing the defrosting heater 56, the refrigerator compartment 2, the vegetable compartment 8, and the freezer compartment 7 are not cooled and the temperature rises. Moreover, since the cooler temperature is heated by the defrost heater 56, the temperature rises. Further, the detected temperature TD2 of the front partition wall temperature sensor 45 is about 0 ° C. at the elapsed time td, but starts to rise to a positive temperature during the defrosting operation by the defrosting means 3.

経過時間teにおいて,冷却器温度センサ44の検知温度TD1が+6℃,前面仕切壁温度センサ45の検知温度TD2が+3℃に到達し(図6のステップS110がYes),除霜ヒータ56への通電が停止され,「オフタイム(圧縮機停止状態、庫内送風機停止状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ開放状態)」に移行している(図6のステップS111)。   At the elapsed time te, the detection temperature TD1 of the cooler temperature sensor 44 reaches + 6 ° C., the detection temperature TD2 of the front partition wall temperature sensor 45 reaches + 3 ° C. (step S110 in FIG. 6 is Yes), and the defrost heater 56 Energization is stopped, and it is shifting to “off time (compressor stopped state, internal fan stop state, defrost heater stopped state, refrigerator compartment damper open state, vegetable compartment damper open state, freezer compartment damper open state)” (Step S111 in FIG. 6).

さらに経過時間tfにおいて,「オフタイム」の設定時間(3分)が経過したことにより,庫内送風機22停止状態で圧縮機23が駆動される「庫内送風機停止運転(圧縮機停止駆動状態、庫内送風機停止状態,除霜ヒータ停止状態、冷蔵室ダンパ開放状態、野菜室ダンパ開放状態,冷凍室ダンパ開放状態)」に移行している(図6のステップS112)。   Further, at the elapsed time tf, when the set time (3 minutes) of “off time” has elapsed, the compressor 23 is driven in the state where the internal fan 22 is stopped, “the internal fan stop operation (compressor stop driving state, It has shifted to “inside fan stop state, defrost heater stop state, refrigerator compartment damper open state, vegetable compartment damper open state, freezer compartment damper open state” ”(step S112 in FIG. 6).

冷蔵室2,野菜室8,冷凍室7は「オフタイム」から「庫内送風機停止運転」の間は,冷却されないため温度が上昇している。一方,冷却器温度と前面仕切壁表面温度は「オフタイム」中に上昇するが,「庫内送風機停止運転」では,冷却器に低温冷媒が流れるため,冷却器温度や前面仕切壁表面温度は低下している。   Since the refrigerator compartment 2, the vegetable compartment 8, and the freezer compartment 7 are not cooled during "off time" to "internal fan stop operation", the temperature rises. On the other hand, the cooler temperature and the front partition wall surface temperature rise during the “off-time”, but in “internal fan stop operation”, low-temperature refrigerant flows through the cooler, so the cooler temperature and front partition wall surface temperature are It is falling.

経過時間tgにおいて,「庫内送風機停止運転」の設定時間(2分)が経過したことにより,庫内送風機22が駆動され,冷却運転(冷凍運転)が再開されている(図6のステップS101)。   When the set time (2 minutes) of “internal fan stop operation” has elapsed at the elapsed time tg, the internal fan 22 is driven and the cooling operation (freezing operation) is resumed (step S101 in FIG. 6). ).

