JP2012007760A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2012007760A
JP2012007760A JP2010141720A JP2010141720A JP2012007760A JP 2012007760 A JP2012007760 A JP 2012007760A JP 2010141720 A JP2010141720 A JP 2010141720A JP 2010141720 A JP2010141720 A JP 2010141720A JP 2012007760 A JP2012007760 A JP 2012007760A
Authority
JP
Japan
Prior art keywords
temperature
cold
refrigerator
cooling
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010141720A
Other languages
Japanese (ja)
Inventor
Akiyoshi Ohira
昭義 大平
Ryoji Kawai
良二 河井
Hiroto Ishiwatari
寛人 石渡
Hirokazu Nakamura
浩和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010141720A priority Critical patent/JP2012007760A/en
Publication of JP2012007760A publication Critical patent/JP2012007760A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator provided with a refrigeration chamber (including a vegetable chamber) and a freezer and having two or more temperature zones, which can improve energy efficiency by efficiently using a cold storage material according to a cooling operation peculiar to the refrigerator.SOLUTION: The refrigerator includes: a cold storage operation for storing cold in the cold storage material by operating a cold storage unit fan 74 during a refrigerating operation in which cold generated by a refrigerating cycle is circulated by an in-chamber fan 9 with a freezer compartment damper 50 being in the open state; and a cold release operation for releasing cold of the cold storage material by operating the cold storage unit fan 74 during the refrigerating operation in which the cold generated by the refrigerating cycle is circulated by the in-chamber fan 9 with the freezer compartment damper 50 being in the open state.

Description

本発明は、冷蔵庫の冷熱エネルギを蓄熱(ここで「蓄熱」とは温度帯によらず熱を物質に蓄えることを意味する。本発明では低温度域での蓄熱を想定しているため、分かり易くするため「蓄熱」を「蓄冷」と呼ぶ。同様に蓄冷した冷熱エネルギを周囲の空気中に放出することを「放冷」と呼ぶ。)する蓄冷手段を備え、冷蔵庫の運転状況に応じて蓄冷と放冷を行える冷却手段を備えた冷蔵庫に関する。   In the present invention, the cold energy of the refrigerator is stored as heat (here, "heat storage" means that heat is stored in a substance regardless of the temperature range. In the present invention, it is assumed that heat is stored in a low temperature range. For the sake of simplicity, “heat storage” is referred to as “cold storage.” Similarly, it is provided with cold storage means for discharging the stored cold energy into the surrounding air. The present invention relates to a refrigerator provided with a cooling means that can store and cool.

特許文献1に記載の冷蔵庫では、庫内の温度むらや温度変動、また食品の乾燥を抑制し、食品収納後の冷却運転時間を短縮して食品の保存性を高めることを目的にしている。すなわち、対象とする保存室の天井面に冷却板と蓄冷材をセットにして設け、保存室の外側の天井面に、冷蔵庫の冷却器から庫内ファン(第一の送風機)を稼働した際に発生する冷気によって、冷却板と蓄冷材に冷熱エネルギが蓄えられるように通風ダクトが形成されている。また、保存室内の空気を循環させるために第二の送風機が設けられており、保存室内の温度むらの解消を行っている。   The refrigerator described in Patent Document 1 aims to suppress temperature unevenness and temperature fluctuation in the refrigerator and drying of the food, shorten the cooling operation time after storing the food, and improve the storability of the food. That is, when a cooling plate and a cold storage material are provided as a set on the ceiling surface of the target storage room, and the internal fan (first blower) is operated from the refrigerator cooler on the ceiling surface outside the storage room The ventilation duct is formed so that cold energy is stored in the cooling plate and the cold storage material by the generated cold air. In addition, a second blower is provided to circulate the air in the storage room, and temperature unevenness in the storage room is eliminated.

特許文献2に記載の冷蔵庫では、着脱自在な蓄冷材を庫内に設け、使用者が収納する食品に応じて最適な保存方法を選択できることを目的にしている。青果物の保存には、直接冷気を供給しない間接的冷却方法が、乾燥防止の観点で優れている。   In the refrigerator described in Patent Document 2, an object is to provide a detachable cold storage material in the cabinet and to select an optimal storage method according to the food stored by the user. For the preservation of fruits and vegetables, an indirect cooling method that does not directly supply cold air is superior from the viewpoint of drying prevention.

以上のように庫内の負荷変動に対応するために、冷蔵庫の冷却手段に追加して蓄冷材を活用した冷蔵庫についての特許文献が複数出願されている。   As described above, in order to cope with the load fluctuation in the warehouse, a plurality of patent documents have been filed for refrigerators that use cold storage materials in addition to the cooling means of the refrigerator.

特開平7−35460号公報(図3参照)Japanese Patent Laid-Open No. 7-35460 (see FIG. 3) 特開2009−192109号公報(図2参照)JP 2009-192109 A (see FIG. 2)

前記特許文献1および特許文献2に記載の冷蔵庫は、いずれも保存室内の温度変動を抑えるために蓄冷材を活用した冷却方法であり、保存室内の温度むら解消や食品の低温障害防止等、保存性向上に関しての効果が期待できる。しかしながら、特許文献1および特許文献2は、冷蔵庫特有の冷却運転に応じた蓄冷方法や放冷方法についての記載はなく、蓄冷材を活用した冷蔵庫の省エネ性向上に関する運転方法については全く検討されてこなかった。   Each of the refrigerators described in Patent Document 1 and Patent Document 2 is a cooling method that uses a cold storage material to suppress temperature fluctuations in the storage room, such as elimination of temperature unevenness in the storage room and prevention of low-temperature food damage. It can be expected to improve the performance. However, Patent Document 1 and Patent Document 2 do not describe a cold storage method or a cooling method according to a cooling operation peculiar to a refrigerator, and have completely studied an operation method for improving energy saving performance of a refrigerator using a cold storage material. There wasn't.

本発明は前記した課題を解決するものであり、冷蔵室(野菜室含む)と冷凍室を備えた複数の温度帯を有する冷蔵庫において、冷蔵庫特有の冷却運転に応じて蓄冷材を効率的に利用し、省エネ性を向上できる冷蔵庫を提供することを課題とする。   The present invention solves the above-described problem, and in a refrigerator having a plurality of temperature zones including a refrigerator compartment (including a vegetable compartment) and a freezer compartment, the cool storage material is efficiently used according to the cooling operation unique to the refrigerator. And it makes it a subject to provide the refrigerator which can improve energy-saving property.

本発明の請求項1に記載の発明は、冷蔵室と冷凍室を備えた複数の温度帯を有する冷蔵庫において、前記冷蔵室に対する冷気の導入および遮断を行う冷蔵室冷気制御手段と、前記冷凍室に対する冷気の導入および遮断を行う冷凍室冷気制御手段と、圧縮機とともに冷凍サイクルを構成する冷却器と、前記冷却器で生成される冷気を送風する第1送風機と、前記冷凍サイクルで生成された冷熱エネルギを蓄冷および放冷する蓄冷放冷手段と、前記蓄冷放冷手段に送風を行う第2送風機と、前記冷蔵室冷気制御手段、冷凍室冷気制御手段、第1送風機および第2送風機を制御する制御手段と、を備えたことを特徴とする。冷凍サイクルによって得られる冷熱エネルギを蓄冷材に蓄冷する手段と放冷する手段を有することにより、冷蔵庫の熱負荷が高い時間帯の熱負荷の一部を、蓄冷材を利用して負荷平準化する。   The invention according to claim 1 of the present invention is a refrigerator having a plurality of temperature zones provided with a refrigerator compartment and a freezer compartment, a refrigerator compartment cold air control means for introducing and shutting off the cold air to the refrigerator compartment, and the freezer compartment The cooling room cool air control means for introducing and shutting off the cool air, the cooler constituting the refrigerating cycle together with the compressor, the first blower for blowing the cool air generated by the cooler, and the refrigerating cycle generated Controls cool storage / cooling means for storing and cooling cool energy, a second fan for blowing air to the cool storage / cooling means, the refrigerator compartment cool air control means, the freezer compartment cool air control means, the first fan and the second fan. And a control means. By having a means for storing the cold energy obtained by the refrigeration cycle in the regenerator material and a means for letting it cool, a part of the heat load of the refrigerator when the heat load is high is leveled using the regenerator material. .

本発明によれば、冷蔵室(野菜室含む)と冷凍室を備えた複数の温度帯を有する冷蔵庫において、冷却室に設けた蓄冷材と専用ファンによって構成される蓄冷ユニットに、庫内の熱負荷が小さくなる扉開閉が少ない時間帯、あるいは冷蔵庫の周囲空気温度が低くなる夜間の時間帯に蓄冷し、蓄冷時の冷凍サイクルの効率が高い時に蓄冷することで省エネ性に配慮している。また、昼間の冷蔵庫の使用頻度が高く、庫内の熱負荷が大きい時、蓄冷材から専用ファンで冷熱エネルギを取り出すことができ、蓄冷材からの放冷運転と冷凍サイクルを併用することにより、圧縮機の低速運転により省エネ化を図ることができる。したがって、従来からの蓄冷材を使った食品の保存性向上に加えて、省エネ性にも考慮した冷蔵庫が提供できる。   According to the present invention, in a refrigerator having a plurality of temperature zones provided with a refrigerator compartment (including a vegetable compartment) and a freezer compartment, the heat in the refrigerator is provided in the cold storage unit constituted by the cold storage material provided in the cooling chamber and a dedicated fan. Energy saving is taken into account by storing cold when the door is light and the door is less open or closed, or during nighttime when the ambient air temperature of the refrigerator is low, and when the efficiency of the refrigeration cycle is high. In addition, when the refrigerator is used frequently in the daytime and the heat load in the warehouse is large, cold energy can be taken out from the cold storage material with a dedicated fan, and by using the cooling operation from the cold storage material and the refrigeration cycle in combination, Energy saving can be achieved by operating the compressor at a low speed. Therefore, in addition to improving the preservability of food using conventional cold storage materials, it is possible to provide a refrigerator that also considers energy saving.

本発明の実施形態に係る冷蔵庫の正面外観図である。It is a front external view of the refrigerator which concerns on embodiment of this invention. 冷蔵庫の庫内の構成を示す図1のA−A断面図である。It is AA sectional drawing of FIG. 1 which shows the structure in the store | warehouse | chamber of a refrigerator. 冷蔵庫の冷気ダクトや冷気吹き出し口の配置などを示す正面図である。It is a front view which shows arrangement | positioning etc. of the cold air duct of a refrigerator, and a cold air outlet. 蓄冷ユニットを示す概略図の一例である。It is an example of the schematic diagram which shows a cool storage unit. 蓄冷ユニットを示す図4のB−B断面図である。It is BB sectional drawing of FIG. 4 which shows a cool storage unit. 冷蔵庫の使用者の一般的な生活パターンと、それに対応した冷蔵庫の熱負荷、冷蔵庫設置場所の気温について模式的に示した図である。It is the figure which showed typically the general life pattern of the user of a refrigerator, the thermal load of the refrigerator corresponding to it, and the temperature of the refrigerator installation place. 冷蔵庫の運転状況を表すモリエル線図である。It is a Mollier diagram showing the operating condition of a refrigerator. 蓄冷時(凝固)の蓄冷材の温度変化を示すグラフである。It is a graph which shows the temperature change of the cool storage material at the time of cold storage (solidification). 放冷時(融解)の蓄冷材の温度変化を示すグラフである。It is a graph which shows the temperature change of the cool storage material at the time of standing_to_cool. 蓄冷ユニットに蓄冷する際の概略を示すフローチャートである。It is a flowchart which shows the outline at the time of storing cold in a cool storage unit. 蓄冷運転時の冷蔵庫の運転状況とそれに関する機器の動作状態図である。It is a driving | running state of the refrigerator at the time of a cool storage driving | operation, and the operation state figure of the apparatus regarding it. 冷凍運転時に放冷運転を併用する場合の概略を示すフローチャートである。It is a flowchart which shows the outline in the case of using together cool-down operation at the time of freezing operation. 冷凍運転時に放冷運転をする際の冷蔵庫の運転状況とそれに関する機器の状態図である。It is a state figure of the operation condition of the refrigerator at the time of carrying out a cooling operation at the time of freezing operation, and the apparatus about it. 冷蔵運転時に放冷運転を実施する場合の概略を示すフローチャートである。It is a flowchart which shows the outline in the case of implementing cool-down operation at the time of refrigeration operation. 冷蔵運転時に放冷運転を実施する際の冷蔵庫の運転状況とそれに関する機器の状態図である。It is a driving | running state of the refrigerator at the time of implementing cool-down operation at the time of refrigeration operation, and the state diagram of the apparatus regarding it. 圧縮機OFF中に実施する霜冷却運転中に放冷運転を実施する場合の概略を示すフローチャートである。It is a flowchart which shows the outline in the case of implementing a natural cooling operation during the frost cooling operation implemented while a compressor is OFF. 圧縮機OFF中に実施する霜冷却運転中に放冷運転する際の冷蔵庫の運転状況とそれに関する機器の状態図である。It is a driving | running state of the refrigerator at the time of carrying out natural cooling operation during the frost cooling operation implemented while a compressor is OFF, and the state diagram of the apparatus regarding it. 除霜運転中に放冷運転を実施する場合の概略を示すフローチャートである。It is a flowchart which shows the outline in the case of implementing a natural cooling operation during a defrost operation. 除霜運転中に放冷運転を実施する際の冷蔵庫の運転状況とそれに関する機器の状態図である。It is a state figure of the operation | movement condition of the refrigerator at the time of implementing cool-down operation during a defrost operation, and the apparatus regarding it.

図1に示すように、本実施形態の冷蔵庫1は、上方から、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6を備えている。これら冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれの機能に適した温度帯に設定される。なお、以下本明細書中では、製氷室3と上段冷凍室4と下段冷凍室5の総称として冷凍温度帯室(以下、冷凍室と略記する)60、冷蔵室2と野菜室6の総称として冷蔵温度帯室61と呼ぶことがある。   As shown in FIG. 1, the refrigerator 1 of this embodiment is provided with the refrigerator compartment 2, the ice making room 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 from the upper direction. The refrigerator compartment 2, the ice making compartment 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are set to temperature zones suitable for their respective functions. In the following description, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing temperature zone chamber (hereinafter abbreviated as a freezing chamber) 60, and the refrigerator compartment 2 and the vegetable chamber 6 are collectively referred to. Sometimes referred to as a refrigerated temperature zone 61.

冷蔵室2は、前面側に、左右に分割された観音開きの冷蔵室扉2a,2bを備え、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a,2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを単に扉2a,2b,3a,4a,5a,6aと称する。   The refrigerating room 2 is provided with a left and right refrigerating room doors 2a and 2b divided on the front side, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are each a drawer type ice making room. The door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are provided. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a.

また、冷蔵庫1は、扉2a,2b,3a,4a,5a,6aの開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間(例えば1分間)以上継続された場合に、使用者に報知する図示しないアラーム、冷蔵室2や野菜室6の温度設定や冷凍温度帯室60の温度設定をする図示しない温度設定器等を備えている。   In the refrigerator 1, the door sensor (not shown) that detects the open / closed state of the doors 2a, 2b, 3a, 4a, 5a, and 6a and the state determined as the door open state are continued for a predetermined time (for example, 1 minute) or more. In this case, an alarm (not shown) for notifying the user, a temperature setting device (not shown) for setting the temperature of the refrigerator compartment 2 and the vegetable compartment 6 and the temperature setting of the freezing temperature zone 60 are provided.

図2に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10により隔てられている。また、冷蔵庫1の断熱箱体10は真空断熱材25を実装している。   As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material (foamed polyurethane). Further, the heat insulating box 10 of the refrigerator 1 is mounted with a vacuum heat insulating material 25.

冷蔵庫1の庫内は、断熱仕切壁28により、冷蔵室2と上段冷凍室4及び製氷室3(図1参照)とが隔てられ、断熱仕切壁29により、下段冷凍室5と野菜室6とが隔てられている。   In the refrigerator 1, the refrigerator compartment 2 is separated from the upper freezer compartment 4 and the ice making chamber 3 (see FIG. 1) by the heat insulating partition wall 28, and the lower freezer compartment 5 and the vegetable compartment 6 are separated by the heat insulating partition wall 29. Are separated.

