JP2010002071A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2010002071A
JP2010002071A JP2008158976A JP2008158976A JP2010002071A JP 2010002071 A JP2010002071 A JP 2010002071A JP 2008158976 A JP2008158976 A JP 2008158976A JP 2008158976 A JP2008158976 A JP 2008158976A JP 2010002071 A JP2010002071 A JP 2010002071A
Authority
JP
Japan
Prior art keywords
defrosting
temperature
cooler
temperature sensor
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008158976A
Other languages
Japanese (ja)
Inventor
Akiyoshi Ohira
昭義 大平
Ryoji Kawai
良二 河井
Masayuki Shibayama
昌幸 柴山
Akihisa Hirota
明久 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008158976A priority Critical patent/JP2010002071A/en
Publication of JP2010002071A publication Critical patent/JP2010002071A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of improving accuracy in forecasting a frosting amount, and reducing power consumption in defrosting. <P>SOLUTION: This refrigerator includes a cooler temperature sensor 35 for determining completion of defrosting, and a temperature sensor 37 for defrosting disposed on an upper cover 53 to forecast the frosting amount. The temperature sensor 37 for defrosting is mounted on a top face of a metallic cover member of the upper cover 53 disposed between a lower part of a cooler 7 and a defrosting heater 22 while thermally kept into contact therewith. When the frosting amount is small, the amount of defrosting water dropping on the cover member is small, thus a temperature detected by the temperature sensor 37 for defrosting after the lapse of a prescribed time from the start of defrosting, is increased. As the amount of defrosting water dropping on the cover member is much when the frosting amount is much, a state of the temperature detected by the temperature sensor 37 for defrosting lower in comparison with the case when the frosting amount is small, is continued long by being cooled by the defrosting water. Accordingly, the frosting amount can be forecasted based on the temperature detected by the temperature sensor 37 for defrosting, and a temperature for determining completion of defrosting is switched according to a result of forecasting. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は冷蔵庫の冷却器に成長した霜の除去を行なう除霜運転に関するものである。   The present invention relates to a defrosting operation for removing frost grown on a refrigerator cooler.

冷蔵庫に保存した食品からの水分蒸発や、冷蔵庫の扉の開閉時の外気侵入により冷却器に霜が成長する。冷却器のフィン表面に霜が成長すると、次第に通風抵抗が大きくなるため十分に熱交換できなくなり、冷却性能の低下をもたらす。従って、フィンのピッチを狭くして空気側の熱交換性能を向上させることは容易ではない。しかしながら、冷蔵庫の省エネルギ性向上と、コンパクト且つ大容量化を両立させる冷蔵庫のニーズは高く、除霜効率の向上(除霜時間の短縮、着霜量低減等)による冷却器の高性能化は、冷蔵庫を開発する上で重要である。   Frost grows in the cooler due to evaporation of water from food stored in the refrigerator and intrusion of outside air when the refrigerator door is opened and closed. When frost grows on the fin surface of the cooler, the ventilation resistance gradually increases, so that heat cannot be sufficiently exchanged, resulting in a decrease in cooling performance. Therefore, it is not easy to improve the heat exchange performance on the air side by narrowing the pitch of the fins. However, there is a high need for refrigerators that can achieve both energy saving and compact and large capacity refrigerators. Higher performance of coolers by improving defrosting efficiency (shortening defrosting time, reducing frost formation, etc.) It is important in developing a refrigerator.

従来の冷却器の除霜は、冷却器の下側に設けた除霜ヒータ(例えば、ガラス管ヒータ)を用い、冷却器に設置した冷却器温度センサの温度が、着霜量によらず一定温度以上、例えば、10℃になるまで加熱し続ける。この方式は冷却器収納室内の空気と、冷却器周辺部を加熱して霜を解かすため、霜の解け残りが少ないことが特徴である。
しかしながら、冷却器以外、例えば、庫内送風機(本願発明における送風機に対応)のファンガードなど冷却器周辺部の部品や庫内をも同時に加熱してしまうためエネルギの無駄が多く、特に着霜量が少ない場合、投入エネルギのうち除霜に費やされるエネルギの割合が小さくなり、冷蔵庫の室内の温度上昇を引き起こし易くなる。
The conventional defroster of the cooler uses a defrost heater (for example, a glass tube heater) provided on the lower side of the cooler, and the temperature of the cooler temperature sensor installed in the cooler is constant regardless of the amount of frost formation. Continue heating to above temperature, eg, 10 ° C. This method is characterized in that there is little unmelted frost because the air in the cooler housing chamber and the periphery of the cooler are heated to defrost.
However, other than the cooler, for example, the parts around the cooler such as the fan guard of the internal fan (corresponding to the blower in the present invention) and the interior of the cooler are heated at the same time. When there is little, the ratio of the energy spent for defrosting among input energy will become small, and it will become easy to cause the temperature rise in the room | chamber interior of a refrigerator.

除霜に使われなかったエネルギは全て庫内の熱負荷になるため、除霜終了後の再冷却運転時間の増加にもつながり、消費電力量の増加を招く。従って、除霜時の消費電力量の低減をするためには、着霜量の低減や除霜時の熱伝達性能向上の他に、着霜量に応じた除霜運転時間の設定を行う必要がある。
冷蔵庫運転中の着霜量の予測方法として、例えば、一定時間におけるドアの開閉回数、圧縮機の積算運転時間、庫外温度等を用いる方法は、着霜量の推定に利用される一般的な方法であり、既に製品に適用されている例もある。
Since all the energy that has not been used for defrosting becomes a heat load in the cabinet, it leads to an increase in the recooling operation time after the completion of the defrosting, leading to an increase in power consumption. Therefore, in order to reduce the power consumption during defrosting, it is necessary to set the defrosting operation time according to the frosting amount in addition to reducing the frosting amount and improving the heat transfer performance during defrosting. There is.
As a method for predicting the amount of frost formation during operation of the refrigerator, for example, a method using the number of times the door is opened and closed in a certain time, the cumulative operation time of the compressor, the outside temperature, etc. is a general method used for estimating the amount of frost formation. There are also examples that are already applied to products.

特許文献1では、扉の開閉数に応じて着霜量を予測しており、扉開閉数の基準値よりも少ない場合、着霜量が少ないと判定し、通常よりも除霜完了判定温度を下げて除霜時間を短くして消費電力量の低減を図っている。また、特許文献2では、除霜周期の最適化を行なうために、除霜中の冷却器の温度を測定することにより、温度勾配から着霜量を推定している。着霜量が多い場合には、除霜開始から霜が解け始まるまでに時間を要するため、温度勾配が緩くなり、逆に着霜量が少ない場合には、温度勾配は急になる。従って、除霜中の冷却器の温度勾配が緩い場合には着霜量が多いとして、現在行なわれている除霜間隔よりも短くして、除霜間隔を最適化している。
特開平8−261629号公報 特開平8−94234号公報
In Patent Document 1, the amount of frost formation is predicted according to the number of doors opened and closed. If the amount of frost formation is smaller than the reference value of the number of doors open and closed, it is determined that the amount of frost formation is small, The defrosting time is shortened to reduce the power consumption. Moreover, in patent document 2, in order to optimize a defrost cycle, the amount of frost formation is estimated from a temperature gradient by measuring the temperature of the cooler in defrost. When the amount of frost formation is large, it takes time from the start of defrosting until the frost starts to melt, so the temperature gradient becomes gentle. Conversely, when the amount of frost formation is small, the temperature gradient becomes steep. Therefore, when the temperature gradient of the cooler during defrosting is gentle, the amount of frost formation is large, and the defrosting interval is optimized by making it shorter than the current defrosting interval.
JP-A-8-261629 JP-A-8-94234

以上のように、従来技術の冷蔵庫の除霜では、扉の開閉回数、圧縮機の積算運転時間による着霜量の予想を行っている場合が多いので着霜量の予想値の精度が問題であり、実使用上問題にならないように、除霜完了判定温度を高めに設定して霜の解け残りを防止していることが多い。このような場合、実際には予想値よりも霜が少ない場合、霜が全て解けた後でも除霜ヒータに通電し、冷却器の温度を高めていることが多く、消費電力量が増加する要因となっていた。
本発明は係る従来の技術の課題を解決するためになされたものであり、着霜量の予測精度を高め、除霜時の消費電力量の低減を図ることができる冷蔵庫を提供することにある。
As described above, in the conventional defrosting of refrigerators, there are many cases where the amount of frost formation is predicted based on the number of times the door is opened and closed and the cumulative operation time of the compressor. There are many cases where the defrosting completion determination temperature is set to a high value to prevent the frost from remaining undissolved so as not to cause a problem in actual use. In such a case, when there is actually less frost than expected, it is often the case that the defrost heater is energized even after all the frost has melted, and the temperature of the cooler is often increased, which increases the power consumption. It was.
The present invention has been made to solve the problems of the related art, and is to provide a refrigerator capable of improving the prediction accuracy of the amount of frost formation and reducing the power consumption during defrosting. .

本発明の請求項1に記載の発明の冷蔵庫は、圧縮機、凝縮機、絞り、冷却器を順次冷媒配管で接続した冷凍サイクルと、前記冷却器で冷却した空気を循環する送風機と前記冷却器の下方に設けた除霜ヒータと、を備えた冷蔵庫において、前記冷却器と前記除霜ヒータとの間に、除霜用温度センサを設けたことを特徴とする。   The refrigerator according to claim 1 of the present invention includes a refrigeration cycle in which a compressor, a condenser, a throttle, and a cooler are sequentially connected by a refrigerant pipe, a blower that circulates air cooled by the cooler, and the cooler In the refrigerator provided with the defrosting heater provided below, a defrosting temperature sensor is provided between the cooler and the defrosting heater.