以上のように本実施形態例の冷蔵庫では,冷却器21の下流流路の庫内側の仕切壁表面の温度を検知する温度センサ(前面仕切壁温度センサ45)を備えており,その検知情報に基づいて除霜完了の判定を行っている。冷気流路を形成する壁面のうち庫外側に位置する壁面(例えば本実施形態例の冷蔵庫1における冷却器収納室9の背面)は,除霜運転中に庫外からの熱侵入により温度上昇しやすいが,庫内側に位置する壁面(貯蔵室や風路との境界を形成する壁面)は,低温の貯蔵室の影響で温度が上昇し難い。一般に冷蔵庫における除霜運転では,冷却器及びその周辺部の霜が融解したと推定される場合に除霜完了と判定されるため,除霜完了検知手段(温度センサ)の設置位置は,霜が解け難い箇所に設置することが望ましい。本実施形態例の冷蔵庫では,温度が上昇し難い冷却器21の下流の庫内側の仕切壁表面の温度を検知する温度センサ(前面仕切壁温度センサ45)を備え,その検知情報に基づいて除霜完了の判定を行う。これにより,霜が解け難い箇所の温度を検知できるので,過度に余裕度を持った除霜完了判定基準温度にすることなく,除霜運転を行うことができる。したがって,省エネルギー性能と信頼性がともに高い冷蔵庫を提供することができる。   As described above, the refrigerator of the present embodiment includes the temperature sensor (front partition wall temperature sensor 45) that detects the temperature of the partition wall surface inside the warehouse of the downstream flow path of the cooler 21, and the detection information includes Based on this, the defrosting completion is determined. Among the wall surfaces forming the cool air flow path, the wall surface located outside the refrigerator (for example, the back surface of the cooler storage chamber 9 in the refrigerator 1 of the present embodiment) rises in temperature due to heat intrusion from outside the refrigerator during the defrosting operation. Although it is easy, the wall surface located on the inner side (wall surface that forms the boundary between the storage room and the air channel) is unlikely to rise in temperature due to the low temperature storage room. In general, in the defrosting operation in a refrigerator, since it is determined that the defrosting is completed when it is estimated that the frost in the cooler and its surroundings has melted, the installation position of the defrosting completion detection means (temperature sensor) It is desirable to install in places that are difficult to unravel. The refrigerator according to the present embodiment includes a temperature sensor (front partition wall temperature sensor 45) that detects the temperature of the partition wall surface inside the refrigerator downstream of the cooler 21, where the temperature is difficult to rise, and removes the temperature based on the detected information. Judge the completion of frost. Thereby, since the temperature of the location where frost is hard to be melted can be detected, the defrosting operation can be performed without setting the defrosting completion determination reference temperature having an excessive margin. Therefore, it is possible to provide a refrigerator that has both high energy saving performance and high reliability.

本実施形態例の冷蔵庫では,冷却器温度を検知する温度センサ(冷却器温度センサ44)と,冷却器21の下流流路の温度を検知する温度センサ(前面仕切壁温度センサ45)を備えており,これらのセンサの検知情報に基づいて除霜完了の判定を行っている。具体的には,冷却器温度センサ44の検知温度TD1と,前面仕切壁温度センサ45の検知温度TD2の両者が0℃より高い所定温度に到達した場合に,除霜完了と判定する。なお,冷却器温度センサ44(第一除霜完了検知手段)と,前面仕切壁温度センサ45(第二除霜完了検知手段)を備えており,第一除霜完了検知手段の表面温度と,第二除霜完了検知手段の表面温度がともに0℃より高い所定温度になった場合に除霜運転(ヒータ通電)を終了すれば,第一除霜完了検知手段の検知温度と,第二除霜完了検知手段の検知温度の検知情報に基づく制御とみなすことができる。   The refrigerator of this embodiment includes a temperature sensor (cooler temperature sensor 44) that detects the cooler temperature and a temperature sensor (front partition wall temperature sensor 45) that detects the temperature of the downstream flow path of the cooler 21. The defrosting completion is determined based on the detection information of these sensors. Specifically, it is determined that the defrosting is completed when both the detection temperature TD1 of the cooler temperature sensor 44 and the detection temperature TD2 of the front partition wall temperature sensor 45 reach a predetermined temperature higher than 0 ° C. A cooler temperature sensor 44 (first defrosting completion detection means) and a front partition wall temperature sensor 45 (second defrosting completion detection means) are provided, and the surface temperature of the first defrosting completion detection means, If the defrosting operation (heater energization) is terminated when the surface temperature of the second defrosting completion detection means reaches a predetermined temperature higher than 0 ° C., the detection temperature of the first defrosting completion detection means and the second defrosting detection means It can be regarded as control based on the detection information of the detection temperature of the frost completion detection means.