冷蔵室2は、扉2a,2b(図1参照)の庫内側に、複数の扉ポケット32が備えられ、また複数の棚36により縦方向に複数の貯蔵スペースに区画されている。   The refrigerator compartment 2 is provided with a plurality of door pockets 32 inside the doors 2a and 2b (see FIG. 1), and is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36.

上段冷凍室4、下段冷凍室5及び野菜室6は、各室の前方に備えられた扉4a,5a,6aと一体に引き出される、収納容器4b,5b,6bがそれぞれ設けられており、扉4a,5a,6aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器4b,5b,6bが引き出せるようになっている。図1に示す製氷室3にも同様に、扉3aと一体に、図示しない収納容器(図2中(3b)で表示)が設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。   The upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are respectively provided with storage containers 4b, 5b, 6b that are pulled out integrally with doors 4a, 5a, 6a provided in front of the respective compartments. The storage containers 4b, 5b and 6b can be pulled out by placing a hand on a handle portion (not shown) of 4a, 5a and 6a and pulling it out to the front side. Similarly, the ice making chamber 3 shown in FIG. 1 is provided with an unillustrated storage container (indicated by (3b) in FIG. 2) integrally with the door 3a. The container 3b can be pulled out by pulling it out.

なお、上段冷凍室4は、急速冷凍室として使用できるように構成されている。急速冷凍性能の向上のために、上段冷凍室4の収納容器4bには図示しないアルミトレーが備えられており、冷凍速度が向上するようになっている。   The upper freezer compartment 4 is configured to be used as a quick freezer compartment. In order to improve the quick freezing performance, the storage container 4b of the upper freezer compartment 4 is provided with an aluminum tray (not shown) so that the freezing speed is improved.

また、冷蔵庫1は、冷却器7、庫内ファン9(第1送風機)、冷蔵室送風ダクト11、冷凍室送風ダクト12、冷蔵室ダンパ(冷蔵室冷気制御手段。以下、Rダンパと略記する)20、冷凍室ダンパ(冷凍室冷気制御手段。以下、Fダンパと略記する)50、蓄冷ユニット70、制御装置100などを備えている。   The refrigerator 1 includes a cooler 7, an internal fan 9 (first blower), a refrigerating room air duct 11, a freezer room air duct 12, a refrigerating room damper (a refrigerating room cold air control means, hereinafter abbreviated as R damper). 20, a freezer compartment damper (freezer compartment cold air control means; hereinafter abbreviated as F damper) 50, a cold storage unit 70, a control device 100, and the like.

冷却器7は、下段冷凍室5の略背部に配置され、冷媒と空気とで熱交換を行う熱交換器(冷却器、エバポレータ)であり、冷却器収納室8内に設けられている。また、冷却器7は、その下流側に図示しない配管を介して圧縮機24が接続され、圧縮機24の下流に、凝縮器(不図示)、減圧手段(キャピラリチューブ)を介して冷却器7と接続されるように構成されている。すなわち、冷媒は、圧縮機24で圧縮されて高温高圧のガス冷媒に変化し、凝縮器で放熱しながら液化する。液化した冷媒は、減圧手段で減圧され、冷却器7によって周囲空気から熱を奪うことで、冷気が生成される。   The cooler 7 is a heat exchanger (cooler, evaporator) that is disposed substantially behind the lower freezer compartment 5 and performs heat exchange between the refrigerant and air, and is provided in the cooler storage chamber 8. The cooler 7 is connected to a compressor 24 via a pipe (not shown) downstream of the cooler 7. The cooler 7 is connected downstream of the compressor 24 via a condenser (not shown) and a decompression means (capillary tube). It is configured to be connected to. That is, the refrigerant is compressed by the compressor 24 to be changed into a high-temperature and high-pressure gas refrigerant, and is liquefied while releasing heat from the condenser. The liquefied refrigerant is decompressed by decompression means, and cool air is generated by taking heat from the ambient air by the cooler 7.

庫内ファン9は、冷却器7の上方の冷却器収納室8に取り付けられている。庫内ファン9が作動することにより、冷却器7と熱交換して冷やされた空気(冷却器冷気、以下、冷却器7で冷やされてできた低温空気を「冷却器冷気」(冷気)と称する)が冷蔵室送風ダクト11を介して冷蔵室2に送られ、また冷凍室送風ダクト12を介して上段冷凍室4、下段冷凍室5、製氷室3の各室へ送られる。各室への送風はRダンパ20とFダンパ50の開閉により制御される。   The internal fan 9 is attached to the cooler storage chamber 8 above the cooler 7. When the internal fan 9 is operated, the air cooled by the heat exchange with the cooler 7 (cooler cool air, hereinafter referred to as cooler cool air) Is sent to the refrigerating room 2 through the refrigerating room air duct 11, and is sent to each of the upper freezing room 4, the lower freezing room 5, and the ice making room 3 through the freezing room air duct 12. Air blowing to each chamber is controlled by opening and closing the R damper 20 and the F damper 50.

Rダンパ20は、冷蔵室送風ダクト11の入口に設置されている。Rダンパ20は、後記する制御装置100によって閉状態となるように制御されることにより、冷却器冷気の冷蔵室2への通流が遮断される。   The R damper 20 is installed at the entrance of the refrigerator compartment air duct 11. The R damper 20 is controlled so as to be closed by the control device 100 described later, whereby the flow of the cooler cool air to the refrigerating chamber 2 is blocked.

また、Fダンパ50は、上段冷凍室4の背部に設置されている。Fダンパ50は、後記する制御装置100によって閉状態となるように制御されることにより、冷却器冷気の製氷室3、上段冷凍室4および下段冷凍室5への通流が遮断される。   Further, the F damper 50 is installed on the back of the upper freezer compartment 4. The F damper 50 is controlled so as to be closed by the control device 100 described later, whereby the flow of cooler cool air to the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 is blocked.

図3に示すように、冷蔵室送風ダクト11は、冷蔵室2と背面側の断熱箱体10(図2参照)との間に配置され、上下方向に延びる風路と左右方向に延びる風路とで正面視においてT字状に形成されている。また、冷蔵室送風ダクト11には、冷蔵室2内に冷気が吹き出す複数の吹き出し口2cが形成されている。   As shown in FIG. 3, the refrigerating room air duct 11 is disposed between the refrigerating room 2 and the heat insulating box 10 on the back side (see FIG. 2), and extends in the up-down direction and in the left-right direction. And formed in a T shape in a front view. The refrigerating room air duct 11 has a plurality of air outlets 2 c through which cool air blows into the refrigerating room 2.

冷凍室送風ダクト12は、冷凍温度帯室60(製氷室3、上段冷凍室4、下段冷凍室5)内部の背面に形成されている。また、冷凍室送風ダクト12には、製氷室3の後方上部に吹き出し口3cが形成され、上段冷凍室4の後方上部に吹き出し口4cが形成され、下段冷凍室5の後方上部に複数の吹き出し口5cが形成されている。   The freezer compartment air duct 12 is formed on the back of the inside of the freezing temperature zone 60 (the ice making chamber 3, the upper freezer compartment 4, and the lower freezer compartment 5). Further, the freezer compartment air duct 12 has a blowout port 3 c formed in the upper rear portion of the ice making chamber 3, a blowout port 4 c formed in the upper rear portion of the upper freezer compartment 4, and a plurality of blowout tubes in the upper rear portion of the lower freezer compartment 5. A mouth 5c is formed.

Rダンパ20が開状態、Fダンパ50(図2参照)が閉状態のときには、冷却器冷気が、冷蔵室送風ダクト11を経て吹き出し口2cから冷蔵室2に送られる。冷蔵室2の冷却を終えた冷却器冷気は、冷蔵室2の背面右側下部に備えられた冷蔵室戻り口2dから流出し、冷蔵室−野菜室連通ダクト16を介して、野菜室6の背面右側上部に備えられた野菜室吹き出し口6cから野菜室6に流入して野菜室6を冷却する。野菜室6を冷却した冷却器冷気は、断熱仕切壁29の下部前方に設けられた野菜室戻り口6d(図2参照)から、野菜室戻りダクト18(図2参照)を介して、冷却器7の幅とほぼ等しい幅の野菜室戻り吹き出し口18aから冷却器7に戻る。   When the R damper 20 is in the open state and the F damper 50 (see FIG. 2) is in the closed state, cooler cool air is sent from the outlet 2c to the refrigerator compartment 2 via the refrigerator compartment air duct 11. The cooler cooler that has finished cooling the refrigerator compartment 2 flows out of the refrigerator compartment return port 2d provided at the lower right side of the back of the refrigerator compartment 2, and the rear side of the vegetable compartment 6 through the refrigerator compartment-vegetable compartment communication duct 16. The vegetable compartment 6 is cooled by flowing into the vegetable compartment 6 from the vegetable compartment outlet 6c provided on the upper right side. The cooler air that has cooled the vegetable compartment 6 is supplied from the vegetable compartment return port 6d (see FIG. 2) provided in front of the lower part of the heat insulating partition wall 29 via the vegetable compartment return duct 18 (see FIG. 2). 7 returns to the cooler 7 from the vegetable room return outlet 18 a having a width substantially equal to the width of 7.

また、Fダンパ50が開状態のときには、冷却器7で熱交換された冷却器冷気が庫内ファン9により昇圧され、冷凍室送風ダクト12を経て各吹き出し口3c,4c,5cからそれぞれ製氷室3、上段冷凍室4、下段冷凍室5へ送風される。   Further, when the F damper 50 is in the open state, the cooler cool air heat-exchanged by the cooler 7 is pressurized by the internal fan 9 and passes through the freezer compartment air duct 12 from the outlets 3c, 4c and 5c, respectively. 3. Air is sent to the upper freezer compartment 4 and the lower freezer compartment 5.

なお、図2に示すように、冷却器7が収納された冷却器収納室8の下方には、除霜ヒータ22が備えられている。除霜ヒータ22は、例えば、ガラス管ヒータであり、ガラス管の外周にアルミニウム製の放熱フィン(不図示)を備えたものである。また、除霜ヒータ22の上方には、除霜水が除霜ヒータ22に滴下することを防止するための上部カバー(不図示)が設けられている。   In addition, as shown in FIG. 2, the defrost heater 22 is provided below the cooler storage chamber 8 in which the cooler 7 is stored. The defrosting heater 22 is, for example, a glass tube heater, and includes an aluminum radiating fin (not shown) on the outer periphery of the glass tube. Further, an upper cover (not shown) for preventing defrost water from dripping onto the defrost heater 22 is provided above the defrost heater 22.

冷却器7及びその周辺の冷却器収納室8の壁に付着した霜は、除霜運転時に解かされ、その際に生じた除霜水は冷却器収納室8の下部に備えられた樋(トイ)23に流入した後、排水管27を介して機械室19に配置された蒸発皿21に達し、圧縮機24及び、機械室19内に配設される図示しない凝縮器の発熱により蒸発させられる。   The frost adhering to the wall of the cooler 7 and the cooler storage chamber 8 in the vicinity thereof is dissolved during the defrosting operation, and the defrosted water generated at that time is a soot (toy) provided at the lower part of the cooler storage chamber 8. ) 23, then reaches the evaporating tray 21 disposed in the machine room 19 through the drain pipe 27 and is evaporated by the heat generated by the compressor 24 and a condenser (not shown) disposed in the machine room 19. .

また、冷却器7の正面から見て左上部には冷却器7に取り付けられた冷却器温度センサ35、冷蔵室2には冷蔵室温度センサ33、下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられており、それぞれ、冷却器7の温度(以下、冷却器温度と称する)、冷蔵室2の温度(以下、冷蔵室温度と称する)、下段冷凍室5の温度(以下、冷凍室温度と称する)を検知できるようになっている。更に、冷蔵庫1は、庫外の温度を検知する図示しない外気温度センサを備えている。なお、野菜室6にも野菜室温度センサ(不図示)が配置されている。   A cooler temperature sensor 35 attached to the cooler 7 is located at the upper left as viewed from the front of the cooler 7. The temperature of the cooler 7 (hereinafter referred to as the cooler temperature), the temperature of the refrigerator compartment 2 (hereinafter referred to as the refrigerator temperature), and the temperature of the lower freezer compartment 5 (hereinafter referred to as the freezer temperature), respectively. Can be detected). Furthermore, the refrigerator 1 includes an outside temperature sensor (not shown) that detects the temperature outside the refrigerator. The vegetable room 6 is also provided with a vegetable room temperature sensor (not shown).

図4に示すように、蓄冷ユニット70は、断熱仕切壁28の下部に位置する上段冷凍室4内に設けられている。この蓄冷ユニット70は、蓄冷材(蓄冷放冷手段)72(図5参照)を封入した蓄冷容器71、内部に蓄冷容器71を収容するダクト73、蓄冷と放冷を制御する蓄冷材専用の蓄冷ユニットファン(第2送風機)74、受け皿75、蓄冷材温度センサ(蓄冷状態検知手段)76などで構成されている。   As shown in FIG. 4, the cold storage unit 70 is provided in the upper freezer compartment 4 located below the heat insulating partition wall 28. The cold storage unit 70 includes a cold storage container 71 that encloses a cold storage material (cold storage and cooling means) 72 (see FIG. 5), a duct 73 that houses the cold storage container 71 therein, and a cold storage dedicated to the cold storage material that controls cold storage and cooling. A unit fan (second blower) 74, a tray 75, a cold storage material temperature sensor (cool storage state detection means) 76, and the like are included.

なお、図4では、蓄冷ユニット70が上段冷凍室4内の上部に設置されているが、上段冷凍室4の収納スペースの影響を少なくするために、冷凍室前面仕切り40の投影面内に蓄冷ユニット70を組み込む構成であってもよい。また、以下の実施形態では、上段冷凍室4に蓄冷ユニット70を設けた場合を例に挙げて説明するが、冷凍温度帯室60(図1参照)に限定されるものではなく、冷蔵室2や野菜室6に蓄冷ユニット70を設けてもよい。ただし、いずれの場所に蓄冷ユニット70を設置するにしても、設置する温度帯に適合した蓄冷材、すなわち設置した場合の温度が蓄冷材の凝固点温度以下になることが必須である。   In FIG. 4, the cold storage unit 70 is installed in the upper part of the upper freezer compartment 4, but in order to reduce the influence of the storage space of the upper freezer room 4, the cold storage unit 70 is stored in the projection plane of the freezer compartment front partition 40. The unit 70 may be incorporated. Moreover, in the following embodiment, although the case where the cool storage unit 70 is provided in the upper freezer compartment 4 is described as an example, the embodiment is not limited to the freezing temperature zone 60 (see FIG. 1). Alternatively, the cold storage unit 70 may be provided in the vegetable compartment 6. However, even if the cold storage unit 70 is installed in any place, it is essential that the cold storage material suitable for the temperature zone to be installed, that is, the temperature when installed is equal to or lower than the freezing point temperature of the cold storage material.

図5に示すように、蓄冷容器71は、蓄冷材72が充填される扁平な箱型のケース71aと、複数のフィン71bとで構成されている。なお、蓄冷容器71は、ステンレス鋼やアルミニウム合金などの熱伝導性に優れた金属材料で形成されている。フィン71bは、ケース71aの表面(上面および下面)から突出して形成されることで、伝熱面積が拡大され、蓄冷容器71と周囲空気との伝熱促進を図っている。なお、フィン71bは、左右方向に間隔を開けて配置され、かつ、前後方向に延びて形成されている。   As illustrated in FIG. 5, the cold storage container 71 includes a flat box-shaped case 71 a filled with the cold storage material 72 and a plurality of fins 71 b. The cold storage container 71 is made of a metal material having excellent thermal conductivity such as stainless steel or aluminum alloy. The fins 71b are formed so as to protrude from the surface (upper surface and lower surface) of the case 71a, so that the heat transfer area is expanded and the heat transfer between the cold storage container 71 and ambient air is promoted. Note that the fins 71b are arranged at intervals in the left-right direction and are formed to extend in the front-rear direction.