請求項1に記載の発明によれば、前記冷却器と前記除霜ヒータとの間に、除霜用温度センサを設けるので、除霜ヒータによる冷却器に付着した霜が解けてできた除霜水による、除霜用温度センサ周囲の温度変化を検出することが可能となる。   According to invention of Claim 1, since the temperature sensor for defrosting is provided between the said cooler and the said defrost heater, the defrost which the frost adhering to the cooler by a defrost heater melt | dissolved was formed. It becomes possible to detect the temperature change around the defrosting temperature sensor due to water.

本発明の請求項2に記載の発明の冷蔵庫は、請求項1に記載の発明の構成に加えて、前記除霜ヒータの上方を覆うカバー部材を設け、前記除霜用温度センサが、前記カバー部材の温度を検出するように取り付けられたことを特徴とする。   The refrigerator of the invention described in claim 2 of the present invention is provided with a cover member that covers the top of the defrost heater in addition to the configuration of the invention described in claim 1, and the temperature sensor for defrost is the cover. It is attached so that the temperature of a member may be detected.

前記カバー部材は、除霜時に冷却器からの除霜水の滴下を受けるので、カバー部材の温度を除霜用温度センサで検出することで、除霜運転開始当初の冷却器への着霜量の多寡や、除霜運転の進行による除霜水量の変化を、除霜用温度センサが検出する温度から検出することが可能となる。   Since the cover member receives dripping of defrost water from the cooler at the time of defrosting, detecting the temperature of the cover member with the temperature sensor for defrosting allows the amount of frost formation on the cooler at the beginning of the defrosting operation. It is possible to detect a change in the amount of defrost water due to the progress of the defrosting operation from the temperature detected by the defrosting temperature sensor.

本発明の請求項3に記載の発明の冷蔵庫は、請求項2に記載の発明の構成に加えて、前記除霜ヒータは、前記カバー部材に熱接触するように取り付けられたことを特徴とする。   The refrigerator of the invention described in claim 3 of the present invention is characterized in that, in addition to the configuration of the invention described in claim 2, the defrost heater is attached so as to be in thermal contact with the cover member. .

前記カバー部材は、除霜時に冷却器からの除霜水の滴下を受けるので、カバー部材の温度を除霜用温度センサで直接検出することで、除霜運転開始当初の冷却器への着霜量の多寡や、除霜運転の進行による除霜水量の変化を、除霜用温度センサが検出する温度から検出することが可能となる。   Since the cover member receives dripping water from the cooler during defrosting, the cover member directly detects the temperature of the cover member with the temperature sensor for defrosting, thereby frosting the cooler at the beginning of the defrosting operation. It becomes possible to detect a change in the amount of defrost water due to the amount of the amount and the progress of the defrosting operation from the temperature detected by the defrosting temperature sensor.

本発明によれば、着霜量の予測精度を高め、除霜時の消費電力量の低減を図ることができる冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the prediction accuracy of the amount of frost formation can be improved, and the refrigerator which can aim at reduction of the power consumption at the time of defrost can be provided.

本発明に係る冷蔵庫の実施形態を、図を参照しながら説明する。
図1は、本実施形態の冷蔵庫の正面外形図であり、図2は、冷蔵庫の庫内の構成を表す図1におけるX−X縦断面図である。図3は、冷蔵庫の庫内の構成を表す正面図であり、冷気ダクトや吹き出し口の配置などを示す図である。
図1に示すように、本実施形態の冷蔵庫1は、上方から、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6から構成されている。
An embodiment of a refrigerator according to the present invention will be described with reference to the drawings.
FIG. 1 is a front external view of a refrigerator according to the present embodiment, and FIG. 2 is an XX longitudinal sectional view in FIG. 1 showing a configuration inside the refrigerator. FIG. 3 is a front view illustrating a configuration inside the refrigerator, and is a diagram illustrating the arrangement of the cold air duct and the outlet.
As shown in FIG. 1, the refrigerator 1 of this embodiment is comprised from the upper part from the refrigerator compartment 2, the ice making room 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6. As shown in FIG.

冷蔵室2は前方側に、左右に分割された観音開きの冷蔵室扉2a,2bを備え、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a,2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを単に扉2a,2b,3a,4a,5a,6aと称する。
また、冷蔵庫1は、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知する図示しないアラーム、冷蔵室2の温度設定や上段冷凍室4や下段冷凍室5の温度設定をする図示しない温度設定器等を備えている。
The refrigerating room 2 includes front and rear refrigerating room doors 2a and 2b which are divided into left and right sides, and the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are respectively drawer-type ice making room doors. 3a, an upper freezer compartment door 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a.
The refrigerator 1 includes a door sensor (not shown) that detects the open / closed state of each door of the doors 2a, 2b, 3a, 4a, 5a, and 6a, and a state determined to be the door open state for a predetermined time, for example, 1 minute. When the operation is continued, an alarm (not shown) for notifying the user, a temperature setting unit (not shown) for setting the temperature of the refrigerator compartment 2 and the temperature of the upper freezer compartment 4 and the lower freezer compartment 5 are provided.

図2に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材(発泡ポリウレタン)を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10は複数の真空断熱材25を実装している。
庫内は、断熱仕切壁28により冷蔵室2と、上段冷凍室4及び製氷室3(図1参照、図2中で製氷室3は図示されていない)とが隔てられ、断熱仕切壁29により、下段冷凍室5と野菜室6とが隔てられている。
扉2a,2b(図1参照、図2では冷蔵室扉2bは図示せず)の庫内側には複数の扉ポケット32が備えられている。また、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。
As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material (foamed polyurethane). The heat insulating box 10 of the refrigerator 1 has a plurality of vacuum heat insulating materials 25 mounted thereon.
The refrigerator compartment 2 is separated from the refrigerator compartment 2 by the heat insulating partition wall 28, and the upper freezer compartment 4 and the ice making chamber 3 (see FIG. 1, the ice making chamber 3 is not shown in FIG. 2). The lower freezer compartment 5 and the vegetable compartment 6 are separated.
A plurality of door pockets 32 are provided on the inner side of the doors 2a and 2b (see FIG. 1, the refrigerator compartment door 2b is not shown in FIG. 2). The refrigerator compartment 2 is partitioned into a plurality of storage spaces in the vertical direction by a plurality of shelves 36.

図2に示すように、上段冷凍室4、下段冷凍室5及び野菜室6は、それぞれの室の前方に備えられた扉3a,4a,5a,6aと一体に、収納容器3b,4b,5b,6bがそれぞれ設けられており、扉4a,5a,6aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器4b,5b,6bが引き出せるようになっている。図1に示す製氷室3にも同様に、扉3aと一体に、図示しない収納容器(図2中(3b)で表示)が設けられ、扉3aの図示しない取手部に手を掛けて手前側に引き出すことにより収納容器3bが引き出せるようになっている。   As shown in FIG. 2, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are integrated with doors 3a, 4a, 5a, 6a provided in front of the respective compartments, and storage containers 3b, 4b, 5b. , 6b are provided, and the storage containers 4b, 5b, 6b can be pulled out by placing a hand on a handle portion (not shown) of the doors 4a, 5a, 6a and pulling it out to the front side. Similarly, the ice making chamber 3 shown in FIG. 1 is provided with an unillustrated storage container (indicated by (3b) in FIG. 2) integrally with the door 3a. The container 3b can be pulled out by pulling it out.

図2に示すように、冷却器7は下段冷凍室5の略背部に備えられた冷却器収納室8内に設けられており、冷却器7の上方に設けられた庫内送風機(送風機)9により冷却器7と熱交換して冷やされた空気(冷気、以下、冷却器7で冷やされてできた低温空気を冷気と称する)が冷蔵室送風ダクト11、符号省略の野菜室送風ダクト(図3参照)、上段冷凍室送風ダクト12、下段冷凍室送風ダクト13及び図示しない製氷室送風ダクトを介して、冷蔵室2、野菜室6、上段冷凍室4、下段冷凍室5、製氷室3の各室へ送られる。各室への送風は冷蔵室ダンパ20と冷凍室ダンパ50の開閉により制御される。
ちなみに、冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5及び野菜室6への各送風ダクトは、図3に破線で示すように冷蔵庫1の各室の背面側に設けられている。
As shown in FIG. 2, the cooler 7 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezing chamber 5, and an internal fan (blower) 9 provided above the cooler 7. The air cooled by heat exchange with the cooler 7 (cold air, hereinafter, low temperature air cooled by the cooler 7 is referred to as cold air) is a refrigerator compartment air duct 11, a vegetable room air duct (not shown) (not shown). 3), the freezer compartment 2, the vegetable compartment 6, the upper freezer compartment 4, the lower freezer compartment 5, and the ice compartment 3 through the upper freezer compartment air duct 12, the lower freezer compartment air duct 13, and the ice making compartment air duct (not shown). Sent to each room. Air blowing to each room is controlled by opening and closing the refrigerator compartment damper 20 and the freezer compartment damper 50.
Incidentally, the air ducts to the refrigerator compartment 2, the ice making room 3, the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6 are provided on the back side of each room of the refrigerator 1 as indicated by broken lines in FIG. Yes.