これにより,霜が成長しやすい冷却器と,温度が上昇し難い冷却器の下流流路の両方について,除霜完了判定基準値に過度な余裕度を持つ必要がなくなり,過熱を抑えることができる。よって,省エネルギー性能と信頼性がともに高い冷蔵庫を提供することができる。   As a result, it is not necessary to have an excessive margin in the defrosting completion criterion value for both the cooler in which frost easily grows and the downstream flow path of the cooler in which the temperature does not easily rise, and overheating can be suppressed. . Therefore, it is possible to provide a refrigerator with high energy saving performance and high reliability.

一般に,冷蔵庫の冷却器や冷却器の周辺への着霜の状態は,冷蔵庫の運転履歴,庫内に収納される食品の種類や量,扉開閉頻度等により多様に変化するため,冷却器への着霜量の多少,冷却器下流流路への着霜量の多少は一定にはならない。よって,従来の冷蔵庫では,冷却器の除霜状態を検知する単一の除霜完了検知手段で除霜完了を判定するために,信頼性上で最も厳しい条件,すなわち,冷却器の温度が上昇しやすく,冷却器下流流路に霜が残りやすい条件を想定して判定基準値を定めることが必要になっていた。   Generally, the state of frost formation on the refrigerator cooler and the surroundings of the refrigerator varies depending on the operation history of the refrigerator, the type and amount of food stored in the refrigerator, the frequency of opening and closing the door, and so on. The amount of frost formed on the cooler and the amount of frost formed on the downstream of the cooler are not constant. Therefore, in the conventional refrigerator, since the defrost completion is judged by the single defrost completion detection means for detecting the defrost state of the cooler, the most severe condition in reliability, that is, the temperature of the cooler is increased. Therefore, it was necessary to set a judgment reference value assuming a condition in which frost is likely to remain in the cooler downstream flow path.

冷却器の温度が上昇しやすく,冷却器下流流路に霜が残りやすいのは,冷却器への着霜が比較的少なくて,冷却器下流流路に多くの着霜が生じている場合であり,冷却器温度センサ44のみによって除霜完了を判定する場合は,冷却器の下流流路に多量の着霜が生じていても十分に融解させることができる判定基準値として,例えば10℃程度とする必要があった。一方で,本実施形態例の冷蔵庫では,第一除霜完了検知手段の検知温度と,第二除霜完了検知手段の検知温度の検知情報に基づいて除霜完了を判定するので,冷却器への着霜が比較的少なくて,冷却器下流流路に多くの着霜が生じている最も厳しい条件以外の条件,例えば,冷却器への着霜が多く,冷却器下流流路への着霜が少ない,あるいは,冷却器と冷却器下流流路への着霜がともに少ない条件等で冷却器の過熱が抑えられる。例えば,本実施形態例の冷蔵庫では,冷却器下流流路の除霜が完了したと判定していた時点(前面仕切壁温度センサ45の検知温度が3℃)で,冷却器温度(冷却器温度センサ44の検知温度)は6℃であり,冷却器の過熱が抑えられていることがわかる。本実施形態例の冷蔵庫では,冷却器温度を検知する温度センサ(冷却器温度センサ44)と,冷却器21の下流流路の温度を検知する温度センサ(前面仕切壁温度センサ45)を備えており,冷却器21の幅方向の中心面を基準に分けられる領域の双方に少なくとも1つの温度検知手段を配設している。   The temperature of the cooler tends to rise, and frost tends to remain in the cooler downstream flow path when there is relatively little frost formation on the cooler and there is a lot of frost formation in the cooler downstream flow path. Yes, when the defrosting completion is determined only by the cooler temperature sensor 44, as a determination reference value that can be sufficiently melted even if a large amount of frost is formed in the downstream flow path of the cooler, for example, about 10 ° C. It was necessary to. On the other hand, in the refrigerator of this embodiment, since the defrosting completion is determined based on the detection temperature of the first defrosting completion detection means and the detection information of the detection temperature of the second defrosting completion detection means, The frost formation of the cooler is relatively low, and a lot of frost is generated in the cooler downstream flow path. Conditions other than the most severe conditions, for example, the cooler is frosted frequently and the cooler downstream flow path is frosted. Overheating of the cooler can be suppressed under conditions where there is little or no frost formation on the cooler and the downstream flow path of the cooler. For example, in the refrigerator of the present embodiment, at the time when it is determined that the defrosting of the downstream flow path of the cooler has been completed (the detection temperature of the front partition wall temperature sensor 45 is 3 ° C.), the cooler temperature (cooler temperature) The detected temperature of the sensor 44 is 6 ° C., and it can be seen that overheating of the cooler is suppressed. The refrigerator of this embodiment includes a temperature sensor (cooler temperature sensor 44) that detects the cooler temperature and a temperature sensor (front partition wall temperature sensor 45) that detects the temperature of the downstream flow path of the cooler 21. In addition, at least one temperature detection means is disposed in both of the regions that are divided with reference to the center plane in the width direction of the cooler 21.