ダクト73は、蓄冷容器71を収容する箱型に形成され、背部に空気(冷気)が導入される導入口73a(図4参照)が形成され、前部に空気(冷気)が排出される排出口73b(図4参照)が形成されている。また、ダクト73は、その内壁と各フィン71bの先端とが接するように構成されることで、隣り合うフィン71b,71bとダクト73の壁面とで囲まれる空間が、冷気が通流する風路Sとして機能するように構成されている。   The duct 73 is formed in a box shape that accommodates the cold storage container 71, has an inlet 73 a (see FIG. 4) through which air (cold air) is introduced at the back, and exhausts air (cold air) at the front. An outlet 73b (see FIG. 4) is formed. Further, the duct 73 is configured such that the inner wall thereof is in contact with the tips of the fins 71b, so that the space surrounded by the adjacent fins 71b and 71b and the wall surface of the duct 73 is an air path through which cool air flows. S is configured to function as S.

蓄冷ユニットファン74は、蓄冷と放冷を制御する蓄冷材専用のものであり、ダクト73の導入口73aに取り付けられている。蓄冷ユニットファン74が稼動(作動)することにより、冷凍温度帯室60(図1参照)内の冷気が導入口73aを介してダクト73内に導入される。なお、蓄冷材72を蓄冷する制御および放冷する制御については後記する。   The cold storage unit fan 74 is dedicated to a cold storage material that controls cold storage and cooling, and is attached to the inlet 73 a of the duct 73. When the cold storage unit fan 74 is operated (actuated), cold air in the freezing temperature zone 60 (see FIG. 1) is introduced into the duct 73 through the introduction port 73a. In addition, the control which cools and stores the cool storage material 72 will be described later.

なお、蓄冷容器71内に充填する蓄冷材72は、冷蔵庫1内のいずれの温度帯に設置するかによってその融点(凝固点)が決まる。蓄冷材72は、相変化を伴う潜熱蓄冷材であり、冷凍温度帯室60で使用する場合の蓄冷材としては、例えば、水に塩化カルシウムなどを混合したものが使用される。   The regenerator material 72 filled in the regenerator container 71 has its melting point (freezing point) determined depending on which temperature zone in the refrigerator 1 is installed. The regenerator material 72 is a latent heat regenerator material with phase change, and as a regenerator material when used in the freezing temperature zone chamber 60, for example, a mixture of water and calcium chloride is used.

また、蓄冷容器71内の蓄冷材72と周囲空気との伝熱を促進させるために蓄冷容器71としては金属を用いることが望ましいが、蓄冷材72に塩類を使用した場合、金属に対する腐食性を考慮して、蓄冷材72と直接接する金属容器表面(内壁面)に樹脂等を用いたコーティングを施すことが好ましい。   Further, in order to promote heat transfer between the cool storage material 72 in the cool storage container 71 and the ambient air, it is desirable to use a metal as the cool storage container 71. However, when salts are used for the cool storage material 72, the corrosiveness to the metal is reduced. In consideration, it is preferable to apply a coating using a resin or the like on the surface (inner wall surface) of the metal container that is in direct contact with the cold storage material 72.

受け皿75は、蓄冷容器71が腐食などで破損した場合に漏れ出た蓄冷材72を受け止めるものであり、ダクト73(蓄冷容器71)の下側に配置されている。これにより、漏れ出た蓄冷材72が上段冷凍室4内などの食品に接触するのを防止できる。   The tray 75 receives the cold storage material 72 leaked when the cold storage container 71 is damaged due to corrosion or the like, and is disposed below the duct 73 (the cold storage container 71). Thereby, it can prevent that the cold storage material 72 which leaked contacts foods, such as the inside of the upper stage freezer compartment 4. FIG.

温度センサ76は、蓄冷材72の状態(液体か固体の状態)を検出することができるものである。なお、以下では、温度センサ76によって検出された温度は、蓄冷ユニット温度とする。   The temperature sensor 76 can detect the state of the cold storage material 72 (liquid or solid state). In the following description, the temperature detected by the temperature sensor 76 is the cold storage unit temperature.

なお、前記蓄冷ユニット70の構成は一例であり、本実施形態に限定されるものではない。例えば、蓄冷容器71の全体が樹脂製材料で形成されたものでもよい。また、蓄冷容器71の形状についても、フィン形状に限定されず、凹凸形状であってもよい。すなわち、冷蔵庫1の省エネ運転に必要な蓄冷ユニット70の蓄冷速度、あるいは放冷速度に応じた蓄冷ユニット70の形態が存在する。   In addition, the structure of the said cool storage unit 70 is an example, and is not limited to this embodiment. For example, the whole cool storage container 71 may be formed of a resin material. Further, the shape of the cold storage container 71 is not limited to the fin shape, and may be an uneven shape. That is, there exists a form of the cold storage unit 70 according to the cold storage speed of the cold storage unit 70 necessary for energy saving operation of the refrigerator 1 or the cooling rate.

制御装置(制御手段)100は、CPU(Central Processing Unit)、ROM(Read Only Memory)やRAM(Random Access Memory)等のメモリ、インターフェース回路等が搭載され、冷蔵庫1の天井壁上面側に配置されている(図2参照)。この制御装置100は、温度センサ33,34,35,76と接続され、また、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する前記した扉センサ、冷蔵室2の内壁に設けられた図示しない温度設定器等と接続されている。   The control device (control means) 100 is equipped with a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), an interface circuit, and the like, and is arranged on the upper surface side of the ceiling wall of the refrigerator 1. (See FIG. 2). The control device 100 is connected to the temperature sensors 33, 34, 35, and 76, and detects the open / closed state of each door of the doors 2a, 2b, 3a, 4a, 5a, and 6a. 2 is connected to a temperature setter or the like (not shown) provided on the inner wall.

また、制御装置100は、前記ROMに予め搭載されたプログラムにより、圧縮機24のON,OFF等の制御、Rダンパ20及びFダンパ50を個別に駆動する図示省略のそれぞれのアクチュエータの制御、庫内ファン9および蓄冷ユニットファン74のON/OFF制御や回転速度制御、前記した扉開放状態を報知するアラームのON/OFF等の制御を行う。   Further, the control device 100 controls the ON / OFF of the compressor 24, the control of the respective actuators (not shown) that individually drive the R damper 20 and the F damper 50, and the storage by the program previously installed in the ROM. Control such as ON / OFF control and rotation speed control of the inner fan 9 and the cold storage unit fan 74, and ON / OFF of an alarm for notifying the door open state described above are performed.

図6は冷蔵庫の使用者の一般的な生活パターンと、それに対応した冷蔵庫の熱負荷、冷蔵庫設置場所の気温について模式的に示した図である。冷蔵庫1の使用者の生活パターンの一例を以下に示す。すなわち、朝6時から8時頃に起床と朝食の準備、11時〜13時頃に昼食の準備、夕方にかけて買い物に出かけ、帰宅後食品を冷蔵庫に保管して夕食の準備、家族だんらん、就寝となる。一般的に、食事の準備時間帯と買い物後の食品収納時間帯に冷蔵庫1の扉開閉回数が多くなる傾向にあり、それに応じて冷蔵庫1の熱負荷が高くなる。特に、家族全員が揃う夕食から家族だんらんにかけて、冷蔵庫1の使用者が増えるため扉開閉の回数が増えて熱負荷が一番大きくなると予想され、その結果、圧縮機24の回転速度が高くなり消費電力が増える。   FIG. 6 is a diagram schematically showing a general life pattern of a refrigerator user, a corresponding heat load of the refrigerator, and a temperature of the refrigerator installation place. An example of the life pattern of the user of the refrigerator 1 is shown below. In other words, getting up and preparing breakfast around 6:00 am to 8:00 am, preparing lunch around 11:00 to 13:00, going shopping in the evening, storing food in the refrigerator after returning home, preparing dinner, full family, sleeping It becomes. Generally, the door opening / closing frequency of the refrigerator 1 tends to increase during the meal preparation time zone and the food storage time zone after shopping, and the heat load of the refrigerator 1 increases accordingly. In particular, it is expected that the number of times of opening and closing the door will increase because the number of users of the refrigerator 1 increases from dinner for the whole family to the family, resulting in the highest heat load. As a result, the rotational speed of the compressor 24 is increased and consumed. Electricity increases.

これに対して、夜間の睡眠時間帯には扉の開閉は行われないため、冷蔵庫1の熱負荷は低く、庫外からの熱侵入だけで圧縮機24の回転速度が低い定常運転を行っている。冷蔵庫1はキッチン(台所)に置かれていることが多く一般的には空調された空間であるが、年間を通じて夜間の気温は低くなる傾向にある(夏場は夜間の外気が下がり、また冬場は暖房を緩めるため夜間の気温は一般的に低くなる)。   On the other hand, since the door is not opened and closed during the nighttime sleeping hours, the heat load of the refrigerator 1 is low, and the compressor 24 is rotated at a low rotational speed only by heat intrusion from outside the cabinet. Yes. Refrigerator 1 is often placed in a kitchen (kitchen) and is generally an air-conditioned space. However, the temperature at night tends to be low throughout the year (outer air during nighttime decreases in summer, and in winter, The temperature at night is generally lower because heating is relaxed).

ところで、図7のモリエル線図に示すように、冷凍サイクルを使用した冷蔵庫1において、冷蔵庫1の周囲温度が低い環境下(夜間)では、冷蔵庫1の凝縮器(不図示)からの放熱が促進されるため凝縮温度が昼間の凝縮温度と比べて低くなり(白抜き矢印A参照)、その結果、圧縮機24の入力が低減されて(白抜き矢印B参照)省エネ運転が実現できる。   By the way, as shown in the Mollier diagram of FIG. 7, in the refrigerator 1 using the refrigeration cycle, heat radiation from the condenser (not shown) of the refrigerator 1 is accelerated in an environment where the ambient temperature of the refrigerator 1 is low (nighttime). Therefore, the condensation temperature becomes lower than the daytime condensation temperature (see white arrow A), and as a result, the input of the compressor 24 is reduced (see white arrow B), and an energy saving operation can be realized.

また、冷蔵庫1の冷却能力は夏場の冷蔵庫1の扉開閉が多くなる時間帯で、食品を一度にたくさん入れる場合を想定して決めているため、冷蔵庫1の熱負荷が少ない夜間の時間帯では、冷却能力が余剰になっている。冷蔵庫1の周囲温度が高く、また冷蔵庫1の熱負荷が高くなる昼間の時間帯に、圧縮機24の回転速度を高くして冷却能力を上げた運転を行うことは、省エネの観点から良いとは言えない。   In addition, the cooling capacity of the refrigerator 1 is determined in the summer when the door of the refrigerator 1 is often opened and closed, and is determined assuming that a large amount of food is put at a time. The cooling capacity is surplus. In the daytime when the ambient temperature of the refrigerator 1 is high and the heat load of the refrigerator 1 is high, it is good from the viewpoint of energy saving to perform the operation in which the rotation speed of the compressor 24 is increased to increase the cooling capacity. I can't say that.

そこで、以上のように冷蔵庫1の使用者の生活パターンと冷蔵庫の周囲の気温を勘案し、冷蔵庫1の熱負荷が高くなる昼間の時間帯の熱負荷の一部を、冷蔵庫1の熱負荷が少ない時間帯、すなわち使用者が就寝している時間帯にシフトして負荷の平準化を行うことが考えられる。前記のとおり、就寝時間帯の冷蔵庫1の周囲の気温は低くなるので、この冷凍サイクルの効率が高いときに蓄冷ユニット70に冷熱エネルギを蓄冷することで、蓄冷による負荷平準化と省エネ性向上を両立することが可能になる。   Therefore, in consideration of the life pattern of the user of the refrigerator 1 and the ambient temperature around the refrigerator as described above, a part of the heat load during the daytime when the heat load of the refrigerator 1 becomes high is It can be considered that the load is leveled by shifting to a small time zone, that is, a time zone in which the user is sleeping. As described above, since the temperature around the refrigerator 1 during the bedtime becomes low, when the efficiency of the refrigeration cycle is high, cold energy is stored in the cold storage unit 70, thereby improving load leveling and improving energy saving by cold storage. It becomes possible to achieve both.

図8は蓄冷時(液体→固体)の蓄冷材の温度変化である。蓄冷材72の温度は蓄冷ユニット70に設けた温度センサ76によって測定される。ちなみに、蓄冷材72には相変化を伴う潜熱蓄冷材と相変化を伴わない顕熱蓄冷材の2種類がある。潜熱蓄冷材は相変化時に潜熱を放出するため蓄冷密度が高く、そのため蓄冷材72の容量を少なくすることができ、省スペース化が求められる冷蔵庫での使用に適している。   FIG. 8 shows the temperature change of the cold storage material during cold storage (liquid → solid). The temperature of the cold storage material 72 is measured by a temperature sensor 76 provided in the cold storage unit 70. Incidentally, there are two types of regenerator material 72, a latent heat regenerator material with phase change and a sensible heat regenerator material without phase change. Since the latent heat regenerator material releases latent heat at the time of phase change, it has a high regenerator density. Therefore, the capacity of the regenerator material 72 can be reduced, and is suitable for use in a refrigerator that requires space saving.

蓄冷材72に冷熱エネルギを蓄える場合、すなわち液体の蓄冷材72を冷却して凝固させる場合、冷凍温度帯室60を冷却する冷気の一部を利用して蓄冷材72を凝固させるため、蓄冷材72がない場合に比べて冷凍温度帯室60の熱負荷は大きくなる。しかし、夜間の時間帯を利用して蓄冷させることで、同じ熱量を昼間の時間帯に蓄冷するよりも冷凍サイクルの効率がよい分だけ蓄冷する際のエネルギは少なくて済む(図7参照)。また、夜間の電力は一般に安価である。   When cold energy is stored in the cold storage material 72, that is, when the liquid cold storage material 72 is cooled and solidified, the cold storage material 72 is solidified using a part of the cold air that cools the freezing temperature zone 60. Compared to the case without 72, the heat load of the freezing temperature zone 60 is increased. However, by using the night time zone for cold storage, less energy is required to store the same amount of heat as much as the efficiency of the refrigeration cycle than when storing the same amount of heat during the day time (see FIG. 7). Also, nighttime power is generally inexpensive.

また、蓄冷材72の温度が時間と共に低下し、図8において符号s1で示すように、一時的に凝固温度T1よりも低下する過冷却現象が生じる場合があるが、過冷却が解除すると潜熱を放出するため蓄冷材の温度が上昇し、図8において符号s2で示すように、その後は相変化が進行するためほぼ一定温度で推移する。この間、蓄冷材72は液体から固体へと相変化するため、蓄冷材72から放出した熱は冷凍温度帯室60を循環する冷気によって冷却器7に送られ、冷却器7で吸熱される。時刻t1で示すように、相変化が終了すると、蓄冷ユニット70が設置された上段冷凍室4の庫内温度に漸近する。蓄冷ユニット70には蓄冷ユニットファン74が設けられており、冷凍運転時には蓄冷速度を速めるために蓄冷ユニットファン74を運転し、また冷凍温度帯室60に冷気が供給されない冷蔵運転の時には蓄冷ユニットファン74を停止する。蓄冷完了温度T2に到達した時点で蓄冷ユニットファン74を停止する。なお、図8は相変化に至るまでの蓄冷時の温度変化が直線的になっているが、実際の冷蔵庫では例えば、冷凍室の冷却、圧縮機OFF、冷蔵室の冷却の順番で冷気の送風が行われているため、蓄冷材72の温度低下は必ずしも直線的にはならない。   In addition, the temperature of the regenerator material 72 decreases with time, and as shown by a symbol s1 in FIG. 8, there may be a supercooling phenomenon that temporarily lowers than the solidification temperature T1, but when supercooling is released, latent heat is reduced. The temperature of the regenerator material rises due to the release, and as shown by the symbol s2 in FIG. During this time, since the regenerator 72 changes from a liquid to a solid, the heat released from the regenerator 72 is sent to the cooler 7 by the cool air circulating in the freezing temperature zone chamber 60 and is absorbed by the cooler 7. As shown at time t1, when the phase change ends, the temperature gradually approaches the inside temperature of the upper freezer compartment 4 in which the cold storage unit 70 is installed. The cold storage unit 70 is provided with a cold storage unit fan 74. The cold storage unit fan 74 is operated to increase the cold storage speed during the freezing operation, and the cold storage unit fan is used during the refrigerating operation in which no cold air is supplied to the freezing temperature zone chamber 60. 74 is stopped. When the cold storage completion temperature T2 is reached, the cold storage unit fan 74 is stopped. In FIG. 8, the temperature change during cold storage until the phase change is linear, but in an actual refrigerator, for example, cooling air is blown in the order of cooling of the freezer compartment, turning off the compressor, and cooling the refrigerator compartment. Therefore, the temperature drop of the regenerator 72 is not necessarily linear.