具体的には、冷蔵室ダンパ20が開状態、冷凍室ダンパ50が閉状態のときには、冷気は、冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られ、冷蔵室送風ダクト11から分岐した野菜室送風ダクト(図3参照)を経て、吹き出し口6cから野菜室6に送られる。
なお、冷蔵室2を冷却した冷気は、例えば、冷蔵室2の下面に設けられた戻り口2dから冷蔵室戻りダクト16を経て、冷却器収納室8(図4参照)の正面から見て、例えば、右側下部に戻る。また、野菜室6からの戻り空気は、戻り口6dを経て、冷却器収納室8の下部に戻る。
Specifically, when the refrigerator compartment damper 20 is in the open state and the freezer compartment damper 50 is in the closed state, the cold air is sent to the refrigerator compartment 2 from the air outlets 2c provided in multiple stages via the refrigerator compartment air duct 11. It passes through the vegetable room ventilation duct (refer FIG. 3) branched from the room ventilation duct 11, and is sent to the vegetable room 6 from the blower outlet 6c.
Note that the cold air that has cooled the refrigerator compartment 2 is viewed from the front of the cooler storage compartment 8 (see FIG. 4) through the refrigerator outlet return duct 16 from the return port 2d provided on the lower surface of the refrigerator compartment 2, for example. For example, return to the lower right side. The return air from the vegetable compartment 6 returns to the lower part of the cooler storage compartment 8 through the return opening 6d.

図3では冷凍室ダンパ50が省略されているが、冷凍室ダンパ50が開状態のとき、冷却器7で熱交換された冷気が庫内送風機9により図示省略の製氷室送風ダクトや上段冷凍室送風ダクト12を経て吹き出し口3c,4cからそれぞれ製氷室3、上段冷凍室4へ送風され、下段冷凍室送風ダクト13を経て吹き出し口5cから上段冷凍室4へ送風される。
上段冷凍室4、下段冷凍室5、製氷室3を冷却した冷気は、下段冷凍室5の奥下方に設けられた冷凍室戻り口17を介して、冷却器収納室8に戻る。
Although the freezer damper 50 is omitted in FIG. 3, when the freezer damper 50 is in an open state, the cold air heat-exchanged by the cooler 7 is not shown in the drawing by an internal fan 9 and an ice making chamber air duct or upper freezer The air is blown from the blowout ports 3c and 4c to the ice making chamber 3 and the upper freezer compartment 4 through the blower duct 12, and is blown from the blowout port 5c to the upper freezer chamber 4 through the lower freezer compartment blower duct 13.
The cold air that has cooled the upper freezer room 4, the lower freezer room 5, and the ice making room 3 returns to the cooler storage room 8 through the freezer return port 17 provided in the lower part of the lower freezer room 5.

また、冷却器7の下方に除霜ヒータ22が設置されており、除霜ヒータ22の上方には、除霜水E(図5参照)が除霜ヒータ22に滴下することを防止するために、上部カバー53が設けられている。
冷却器7及びその周辺の冷却器収納室8の壁に付着した霜が除霜によって融解することで生じた除霜水Eは冷却器収納室8の下部に備えられた樋23に流入した後に、排水管27を介して後記する機械室19に配された蒸発皿21に達し、後記する凝縮器の熱により蒸発させられる。
Further, a defrost heater 22 is installed below the cooler 7, and in order to prevent the defrost water E (see FIG. 5) from dropping on the defrost heater 22 above the defrost heater 22. An upper cover 53 is provided.
After the defrost water E generated by the frost adhering to the wall of the cooler 7 and the surrounding cooler storage chamber 8 being melted by the defrost flows into the tub 23 provided at the lower part of the cooler storage chamber 8. Then, it reaches the evaporating dish 21 disposed in the machine room 19 to be described later through the drain pipe 27 and is evaporated by the heat of the condenser to be described later.

また、冷却器7には冷却器温度センサ35(図3中、冷却器温度センサ35は必ずしも正確な取り付け箇所を示すものではない)、冷蔵室2には冷蔵室温度センサ33、下段冷凍室5には冷凍室温度センサ34がそれぞれ備えられており、それぞれ冷却器7の温度(以下、冷却器温度と称する)、冷蔵室2の温度(以下、冷蔵室温度と称する)、下段冷凍室5の温度(以下、冷凍室温度と称する)を検出できるようになっている。
ちなみに、冷蔵庫1は、庫外の温湿度環境(外気温度、外気湿度)を検出する図示しない外気温度センサと外気湿度センサを備えている。野菜室6にも野菜室温度センサ33Aを配置しても良い。
本実施形態では、更に、上部カバー53にも除霜用温度センサ37(図4参照)が取り付けられている。冷却器温度センサ35、除霜用温度センサ37の詳細な取り付け箇所については後記する。
Further, the cooler 7 has a cooler temperature sensor 35 (in FIG. 3, the cooler temperature sensor 35 does not necessarily indicate an accurate mounting location), and the refrigerating room 2 has the refrigerating room temperature sensor 33 and the lower freezing room 5. Are respectively provided with a freezer temperature sensor 34, the temperature of the cooler 7 (hereinafter referred to as the cooler temperature), the temperature of the refrigerator compartment 2 (hereinafter referred to as the refrigerator temperature), and the lower freezer compartment 5. The temperature (hereinafter referred to as freezer compartment temperature) can be detected.
Incidentally, the refrigerator 1 includes an outside air temperature sensor and an outside air humidity sensor (not shown) that detect a temperature and humidity environment (outside air temperature, outside air humidity) outside the refrigerator. A vegetable room temperature sensor 33 </ b> A may also be arranged in the vegetable room 6.
In the present embodiment, a defrosting temperature sensor 37 (see FIG. 4) is also attached to the upper cover 53. Detailed mounting locations of the cooler temperature sensor 35 and the defrosting temperature sensor 37 will be described later.

断熱箱体10の下部背面側には、機械室19が設けられており、機械室19には、圧縮機24及び図3中に図示しない凝縮器が収納されており、図示しない庫外送風機により凝縮器が通風される。
ちなみに、本実施形態では、イソブタンを冷媒として用い、冷媒封入量は約80gと少量にしている。
A machine room 19 is provided on the lower back side of the heat insulating box 10. The machine room 19 contains a compressor 24 and a condenser (not shown in FIG. 3). The condenser is ventilated.
Incidentally, in this embodiment, isobutane is used as a refrigerant, and the amount of refrigerant enclosed is as small as about 80 g.

冷蔵庫1の天井壁上面側にはCPU,ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板31が配置されており、制御基板31は、前記した外気温度センサ、外気湿度センサ、冷却器温度センサ35、冷蔵室温度センサ33、冷凍室温度センサ34、冷却器温度センサ35、除霜用温度センサ37、扉2a,2b,3a,4a,5a,6aの各扉の開閉状態をそれぞれ検知する前記した扉センサ、冷蔵室2内壁に設けられた図示しない温度設定器、下段冷凍室5内壁に設けられた図示しない温度設定器等と接続し、前記ROMに予め搭載されたプログラムにより、圧縮機24のオン、オフ等の制御、冷蔵室ダンパ20及び冷凍室ダンパ50を個別に駆動する図示省略のそれぞれのアクチュエータの制御、庫内送風機9のオン/オフ制御や回転速度制御、前記庫外送風機のオン/オフ制御や回転速度制御等の制御、前記した扉開放状態を報知するアラームのオン/オフ等の制御を行う。   A control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit and the like are mounted is arranged on the upper surface side of the ceiling wall of the refrigerator 1. The temperature sensor 35, the refrigerator temperature sensor 33, the freezer temperature sensor 34, the cooler temperature sensor 35, the defrosting temperature sensor 37, and the open / closed states of the doors 2a, 2b, 3a, 4a, 5a and 6a are detected. Connected to the door sensor described above, a temperature setter (not shown) provided on the inner wall of the refrigerator compartment 2, a temperature setter (not shown) provided on the inner wall of the lower freezer compartment 5, etc. ON / OFF control of the machine 24, control of the respective actuators (not shown) for individually driving the refrigerator compartment damper 20 and the freezer compartment damper 50, the internal fan 9 On / off control or rotational speed control, the outside-compartment blower ON / OFF control and control of the rotational speed control and the like, a control such as an alarm on / off to notify the above-mentioned door open performed.