これにより,冷却器収納室9内において,霜が成長しやすい冷却器と,温度が上昇し難い冷却器の下流流路の双方の除霜状態を効率良く検知することができる。   Thereby, in the cooler storage chamber 9, the defrost state of both the cooler in which frost easily grows and the downstream flow path of the cooler in which the temperature hardly rises can be detected efficiently.

本実施形態例の冷蔵庫では,冷却器21の下流流路の中に設置されている可動部品(庫内送風機22)の近傍温度を仕切壁表面の温度を検知する温度センサ(前面仕切壁温度センサ45)により検知している。これにより,温度が上昇し難い冷却器の下流流路の特に可動部品(庫内送風機22)の近傍に霜の解け残りが生じるリスクを抑えることができるので,除霜完了判定基準値に過度な余裕度を持つ必要がなくなり,過熱を抑えることができる。   In the refrigerator of the present embodiment, a temperature sensor (front partition wall temperature sensor) detects the temperature of the partition wall surface using the temperature in the vicinity of the movable part (internal fan 22) installed in the downstream flow path of the cooler 21. 45). As a result, it is possible to suppress the risk of frost remaining undissolved in the vicinity of the movable part (internal fan 22) in the downstream flow path of the cooler, where the temperature does not easily rise. It is not necessary to have a margin, and overheating can be suppressed.

よって,省エネルギー性と信頼性がともに高い冷蔵庫を提供することができる。   Therefore, it is possible to provide a refrigerator that has both high energy saving and high reliability.