図9は放冷時(固体→液体)の蓄冷材の温度変化である。蓄冷材72に蓄えられた冷熱エネルギの利用方法については後記するが、冷熱エネルギを使いたいときに使えるように、蓄冷ユニットファン74を運転して蓄冷容器71とその周囲空気との熱交換を制御し、冷凍温度帯室60内の熱負荷を蓄冷材72に吸熱させ(これにより蓄冷材の温度は上昇する)、冷凍温度帯室60内の空気温度を低下させることが基本的な使い方である。蓄冷材72に蓄えられている冷熱エネルギを使い周囲空気を冷却する場合、冷凍温度帯室60内の温度に保たれていた蓄冷材72は温度上昇し、融点(融解温度)T3に達すると融解潜熱の放出より、図9において符号s3で示すように、蓄冷材72の温度はほぼ一定に保たれる。融解が終了すると蓄冷材72の温度は上昇するが、放冷完了温度T4を設けることにより冷凍温度帯室60への熱負荷増加を防止している。   FIG. 9 shows the temperature change of the regenerator material during cooling (solid → liquid). The method of using the cold energy stored in the cold storage material 72 will be described later, but the cold storage unit fan 74 is operated to control the heat exchange between the cold storage container 71 and the surrounding air so that it can be used when the cold energy is desired. The basic usage is to cause the regenerator material 72 to absorb the heat load in the refrigerating temperature zone chamber 60 (this increases the temperature of the regenerator material) and to reduce the air temperature in the refrigerating temperature zone chamber 60. . When the ambient air is cooled by using the cold energy stored in the cold storage material 72, the temperature of the cold storage material 72 kept at the temperature in the freezing temperature zone chamber 60 rises and melts when the melting point (melting temperature) T3 is reached. From the release of the latent heat, the temperature of the regenerator 72 is kept substantially constant as indicated by reference numeral s3 in FIG. When the melting is completed, the temperature of the cold storage material 72 rises, but by providing the cooling completion temperature T4, an increase in the heat load on the freezing temperature zone chamber 60 is prevented.

次に、蓄冷材72の蓄冷運転と放冷運転について、蓄冷ユニット70を冷凍温度帯室(以下、冷凍室と略記する)60に設置した場合を想定して説明する。まず、蓄冷ユニット70(蓄冷材72)に蓄冷する際の運転方法(蓄冷運転)について図10および図11を参照して説明する。図10は蓄冷ユニットに蓄冷する際の概略を示すフローチャート、図11は蓄冷運転時の冷蔵庫の運転状況とそれに関する機器の動作状態図である。このフローは、タイマなどにより、毎夜(深夜)に行われる。   Next, the cold storage operation and the cooling operation of the cold storage material 72 will be described assuming that the cold storage unit 70 is installed in a freezing temperature zone chamber (hereinafter abbreviated as a freezing chamber) 60. First, an operation method (cold storage operation) when storing cold in the cold storage unit 70 (cold storage material 72) will be described with reference to FIGS. FIG. 10 is a flowchart showing an outline when cold storage is performed in the cold storage unit, and FIG. 11 is an operation state diagram of the refrigerator and the operation state of the related equipment during the cold storage operation. This flow is performed every night (midnight) by a timer or the like.

図10に示すように、冷凍運転(F運転)時、ステップS100において、制御装置100は、Fダンパ50を開、Rダンパ20を閉、庫内ファン9をONにすることで、冷却器7で生成した冷気(冷却器冷気)によって冷凍室60を冷却する。このとき、冷凍室60に設置した蓄冷材72に蓄冷するために、冷凍運転と連動して蓄冷ユニットファン74をONする(作動させる)。つまり、冷凍室60に冷気を送り込みながら蓄冷ユニットファン74を運転して、蓄冷材72に冷気(冷熱エネルギ)を蓄冷する蓄冷運転を行う。   As shown in FIG. 10, at the time of refrigeration operation (F operation), in step S100, the control device 100 opens the F damper 50, closes the R damper 20, and turns on the internal fan 9 so that the cooler 7 The freezer compartment 60 is cooled by the cold air (cooler cold air) generated in step (1). At this time, in order to store cold in the cold storage material 72 installed in the freezer compartment 60, the cold storage unit fan 74 is turned on (operated) in conjunction with the freezing operation. That is, the cool storage unit fan 74 is operated while supplying cool air to the freezer compartment 60, and the cool storage operation for storing cool air (cold energy) in the cool storage material 72 is performed.

そして、ステップS110に進み、制御装置100は、冷凍室60に設けた冷凍室温度を検知する冷凍室温度センサ34によって、冷凍室温度が下限値に到達したか否かを判断する。なお、下限値は、冷凍室60内の食品の保存に適した温度範囲内の最低温度に設定される。   Then, the process proceeds to step S110, and the control device 100 determines whether or not the freezer compartment temperature has reached the lower limit value by the freezer compartment temperature sensor 34 that detects the freezer compartment temperature provided in the freezer compartment 60. The lower limit is set to the lowest temperature within the temperature range suitable for storing food in the freezer compartment 60.

ステップS110において、制御装置100は、冷凍室温度が下限値に到達していないと判断した場合には(S110、No)、ステップS110の処理を繰り返し、冷凍室温度が下限値に到達したと判断した場合には(S110、Yes)、ステップS120に進む。   In step S110, when it is determined that the freezer temperature has not reached the lower limit value (S110, No), the control device 100 repeats the process of step S110 and determines that the freezer temperature has reached the lower limit value. If yes (S110, Yes), the process proceeds to step S120.

ステップS120において、制御装置100は、蓄冷ユニット70に設置した蓄冷ユニット温度を検知する温度センサ76によって、蓄冷ユニット温度が蓄冷完了温度より高いか否かを判断する。なお、蓄冷完了温度は、例えば冷凍室温度の下限値よりも若干高い温度に設定される。   In step S120, the control device 100 determines whether or not the cold storage unit temperature is higher than the cold storage completion temperature by the temperature sensor 76 that detects the cold storage unit temperature installed in the cold storage unit 70. The cold storage completion temperature is set to a temperature slightly higher than the lower limit value of the freezer temperature, for example.

ステップS120において、制御装置100は、蓄冷ユニット温度が蓄冷完了温度よりも高いと判断した場合には(Yes)、ステップS130に進み、蓄冷ユニット温度が蓄冷完了温度以下であると判断した場合には(No)、ステップS180に進む。   In step S120, when the control device 100 determines that the cool storage unit temperature is higher than the cool storage completion temperature (Yes), the control device 100 proceeds to step S130, and determines that the cool storage unit temperature is equal to or lower than the cool storage completion temperature. (No), the process proceeds to step S180.

蓄冷ユニット温度がまだ蓄冷完了温度よりも高い場合には、ステップS130において、制御装置100は、圧縮機24をOFFにすると共に、庫内ファン9および蓄冷ユニットファン74をOFF(停止)し、さらにFダンパ50を閉にする。   If the cold storage unit temperature is still higher than the cold storage completion temperature, in step S130, the control device 100 turns off the compressor 24, turns off (stops) the internal fan 9 and the cold storage unit fan 74, and further The F damper 50 is closed.

そして、ステップS140に進み、制御装置100は、冷凍室温度が、圧縮機24がONとなる温度(閾値)に到達したか否かを判断する。制御装置100は、冷凍室温度が圧縮機24がONとなる温度に到達していないと判断した場合には(S140、No)、ステップS140の処理を繰り返し、冷凍室温度が圧縮機24がONとなる温度に到達したと判断した場合には(S140、Yes)、ステップS150に進む。   Then, the process proceeds to step S140, and the control device 100 determines whether or not the freezer compartment temperature has reached a temperature (threshold value) at which the compressor 24 is turned on. When it is determined that the freezer temperature has not reached the temperature at which the compressor 24 is turned on (S140, No), the control device 100 repeats the process of step S140, and the freezer temperature is turned on by the compressor 24. If it is determined that the temperature reaches (S140, Yes), the process proceeds to step S150.

冷凍室温度が圧縮機24がONとなる温度に到達すると、ステップS150において、制御装置100は、冷蔵運転(R運転)を開始する。このとき、Rダンパ20を開、圧縮機24および庫内ファン9をONにする。これにより、冷却器7からの冷気によって冷蔵室2が冷却される。   When the freezer compartment temperature reaches a temperature at which the compressor 24 is turned on, in step S150, the control device 100 starts a refrigerating operation (R operation). At this time, the R damper 20 is opened, and the compressor 24 and the internal fan 9 are turned on. Thereby, the refrigerator compartment 2 is cooled by the cold air from the cooler 7.

そして、ステップS160に進み、制御装置100は、冷蔵室2に設置した冷蔵室温度を検知する冷蔵室温度センサ33によって、冷蔵室温度が下限値に到達したか否かを判断する。なお、下限値は、冷蔵室2内の食品の保存に適した温度の最低温度に設定される。   And it progresses to step S160 and the control apparatus 100 judges whether the refrigerator compartment temperature reached | attained the lower limit by the refrigerator compartment temperature sensor 33 which detects the refrigerator compartment temperature installed in the refrigerator compartment 2. FIG. In addition, a lower limit is set to the minimum temperature of the temperature suitable for preservation | save of the foodstuff in the refrigerator compartment 2.

ステップS160において、制御装置100は、冷蔵室温度が下限値に到達していないと判断した場合には(No)、ステップS160の処理を繰り返し、冷蔵室温度が下限値に到達したと判断した場合には(Yes)、ステップS170に進む。   In step S160, when it is determined that the refrigerator compartment temperature has not reached the lower limit value (No), the control device 100 repeats the process of step S160 and determines that the refrigerator compartment temperature has reached the lower limit value. If (Yes), the process proceeds to step S170.

そして、ステップS170において、制御装置100は、蓄冷ユニット温度が蓄冷完了温度より高いか否かを判断する。制御装置100は、蓄冷ユニット温度が蓄冷完了温度よりも高い、つまり蓄冷ユニット温度が十分に低下していないと判断した場合には(S170、Yes)、ステップS100に戻り、冷凍運転、すなわちFダンパ50を開、Rダンパ20を閉とし、蓄冷運転を再び開始するため蓄冷ユニットファン74をONにする。   In step S170, the control device 100 determines whether or not the cold storage unit temperature is higher than the cold storage completion temperature. When the control device 100 determines that the cold storage unit temperature is higher than the cold storage completion temperature, that is, the cold storage unit temperature is not sufficiently lowered (S170, Yes), the control device 100 returns to step S100 and performs the refrigeration operation, that is, the F damper. 50 is opened, the R damper 20 is closed, and the cold storage unit fan 74 is turned on to restart the cold storage operation.

また、ステップS170において、制御装置100は、蓄冷ユニット温度が蓄冷完了温度以下、つまり蓄冷ユニット温度が蓄冷完了温度まで低下したと判断した場合には(S170、No)、ステップS180に進む。   In Step S170, control device 100 progresses to Step S180, when it judges that cool storage unit temperature is below cool storage completion temperature, ie, cool storage unit temperature fell to cool storage completion temperature (S170, No).

ステップS180において、制御装置100は、蓄冷運転を終了する。なお、ステップS100の冷凍運転に戻って蓄冷運転をしている場合において、冷凍室温度が下限値に到達し(S110、Yes)、かつ、蓄冷ユニット温度が蓄冷完了温度以下となったときには(S120、No)、蓄冷ユニットファン74を停止して、蓄冷運転を終了する。   In step S180, the control device 100 ends the cold storage operation. In the case where the cold storage operation is performed after returning to the freezing operation in step S100, when the freezer compartment temperature reaches the lower limit (S110, Yes) and the cold storage unit temperature becomes equal to or lower than the cold storage completion temperature (S120). No), the cold storage unit fan 74 is stopped, and the cold storage operation is finished.

そして、ステップS190において、制御装置100は、冷凍運転(S100)、圧縮機24をOFF(庫内ファン9をOFF)、冷蔵運転(S150)を繰り返す。   In step S190, the control device 100 repeats the refrigeration operation (S100), the compressor 24 is turned off (the internal fan 9 is turned off), and the refrigeration operation (S150) is repeated.

また、図11を参照しながら説明すると、冷凍運転時(S100)、時刻t10において冷凍室温度が下限値に到達すると(S110、Yes)、圧縮機24、蓄冷ユニットファン74および庫内ファン9をOFFにし、Fダンパ50を閉とする(S130)。これにより、冷却器7が停止するので、冷凍室温度が上昇する。また、蓄冷ユニットファン74が停止するので、蓄冷ユニット温度が低下しなくなる。   Further, with reference to FIG. 11, during the freezing operation (S100), when the freezer temperature reaches the lower limit value at time t10 (S110, Yes), the compressor 24, the cold storage unit fan 74 and the internal fan 9 are turned on. It is turned off and the F damper 50 is closed (S130). Thereby, since the cooler 7 stops, the freezer compartment temperature rises. Moreover, since the cool storage unit fan 74 stops, the cool storage unit temperature does not decrease.

そして、時刻t11において、冷凍室温度が、予め設定された圧縮機24をONにする温度に到達すると(S140、Yes)、圧縮機24および庫内ファン9をON、Rダンパ20を開として、冷蔵運転(S150)に移行する。これにより、冷蔵室温度が低下するが、Fダンパ50は閉であり、冷凍室60に冷気が供給されないので、冷凍室温度は上昇する。   At time t11, when the freezer temperature reaches a preset temperature for turning on the compressor 24 (S140, Yes), the compressor 24 and the internal fan 9 are turned on, and the R damper 20 is opened. Shift to refrigeration operation (S150). Thereby, although the refrigerator compartment temperature falls, since the F damper 50 is closed and cold air is not supplied to the freezer compartment 60, the freezer compartment temperature rises.

そして、時刻t12において、冷蔵室温度が、予め設定された下限値に到達し(S160、Yes)、蓄冷ユニット温度が蓄冷完了温度よりも高い場合には(S170、Yes)、Fダンパ50を開、Rダンパ20を閉、蓄冷ユニットファン74をONにして、再び冷凍運転(S100)に移行し、同時に蓄冷運転を行う。   At time t12, when the refrigerator temperature reaches the preset lower limit (S160, Yes) and the cool storage unit temperature is higher than the cool storage completion temperature (S170, Yes), the F damper 50 is opened. Then, the R damper 20 is closed, the cold storage unit fan 74 is turned ON, and the operation is shifted again to the freezing operation (S100), and the cold storage operation is simultaneously performed.

そして、時刻t13において、冷凍室温度が下限値に到達すると(S120、Yes)、圧縮機24、庫内ファン9および蓄冷ユニットファン74をOFF、Fダンパ50を閉にする。   At time t13, when the freezer compartment temperature reaches the lower limit (S120, Yes), the compressor 24, the internal fan 9 and the cold storage unit fan 74 are turned off, and the F damper 50 is closed.

なお、冷凍運転中の時刻t14において、蓄冷ユニット温度が蓄冷完了温度まで低下しているが、ここで蓄冷ユニットファン74をOFFにせず、冷凍室温度が下限値に到達したときに蓄冷ユニットファン74をOFFにして、蓄冷運転を終了する。ただし、冷凍運転中であっても、蓄冷ユニット温度が蓄冷完了温度まで低下したときに、蓄冷ユニットファン74をOFFにするようにしてもよい。   Note that at time t14 during the refrigeration operation, the cool storage unit temperature has decreased to the cool storage completion temperature, but the cool storage unit fan 74 is not turned off here, and the cool storage unit fan 74 is reached when the freezer temperature reaches the lower limit value. Is turned off to end the cold storage operation. However, even during the refrigeration operation, the cold storage unit fan 74 may be turned off when the cold storage unit temperature decreases to the cold storage completion temperature.