(冷却器収納室の構成)
次に冷却器収納室8の構成について図4から図6を参照しながら説明する。
図4は、冷却器とその周辺部の正面部分拡大図であり、図5は、冷却器とその周辺部の側面部分拡大図であり、図6は、除霜ヒータの詳細斜視図である。
冷却器7は冷却器配管7aに多数のフィン7bを取り付けたユニットを複数段接続して構成されており、図4では庫内戻り冷気の流れ方向に対して7段構成になって、下段冷凍室5の奥側壁5d(図5参照)の背面に設置されている。冷却器入口管55は、圧縮機24(図2参照)で圧縮された冷媒が図示しない凝縮器で放熱されて、それに続く図示しない絞りを経た冷媒配管に接続し、冷却器出口管56は圧縮機24の吸い込み側に接続されている。冷却器出口管56の途中には、冷媒量を調節するヘッダー57を設けている。
圧縮機24、図示しない凝縮機及び絞り、冷却器7を順次冷媒配管で接続したものを冷凍サイクルと一般に呼称する。
(Configuration of cooler storage room)
Next, the configuration of the cooler storage chamber 8 will be described with reference to FIGS.
4 is a front partial enlarged view of the cooler and its peripheral part, FIG. 5 is a side partial enlarged view of the cooler and its peripheral part, and FIG. 6 is a detailed perspective view of the defrosting heater.
The cooler 7 is configured by connecting a plurality of units each having a plurality of fins 7b attached to the cooler pipe 7a. In FIG. 4, the cooler 7 has a seven-stage configuration with respect to the flow direction of the cool air returning to the inside of the refrigerator. It is installed on the back of the back side wall 5d (see FIG. 5) of the chamber 5. In the cooler inlet pipe 55, the refrigerant compressed by the compressor 24 (see FIG. 2) is radiated by a condenser (not shown) and connected to a refrigerant pipe through a throttle (not shown), and the cooler outlet pipe 56 is compressed. It is connected to the suction side of the machine 24. In the middle of the cooler outlet pipe 56, a header 57 for adjusting the refrigerant amount is provided.
A compressor 24, a condenser and a throttle (not shown), and a cooler 7 that are sequentially connected by a refrigerant pipe are generally called a refrigeration cycle.

図4に示すように冷蔵室戻りダクト16は、冷却器7を収納する冷却器収納室8の右側に仕切り壁を介して設けてあり、冷蔵室2(図3参照)からの破線矢印Dで示す冷蔵室戻り空気は、冷蔵室戻りダクト16を経て、正面から見て右側下方部から冷却器7へ流入する。一方、製氷室3(図3参照)や上段冷凍室4(図3参照)や下段冷凍室5(図3参照)を冷却して、冷凍室戻り口17(図3参照)を通過した冷凍室戻り空気は実線矢印Cで示すように冷却器7の正面下方部から流入する。
図5に示すように冷却器7の下には、除霜水Eを一時的に受ける樋23の上方に除霜ヒータ22を設けている。
As shown in FIG. 4, the refrigerating chamber return duct 16 is provided on the right side of the cooler housing chamber 8 that houses the cooler 7 via a partition wall, and is indicated by a broken line arrow D from the refrigerating chamber 2 (see FIG. 3). The refrigerating room return air shown flows through the refrigerating room return duct 16 into the cooler 7 from the lower right side as viewed from the front. On the other hand, the ice compartment 3 (see FIG. 3), the upper freezer compartment 4 (see FIG. 3) and the lower freezer compartment 5 (see FIG. 3) are cooled and passed through the freezer return port 17 (see FIG. 3). The return air flows from the lower front part of the cooler 7 as indicated by the solid line arrow C.
As shown in FIG. 5, a defrost heater 22 is provided below the cooler 7 and above the eaves 23 that temporarily receives the defrost water E.

図4に戻って、冷却器入口管55の冷却器7のユニット寄りには、冷却器温度センサ35が冷却器入口管55に接触して取り付けられており、冷却器温度センサ35は信号線を介して制御基板31(図2参照)に接続されている。冷却器温度センサ35の設置場所は、最後に霜が解ける場所付近で、冷却器7に接触していれば良く、必ずしも冷却器入口管55の冷却器7のユニット寄りの位置と限定されるものではない。好ましくは、冷却器7の最上段のユニットの領域Bのフィン7bに熱接触させて設置することが好ましい。   Returning to FIG. 4, the cooler temperature sensor 35 is attached to the cooler inlet pipe 55 near the unit of the cooler 7 in contact with the cooler inlet pipe 55, and the cooler temperature sensor 35 is connected to the signal line. To the control board 31 (see FIG. 2). The place where the cooler temperature sensor 35 is installed should be in contact with the cooler 7 in the vicinity of the place where frost can be finally melted, and is not necessarily limited to the position of the cooler inlet pipe 55 near the unit of the cooler 7. is not. Preferably, the cooler 7 is installed in thermal contact with the fins 7b in the region B of the uppermost unit of the cooler 7.

図6に示すように除霜ヒータ22は、ヒータ部22aと放熱フィン22bから構成されている。ヒータ部22aは、例えば、ガラス管ヒータが挙げられるが、ガラス管表面の温度を一定温度以下に保つために、放熱フィン22bが設けてある。除霜ヒータ22と冷却器7の間には、除霜ヒータ22の両端に固定された端部材53bと、除霜ヒータ22の上部に除霜ヒータ22の軸方向に離間させて配置された補強部材53cとで支えられた山形形状のカバー部材53aを含む上部カバー53が設けてある。   As shown in FIG. 6, the defrosting heater 22 is comprised from the heater part 22a and the radiation fin 22b. For example, a glass tube heater may be used as the heater unit 22a, but a heat radiating fin 22b is provided in order to keep the temperature of the glass tube surface below a certain temperature. Between the defrost heater 22 and the cooler 7, an end member 53 b fixed to both ends of the defrost heater 22, and a reinforcement disposed on the top of the defrost heater 22 so as to be separated in the axial direction of the defrost heater 22. An upper cover 53 including a mountain-shaped cover member 53a supported by the member 53c is provided.

上部カバー53は、万一、冷媒配管から冷媒が漏れても高温のヒータ部22aに冷媒が直接吹き付けられて火災を生じないように防護するものであるが、本実施形態では、カバー部材53aは、例えば、ステンレス板で構成されている。また、ヒータ部22aにガラス管ヒータを用いた場合、そのガラス管に除霜水E(図5参照)が直接触れて、熱衝撃でガラス管を破損させる懼れがあるので、カバー部材53aは、ヒータ部22aに直接除霜水Eが滴下しないように保護する役目も持っている。したがって、カバー部材53aは、冷却器7の下方投影面と略同じ下方投影面積を有し、冷却器7の下方投影面を含むように位置している。   The upper cover 53 protects the refrigerant from being blown directly onto the high-temperature heater portion 22a even if the refrigerant leaks from the refrigerant pipe so as not to cause a fire. In this embodiment, the cover member 53a For example, it is comprised with the stainless steel plate. Further, when a glass tube heater is used for the heater portion 22a, the defrost water E (see FIG. 5) directly touches the glass tube, and the glass tube may be damaged by thermal shock. Moreover, it also has a role which protects so that the defrost water E may not be dripped directly at the heater part 22a. Therefore, the cover member 53a has a lower projection area substantially the same as the lower projection surface of the cooler 7, and is positioned so as to include the lower projection surface of the cooler 7.

そして、カバー部材53aの上面の冷蔵室戻りダクト16(図4参照)寄りには、カバー部材53aと同一素材のホルダ38によってカバー部材53aの上面に接触させられて除霜用温度センサ37が設置されている。除霜用温度センサ37も冷却器温度センサ35と同様に信号線を介して制御基板31(図2参照)に接続されている。
除霜ヒータ22で加熱すると、カバー部材53aの温度は最高で約140℃になるため、除霜用温度センサ37は高温対応型のセンサを使う必要がある。
なお、カバー部材53aは、除霜運転時の冷却器7から滴下する除霜水を受けて除霜の進行状態を除霜用温度センサ37に検出させるための媒体の役目の温度検出部材でもある。
A defrosting temperature sensor 37 is installed on the upper surface of the cover member 53a near the refrigeration chamber return duct 16 (see FIG. 4) and brought into contact with the upper surface of the cover member 53a by the holder 38 made of the same material as the cover member 53a. Has been. Similarly to the cooler temperature sensor 35, the defrosting temperature sensor 37 is also connected to the control board 31 (see FIG. 2) via a signal line.
When heated by the defrost heater 22, the temperature of the cover member 53 a reaches about 140 ° C. at maximum, so that the defrosting temperature sensor 37 needs to use a high temperature type sensor.
The cover member 53a is also a temperature detection member serving as a medium for receiving the defrost water dripped from the cooler 7 during the defrosting operation and causing the defrosting temperature sensor 37 to detect the defrosting progress state. .

また、カバー部材53aの横幅(左右幅)長さは、除霜ヒータ22の横幅長さと同等かそれ以上であり(図4参照)、また冷却器7の横幅(左右幅)長さと同等かそれ以上である(図4参照)。
カバー部材53aは、ヒータ部22aと冷却器7との間に設けており放熱フィン22bとは、補強部材53cが熱接触しているので、カバー部材53aの温度は、除霜開始直後に高温、例えば、約140℃程度になる。
Further, the lateral width (left / right width) of the cover member 53a is equal to or greater than the lateral width of the defrost heater 22 (see FIG. 4), and is equal to or greater than the lateral width (left / right width) of the cooler 7. This is the end (see FIG. 4).
Since the cover member 53a is provided between the heater portion 22a and the cooler 7 and the radiating fin 22b is in thermal contact with the reinforcing member 53c, the temperature of the cover member 53a is high immediately after the start of defrosting. For example, the temperature is about 140 ° C.

ところで、冷却器7に成長する霜の分布は、冷蔵室2(図3参照)からの戻り空気の方が水分を多く含んでいるため、冷蔵室戻り空気の流入の影響が大きい冷蔵室戻りダクト16を設置した側、すなわち、図4において、冷却器7の右側となる領域Bの方が冷却器7の左側となる領域Aよりも着霜量が多くなることが経験的に分かっている。   By the way, the distribution of the frost that grows in the cooler 7 is that the return air from the refrigerator compartment 2 (see FIG. 3) contains more moisture, so the influence of the inflow of the refrigerator compartment return air is large. It has been empirically known that the amount of frost formation on the side where 16 is installed, that is, the region B on the right side of the cooler 7 is larger than the region A on the left side of the cooler 7 in FIG.