なお,本発明は上記した各実施例に限定されるものではなく,様々な変形例が含まれる。例えば,冷却器21の温度を検知する温度センサや,冷却器21の下流流路の温度を検知する温度センサを複数配設しても良い。また,本実施形態例の冷蔵庫1では、冷却器21の下流流路における可動部品として庫内送風機22の温度を検知しているが、冷却器21の下流流路にある他の可動部品として例えばダンパ温度(ダンパの近傍温度)を検知する温度センサを配設しても良い。さらに,冷却器21の下流流路の庫内側に位置する壁面に保持される稼働部品に直接温度センサを配設して可動部品の温度を測定する構成としたり、可動部品や、温度が上昇し難い箇所に補助ヒータを配設して,除霜運転時に加熱するようにしても良い。また,本実施形態例の冷蔵庫1は「冷蔵室単独運転」,「野菜室単独運転」,「冷凍室単独運転」,「冷蔵野菜運転」,「冷蔵野菜冷凍運転」の5種類の冷却運転モードを備えた冷蔵庫だが,これら全てを備えていなくてもよい。   In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, a plurality of temperature sensors that detect the temperature of the cooler 21 and a plurality of temperature sensors that detect the temperature of the downstream flow path of the cooler 21 may be provided. Moreover, in the refrigerator 1 of this embodiment, although the temperature of the internal fan 22 is detected as a movable part in the downstream flow path of the cooler 21, as another movable part in the downstream flow path of the cooler 21, for example, You may arrange | position the temperature sensor which detects damper temperature (temperature vicinity of a damper). Furthermore, the temperature sensor is directly arranged on the working part held on the wall surface located inside the warehouse of the downstream flow path of the cooler 21 to measure the temperature of the movable part, or the temperature of the movable part increases. An auxiliary heater may be provided at a difficult place to heat the defrosting operation. In addition, the refrigerator 1 of the present embodiment has five types of cooling operation modes of “cold room independent operation”, “vegetable room independent operation”, “freezer compartment independent operation”, “refrigerated vegetable operation”, and “refrigerated vegetable freezing operation”. Although it is a refrigerator equipped with, it does not need to be equipped with all of these.

すなわち,上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。   That is, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.

1 冷蔵庫本体
2 冷蔵室
3 チルド室
4 製氷室
5 上段冷凍室
6 下段冷凍室
7 冷凍室
8 野菜室
9 冷却器収納室
10 機械室
11 冷蔵室送風ダクト
12 冷蔵室戻りダクト
13 冷凍室送風ダクト
17 野菜室戻りダクト
21 冷却器
22 庫内送風機
23 圧縮機
24 冷蔵室ダンパ
26 冷凍室ダンパ
27 前面仕切壁
28 気液分離器
31 冷蔵室吹き出し口
33 冷凍室吹き出し口
36 冷凍室戻り口
37 野菜室戻り口
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 野菜室温度センサ
44 冷却器温度センサ
45 前面仕切壁温度センサ
46 棚
47 扉ポケット
49 制御基板
50 断熱箱体
51 上部断熱仕切壁(仕切部)
52 下部断熱仕切壁(仕切部)
55aa,55b バイパス流路
56 除霜ヒータ
57 樋
58 排水管
59 蒸発皿
60 真空断熱材
70 放熱手段
71 放熱器
72 放熱パイプ
73 結露抑制パイプ
74 キャピラリチューブ
77 冷媒配管
DESCRIPTION OF SYMBOLS 1 Refrigerator body 2 Refrigeration room 3 Chilled room 4 Ice making room 5 Upper freezing room 6 Lower freezing room 7 Freezing room 8 Vegetable room 9 Cooler storage room 10 Machine room 11 Refrigeration room air duct 12 Refrigeration room return duct 13 Freezer room air duct 17 Vegetable room return duct 21 Cooler 22 Internal fan 23 Compressor 24 Refrigeration room damper 26 Freezer compartment damper 27 Front partition wall 28 Gas-liquid separator 31 Refrigeration room outlet
33 Freezer compartment outlet 36 Freezer compartment return port 37 Vegetable room return port 41 Refrigerator room temperature sensor 42 Freezer room temperature sensor 43 Vegetable room temperature sensor 44 Cooler temperature sensor 45 Front partition wall temperature sensor 46 Shelf 47 Door pocket 49 Control board 50 Heat insulation box 51 Upper heat insulation partition wall (partition)
52 Lower heat insulation partition wall (partition)
55aa, 55b Bypass passage 56 Defrost heater 57 樋 58 Drain pipe 59 Evaporating dish 60 Vacuum heat insulating material 70 Heat radiation means 71 Radiator 72 Heat radiation pipe 73 Condensation suppression pipe 74 Capillary tube 77 Refrigerant piping