以上説明したように、本実施形態では、冷凍運転とともに蓄冷運転を行うと、蓄冷ユニット温度が除々に低下し、相変化現象を経て(図8参照)、予め決められた蓄冷完了温度(蓄冷完了温度は、蓄冷材の凝固温度以下とする)、すなわち蓄冷ユニット70の周囲の冷凍室温度に概ね到達した時点で蓄冷完了と判断する。通常の冷却運転と同時に蓄冷運転を行うタイミングは、図6で説明したように冷蔵庫1の使用者による使用頻度が少なくなる就寝時間帯に行うことが望ましい。また、周囲温度が低くなる夜間(定常運転時)に蓄冷運転を行うことにより省エネ運転を実施でき、更に使用者にとっては深夜の電力割引制度を利用することも可能になる。   As described above, in this embodiment, when the cold storage operation is performed together with the refrigeration operation, the cold storage unit temperature gradually decreases, and after a phase change phenomenon (see FIG. 8), a predetermined cold storage completion temperature (cold storage completion). The temperature is set to be equal to or lower than the solidification temperature of the cold storage material), that is, when the temperature of the freezer compartment around the cold storage unit 70 is substantially reached, it is determined that the cold storage is completed. As described with reference to FIG. 6, the timing for performing the cold storage operation simultaneously with the normal cooling operation is desirably performed in the bedtime period in which the frequency of use by the user of the refrigerator 1 is reduced. In addition, an energy-saving operation can be performed by performing a cold storage operation at night (during steady operation) when the ambient temperature is low, and it is also possible for a user to use a late-night power discount system.

次に蓄冷ユニットから放冷する際の運転方法(放冷運転)について図12および図13を参照して説明する。図12は冷凍運転時に放冷運転を併用する場合のフローチャート、図13は冷凍運転時に放冷運転をする際の冷蔵庫の運転状況とそれに関する機器の状態図である。なお、このフローは、タイマにより、例えば夕方に行われる。   Next, an operation method (cooling operation) at the time of cooling from the cold storage unit will be described with reference to FIGS. 12 and 13. FIG. 12 is a flowchart in the case of using the cooling operation during the refrigeration operation, and FIG. 13 is an operation state of the refrigerator and a state diagram of the equipment related to the cooling operation in the cooling operation during the refrigeration operation. This flow is performed by a timer, for example, in the evening.

図12に示すように、冷凍運転(F運転)時、ステップS200において、制御装置100は、Fダンパ50を開、Rダンパ20を閉、庫内ファン9をONにすることで、冷却器7で生成した冷気(冷却器冷気)によって冷凍室60を冷却する。このとき、冷凍室60に設置した蓄冷材72を放冷させるために、冷凍運転と連動して蓄冷ユニットファン74をONする(運転させる)。ちなみに、従来では冷凍サイクルを運転(圧縮機を運転)することによって冷凍室60を冷却するが、本実施形態では、冷凍室60の冷却を蓄冷材72に蓄えた冷熱エネルギも利用することで、冷凍室60の熱負荷の一部を蓄冷材72で補う蓄冷材併用運転を行う。すなわち、冷凍室60に冷気を送り込んで冷却するときに合わせて蓄冷ユニットファン74を運転し、蓄冷材72も利用して冷凍室60の冷却を行うものである。   As shown in FIG. 12, during the refrigeration operation (F operation), in step S200, the control device 100 opens the F damper 50, closes the R damper 20, and turns on the internal fan 9, thereby cooling the cooler 7. The freezer compartment 60 is cooled by the cold air (cooler cold air) generated in step (1). At this time, in order to cool the cool storage material 72 installed in the freezer compartment 60, the cool storage unit fan 74 is turned on (operated) in conjunction with the freezing operation. Incidentally, although the freezer compartment 60 is conventionally cooled by operating the refrigerating cycle (operating the compressor), in the present embodiment, the cooling energy stored in the regenerator 72 is also used by cooling the freezer compartment 60, The cold storage material combined operation is performed in which a part of the heat load of the freezer compartment 60 is supplemented by the cold storage material 72. That is, the cold storage unit fan 74 is operated in accordance with the cooling air sent to the freezer compartment 60 and cooled, and the freezer compartment 60 is also used to cool the freezer compartment 60.

そして、ステップS210において、制御装置100は、冷凍室温度が下限値に到達したか否かを判断する。制御装置100は、冷凍室温度が下限値に到達していないと判断した場合には(S210、No)、ステップS210の処理を繰り返し、冷凍室温度が下限値に到達したと判断した場合には(S210、Yes)、ステップS220に進む。   In step S210, control device 100 determines whether or not the freezer compartment temperature has reached the lower limit value. When it is determined that the freezer temperature has not reached the lower limit value (S210, No), the control device 100 repeats the process of step S210, and when it is determined that the freezer temperature has reached the lower limit value. (S210, Yes), the process proceeds to step S220.

ステップS220において、制御装置100は、圧縮機24、庫内ファン9および蓄冷ユニットファン74をすべてOFFにし、Fダンパ50を閉じる。   In step S220, the control device 100 turns off all of the compressor 24, the internal fan 9, and the cold storage unit fan 74, and closes the F damper 50.

そして、ステップS230に進み、制御装置100は、冷凍室温度が圧縮機24がONとなる温度に到達したか否かを判断する。制御装置100は、冷凍室温度が圧縮機24がONとなる温度に到達していないと判断した場合には(S230、No)、ステップS230の処理を繰り返し、冷凍室温度が圧縮機24がONとなる温度に到達したと判断した場合には(S230、Yes)、ステップS240に進む。   And it progresses to step S230 and the control apparatus 100 judges whether the freezer compartment temperature reached the temperature from which the compressor 24 turns ON. When the control device 100 determines that the freezer temperature has not reached the temperature at which the compressor 24 is turned on (S230, No), the control device 100 repeats the process of step S230, and the freezer temperature is turned on by the compressor 24. If it is determined that the temperature reaches (S230, Yes), the process proceeds to step S240.

ステップS240において、制御装置100は、冷蔵運転(R運転)に移行する。このとき、圧縮機24および庫内ファン9をONにし、Rダンパ20を開にする。これにより、冷却器7からの冷気が冷蔵室2に送られ、冷蔵室2が冷却される。   In step S240, the control device 100 shifts to a refrigeration operation (R operation). At this time, the compressor 24 and the internal fan 9 are turned on, and the R damper 20 is opened. Thereby, the cold air from the cooler 7 is sent to the refrigerator compartment 2, and the refrigerator compartment 2 is cooled.

そして、ステップS250に進み、制御装置100は、冷蔵室温度が下限値に到達したか否かを判断する。制御装置100は、冷蔵室温度が下限値に到達していないと判断した場合には(S250、No)、ステップS250の処理を繰り返し、冷蔵室温度が下限値に到達したと判断した場合には(S250、Yes)、ステップS260に進む。   And it progresses to step S250 and the control apparatus 100 judges whether the refrigerator compartment temperature reached | attained the lower limit. When it is determined that the refrigerating room temperature has not reached the lower limit value (S250, No), the control device 100 repeats the process of step S250, and when it is determined that the refrigerating room temperature has reached the lower limit value. (S250, Yes), the process proceeds to step S260.

ステップS260において、制御装置100は、蓄冷ユニット温度が放冷完了温度よりも低いか否かを判断する。制御装置100は、蓄冷ユニット温度が放冷完了温度よりも低いと判断した場合には(S260、Yes)、ステップS200に戻り、Fダンパ50を開、Rダンパ20を閉とし、蓄冷材72からの放冷運転を再び開始するため蓄冷ユニットファン74をONにする。また、制御装置100は、蓄冷ユニット温度が放冷完了温度よりも低くない、つまり蓄冷ユニット温度が放冷完了温度以上であると判断した場合には(S260、No)、ステップS270に進む。   In step S260, the control device 100 determines whether or not the cold storage unit temperature is lower than the cooling completion temperature. When the controller 100 determines that the cool storage unit temperature is lower than the cool-off completion temperature (S260, Yes), the control device 100 returns to step S200, opens the F damper 50, closes the R damper 20, and starts from the cool storage material 72. The cool storage unit fan 74 is turned on to restart the cooling operation. Further, when the control device 100 determines that the cool storage unit temperature is not lower than the cool-off completion temperature, that is, the cool storage unit temperature is equal to or higher than the cool-off completion temperature (S260, No), the control device 100 proceeds to step S270.

ステップS270において、制御装置100は、放冷運転を終了する。なお、図示していないが、ステップS200(冷凍運転および放冷運転)の後段において、ステップS260と同様にして、蓄冷ユニット温度が放冷完了温度よりも低いか否かを判断して、蓄冷ユニット温度が放冷完了温度以上であるときに、放冷運転を終了するようにしてもよい。   In step S270, the control device 100 ends the cooling operation. Although not shown, in the subsequent stage of step S200 (refrigeration operation and cooling operation), in the same manner as in step S260, it is determined whether or not the cooling storage unit temperature is lower than the cooling completion temperature. When the temperature is equal to or higher than the cooling completion temperature, the cooling operation may be terminated.

そして、ステップS280において、制御装置100は、冷凍運転(S200)、圧縮機24をOFF(庫内ファン9もOFF)、冷蔵運転(S250)を繰り返す。   In step S280, the control device 100 repeats the refrigeration operation (S200), the compressor 24 is turned off (the internal fan 9 is also turned off), and the refrigeration operation (S250).

また、図13を参照して説明すると、冷凍運転時(S200)、時刻t20において冷凍室温度が下限値に到達すると(S210、Yes)、圧縮機24、蓄冷ユニットファン74および庫内ファン9をOFFにし、Fダンパ50を閉とする(S220)。これにより、冷却器7による吸熱が停止するので、冷凍室温度が上昇する。   Further, with reference to FIG. 13, during the freezing operation (S200), when the freezer temperature reaches the lower limit value at time t20 (S210, Yes), the compressor 24, the cold storage unit fan 74 and the internal fan 9 are turned on. It is turned OFF and the F damper 50 is closed (S220). Thereby, since the heat absorption by the cooler 7 stops, the freezer compartment temperature rises.

そして、時刻t21において、冷凍室温度が、予め設定された圧縮機24をONにする温度に到達すると(S230、Yes)、圧縮機24および庫内ファン9をON、Rダンパ20を開として、冷蔵運転(S240)に移行する。このとき、冷蔵室温度が低下するが、Fダンパ50はOFFであり、冷凍室60に冷気(冷却器冷気)が供給されないので、冷凍室温度は上昇する。   At time t21, when the freezer compartment temperature reaches a preset temperature for turning on the compressor 24 (S230, Yes), the compressor 24 and the internal fan 9 are turned on, and the R damper 20 is opened. Shift to refrigeration operation (S240). At this time, the temperature of the freezer compartment decreases, but the F damper 50 is OFF, and cold air (cooler cold air) is not supplied to the freezer compartment 60, so the freezer compartment temperature rises.

そして、時刻t22において、冷蔵室温度が、予め設定された下限値に到達し(S250、Yes)、蓄冷ユニット温度が放冷完了温度よりも低い場合には(S260、Yes)、Fダンパ50を開、Rダンパ20を閉、蓄冷ユニットファン74をONにして、再び冷凍運転に移行し、同時に放冷運転を行う(S200)。   At time t22, when the refrigerator temperature reaches the preset lower limit value (S250, Yes) and the cool storage unit temperature is lower than the cooling completion temperature (S260, Yes), the F damper 50 is turned on. Open, the R damper 20 is closed, the cold storage unit fan 74 is turned on, the refrigeration operation is started again, and the cooling operation is performed at the same time (S200).

そして、時刻t23において、冷凍室温度が下限値に到達すると(S210、Yes)、圧縮機24、庫内ファン9および蓄冷ユニットファン74をOFF、Fダンパ50を閉にする。   When the freezer compartment temperature reaches the lower limit at time t23 (S210, Yes), the compressor 24, the internal fan 9 and the cold storage unit fan 74 are turned off, and the F damper 50 is closed.

そして、冷凍運転終了後の時刻t24において、蓄冷ユニット温度が放冷完了温度以上となったときに(S260、No)、放冷運転を終了する。   Then, at time t24 after the end of the freezing operation, when the cool storage unit temperature becomes equal to or higher than the cooling completion temperature (S260, No), the cooling operation is terminated.

以上説明したように、冷凍運転とともに放冷運転を繰り返し行うと、蓄冷ユニット温度が除々に上昇し、相変化現象を経て(図9参照)、予め決めた放冷完了温度、すなわち冷凍室60の上限温度に概ね到達した時点で放冷完了と判断する。通常の冷却運転に加え、冷凍室60の冷却を蓄冷材72を使って併用運転する時間帯は、図6で説明したように冷蔵庫1の使用者が冷蔵庫1を使う頻度が多くなる時間帯に行うことが望ましい。冷凍サイクル効率が高い時間帯に蓄冷した冷熱を取り出す運転(すなわち放冷運転)が実現できるので、冷蔵庫1を使う頻度が多くなる時間帯に冷凍サイクルだけで冷却する運転に比べて圧縮機24の回転速度を低くした運転を行うことが可能となり、省エネ運転が実施可能となる。   As described above, when the cooling operation is repeatedly performed together with the refrigeration operation, the cool storage unit temperature gradually increases and undergoes a phase change phenomenon (see FIG. 9), and then the predetermined cooling temperature, that is, the freezing chamber 60 It is judged that the cooling has been completed when the upper limit temperature is almost reached. In addition to the normal cooling operation, the time zone in which the cooling of the freezer compartment 60 is used in combination with the cold storage material 72 is the time zone in which the user of the refrigerator 1 uses the refrigerator 1 as described with reference to FIG. It is desirable to do. Since the operation of taking out the cold heat stored in the time zone where the refrigeration cycle efficiency is high (that is, the cooling operation) can be realized, the compressor 24 can be compared with the operation of cooling only by the refrigeration cycle in the time zone where the frequency of using the refrigerator 1 increases. It is possible to perform an operation at a low rotation speed, and an energy saving operation can be performed.

図14は冷蔵運転時に放冷運転を実施する場合の概略を示すフローチャート、図15は冷蔵運転時に放冷運転を実施する際の冷蔵庫の運転状況とそれに関する機器の状態図である。なお、図14のステップS350〜S380は、図12のステップS250〜S280と同様であるので、その説明を省略し、以下では、ステップS300〜S340について説明する。   FIG. 14 is a flowchart showing an outline when the cool-down operation is performed during the refrigeration operation, and FIG. 15 is an operation state of the refrigerator and a state diagram of devices related to the cool-down operation when the cool-down operation is performed during the refrigeration operation. Note that steps S350 to S380 in FIG. 14 are the same as steps S250 to S280 in FIG. 12, and thus description thereof is omitted. Steps S300 to S340 are described below.

図14に示すように、冷凍運転(F運転)時、ステップS300において、制御装置100は、Fダンパ50を開、Rダンパ20を閉、庫内ファン9をONに設定して冷凍サイクルによって冷凍室60を冷却する。このとき、蓄冷ユニットファン74はOFFである。   As shown in FIG. 14, during the refrigeration operation (F operation), in step S300, the control device 100 opens the F damper 50, closes the R damper 20, sets the internal fan 9 to ON, and refrigerates by the refrigeration cycle. The chamber 60 is cooled. At this time, the cold storage unit fan 74 is OFF.

そして、ステップS310に進み、制御装置100は、冷凍室温度が下限値に到達したか否かを判断する。制御装置100は、冷凍室温度が下限値に到達していないと判断した場合には(S310、No)、ステップS310の処理を繰り返し、冷凍室温度が下限値に到達したと判断した場合には(S310、Yes)、ステップS320に進む。   And it progresses to step S310 and the control apparatus 100 judges whether the freezer compartment temperature reached | attained the lower limit. When it is determined that the freezer temperature has not reached the lower limit value (S310, No), the control device 100 repeats the process of step S310, and when it is determined that the freezer temperature has reached the lower limit value. (S310, Yes), it progresses to step S320.