(除霜用温度センサの温度検出挙動)
次に、図5を参照しながら冷却器7のフィン7bに成長した霜が、冷却器7の下方に設置した除霜ヒータ22の熱により解かされる場合の除霜用温度センサ37の温度検出挙動について説明する。
除霜開始直後、除霜水Eが滴下しないため、除霜ヒータ22からの熱は、輻射や熱伝達によりカバー部材53aに伝わり、更に、熱伝導によって除霜用温度センサ37に伝わる。そのため、カバー部材53aは加熱され温度は急上昇するが、その後、カバー部材53aの上方からは除霜水Eが滴下してくるため、カバー部材53aは冷却される。除霜ヒータ22から距離が近い冷却器7の最下段のユニットの冷却器配管7aやフィン7bから除霜は進行し、冷却器7の最上段のユニットのフィン7bに成長した霜が最後に解ける。
(Temperature detection behavior of defrosting temperature sensor)
Next, the temperature detection of the defrosting temperature sensor 37 when the frost that has grown on the fins 7 b of the cooler 7 is solved by the heat of the defrost heater 22 installed below the cooler 7 with reference to FIG. 5. The behavior will be described.
Immediately after the start of defrosting, the defrost water E does not drip, so that the heat from the defrost heater 22 is transmitted to the cover member 53a by radiation or heat transfer, and further to the defrosting temperature sensor 37 by heat conduction. Therefore, although the cover member 53a is heated and the temperature rapidly rises, the defrost water E is dropped from above the cover member 53a, so that the cover member 53a is cooled. The defrosting proceeds from the cooler pipe 7a and the fin 7b of the lowermost unit of the cooler 7 that is close to the defrosting heater 22, and the frost that has grown on the fin 7b of the uppermost unit of the cooler 7 is finally melted. .

すなわち、カバー部材53aは、冷却器7とほぼ同じ横幅長さであるので、除霜用温度センサ37で直接除霜水Eの温度を測定しなくても、カバー部材53aには必ず除霜水Eが滴下して冷却するので、カバー部材53aの温度を検出することで除霜水Eによるカバー部材53aの冷却の効果を検出することが可能となる。そこで、除霜開始後のカバー部材53aの温度変化を検出して、除霜開始後の所定時間における温度から着霜量を予測することにする。その詳細な作用については、図7の除霜制御のフローチャートの説明の中で後記する。   That is, since the cover member 53a has substantially the same width as the cooler 7, even if the temperature of the defrost water E is not directly measured by the defrosting temperature sensor 37, the cover member 53a must be defrosted water. Since E drops and cools, the cooling effect of the cover member 53a by the defrost water E can be detected by detecting the temperature of the cover member 53a. Therefore, the temperature change of the cover member 53a after the start of the defrosting is detected, and the amount of frost formation is predicted from the temperature at a predetermined time after the start of the defrosting. The detailed operation will be described later in the description of the flowchart of the defrost control in FIG.

(除霜制御)
次に、本実施形態における除霜運転の制御について説明する。
図7は除霜運転の制御の流れを示すフローチャートである。この制御は制御基板31(図2参照)において行われる。
ステップS1では、冷蔵庫1が起動されると、初期条件としてIFLAG=0とする。このフラグは、最寄りの除霜運転において着霜量少の除霜がなされたかどうかを示すもので、着霜量少の除霜がなされた場合はIFLAG=1となっており、そうでない場合はIFLAG=0となっている。ステップS2では、冷蔵室温度、冷凍室温度に応じて通常の冷却運転のモード、「冷凍室冷却運転」、「冷蔵室冷却運転」、「冷蔵室・冷凍室同時冷却運転」の一つを選択して、それに応じて冷蔵室ダンパ20及び冷凍室ダンパ50の開閉を制御して、冷却運転を行う。
冷却運転をしており、ステップS3では、扉2a,2b,3a,4a,5a,6aの開閉数、圧縮機24の積算運転時間、庫外温度、庫外湿度等によって、除霜開始条件が成立したかどうかの判定が所定の周期で行われる。除霜開始条件成立と判定された場合(Yes)は、ステップS4へ進み、そうでない場合はステップS2へ戻り冷却運転を続ける。
(Defrost control)
Next, control of the defrosting operation in this embodiment will be described.
FIG. 7 is a flowchart showing a control flow of the defrosting operation. This control is performed on the control board 31 (see FIG. 2).
In step S1, when the refrigerator 1 is started, IFLAG = 0 is set as an initial condition. This flag indicates whether or not defrosting with a small amount of frosting has been performed in the nearest defrosting operation. If defrosting with a small amount of frosting is performed, IFLAG = 1, otherwise. IFLAG = 0. In step S2, one of the normal cooling operation modes, “freezer cooling operation”, “refrigeration chamber cooling operation”, and “refrigeration chamber / freezer simultaneous cooling operation” is selected according to the temperature of the refrigerator compartment and the temperature of the freezer compartment. Accordingly, the cooling operation is performed by controlling the opening and closing of the refrigerator compartment damper 20 and the freezer compartment damper 50 accordingly.
In step S3, the defrosting start condition is determined by the number of doors 2a, 2b, 3a, 4a, 5a, 6a opened / closed, the cumulative operation time of the compressor 24, the outside temperature, the outside humidity, etc. Whether or not it is established is determined at a predetermined cycle. If it is determined that the defrosting start condition is satisfied (Yes), the process proceeds to step S4. If not, the process returns to step S2 to continue the cooling operation.

ステップS4では、IFLAG=1か否かをチェックする。IFLAG=1の場合(Yes)は、ステップS14へ進み、IFLAG≠1の場合(No)は、ステップS5へ進む。そして、タイマtをスタートし(ステップS5)、除霜ヒータ22に通電する(ステップS6)。
ちなみに、除霜ヒータ22に通電したとき、圧縮機24及び庫内送風機9を停止し、冷蔵室ダンパ20及び冷凍室ダンパ50を閉とする。
In step S4, it is checked whether IFLAG = 1. If IFLAG = 1 (Yes), the process proceeds to step S14. If IFLAG # ≠ 1 (No), the process proceeds to step S5. And the timer t is started (step S5) and it supplies with electricity to the defrost heater 22 (step S6).
Incidentally, when the defrost heater 22 is energized, the compressor 24 and the internal fan 9 are stopped, and the refrigerator compartment damper 20 and the freezer compartment damper 50 are closed.

次いで、ステップS7では、タイマtが着霜量判定時間t1以上(t≧t1)か否かをチェックする。タイマtが着霜量判定時間t1以上の場合(Yes)はステップS8へ進み、そうでない場合(No)はステップS6へ戻る。ステップS8では、タイマtをリセットし、除霜用温度センサ37で検出された温度T2(除霜用温度センサで検出された温度)が着霜量判定温度Tth以上(T2≧Tth)か否かをチェックする(ステップS9)。T2≧Tthの場合(Yes)はステップS10へ進み、そうでない場合は、ステップS14へ進む。   Next, in step S7, it is checked whether or not the timer t is equal to or longer than the frost formation amount determination time t1 (t ≧ t1). If the timer t is equal to or longer than the frost amount determination time t1 (Yes), the process proceeds to step S8, and if not (No), the process returns to step S6. In step S8, the timer t is reset, and whether or not the temperature T2 detected by the defrosting temperature sensor 37 (the temperature detected by the defrosting temperature sensor) is equal to or higher than the frosting amount determination temperature Tth (T2 ≧ Tth). Is checked (step S9). If T2 ≧ Tth (Yes), the process proceeds to step S10, and if not, the process proceeds to step S14.

ステップS10では、「着霜量少」と判定し、次いで、除霜完了判定温度TL、例えば、1℃を設定する(ステップS11)。ステップS12では、冷却器温度センサ35で検出される温度T1(冷却器温度センサで検出される温度)が除霜完了判定温度TL以上(温度T1≧TL)か否かをチェックする。温度T1≧TLの場合(Yes)は、ステップS13へ進み、そうでない場合(No)は、ステップS12を繰り返し、除霜を続ける。
ステップS13では、IFLAG=1とし、次いで除霜を終了する(ステップS18)。除霜を終了すると、除霜ヒータ22は非通電とされ、圧縮機24をオン状態とし、所定の経過時間だけ冷却器7と冷却器収納室8が冷却されるのを待つ。その後、ステップS2へ戻り、冷却運転を開始する。
In step S10, it determines with "the amount of frost formation being small", and then sets defrost completion determination temperature TL, for example, 1 degreeC (step S11). In step S12, it is checked whether or not the temperature T1 detected by the cooler temperature sensor 35 (temperature detected by the cooler temperature sensor) is equal to or higher than the defrosting completion determination temperature TL (temperature T1 ≧ TL). If the temperature T1 ≧ TL (Yes), the process proceeds to Step S13. If not (No), Step S12 is repeated to continue defrosting.
In step S13, IFLAG = 1 is set, and then defrosting is terminated (step S18). When the defrosting is completed, the defrosting heater 22 is deenergized, the compressor 24 is turned on, and the cooler 7 and the cooler storage chamber 8 are waited for cooling for a predetermined elapsed time. Then, it returns to step S2 and starts a cooling operation.