Claims (5)

食品貯蔵室と,圧縮機と,該圧縮機で圧縮された冷媒と庫外の空気と熱交換する放熱器と,前記冷媒を減圧する減圧手段と,減圧された前記冷媒と前記食品貯蔵室内の空気と熱交換する冷却器と,該冷却器を収納する冷却器収納室と,該冷却器収納室から前記食品貯蔵室に至る送風路と,前記食品貯蔵室から前記冷却器収納室に至る戻り風路と,前記冷却器で熱交換した空気を前記食品貯蔵室に送風する庫内送風機とを備え,前記冷却器の温度を検知する第一の温度センサと,前記冷却器より下流側の前記冷却器収納室または前記送風路に第二の温度センサを配設したことを特徴とする冷蔵庫。   A food storage chamber; a compressor; a heat exchanger exchanging heat with the refrigerant compressed by the compressor and air outside the storage; a decompression means for decompressing the refrigerant; the decompressed refrigerant and the food storage chamber; A cooler for exchanging heat with air, a cooler storage chamber for storing the cooler, an air passage from the cooler storage chamber to the food storage chamber, and a return from the food storage chamber to the cooler storage chamber An air passage, and an internal fan that blows air exchanged by the cooler to the food storage room, a first temperature sensor that detects a temperature of the cooler, and the downstream of the cooler A refrigerator characterized in that a second temperature sensor is disposed in a cooler storage chamber or the air passage. 前記第一の温度センサと前記第二の温度センサがともに0℃以上の所定温度に到達した場合に除霜運転を終了することを特徴とする請求項1に記載の冷蔵庫   2. The refrigerator according to claim 1, wherein the defrosting operation is terminated when both of the first temperature sensor and the second temperature sensor have reached a predetermined temperature of 0 ° C. or more. 前記冷却器の幅方向の中心面に対して,一方の側に少なくとも一つの前記第一の温度センサを配設し,他方の側に少なくとも一つの前記第二の温度センサを配設することを特徴とする請求項1乃至請求項2に記載の冷蔵庫。   The at least one first temperature sensor is disposed on one side and the at least one second temperature sensor is disposed on the other side with respect to the center plane in the width direction of the cooler. The refrigerator according to claim 1 or 2, wherein the refrigerator is characterized. 前記第二の温度センサを,前記可動部品の本体または可動部品の近傍領域に配設することを特徴とする請求項1乃至請求項3の何れか1項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 3, wherein the second temperature sensor is disposed in a main body of the movable part or a region near the movable part. 食品貯蔵室と,圧縮機と,該圧縮機で圧縮された冷媒と庫外の空気と熱交換する放熱器と,前記冷媒を減圧する減圧手段と,減圧された前記冷媒と前記食品貯蔵室内の空気と熱交換する冷却器と,該冷却器を収納する冷却器収納室と,該冷却器収納室から前記食品貯蔵室に至る送風路と,前記食品貯蔵室から前記冷却器収納室に至る戻り風路とを備え,前記冷却器より下流側であって,前記冷却器収納室または前記送風路を形成する壁面のうち庫内側の壁面に温度センサを配設したことを特徴とする冷蔵庫。   A food storage chamber; a compressor; a heat exchanger exchanging heat with the refrigerant compressed by the compressor and air outside the storage; a decompression means for decompressing the refrigerant; the decompressed refrigerant and the food storage chamber; A cooler for exchanging heat with air, a cooler storage chamber for storing the cooler, an air passage from the cooler storage chamber to the food storage chamber, and a return from the food storage chamber to the cooler storage chamber A refrigerator comprising: an air passage, wherein a temperature sensor is disposed on a wall surface on the inner side among the wall surfaces forming the cooler housing chamber or the air passage, downstream of the cooler.
JP2016211203A 2016-10-28 2016-10-28 refrigerator Active JP6752107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016211203A JP6752107B2 (en) 2016-10-28 2016-10-28 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211203A JP6752107B2 (en) 2016-10-28 2016-10-28 refrigerator