ステップS320において、制御装置100は、圧縮機24および庫内ファン9をOFFにし、Fダンパ50を閉にする。   In step S320, the control device 100 turns off the compressor 24 and the internal fan 9, and closes the F damper 50.

そして、ステップS330に進み、制御装置100は、冷凍室温度が圧縮機24がONとなる温度に到達したか否かを判断する。制御装置100は、冷凍室温度が圧縮機24がONとなる温度に到達していないと判断した場合には(S330、No)、ステップS330の処理を繰り返し、冷凍室温度が圧縮機24がONとなる温度に到達したと判断した場合には(S330、Yes)、ステップS340に進む。   Then, the process proceeds to step S330, and the control device 100 determines whether or not the freezer compartment temperature has reached a temperature at which the compressor 24 is turned on. When it is determined that the freezer temperature has not reached the temperature at which the compressor 24 is turned on (No at S330), the control device 100 repeats the process of step S330, and the freezer temperature is turned on at the compressor 24. If it is determined that the temperature has reached (S330, Yes), the process proceeds to step S340.

ステップS340において、制御装置100は、冷蔵運転(R運転)に移行する。このとき、圧縮機24、蓄冷ユニットファン74および庫内ファン9をON、Rダンパ20を開にし、冷蔵運転中に蓄冷材72を利用した放冷運転を実施する。これにより、冷蔵運転中の冷凍室60の温度上昇が蓄冷材72の放冷運転により抑制される。   In step S340, the control device 100 shifts to a refrigeration operation (R operation). At this time, the compressor 24, the cold storage unit fan 74, and the internal fan 9 are turned on, the R damper 20 is opened, and the cold storage operation using the cold storage material 72 is performed during the cold storage operation. Thereby, the temperature rise of the freezer compartment 60 during the refrigeration operation is suppressed by the cooling operation of the regenerator 72.

また、図15を参照して説明すると、時刻t30において圧縮機24がOFFにされた後の時刻t31において、冷凍室温度が予め設定された圧縮機24をONにする温度に到達すると(S330、Yes)、圧縮機24、庫内ファン9および蓄冷ユニットファン74をONにし、Rダンパ20を開にして冷蔵運転に移行する。このように冷蔵運転中に、Fダンパ50を閉じた状態において、蓄冷ユニットファン74をONにすることにより、冷凍室温度が上昇するのを抑制することができる(時刻t31〜t32の冷凍室温度参照)。   15, when the freezer compartment temperature reaches a preset temperature for turning on the compressor 24 at time t31 after the compressor 24 is turned off at time t30 (S330, Yes), the compressor 24, the internal fan 9 and the cold storage unit fan 74 are turned on, the R damper 20 is opened, and the refrigeration operation is started. Thus, during the refrigeration operation, when the F damper 50 is closed, the cold storage unit fan 74 can be turned on to prevent the freezer temperature from rising (freezer temperature at times t31 to t32). reference).

ところで、図6で説明したように、冷蔵庫1の熱負荷が高い時間帯には冷蔵室2の扉開閉が多くなることがあり、それに応じて冷蔵室2を冷却する時間が長くなる。前記したように、冷蔵運転中に蓄冷ユニットファン74を運転することにより、冷凍室側では蓄冷材72の放冷運転により温度上昇が抑制されるので(t31〜t32における冷凍室温度参照)、冷蔵室2を優先的に冷却しながら、冷凍室60も冷却することが可能となる。   By the way, as explained with reference to FIG. 6, the door opening / closing of the refrigerator compartment 2 may increase in the time zone when the heat load of the refrigerator 1 is high, and the time for cooling the refrigerator compartment 2 becomes longer accordingly. As described above, by operating the cold storage unit fan 74 during the refrigeration operation, the temperature rise is suppressed by the cooling operation of the cold storage material 72 on the freezer compartment side (see the freezer compartment temperature at t31 to t32). While the chamber 2 is preferentially cooled, the freezing chamber 60 can also be cooled.

図16は圧縮機OFF中に実施する霜冷却運転中に放冷運転を実施する場合の概略を示すフローチャート、図17は圧縮機OFF中に実施する霜冷却運転中に放冷運転する際の冷蔵庫の運転状況とそれに関する機器の状態図である。なお、ステップS450〜S480は、図12のステップS250〜S280と同様であり、その説明を省略し、以下では、ステップS400〜S440について説明する。また、図17では蓄冷ユニット温度の図示を省略している。   FIG. 16 is a flowchart showing an outline when the cooling operation is performed during the frost cooling operation performed while the compressor is OFF, and FIG. 17 is a refrigerator when the cooling operation is performed during the frost cooling operation performed when the compressor is OFF. FIG. 2 is a state diagram of an operation state and a device related thereto. Note that steps S450 to S480 are the same as steps S250 to S280 in FIG. 12, and the description thereof is omitted. Steps S400 to S440 will be described below. In FIG. 17, illustration of the cold storage unit temperature is omitted.

図16に示すように、冷凍運転(F運転)時、ステップS400において、制御装置100は、Fダンパ50を開、Rダンパ20を閉、庫内ファン9をONにして冷凍サイクルによって冷凍室60を冷却する。またこのとき、蓄冷ユニットファン74はOFFである。   As shown in FIG. 16, during the refrigeration operation (F operation), in step S400, the control device 100 opens the F damper 50, closes the R damper 20, turns on the internal fan 9, and turns the freezer compartment 60 through the refrigeration cycle. Cool down. At this time, the cold storage unit fan 74 is OFF.

そして、ステップS410に進み、制御装置100は、冷凍室温度が下限値に到達したか否かを判断する。制御装置100は、冷凍室温度が下限値に到達していないと判断した場合には(S410、No)、ステップS410の処理を繰り返し、冷凍室温度が下限値に到達したと判断した場合には(S410、Yes)、ステップS420に進む。   And it progresses to step S410 and the control apparatus 100 judges whether the freezer compartment temperature reached | attained the lower limit. When it is determined that the freezer temperature has not reached the lower limit (S410, No), the control device 100 repeats the process of step S410, and when it is determined that the freezer temperature has reached the lower limit. (S410, Yes), the process proceeds to step S420.

ステップS420において、制御装置100は、Fダンパ50を閉、Rダンパ20を開にした状態で圧縮機24をOFFにする。また、制御装置100は、ステップS420において、庫内ファン9の運転を継続し、霜冷却運転を行う。さらに、制御装置100は、ステップS420において、蓄冷ユニットファン74をONにして、蓄冷材72の放冷運転を行い、冷凍室60を冷却する。   In step S420, the control device 100 turns off the compressor 24 with the F damper 50 closed and the R damper 20 opened. Moreover, the control apparatus 100 continues the driving | operation of the internal fan 9 in step S420, and performs frost cooling driving | operation. Furthermore, in step S420, the control device 100 turns on the cold storage unit fan 74, performs the cooling operation of the cold storage material 72, and cools the freezer compartment 60.

そして、ステップS430に進み、制御装置100は、冷凍室温度が圧縮機24をONにする温度に到達したか否かを判断する。制御装置100は、冷凍室温度が圧縮機24をONにする温度に到達したと判断した場合には(S430、Yes)、ステップS440に進み、到達していないと判断した場合には(S430、No)、ステップS430の処理を繰り返す。   Then, the process proceeds to step S430, and the control device 100 determines whether or not the freezer compartment temperature has reached a temperature at which the compressor 24 is turned on. When it is determined that the freezer temperature has reached the temperature at which the compressor 24 is turned on (S430, Yes), the control device 100 proceeds to step S440, and when it is determined that the temperature has not reached (S430, No), the process of step S430 is repeated.

ステップS440において、制御装置100は、圧縮機24をONにして、冷蔵運転(R運転)に移行する。またこのとき、蓄冷ユニットファン74をOFFにする。   In step S440, the control device 100 turns on the compressor 24 and shifts to the refrigeration operation (R operation). At this time, the cool storage unit fan 74 is turned off.

なお、ステップS420における、圧縮機24のOFF中の「霜冷却運転」とは、冷却器7やその周辺の冷却器収納室8に成長した霜の冷熱エネルギを利用した運転のことであり、前記したようにRダンパ20を開、Fダンパ50を閉、庫内ファン9をONにして冷蔵室2の庫内の熱負荷の一部を霜にシフトさせる運転である(このとき、霜によって冷蔵室2は冷却される)。したがって、霜冷却運転中には冷蔵室2の温度が低下し、霜が解けるに伴い冷却器7の温度は上昇する。冷凍サイクルでは蒸発温度を高めた方がサイクル効率を高めることができるため、霜冷却運転後の冷蔵運転の蒸発温度が高くなることで、従来の冷蔵運転よりも省エネ運転が実施可能となる。   In addition, the “frost cooling operation” during OFF of the compressor 24 in step S420 is an operation using the cold energy of the frost that has grown in the cooler 7 and the cooler storage chamber 8 in the vicinity thereof. As described above, the R damper 20 is opened, the F damper 50 is closed, the internal fan 9 is turned on, and part of the heat load in the refrigerator compartment 2 is shifted to frost (at this time, refrigeration is caused by frost. Chamber 2 is cooled). Therefore, during the frost cooling operation, the temperature of the refrigerator compartment 2 decreases, and the temperature of the cooler 7 increases as the frost is thawed. In the refrigeration cycle, the cycle efficiency can be increased by increasing the evaporation temperature. Therefore, the evaporating temperature in the refrigeration operation after the frost cooling operation is increased, so that the energy saving operation can be performed as compared with the conventional refrigeration operation.

ところで、霜に蓄冷された冷熱エネルギを十分に使いこなすために霜冷却時間を長くすると、冷凍室60を冷却しない時間が長くなるため、冷凍室60の温度上昇が課題となる。しかし、本実施形態では、Fダンパ50を閉状態で、霜冷却運転中に蓄冷ユニットファン74をONにして放冷運転を実施することで、冷凍室60の温度上昇を抑えることが可能になる。霜冷却運転中の蓄冷材72の放冷運転は、蓄冷ユニット温度が冷凍室60を冷却するために必要な上限温度、すなわち放冷完了温度まで実施することができる。   By the way, if the frost cooling time is lengthened in order to sufficiently use the cold energy stored in the frost, the time during which the freezing chamber 60 is not cooled is lengthened, so that the temperature rise of the freezing chamber 60 becomes a problem. However, in the present embodiment, the temperature rise of the freezer compartment 60 can be suppressed by performing the cooling operation by turning on the cold storage unit fan 74 during the frost cooling operation with the F damper 50 closed. . The cool storage operation of the cool storage material 72 during the frost cooling operation can be performed up to the upper limit temperature required for the cool storage unit temperature to cool the freezer compartment 60, that is, the cool completion temperature.

また、図17を参照して説明すると、時刻t40において冷凍室温度が下限値に到達すると(S410、Yes)、庫内ファン9をONにしたまま、圧縮機24をOFF、Fダンパ50を閉、Rダンパ20を開にする(S420)。これにより、冷却器7などに付着した霜によって冷却された空気(冷気)が冷蔵室2に送られ、冷蔵室2が冷却される。このように、霜による冷却運転が行われることにより、霜が解けることで、冷却器7の温度(冷却器温度)が上昇する。   Further, with reference to FIG. 17, when the freezer compartment temperature reaches the lower limit at time t40 (S410, Yes), the compressor 24 is turned off and the F damper 50 is closed while the internal fan 9 is kept on. The R damper 20 is opened (S420). Thereby, the air (cold air) cooled with the frost adhering to the cooler 7 etc. is sent to the refrigerator compartment 2, and the refrigerator compartment 2 is cooled. Thus, by performing the cooling operation by frost, the temperature of the cooler 7 (cooler temperature) rises by thawing the frost.

また、霜冷却運転時に、蓄冷ユニットファン74をONにすることにより(S420)、蓄冷材72の放冷運転により、冷凍室60が冷却される。したがって、冷凍室温度が大きく上昇するのを抑えることができる。   Further, by turning on the cold storage unit fan 74 during the frost cooling operation (S420), the freezer compartment 60 is cooled by the cooling operation of the cold storage material 72. Therefore, it is possible to suppress a large increase in the freezer temperature.

そして、時刻t41において、冷凍室温度が、予め設定された圧縮機24をONにする温度に到達すると(S430、Yes)、圧縮機24をON、蓄冷ユニットファン74をOFFにして、冷蔵運転(S440)に移行する。このとき、圧縮機24が駆動することにより、冷蔵室2内の水分が冷却器7に霜となって付着することで、冷却器温度が低下する。   At time t41, when the freezer temperature reaches a preset temperature at which the compressor 24 is turned on (S430, Yes), the compressor 24 is turned on, the cold storage unit fan 74 is turned off, and the refrigeration operation ( The process proceeds to S440). At this time, when the compressor 24 is driven, moisture in the refrigerator compartment 2 adheres to the cooler 7 as frost, so that the cooler temperature decreases.

そして、時刻t42において、冷蔵室温度が、予め設定された下限値に到達し(S450、Yes)、蓄冷ユニット温度が放冷完了温度より低いときには、Fダンパ50を開、Rダンパ20を閉とし、庫内ファン9を短時間だけOFFにして、冷凍運転に移行する(S400)。なお、庫内ファン9は、冷凍運転に移行した直後の短時間のみOFFにする。   At time t42, when the refrigerator compartment temperature reaches the preset lower limit (S450, Yes) and the cool storage unit temperature is lower than the cool-off completion temperature, the F damper 50 is opened and the R damper 20 is closed. Then, the internal fan 9 is turned off for a short time and the operation is shifted to the freezing operation (S400). The internal fan 9 is turned off only for a short time immediately after the transition to the freezing operation.

なお、一時的に庫内ファン9をOFFにするのは、冷却器7の温度を下げることにより庫内に供給する冷気の温度が下がり、冷凍室60の冷却に適した温度になるからである。ちなみに、庫内ファン9をOFFにしないと、高い温度の空気が冷凍室60に供給されてしまう。   The reason why the internal fan 9 is temporarily turned off is that the temperature of the cool air supplied into the internal space is lowered by lowering the temperature of the cooler 7, and the temperature becomes suitable for cooling the freezer compartment 60. . Incidentally, if the internal fan 9 is not turned off, high-temperature air is supplied to the freezer compartment 60.

本実施形態では、冷凍室60に蓄冷ユニット70を設け、必要に応じて冷凍室60の温度上昇が問題になるときに蓄冷材72を放冷運転させ、冷凍室60の温度上昇を抑制させている。一方、冷蔵室2側には新たに設けた蓄冷ユニットはないが、冷却器7には冷蔵庫1内(主に冷蔵室2)の水分が凍結して霜となって存在している。霜は水が相変化して氷(霜)になったものであり、庫内の水分を有効に使った潜熱蓄冷材として扱うことができる。霜の融点は0℃であるため、冷蔵室2の冷却には十分である。冷凍室60に新たに設けた潜熱蓄冷材の蓄冷過程と放冷過程を同じように考えてみると、冷却器7に霜として蓄冷する過程は、庫内空気の水分量が多い冷蔵運転時に行われる。冷凍室60に設けた蓄冷材72の蓄冷運転は、冷蔵庫1の周囲空気の温度が低い夜間の時間帯に行うことで省エネ性が高まることはすでに説明したが、冷却器7に霜として蓄冷する過程は、昼夜を問わず主に冷凍サイクルの効率が高い冷蔵運転時に行われる。また、放冷過程においては、圧縮機24がOFFの状態で実施する霜冷却運転により、冷却器7の温度を上昇させ、次の冷蔵運転のサイクル効率を高めた運転に導いている。したがって、霜を冷却器7に蓄冷する過程、放冷する過程、いずれの場合であっても省エネ性を考慮した運転となる。   In the present embodiment, the cold storage unit 70 is provided in the freezer compartment 60, and if necessary, when the temperature rise of the freezer compartment 60 becomes a problem, the cold storage material 72 is allowed to cool, and the temperature rise of the freezer compartment 60 is suppressed. Yes. On the other hand, although there is no newly provided cold storage unit on the refrigerator compartment 2 side, moisture in the refrigerator 1 (mainly refrigerator compartment 2) is frozen and present in the cooler 7 as frost. Frost is water (phase) that turns into ice (frost), and can be treated as a latent heat regenerator that effectively uses the water in the cabinet. Since the melting point of frost is 0 ° C., it is sufficient for cooling the refrigerator compartment 2. If the cold storage process and the cooling process of the latent heat storage material newly provided in the freezer compartment 60 are considered in the same way, the process of storing cold as frost in the cooler 7 is performed during refrigeration operation with a large amount of moisture in the internal air. Is called. Although the cold storage operation of the cold storage material 72 provided in the freezer compartment 60 has been already explained that energy saving is improved by performing it in the nighttime when the temperature of the ambient air of the refrigerator 1 is low, the cooler 7 stores cold as frost. The process is performed during refrigeration operation where the efficiency of the refrigeration cycle is high regardless of day or night. In the cooling process, the temperature of the cooler 7 is increased by a frost cooling operation performed with the compressor 24 turned off, leading to an operation in which the cycle efficiency of the next refrigeration operation is increased. Therefore, it is an operation in consideration of energy saving in any case of storing frost in the cooler 7 and cooling it.