ステップS4においてYesの場合、または、ステップS9においてNoの場合、ステップS14に進み、「着霜量多」と判定し、次いで、除霜完了判定温度TLより高い値である除霜完了判定温度TH、例えば、10℃を設定する(ステップS15)。ステップS16では、冷却器温度センサ35で検出される温度T1が除霜完了判定温度TH以上(温度T1≧TH)か否かをチェックする。温度T1≧THの場合(Yes)は、ステップS17へ進み、そうでない場合(No)は、ステップS16を繰り返し、除霜を続ける。
ステップS17では、IFLAG=0とし、次いで除霜を終了する(ステップS18)。除霜を終了すると、除霜ヒータ22は非通電とされ、圧縮機24をオン状態とし、所定の経過時間だけ冷却器7と冷却器収納室8が冷却されるのを待つ。その後、ステップS2へ戻り、冷却運転を開始する。
In the case of Yes in step S4 or in the case of No in step S9, the process proceeds to step S14, where it is determined that “the amount of frost formation is large”, and then the defrost completion determination temperature TH that is higher than the defrost completion determination temperature TL. For example, 10 ° C. is set (step S15). In step S16, it is checked whether or not the temperature T1 detected by the cooler temperature sensor 35 is equal to or higher than the defrosting completion determination temperature TH (temperature T1 ≧ TH). If temperature T1 ≧ TH (Yes), the process proceeds to step S17. If not (No), step S16 is repeated to continue defrosting.
In step S17, IFLAG = 0 is set, and then defrosting is terminated (step S18). When the defrosting is completed, the defrosting heater 22 is deenergized, the compressor 24 is turned on, and the cooler 7 and the cooler storage chamber 8 are waited for cooling for a predetermined elapsed time. Then, it returns to step S2 and starts a cooling operation.

本実施形態のフローチャートにおけるステップS1、ステップS4〜S18は「除霜制御手段」を構成する。   Steps S <b> 1 and S <b> 4 to S <b> 18 in the flowchart of the present embodiment constitute “defrost control means”.

図8は、着霜量が多い場合の除霜開始後の冷却器温度センサ35、除霜用温度センサ37の検出温度の推移を示す図であり、横軸は時間(min)、縦軸は温度(℃)を示している。図9は、着霜量が少ない場合の除霜開始後の冷却器温度センサ35、除霜用温度センサ37の検出温度の推移を示す図であり、横軸は時間(min)、縦軸は温度(℃)を示している。
図8、図9中、曲線xが冷却器温度センサ35の検出した温度の推移を示し、曲線yが除霜用温度センサ37の検出した温度の推移を示す。図8、図9中、曲線x1,x2,x3はそれぞれ冷却器7の上下方向位置において、上部、中央部、下部に温度センサを付けて参考的に測定した温度の推移を示す。
FIG. 8 is a diagram showing the transition of the detected temperatures of the cooler temperature sensor 35 and the defrosting temperature sensor 37 after the start of defrosting when the amount of frost formation is large, the horizontal axis is time (min), and the vertical axis is Temperature (° C) is shown. FIG. 9 is a diagram showing the transition of the detected temperature of the cooler temperature sensor 35 and the defrosting temperature sensor 37 after the start of defrosting when the amount of frost formation is small, the horizontal axis is time (min), and the vertical axis is Temperature (° C) is shown.
In FIGS. 8 and 9, the curve x indicates the transition of the temperature detected by the cooler temperature sensor 35, and the curve y indicates the transition of the temperature detected by the defrosting temperature sensor 37. In FIGS. 8 and 9, curves x1, x2, and x3 indicate changes in temperature measured with reference to temperature sensors at the upper, middle, and lower portions at the vertical position of the cooler 7, respectively.

着霜量が多い場合、図8に示すように除霜ヒータ22が時間0で通電状態となると、各温度センサの検出する温度は上昇するが、曲線yで示すカバー部材53aに熱接触させられた除霜用温度センサ37の検出温度は、まだ、除霜水Eによる冷却も無いので最も急激に上昇する。その後、除霜水Eの滴下によりカバー部材53aは冷却されるが、図9で示す着霜量が少ない場合と傾向が大きく異なる。着霜量が多いので、表面の霜が解け始めていても、冷却器7に固定された温度センサの検出する温度(曲線x,x1,x2,x3)はまだ0℃へ温度上昇を示している段階で、カバー部材53aに除霜水Eが滴下し、冷却され除霜水Eも多いため、曲線yで示すカバー部材53aの温度は着霜量が少ない場合に比べると低くなり易く、比較的安定した温度で推移する時間帯が存在する。その後、曲線yは、冷却器7の温度が略0℃になると除霜水Eの滴下量が少なくなってきて、緩やかに温度上昇を始める。その後、除霜水Eの滴下量が初期のころより少ない状態で略平衡した温度状態がしばらく続く。   When the amount of frost formation is large, as shown in FIG. 8, when the defrost heater 22 is energized at time 0, the temperature detected by each temperature sensor rises, but is brought into thermal contact with the cover member 53a indicated by the curve y. The detected temperature of the defrosting temperature sensor 37 rises most rapidly because there is no cooling by the defrosting water E yet. Thereafter, the cover member 53a is cooled by the dripping of the defrost water E, but the tendency is greatly different from the case where the amount of frost formation shown in FIG. 9 is small. Since the amount of frost formation is large, even if the surface frost starts to melt, the temperature (curve x, x1, x2, x3) detected by the temperature sensor fixed to the cooler 7 still shows a temperature rise to 0 ° C. At this stage, the defrost water E is dripped onto the cover member 53a and cooled and there is also a lot of defrost water E. Therefore, the temperature of the cover member 53a shown by the curve y tends to be lower than the case where the amount of frost formation is small. There is a time zone that changes at a stable temperature. Thereafter, when the temperature of the cooler 7 reaches approximately 0 ° C., the curve y starts to gradually increase as the dripping amount of the defrost water E decreases. Thereafter, a temperature state in which the amount of the defrosted water E is substantially equilibrated in a state where the amount of the defrosted water E is less than that in the initial stage continues for a while.

冷却器温度センサ35の検出する温度T1(冷却器温度)は、図8の曲線xに示すように、除霜開始直後からしばらくは略直線的に温度上昇するが、霜が解け始めると一定の温度、略0℃を示し、冷却器入口管55内の冷媒温度も上昇する段階になって、曲線x1、x2、x3よりも遅く温度上昇を始める。そして、一点鎖線で示した除霜完了判定温度THを最後に超える。   The temperature T1 (cooler temperature) detected by the cooler temperature sensor 35 rises substantially linearly for a while from the start of defrosting as shown by the curve x in FIG. The temperature is approximately 0 ° C., and the refrigerant temperature in the cooler inlet pipe 55 also rises, and starts rising later than the curves x1, x2, and x3. And finally exceeds the defrosting completion determination temperature TH indicated by the one-dot chain line.

これに対し、着霜量が少ない場合、図9に示すように除霜ヒータ22が時間0で通電状態となると、各温度センサの検出する温度は上昇するが、曲線yで示すカバー部材53aに熱接触させられた除霜用温度センサ37の検出温度T2が最も急激に増加を示し、その後、除霜水Eの滴下が始まるが、除霜水Eの滴下量が少ないので緩やかな温度上昇に変化した後、より高い温度状態で平衡状態となる。
冷却器温度センサ35の検出する温度T1(冷却器温度)は、図9の曲線xで示すように、除霜開始直後からしばらくは略直線的に温度上昇するが、霜が解け始めると一定の温度を示し、冷却器入口管55内の冷媒温度も上昇する段階になって、曲線x1、x2、x3よりも遅く温度上昇を始める。そして、一点鎖線で示した除霜完了判定温度TLを最後に超える。
On the other hand, when the amount of frost formation is small, as shown in FIG. 9, when the defrost heater 22 is energized at time 0, the temperature detected by each temperature sensor rises, but the cover member 53a indicated by the curve y The detection temperature T2 of the defrosting temperature sensor 37 brought into thermal contact shows the most rapid increase, and then the dripping of the defrosting water E starts, but since the dripping amount of the defrosting water E is small, the temperature rises gradually. After the change, the equilibrium state is reached at a higher temperature.
The temperature T1 (cooler temperature) detected by the cooler temperature sensor 35 rises substantially linearly for a while immediately after the start of defrosting, as shown by the curve x in FIG. The temperature rises and the temperature of the refrigerant in the cooler inlet pipe 55 also rises, and the temperature rise starts later than the curves x1, x2, and x3. And finally exceeds the defrosting completion determination temperature TL indicated by the one-dot chain line.

ここで、着霜量判定時間t1を適切に設定すると、時間t1における除霜用温度センサ37の検出する温度T2に大きな差が生じ、その時点の温度T2が予め実験で設定した着霜量判定温度Tth以上であるか否かで、着霜量の少い、または多いを予測判定し、その予測結果により、予め用意された除霜完了判定温度TL,THのいずれかを除霜完了判定温度として設定する。   Here, when the frost amount determination time t1 is appropriately set, a large difference occurs in the temperature T2 detected by the defrosting temperature sensor 37 at the time t1, and the temperature T2 at that time is determined in advance by an experiment. Whether the amount of frost formation is small or large is predicted based on whether the temperature is equal to or higher than the temperature Tth, and one of the defrosting completion determination temperatures TL and TH prepared in advance is determined based on the prediction result. Set as.