Publications (2)

Publication Number Publication Date
JP2018071874A true JP2018071874A (en) 2018-05-10
JP6752107B2 JP6752107B2 (en) 2020-09-09

Family

ID=62114700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211203A Active JP6752107B2 (en) 2016-10-28 2016-10-28 refrigerator

Country Status (1)

Country Link
JP (1) JP6752107B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101299A (en) * 2018-12-20 2020-07-02 日立グローバルライフソリューションズ株式会社 refrigerator
CN112696862A (en) * 2020-12-18 2021-04-23 合肥朗驰工业设计有限公司 Intermittent defrosting control method for refrigerator and air-cooled refrigerator
WO2024024018A1 (en) * 2022-07-28 2024-02-01 三菱電機株式会社 Refrigerator
JP7465135B2 (en) 2020-04-03 2024-04-10 ホシザキ株式会社 Cooling Storage
JP7473390B2 (en) 2020-05-15 2024-04-23 日立グローバルライフソリューションズ株式会社 refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879379U (en) * 1971-12-28 1973-09-29
JPH0566076A (en) * 1991-09-05 1993-03-19 Toshiba Corp Cooling apparatus
JP2004144364A (en) * 2002-10-23 2004-05-20 Matsushita Refrig Co Ltd Refrigerator
US20130081416A1 (en) * 2011-09-29 2013-04-04 Lg Electronics Inc. Refrigerator
JP2015117850A (en) * 2013-12-17 2015-06-25 株式会社東芝 Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879379U (en) * 1971-12-28 1973-09-29
JPH0566076A (en) * 1991-09-05 1993-03-19 Toshiba Corp Cooling apparatus
JP2004144364A (en) * 2002-10-23 2004-05-20 Matsushita Refrig Co Ltd Refrigerator
US20130081416A1 (en) * 2011-09-29 2013-04-04 Lg Electronics Inc. Refrigerator
JP2015117850A (en) * 2013-12-17 2015-06-25 株式会社東芝 Refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101299A (en) * 2018-12-20 2020-07-02 日立グローバルライフソリューションズ株式会社 refrigerator
JP7465135B2 (en) 2020-04-03 2024-04-10 ホシザキ株式会社 Cooling Storage
JP7473390B2 (en) 2020-05-15 2024-04-23 日立グローバルライフソリューションズ株式会社 refrigerator
CN112696862A (en) * 2020-12-18 2021-04-23 合肥朗驰工业设计有限公司 Intermittent defrosting control method for refrigerator and air-cooled refrigerator
WO2024024018A1 (en) * 2022-07-28 2024-02-01 三菱電機株式会社 Refrigerator

Also Published As

Publication number Publication date
JP6752107B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
CN101619916B (en) Ice refrigerator
JP5017340B2 (en) refrigerator
JP5530852B2 (en) refrigerator
JP5178642B2 (en) refrigerator
CN101929779B (en) Refrigerator
WO2012157263A1 (en) Refrigerator
JP5507511B2 (en) refrigerator
JP6752107B2 (en) refrigerator
JP5622758B2 (en) refrigerator
JP5260416B2 (en) refrigerator
JP2013061089A (en) Refrigerator
JP2012007760A (en) Refrigerator
JP4982537B2 (en) refrigerator
JP5838238B2 (en) refrigerator
JP6890502B2 (en) refrigerator
JP2012042140A (en) Refrigerator
JP2011038714A (en) Refrigerator
JP6837423B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP2019027649A (en) refrigerator
CN112378146B (en) Refrigerator with a door
JP5376796B2 (en) refrigerator
JP2017187246A (en) refrigerator
US20220146154A1 (en) Refrigerator control method
JP2013108707A (en) Refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6752107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150