また、図6で説明したように一般家庭における生活パターンを見ると、夕食の準備や家族のだんらんが行われる時間帯に冷蔵庫1の扉開閉の回数が多くなり、特に冷蔵室2内の熱負荷が高くなる傾向がある。冷蔵室2の熱負荷が高くなると、通常の冷蔵庫では圧縮機の回転速度を上げて冷蔵室の冷却を行うが、霜冷却運転が可能な本実施形態の冷蔵庫1では、圧縮機24を止めた状態で冷蔵室2の熱負荷を有効利用しながら霜冷却運転を実施することができる。冷却器7に成長した霜を融解するまでの長い時間、霜冷却運転を実施できると、冷蔵室2内の熱負荷を庫外に排出することができ、霜冷却運転が終了した後の冷蔵運転の熱負荷が少なくなり、省エネ性が更に高まることになる。   In addition, as described in FIG. 6, when looking at the life pattern in a general household, the number of times the door of the refrigerator 1 is opened and closed increases during the time when dinner is prepared and the family is full, especially the heat load in the refrigerator room 2. Tend to be higher. When the heat load of the refrigerator compartment 2 is increased, the refrigerator is cooled by increasing the rotational speed of the compressor in a normal refrigerator, but the compressor 24 is stopped in the refrigerator 1 of this embodiment capable of frost cooling operation. The frost cooling operation can be performed while effectively using the heat load of the refrigerator compartment 2 in the state. If the frost cooling operation can be performed for a long time until the frost grown on the cooler 7 is melted, the heat load in the refrigerator compartment 2 can be discharged outside the refrigerator, and the refrigeration operation after the frost cooling operation is completed. As a result, the heat load is reduced and the energy saving performance is further improved.

図18は除霜運転中に放冷運転を実施する場合の概略を示すフローチャート、図19は除霜運転中に放冷運転を実施する際の冷蔵庫の運転状況とそれに関する機器の状態図である。ちなみに、冷蔵庫1は通常1日に一回程度の除霜運転が実施される。なお、本実施形態のように、前記した霜冷却運転が可能な冷蔵庫1では、除霜運転は霜冷却運転と同様な考え方で実施される。なお、霜の冷熱エネルギを冷蔵室2の冷却に有効利用し、除霜しながら冷蔵室2を冷却するものであるが、除霜ヒータ22を併用して除霜時間を短くする方式も含まれている。   FIG. 18 is a flowchart showing an outline when the cooling operation is performed during the defrosting operation, and FIG. 19 is a state diagram of the operation state of the refrigerator and the equipment related thereto when the cooling operation is performed during the defrosting operation. . Incidentally, the refrigerator 1 is normally defrosted about once a day. In addition, in the refrigerator 1 in which the frost cooling operation described above is possible as in the present embodiment, the defrosting operation is performed in the same way as the frost cooling operation. In addition, although the refrigeration room 2 is cooled and the refrigeration room 2 is cooled while effectively defrosting the refrigeration energy of the frost, a method of shortening the defrost time by using the defrost heater 22 is also included. ing.

図18に示すように、除霜運転開始時、ステップS500において、制御装置100は、Fダンパ50を閉、Rダンパ20を開、庫内ファン9をONに設定して、冷蔵室2を冷却する。また、ステップS500において、制御装置100は、蓄冷ユニットファン74をONにし、蓄冷ユニット70を放冷運転して、冷凍室60を冷却することで、除霜運転中の冷凍室60の温度上昇を抑制する。   As shown in FIG. 18, at the start of the defrosting operation, in step S500, the control device 100 closes the F damper 50, opens the R damper 20, sets the internal fan 9 to ON, and cools the refrigerator compartment 2. To do. In step S500, the control device 100 turns on the cool storage unit fan 74, cools the cool storage unit 70, cools the freezer compartment 60, and thereby increases the temperature of the freezer compartment 60 during the defrosting operation. Suppress.

そして、ステップS510において、制御装置100は、冷凍室温度が閾値TF1に到達したか否かを判断する。なお、閾値TF1は、除霜ヒータ22をONに切り換える際の温度であり、例えば予め実験やシミュレーションなどによって決められる。制御装置100は、冷凍室温度が閾値TF1よりも低いと判断した場合には(S510、No)、ステップS510の処理を繰り返し、冷凍室温度が閾値TF1以上であると判断した場合には(S510、Yes)、ステップS520に進む。   In step S510, control device 100 determines whether or not the freezer compartment temperature has reached threshold value TF1. Note that the threshold value TF1 is a temperature at which the defrosting heater 22 is switched on, and is determined in advance by experiments or simulations, for example. When determining that the freezer temperature is lower than the threshold TF1 (S510, No), the control device 100 repeats the process of step S510, and when determining that the freezer temperature is equal to or higher than the threshold TF1 (S510). , Yes), the process proceeds to step S520.

ステップS520において、制御装置100は、庫内ファン9をONに維持したまま、除霜ヒータ22をONにして、冷蔵室2を冷却する。また、ステップS520において、制御装置100は、蓄冷ユニットファン74をONにして、蓄冷ユニット70を放冷運転させて、冷凍室60を冷却する。   In step S520, the control device 100 cools the refrigerator compartment 2 by turning on the defrost heater 22 while keeping the internal fan 9 on. Further, in step S520, the control device 100 turns on the cold storage unit fan 74, causes the cold storage unit 70 to cool down, and cools the freezer compartment 60.

そして、ステップS530において、制御装置100は、蓄冷ユニット温度がTF2に到達したか否かを判断する。なお、温度TF2は、蓄冷ユニット70の放冷運転を終了させる際の判断となる温度、つまり蓄冷ユニットファン74をOFFにする温度であり、蓄冷ユニット温度が冷凍室温度以上となる温度である。制御装置100は、蓄冷ユニット温度がTF2に到達していないと判断した場合には(S530、No)、ステップS530の処理を繰り返し、蓄冷ユニット温度がTF2に到達したと判断した場合には(S530、Yes)、ステップS540に進む。   In step S530, control device 100 determines whether or not the cold storage unit temperature has reached TF2. Note that the temperature TF2 is a temperature at which the cool storage unit 70 is allowed to end the cooling operation, that is, a temperature at which the cool storage unit fan 74 is turned off, and is a temperature at which the cool storage unit temperature is equal to or higher than the freezer temperature. When it is determined that the cool storage unit temperature has not reached TF2 (S530, No), the control device 100 repeats the process of step S530, and when it is determined that the cool storage unit temperature has reached TF2 (S530). , Yes), the process proceeds to step S540.

ステップS540において、制御装置100は、庫内ファン9および除霜ヒータ22をそれぞれONに維持したまま、蓄冷ユニットファン74をOFFにする。これにより、蓄冷ユニット70の放冷運転が停止する。   In step S540, the control device 100 turns off the cold storage unit fan 74 while keeping the internal fan 9 and the defrost heater 22 on. Thereby, the cooling operation of the cold storage unit 70 is stopped.

そして、ステップS550に進み、制御装置100は、冷却器温度が第3閾値TD1に到達したか否かを判断する。なお、第3閾値TD1は、庫内ファン9をOFFとし、Rダンパ20を閉にする際の判断となる温度であり、予め行われた実験やシミュレーションなどによって決められる。制御装置100は、冷却器温度が第3閾値TD1に到達していないと判断した場合には(S550、No)、ステップS550の処理を繰り返し、冷却器温度が第3閾値TD1に到達したと判断した場合には(S550、Yes)、ステップS560に進む。   Then, the process proceeds to step S550, and the control device 100 determines whether or not the cooler temperature has reached the third threshold value TD1. Note that the third threshold value TD1 is a temperature that is determined when the internal fan 9 is turned off and the R damper 20 is closed, and is determined by experiments or simulations performed in advance. When it is determined that the cooler temperature has not reached the third threshold value TD1 (S550, No), the control device 100 repeats the process of step S550 and determines that the cooler temperature has reached the third threshold value TD1. If so (S550, Yes), the process proceeds to step S560.

ステップS560において、制御装置100は、庫内ファン9をOFFにすると共に、Rダンパ20を閉にする。これにより、温度の高い冷気が冷蔵室2に供給されるのを防止できる。   In step S560, the control device 100 turns off the internal fan 9 and closes the R damper 20. Thereby, it is possible to prevent cold air having a high temperature from being supplied to the refrigerator compartment 2.

そして、ステップS570に進み、制御装置100は、冷却器温度が閾値TD2に到達したか否かを判断する。なお、閾値TD2は、除霜運転を終了する温度であり、閾値TD1よりも高い温度であり、予め行われた実験やシミュレーションなどによって決められる。制御装置100は、冷却器温度が第4閾値TD2に到達していないと判断した場合には(S570、No)、ステップS570の処理を繰り返し、冷却器温度が閾値TD2に到達したと判断した場合には(S570、Yes)、ステップS580に進み、除霜運転を終了する。   In step S570, control device 100 determines whether or not the cooler temperature has reached threshold value TD2. Note that the threshold value TD2 is a temperature at which the defrosting operation is terminated, and is a temperature higher than the threshold value TD1, and is determined by an experiment or simulation performed in advance. When it is determined that the cooler temperature has not reached the fourth threshold value TD2 (S570, No), the control device 100 repeats the process of step S570 and determines that the cooler temperature has reached the threshold value TD2. (S570, Yes), the process proceeds to step S580, and the defrosting operation is terminated.

また、図19に示すように、時刻t50において、Fダンパ50を閉じ、Rダンパ20を開いた状態において、庫内ファン9および蓄冷ユニットファン74をONにして、除霜運転を開始する(S500)。これにより、除霜時の冷気によって冷蔵室2が冷却されるので(S500)、冷蔵室温度が低下する。また、冷蔵室2の熱負荷によって冷却器温度が急激に上昇する。また、蓄冷ユニット70を放冷運転させることで冷凍室60を冷却するが(S500)、冷凍室温度が蓄冷ユニット温度とともに徐々に上昇する。   Further, as shown in FIG. 19, at time t50, in the state where the F damper 50 is closed and the R damper 20 is opened, the internal fan 9 and the cold storage unit fan 74 are turned on to start the defrosting operation (S500). ). Thereby, since the refrigerator compartment 2 is cooled by the cold air at the time of defrosting (S500), the refrigerator compartment temperature falls. Moreover, the cooler temperature rises rapidly due to the heat load of the refrigerator compartment 2. Moreover, although the freezer compartment 60 is cooled by carrying out the cool-down operation of the cool storage unit 70 (S500), freezer compartment temperature rises gradually with cool storage unit temperature.

そして、時刻t51において、冷凍室温度が閾値TF1に到達すると(S510、Yes)、除霜ヒータ22がONに切り換えられる。これにより、除霜ヒータ22の熱によって冷却器7に付着した霜が解かされる。なお、このときも冷凍室温度および蓄冷ユニット温度ともに上昇する。   At time t51, when the freezer temperature reaches the threshold value TF1 (S510, Yes), the defrost heater 22 is switched on. Thereby, the frost adhering to the cooler 7 by the heat of the defrost heater 22 is dissolved. At this time, both the freezer temperature and the cold storage unit temperature rise.

そして、時刻t52において、蓄冷ユニット温度が冷凍室温度まで上昇したときに蓄冷ユニットファン74をOFFにする。これは、蓄冷ユニット温度が冷凍室温度よりも高くなると、冷凍室を冷却できなくなるからである。   Then, at time t52, when the cold storage unit temperature rises to the freezer temperature, the cold storage unit fan 74 is turned off. This is because the freezer compartment cannot be cooled when the cold storage unit temperature becomes higher than the freezer compartment temperature.

そして、時刻t53において、冷却器温度が閾値TD1に到達すると(S550、Yes)、庫内ファン9をOFF、Rダンパ20を閉じる。これにより、冷蔵室温度が上昇するとともに、冷却器温度も徐々に上昇する。   At time t53, when the cooler temperature reaches the threshold value TD1 (S550, Yes), the internal fan 9 is turned off and the R damper 20 is closed. Thereby, while the refrigerator temperature rises, cooler temperature also rises gradually.

そして、時刻t54において、冷却器温度が閾値TD2に到達すると(S570、Yes)、除霜ヒータ22をOFFにして、除霜運転を終了する。なお、時刻t53〜t54の区間において、閾値TD1から閾値TD2まで上昇するように加熱して、冷却器7に付着した霜を完全に取り除く処理が行われる。   At time t54, when the cooler temperature reaches the threshold value TD2 (S570, Yes), the defrosting heater 22 is turned off and the defrosting operation is terminated. In the section from time t53 to t54, heating is performed so as to increase from the threshold value TD1 to the threshold value TD2, and processing for completely removing frost attached to the cooler 7 is performed.

ところで、時刻t53からt54においては、除霜ヒータ22で冷却器7を加熱することになるので、冷却器温度が上昇し、その間、冷蔵室2と冷凍室60の温度も上昇することになる。除霜ヒータ22で加熱している時刻t53とt54の間において、除霜ヒータ22で加熱された冷却器7の周囲の加熱空気が、Rダンパ20、Fダンパ50を通じて冷蔵室2、冷凍室60に流入しないようにRダンパ20を閉、Fダンパ50を閉にしている(図19参照)。一方、この間にRダンパ20、Fダンパ50を開にして、冷却器7の周囲の加熱空気を冷却器上部へ上昇し易くさせることにより、除霜運転終了温度TD2に速く到達させることも可能であるが、除霜時間短縮の効果と除霜後の庫内温度復帰運転の両方を考慮して、時刻t53からt54におけるRダンパ20とFダンパ50の開閉を決めることが好ましい。   By the way, from time t53 to t54, the cooler 7 is heated by the defrost heater 22, so that the cooler temperature rises, and during that time, the temperatures of the refrigerator compartment 2 and the freezer compartment 60 also rise. Between the times t53 and t54 when the defrost heater 22 is heated, the heated air around the cooler 7 heated by the defrost heater 22 passes through the R damper 20 and the F damper 50 to the refrigerator compartment 2 and the freezer compartment 60. The R damper 20 is closed and the F damper 50 is closed (see FIG. 19) so as not to flow into the cylinder. On the other hand, by opening the R damper 20 and the F damper 50 during this period, the heated air around the cooler 7 can easily rise to the upper part of the cooler, so that the defrosting operation end temperature TD2 can be reached quickly. However, it is preferable to determine opening and closing of the R damper 20 and the F damper 50 from time t53 to t54 in consideration of both the effect of shortening the defrosting time and the operation of returning the internal temperature after defrosting.

ところで、冷蔵室2の熱負荷のみ、すなわち庫内ファン9をONにして冷蔵室2の熱負荷(庫外からの熱浸入に起因する冷蔵室2内の熱負荷)で霜を融解するのがよいが、冷凍室60の温度上昇を抑制するためには冷却器7に設けた除霜センサの温度が予め決められた閾値TF1に到達した時点で、除霜ヒータ22をONにし、冷蔵室2の熱負荷に加えて除霜終了までの時間を短縮させることで、除霜運転時の省エネ化を図ることができる。   By the way, only the heat load of the refrigerator compartment 2, that is, the internal fan 9 is turned on, and the frost is melted by the heat load of the refrigerator compartment 2 (the heat load in the refrigerator compartment 2 due to the heat intrusion from outside the refrigerator). In order to suppress the temperature rise in the freezer compartment 60, the defrost heater 22 is turned on when the temperature of the defrost sensor provided in the cooler 7 reaches a predetermined threshold value TF1, and the refrigerator compartment 2 is turned on. By shortening the time until the defrosting is completed in addition to the heat load, energy saving during defrosting operation can be achieved.