なお、家庭における冷蔵庫1の平均的な使用状況を想定した場合に、着霜量が多いと予測判定されるケースと、着霜量が少ないと予測判定されるケースが略半々になるように着霜量判定温度Tthを設定する。
その結果、着霜量が少ないと予測判定された場合、除霜完了判定温度THよりも値の小さい除霜完了判定温度TLを用いるので、図9に示すように除霜時間を短縮できる。
Assuming that the average usage of the refrigerator 1 at home is assumed, the case where the frost amount is predicted to be large and the case where the frost amount is small are predicted to be approximately half. A frost amount determination temperature Tth is set.
As a result, when it is determined that the amount of frost formation is small, the defrosting completion determination temperature TL having a value smaller than the defrosting completion determination temperature TH is used, so that the defrosting time can be shortened as shown in FIG.

図10は、着霜量に対するそれに要する除霜時間の関係を示す図である。冷却器温度センサ35による検出温度によって、除霜完了判定温度THで除霜完了を判定した場合の除霜時間を○印のプロット点で示し、その平均的な値の曲線を実線のY0で示す。着霜量が増加するに従い、除霜時間は直線的に増加し、着霜量が一定値を超えると除霜時間は急激に増加する傾向にある。
除霜ヒータ22でその周辺部の空気が加熱されて自然対流により霜が付着している冷却器7の周辺部を上昇して行くが、着霜量が多くなると通風抵抗が大きくなるため、自然対流が抑制されるためである。また、着霜量によらず除霜完了判定温度THが同じであるため、着霜量が少ない場合、除霜に費やされるエネルギが全投入エネルギに対して相対的に小さくなる。
FIG. 10 is a diagram showing the relationship of the defrosting time required for the amount of frost formation. The defrosting time when defrosting completion is determined at the defrosting completion determination temperature TH based on the temperature detected by the cooler temperature sensor 35 is indicated by a circle mark, and the average value curve is indicated by a solid line Y0. . As the frost amount increases, the defrost time increases linearly, and when the frost amount exceeds a certain value, the defrost time tends to increase rapidly.
The air in the peripheral part is heated by the defrost heater 22 and rises in the peripheral part of the cooler 7 to which frost is attached by natural convection. However, as the amount of frost increases, the ventilation resistance increases. This is because convection is suppressed. Further, since the defrosting completion determination temperature TH is the same regardless of the amount of frost formation, when the amount of frost formation is small, the energy consumed for the defrosting is relatively small with respect to the total input energy.

図7に示したフローチャートに従い着霜量が少ない場合には、除霜完了判定温度の値を除霜完了判定温度THより低い除霜完了判定温度TLとすると、図10に破線のY1で示すように除霜時間が短縮できる。
着霜量の多少のケースを区分する着霜量(g)、着霜量判定温度Tth、着霜量判定温度Tthと比較するカバー部材53aの温度を検出する着霜量判定時間t1に関しては、実験によりデータを収集して決定するものである。
When the amount of frost formation is small according to the flowchart shown in FIG. 7, assuming that the defrosting completion determination temperature value is the defrosting completion determination temperature TL lower than the defrosting completion determination temperature TH, as indicated by the broken line Y1 in FIG. 10. The defrosting time can be shortened.
Regarding the frost formation amount (g) for classifying some cases of frost formation amount, the frost formation determination temperature Tth, and the frost formation determination time t1 for detecting the temperature of the cover member 53a compared with the frost formation determination temperature Tth, It is determined by collecting data through experiments.

また、家庭における冷蔵庫1の平均的な使用状況を想定した場合に、着霜量が多いと予測判定されるケースと、着霜量が少ないと予測判定されるケースが略半々になるように着霜量判定温度Tthを設定すると、実線のY0と破線のY1の差分の時間は、除霜運の半数に適用されることになり、この除霜時間の短縮は、冷蔵庫1の省エネルギに大きな効果を与える。   In addition, assuming an average usage situation of the refrigerator 1 at home, the case where it is predicted and determined that the amount of frost formation is large and the case where the determination is determined that the amount of frost formation is small are approximately half. When the frost amount determination temperature Tth is set, the time of the difference between the solid line Y0 and the broken line Y1 is applied to half of the defrosting luck, and the reduction of the defrosting time is great for energy saving of the refrigerator 1. Give effect.

更に、一度、着霜量が少ないと予測判定して除霜を行った場合は、ステップS13においてIFLAG=1とフラグを立て、次回の除霜の時にはステップS4からステップS14に進み、強制的に着霜量が多い場合の除霜運転を行うので、着霜量の少ない場合の除霜運転を繰り返して、霜の解け残りが蓄積する懼れを防止できる。   Further, once defrosting is performed by predicting that the amount of frost formation is small, the flag IFLAG = 1 is set in step S13, and the process proceeds from step S4 to step S14 for the next defrosting. Since the defrosting operation when the amount of frost formation is large is performed, the defrosting operation when the amount of frost formation is small can be repeated to prevent the frost from remaining unmelted.


(除霜完了判定温度の設定方法の変形例)
次に、本実施形態における除霜完了判定温度の設定方法の変形例について説明する。
本実施形態においては、除霜完了判定温度の設定方法を、除霜用温度センサ37により、カバー部材53aの温度を除霜開始後の着霜量判定時間t1において検出し、その検出温度T2が着霜量判定温度Tth以上か否かで着霜量の少ないまたは多いと予測判定し、着霜量が少ないと予測した場合と着霜量が多いと判定した場合とで、異なる除霜完了判定温度を設定することとしたが、それに限定されるものではない。

(Modification of setting method of defrosting completion determination temperature)
Next, the modification of the setting method of the defrost completion determination temperature in this embodiment is demonstrated.
In this embodiment, the setting method of the defrost completion determination temperature is detected at the defrosting amount determination time t1 after the start of defrosting by the defrosting temperature sensor 37, and the detected temperature T2 is detected. Defrosting completion determination is different depending on whether the frost formation amount is low or high depending on whether or not the frost formation determination temperature Tth or higher, and when it is predicted that the frost formation amount is low and when the frost formation amount is high. Although the temperature is set, the present invention is not limited to this.

例えば、標準的な除霜完了判定温度をTHと設定し、着霜量判定時間t1における検出温度T2の温度レベルに応じて、検出レベルが高いほど除霜完了判定温度をTHから減じた補正を行い、最小の除霜完了判定温度をTLとするように、テーブルルックアップデータを用いて除霜完了判定温度を補正演算するようにしても良い。   For example, the standard defrosting completion determination temperature is set to TH, and a correction in which the defrosting completion determination temperature is decreased from TH as the detection level increases according to the temperature level of the detection temperature T2 at the frosting amount determination time t1. The defrost completion determination temperature may be corrected and calculated using table look-up data so that the minimum defrost completion determination temperature is TL.

以上、本実施形態によれば、温度検出部材であるカバー部材53aは冷却器7の横幅とほぼ同等の長さで構成されており、また除霜ヒータ22の下方投影面積とほぼ等しい大きさである。除霜開始直後、カバー部材53a(図5参照)は、除霜ヒータ22(図5参照)の加熱により急激に温度上昇する。その後、霜が解け始めて除霜水E(図5参照)が発生し始めると、それがカバー部材53aに滴下するため、カバー部材53aの温度は冷却されて温度上昇が次第に緩やかになる。たとえ、除霜用温度センサ37(図5参照)に直接除霜水Eが滴下しなくても、除霜水Eによるカバー部材53aの冷却の効果があるので、除霜用温度センサ37によりカバー部材53aへの除霜水Eの滴下は検出することが可能となる。   As described above, according to the present embodiment, the cover member 53a, which is a temperature detection member, is configured to have a length substantially equal to the lateral width of the cooler 7, and has a size approximately equal to the downward projection area of the defrost heater 22. is there. Immediately after the start of defrosting, the temperature of cover member 53a (see FIG. 5) rises rapidly due to the heating of defrosting heater 22 (see FIG. 5). Thereafter, when the frost starts to melt and defrosted water E (see FIG. 5) starts to be generated, it drops on the cover member 53a, so that the temperature of the cover member 53a is cooled and the temperature rise gradually becomes milder. Even if the defrosting water E does not drip directly on the defrosting temperature sensor 37 (see FIG. 5), the cover member 53a is cooled by the defrosting water E. The dripping of the defrost water E onto the member 53a can be detected.

着霜量が少ない場合、カバー部材53aに滴下する除霜水Eの量が少ないので、除霜用温度センサ37によって検出される温度は高温となり、カバー部材53aの温度が所定値に達するまでの時間が短い。一方、着霜量が多い場合、カバー部材53aに滴下する除霜水Eが多いので、除霜用温度センサ37によって検出される温度は、一旦高温になるものの、除霜水Eによりカバー部材53aが冷却されて着霜量が少ない場合よりも低温状態が長く続く。   When the amount of frost formation is small, the amount of defrost water E dripping onto the cover member 53a is small, so the temperature detected by the defrosting temperature sensor 37 is high, and the temperature until the temperature of the cover member 53a reaches a predetermined value. The time is short. On the other hand, when the amount of frost formation is large, the amount of defrost water E dripping onto the cover member 53a is large. Therefore, although the temperature detected by the defrost temperature sensor 37 once becomes high, the cover member 53a is defrosted by the defrost water E. Is cooled and the low temperature state continues longer than when the amount of frost formation is small.