また、除霜運転中、蓄冷材72は蓄冷ユニットファン74の稼働によって放冷が継続され、蓄冷ユニット温度が冷凍室温度以上となる温度TF2に到達した時点で蓄冷ユニットファン74をOFFにして放冷運転を終了させる。その後、冷却器温度が第3閾値TD1に到達した時点で、庫内ファン9をOFFにして、除霜ヒータ22のみによる除霜運転に移行する。このときの除霜運転は予め決めた冷却器温度が第4閾値TD2になった時点で終了する。   Further, during the defrosting operation, the cool storage material 72 continues to be cooled by the operation of the cool storage unit fan 74, and when the cool storage unit temperature reaches a temperature TF2 at which the cool storage unit temperature is equal to or higher than the freezer temperature, the cool storage unit fan 74 is turned off and released. End cold operation. Thereafter, when the cooler temperature reaches the third threshold value TD1, the internal fan 9 is turned off and the defrosting operation using only the defrost heater 22 is started. The defrosting operation at this time ends when the predetermined cooler temperature reaches the fourth threshold value TD2.

以上のように、除霜運転では冷却器7の霜の冷熱エネルギを有効活用するために、冷蔵室2の熱負荷を利用して霜の一部を融かしながら冷蔵室2を冷却する。このとき除霜運転時間を短くし、冷凍室60の温度上昇を抑えるために除霜ヒータ22を投入するのが一般的であるが、冷凍室60に対しては蓄冷材72による放冷運転を行うことで冷凍室60の温度上昇を抑制でき、庫内ファン9のみによる除霜運転時間を従来よりも長くすることが可能となり、除霜ヒータ22をONするタイミングを遅らせることができる。その結果、除霜ヒータ22の入力が低減されて省エネ性を高めることができる。   As described above, in the defrosting operation, the refrigerator compartment 2 is cooled while melting part of the frost using the heat load of the refrigerator compartment 2 in order to effectively use the frost energy of the cooler 7. At this time, the defrosting operation time is shortened and the defrosting heater 22 is generally put in order to suppress the temperature rise of the freezer compartment 60, but the freezing operation by the cool storage material 72 is performed on the freezer compartment 60. By doing so, the temperature rise of the freezer compartment 60 can be suppressed, the defrosting operation time using only the internal fan 9 can be made longer than before, and the timing for turning on the defrosting heater 22 can be delayed. As a result, the input of the defrost heater 22 can be reduced and energy saving can be improved.

1 冷蔵庫
2 冷蔵室
3 製氷室(冷凍室)
3a 製氷室扉
3b 収納容器
4 上段冷凍室(冷凍室)
4a 上段冷凍室扉
4b 収納容器
5 下段冷凍室(冷凍室)
5a 下段冷凍室扉
5b 収納容器
6 野菜室
7 冷却器
8 冷却器収納室
9 庫内ファン(第1送風機)
10 断熱箱体
11 冷蔵室送風ダクト
12 冷凍室送風ダクト
16 冷蔵室−野菜室連通ダクト
17 冷凍室戻り口
18 野菜室戻りダクト
18a 野菜室戻り吹き出し口
19 機械室
20 冷蔵室ダンパ(冷蔵室冷気制御手段)
21 蒸発皿
22 除霜ヒータ
23 樋
24 圧縮機
27 排水管
28,29 断熱仕切壁
33 冷蔵室温度センサ(温度センサ)
34 冷凍室温度センサ(温度センサ)
35 冷却器温度センサ(温度センサ)
40 冷凍室前面仕切り
41 冷凍室中央仕切り
50 冷凍室ダンパ(冷凍室冷気制御手段)
60 冷凍温度帯室
61 冷蔵温度帯室
70 蓄冷ユニット
71 蓄冷容器
72 蓄冷材(蓄冷放冷手段)
73 ダクト
74 蓄冷ユニットファン(第2送風機)
75 受け皿
76 蓄冷材温度センサ(蓄冷状態検知手段、温度センサ)
100 制御装置(制御手段)
S 風路
1 Refrigerator 2 Refrigerated room 3 Ice making room (freezer room)
3a Ice making room door 3b Storage container 4 Upper freezer room (freezer room)
4a Upper freezer compartment door 4b Storage container 5 Lower freezer compartment (freezer compartment)
5a Lower freezer compartment door 5b Storage container 6 Vegetable room 7 Cooler 8 Cooler storage room 9 Fan in the cabinet (first blower)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Refrigerating room air duct 12 Freezer room air duct 16 Refrigerating room-vegetable room communication duct 17 Freezer room return port 18 Vegetable room return duct 18a Vegetable room return outlet 19 Machine room 20 Cold room damper (refrigeration room cold air control) means)
21 Evaporating dish 22 Defrost heater 23 24 24 Compressor 27 Drain pipe 28, 29 Heat insulation partition wall 33 Refrigerating room temperature sensor (temperature sensor)
34 Freezer temperature sensor (temperature sensor)
35 Cooler temperature sensor (temperature sensor)
40 Freezer compartment front partition 41 Freezer compartment center partition 50 Freezer compartment damper (freezer compartment cool air control means)
60 Refrigeration temperature zone room 61 Refrigeration temperature zone room 70 Cold storage unit 71 Cold storage container 72 Cold storage material (cool storage and cool-down means)
73 Duct 74 Cold storage unit fan (second blower)
75 Sauce pan 76 Cold storage material temperature sensor (cool storage state detection means, temperature sensor)
100 Control device (control means)
S wind path

Claims (9)

冷蔵室と冷凍室を備えた複数の温度帯を有する冷蔵庫において、
前記冷蔵室に対する冷気の導入および遮断を行う冷蔵室冷気制御手段と、
前記冷凍室に対する冷気の導入および遮断を行う冷凍室冷気制御手段と、
圧縮機とともに冷凍サイクルを構成する冷却器と、
前記冷却器で生成される冷気を送風する第1送風機と、
前記冷凍サイクルで生成された冷熱エネルギを蓄冷および放冷する蓄冷放冷手段と、
前記蓄冷放冷手段に送風を行う第2送風機と、
前記冷蔵室冷気制御手段、冷凍室冷気制御手段、第1送風機および第2送風機を制御する制御手段と、を備えたことを特徴とする冷蔵庫。
In a refrigerator having a plurality of temperature zones with a refrigerator compartment and a freezer compartment,
Refrigerating room cold air control means for introducing and blocking cold air to the refrigerating room;
Freezing room cold air control means for introducing and blocking cold air to the freezing room;
A cooler constituting a refrigeration cycle together with a compressor;
A first blower for blowing cool air generated by the cooler;
Cold storage and cooling means for storing and cooling the cold energy generated in the refrigeration cycle; and
A second blower for blowing air to the cold storage and cooling means;
A refrigerator comprising: the refrigerator compartment cold air control means, the freezer compartment cold air control means, a control means for controlling the first blower and the second blower.
前記蓄冷放冷手段は、相変化を伴う潜熱蓄冷材であって、
前記蓄冷放冷手段の凝固点よりも少なくとも低い温度帯の冷却室に前記蓄冷放冷手段と前記第2送風機を設置したことを特徴とする請求項1に記載の冷蔵庫。
The cold storage and cooling means is a latent heat storage material with phase change,
The refrigerator according to claim 1, wherein the cold storage / cooling means and the second blower are installed in a cooling chamber having a temperature range at least lower than a freezing point of the cold storage / cooling means.
前記制御手段は、前記冷凍室冷気制御手段を前記冷凍室に冷気を導入する状態として、前記冷凍サイクルによって生成した冷気を前記第1送風機で循環するとともに前記第2送風機を稼働させて前記蓄冷放冷手段に蓄冷する蓄冷運転を行うことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The control means sets the freezing room cold air control means to a state in which cold air is introduced into the freezing room, circulates the cold air generated by the refrigeration cycle in the first blower and operates the second blower to release the cold storage. The refrigerator according to claim 1 or 2, wherein a cold storage operation for storing cold in the cooling means is performed. 前記制御手段は、前記冷凍室冷気制御手段を前記冷凍室に冷気を導入する状態として、前記冷凍サイクルによって生成した冷気を前記第1送風機で循環するとともに前記第2送風機を稼働させて前記蓄冷放冷手段を放冷する放冷運転を行うことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The control means sets the freezing room cold air control means to a state in which cold air is introduced into the freezing room, circulates the cold air generated by the refrigeration cycle in the first blower and operates the second blower to release the cold storage. The refrigerator according to claim 1 or 2, wherein a cooling operation for cooling the cooling means is performed. 前記制御手段は、前記冷凍室冷気制御手段を前記冷凍室への冷気を遮断する状態として前記冷凍サイクルによって生成した冷気を前記第1送風機で循環するとともに、前記第2送風機を稼動させて前記冷蔵室冷気制御手段を前記冷蔵室へ冷気を導入する状態として前記冷蔵室の冷却時に前記蓄冷放冷手段を放冷する放冷運転を行うことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The control means circulates the cold air generated by the refrigeration cycle in the first blower with the freezer compartment cold air control means shutting off the cold air to the freezer compartment and operates the second blower to operate the refrigeration. 3. The cool-down operation in which the cool storage / cooling means is allowed to cool at the time of cooling the refrigerating room with the room cool air control means being in a state of introducing cool air into the refrigerating room. refrigerator. 前記制御手段は、前記圧縮機の運転を停止し、前記冷凍室冷気制御手段を前記冷凍室への冷気を遮断する状態且つ前記冷蔵室冷気制御手段を前記冷蔵室へ冷気を導入する状態とし、前記第1送風機を稼働させて前記冷却器に生成した霜を冷却源として前記冷蔵室の冷却を行うとともに、前記第2送風機を稼働させて前記蓄冷放冷手段を放冷する放冷運転を行うことを特徴とする請求項1または請求項2に記載の冷蔵庫。   The control means stops the operation of the compressor, sets the freezer compartment cold air control means to shut off the cold air to the freezer compartment, and sets the cold room cool air control means to a state in which cold air is introduced into the refrigerator room, The refrigeration chamber is cooled using frost generated in the cooler by operating the first blower as a cooling source, and a cooling operation is performed in which the second cooler is operated to cool the cool storage / cooling means. The refrigerator according to claim 1 or 2, characterized by the above-mentioned. 前記制御手段は、前記冷凍室冷気制御手段を前記冷凍室への冷気を遮断する状態且つ前記冷蔵室冷気制御手段を前期冷蔵室へ冷気を導入する状態としたまま、前記冷却器の除霜運転中に前記第2送風機を稼働させて前記蓄冷放冷手段を放冷する放冷運転を行うことを特徴とする請求項6に記載の冷蔵庫。   The control means is configured to perform a defrosting operation of the cooler while keeping the freezing room cold air control means in a state of blocking cold air to the freezing room and keeping the cold room cooling air control means in a state of introducing cold air into the previous cold room. The refrigerator according to claim 6, wherein a cooling operation is performed in which the second blower is operated to cool the cool storage / cooling means. 前記蓄冷放冷手段の蓄冷状態を検知する蓄冷状態検知手段を設けたことを特徴とする請求項1から請求項7のいずれか1項に記載の冷蔵庫。   The refrigerator according to any one of claims 1 to 7, further comprising: a cold storage state detection unit that detects a cold storage state of the cold storage / cooling unit. 前記蓄冷運転および前記放冷運転の実施は、前記蓄冷放冷手段の蓄冷状態を検知する温度センサと、前記蓄冷放冷手段を設置した冷却室の温度を検知する温度センサと、前記冷却器に設けた温度センサとで検知される温度によって制御されることを特徴とする請求項1から請求項8のいずれか1項に記載の冷蔵庫。   The cold storage operation and the cooling operation are performed by a temperature sensor that detects a cold storage state of the cold storage and cooling means, a temperature sensor that detects a temperature of a cooling chamber in which the cold storage and cooling means is installed, and the cooler. It controls by the temperature detected with the provided temperature sensor, The refrigerator of any one of Claims 1-8 characterized by the above-mentioned.
JP2010141720A 2010-06-22 2010-06-22 Refrigerator Withdrawn JP2012007760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141720A JP2012007760A (en) 2010-06-22 2010-06-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141720A JP2012007760A (en) 2010-06-22 2010-06-22 Refrigerator

Publications (1)

Publication Number Publication Date
JP2012007760A true JP2012007760A (en) 2012-01-12

Family

ID=45538525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141720A Withdrawn JP2012007760A (en) 2010-06-22 2010-06-22 Refrigerator

Country Status (1)

Country Link
JP (1) JP2012007760A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148344A (en) * 2012-01-20 2013-08-01 Innovation Thru Energy Co Ltd Combination-type refrigerating cabinet
JP2013253740A (en) * 2012-06-07 2013-12-19 Fuji Electric Co Ltd Cold air circulation type showcase
JP2014088987A (en) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp Refrigerator system
CN104583695A (en) * 2012-09-26 2015-04-29 日立空调·家用电器株式会社 Refrigerator
CN108444185A (en) * 2018-04-10 2018-08-24 合肥美菱股份有限公司 A kind of refrigerator and its control method with ducting assembly
CN113983739A (en) * 2021-10-29 2022-01-28 珠海格力电器股份有限公司 Refrigerating system, refrigerator and control method of refrigerator
CN114234529A (en) * 2021-12-23 2022-03-25 珠海格力电器股份有限公司 Refrigerator and control method thereof
WO2023095527A1 (en) * 2021-11-26 2023-06-01 パナソニックIpマネジメント株式会社 Refrigerator
WO2023246543A1 (en) * 2022-06-22 2023-12-28 海尔智家股份有限公司 Refrigerator and control method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013148344A (en) * 2012-01-20 2013-08-01 Innovation Thru Energy Co Ltd Combination-type refrigerating cabinet
JP2013253740A (en) * 2012-06-07 2013-12-19 Fuji Electric Co Ltd Cold air circulation type showcase
CN104583695A (en) * 2012-09-26 2015-04-29 日立空调·家用电器株式会社 Refrigerator
CN104583695B (en) * 2012-09-26 2016-09-28 日立空调·家用电器株式会社 Refrigerator
JP2014088987A (en) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp Refrigerator system
CN108444185A (en) * 2018-04-10 2018-08-24 合肥美菱股份有限公司 A kind of refrigerator and its control method with ducting assembly
CN113983739A (en) * 2021-10-29 2022-01-28 珠海格力电器股份有限公司 Refrigerating system, refrigerator and control method of refrigerator
WO2023095527A1 (en) * 2021-11-26 2023-06-01 パナソニックIpマネジメント株式会社 Refrigerator
CN114234529A (en) * 2021-12-23 2022-03-25 珠海格力电器股份有限公司 Refrigerator and control method thereof
WO2023246543A1 (en) * 2022-06-22 2023-12-28 海尔智家股份有限公司 Refrigerator and control method therefor

Similar Documents

Publication Publication Date Title
JP5571044B2 (en) refrigerator
JP5017340B2 (en) refrigerator
JP5847626B2 (en) Refrigerator and operation method thereof
JP2012007760A (en) Refrigerator
JP5530852B2 (en) refrigerator
WO2012157263A1 (en) Refrigerator
JP2010002071A (en) Refrigerator
JP2013061089A (en) Refrigerator
US11668512B2 (en) Refrigerator and method for controlling the same
JP2008249292A (en) Refrigerator
JP2006266585A (en) Refrigerator
JP2015222131A (en) refrigerator
JP6752107B2 (en) refrigerator
JP6709363B2 (en) refrigerator
US20180313596A1 (en) Refrigerator and method for controlling the same
JP2017215108A (en) refrigerator
JP2015218943A (en) refrigerator
JP4982537B2 (en) refrigerator
JP5838238B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP5376796B2 (en) refrigerator
JP6186187B2 (en) refrigerator
JP2006064314A (en) Cold storage type cold insulation storage
JP6744731B2 (en) refrigerator
JP2014240710A (en) Refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903