したがって、カバー部材53aにより、除霜中に着霜量をより正確に予測することができる。そして、除霜用温度センサ37によって着霜量が予測された結果と、冷却器7、あるいは冷却器7の周辺部に設けた冷却器温度センサ35(図4参照)の検出する温度とにもとづいて除霜の完了をより正確に判定することができる。   Therefore, the amount of frost formation can be predicted more accurately during defrosting by the cover member 53a. And based on the result which the amount of frost formation was estimated by the temperature sensor 37 for defrosting, and the temperature which the cooler temperature sensor 35 (refer FIG. 4) provided in the periphery of the cooler 7 or the cooler 7 detected. Thus, the completion of defrosting can be determined more accurately.

また、冷却器温度センサ35の除霜完了判定温度TLと除霜完了判定温度THのいずれかを設定するか、または除霜完了判定温度を補正するので、カバー部材53aと除霜用温度センサ37によって着霜量が少ないと予測された場合は、除霜完了判定温度TLと低く設定、例えば、1℃に設定し、着霜量が多いと予測された場合は、除霜完了判定温度THと高く、例えば、霜の解け残りを防止するために10℃に設定することができ、着霜量に応じた適切な除霜完了判定温度の設定ができ、無駄な除霜ヒータ22の通電時間を無くせる。その結果、冷蔵庫1の省エネルギ運転に寄与できる。   Further, since either the defrosting completion determination temperature TL or the defrosting completion determination temperature TH of the cooler temperature sensor 35 is set or the defrosting completion determination temperature is corrected, the cover member 53a and the defrosting temperature sensor 37 are corrected. Is set to a low defrosting completion determination temperature TL, for example, 1 ° C., and when it is predicted that the frosting amount is large, the defrosting completion determination temperature TH is set. High, for example, can be set to 10 ° C. to prevent frost from remaining unmelted, an appropriate defrosting completion determination temperature can be set according to the amount of frost formation, and the energization time of the useless defrosting heater 22 can be reduced. It can be lost. As a result, it can contribute to the energy saving operation of the refrigerator 1.

ちなみに、冷却器7の冷蔵室戻りダクト16(図4参照)側は、湿度の高い戻り空気に晒されることになり、冷凍室戻り空気に晒される側よりも着霜量が多くなる。そして、除霜用温度センサ37を、冷却器7の下方への投影面内で、冷蔵室戻りダクト16側に設けたことにより、除霜用温度センサ37は、冷却器7の霜が略解け切るまで温度上昇しにくいことなり、冷却器7への着霜量を精度良く予測するには好適な側なので、着霜量の予測精度が向上する。   Incidentally, the refrigerator compartment return duct 16 (see FIG. 4) side of the cooler 7 is exposed to return air with high humidity, and the amount of frost formation is larger than the side exposed to the freezer compartment return air. And, by providing the defrosting temperature sensor 37 on the refrigerator duct return duct 16 side in the projection surface below the cooler 7, the defrosting temperature sensor 37 substantially unfreezes the frost in the cooler 7. The temperature is unlikely to rise until it is cut, and this is a suitable side for accurately predicting the amount of frost on the cooler 7, so that the prediction accuracy of the amount of frost is improved.

図7に示すフローチャートにおいて、除霜用温度センサ37により着霜量が少ないと判定し、除霜完了判定温度を低く設定または補正して除霜を終了した次の回の除霜は、除霜完了判定温度を必ず着霜量が多い場合の高い値に設定して除霜運転を終了するようにすることにより、霜の解け残りを防止できる。   In the flowchart shown in FIG. 7, the defrosting of the next time when the defrosting temperature sensor 37 determines that the amount of frost formation is small and the defrosting completion determination temperature is set or corrected low to complete the defrosting is the defrosting. By always setting the completion determination temperature to a high value when the amount of frost formation is large and ending the defrosting operation, it is possible to prevent frost from remaining unmelted.

《変形例》
(除霜用温度センサのカバー部材への取り付け方法の変形例)
次に除霜用温度センサ37のカバー部材53aへの取り付け方法の変形例を説明する。
除霜ヒータ22で加熱すると、カバー部材53aの温度は最高で約140℃になるため、除霜用温度センサ37は高温対応型のセンサを使う必要があり、コストが高くなる懼れがある。そこで、本変形例では、着霜量が少ない場合と、多い場合の相対的な温度の関係を保ちながら、除霜用温度センサ37の検出温度を低くする。
(第1の変形例)
図11に除霜用温度センサ37の設置方法の第1の変形例を示す。本変形例では、除霜用温度センサ37を熱接触させるホルダ38をカバー部材53aの上面に断熱部材39を介して取り付ける。実施形態と同じ構成については、同じ符号を付し重複する説明を省略する。
断熱部材39を介しているので、除霜用温度センサ37の検出する温度は140℃よりも低くでき除霜用温度センサ37のコストを低減できる。
<Modification>
(Modification of the method for attaching the defrosting temperature sensor to the cover member)
Next, a modification of the method for attaching the defrosting temperature sensor 37 to the cover member 53a will be described.
When heated by the defrost heater 22, the temperature of the cover member 53a reaches a maximum of about 140 ° C. Therefore, it is necessary to use a high temperature type sensor for the defrost temperature sensor 37, which may increase the cost. Therefore, in the present modification, the temperature detected by the defrosting temperature sensor 37 is lowered while maintaining the relative temperature relationship between when the amount of frost formation is small and when the amount of frost formation is large.
(First modification)
FIG. 11 shows a first modification of the installation method of the defrosting temperature sensor 37. In the present modification, a holder 38 for bringing the defrosting temperature sensor 37 into thermal contact is attached to the upper surface of the cover member 53a via a heat insulating member 39. About the same structure as embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
Since the heat insulating member 39 is interposed, the temperature detected by the defrosting temperature sensor 37 can be lower than 140 ° C., and the cost of the defrosting temperature sensor 37 can be reduced.

(第2の変形例)
図12に除霜用温度センサ37の設置方法の第2の変形例を示す。本変形例では、垂直部41aと平面部41bから構成され、L字状に板材を折り曲げた取り付け部材41を有するホルダ38Aを用いる。そして、垂直部41aの下端をカバー部材53aの冷蔵室戻りダクト16側の端部に固定する。除霜用温度センサ37は平面部41bの上面に熱接触させられる。除霜用温度センサ37で検出される温度を低くするために、カバー部材53aの上面から距離hだけ平面部41bは離間させられ、垂直部41aの一部を取り除いて開口部38aを設け、垂直部41aの面積を小さくしている。このような構造により、除霜用温度センサ37で検出する温度を低くすることができる。垂直部41aの面積を小さくしているため、冷却運転時の冷蔵室戻り空気の通風抵抗の増加を防ぐことができる。
(Second modification)
FIG. 12 shows a second modification of the installation method of the defrosting temperature sensor 37. In this modification, a holder 38A is used that includes a vertical portion 41a and a flat portion 41b, and has an attachment member 41 in which a plate material is bent in an L shape. And the lower end of the vertical part 41a is fixed to the edge part by the side of the refrigerator compartment return duct 16 of the cover member 53a. The defrosting temperature sensor 37 is brought into thermal contact with the upper surface of the flat portion 41b. In order to lower the temperature detected by the defrosting temperature sensor 37, the flat surface portion 41b is separated from the upper surface of the cover member 53a by a distance h, and a part of the vertical portion 41a is removed to provide an opening 38a. The area of the portion 41a is reduced. With such a structure, the temperature detected by the defrosting temperature sensor 37 can be lowered. Since the area of the vertical portion 41a is reduced, it is possible to prevent an increase in ventilation resistance of the return air from the refrigerator compartment during the cooling operation.

(第3の変形例)
図13に除霜用温度センサ37の設置方法の第3の変形例を示す。本変形例では、カバー部材53aの冷蔵室戻りダクト16側に凹部44を設け、その内部に除霜用温度センサ37を配置している。凹部44は、図13における手前側に壁が設けられ、除霜水Eが溜まる構造にしてある。
除霜時には冷却器7のフィン7b等から除霜水Eがカバー部材53aに滴下してくる。カバー部材53aはその下側に設置した除霜ヒータ22によって加熱されるが、カバー部材53aに設置した除霜用温度センサ37で検出される温度は、凹部44に溜まる除霜水Eによって冷却されるために温度が低下する。また、凹部44に残った除霜水Eは、冷却運転をしているときに凍結するので、次回の除霜時には凹部44内の氷を解かすために熱を奪われる。したがって、除霜用温度センサ37で検出される温度を低くすることが可能となる。
また、凹部44内の水面を調節するために切り欠き部45を設けてあり、凹部44内の除霜水Eが、凹部44から上側に盛り上がって氷が成長しないようにしてある。
(Third Modification)
FIG. 13 shows a third modification of the installation method of the defrosting temperature sensor 37. In the present modification, a recess 44 is provided on the cover member 53a on the refrigerator return duct 16 side, and a defrosting temperature sensor 37 is disposed therein. The recess 44 has a structure in which a wall is provided on the front side in FIG.
At the time of defrosting, the defrosting water E is dripped at the cover member 53a from the fin 7b etc. of the cooler 7. The cover member 53a is heated by the defrost heater 22 installed on the lower side, but the temperature detected by the defrost temperature sensor 37 installed on the cover member 53a is cooled by the defrost water E accumulated in the recess 44. Therefore, the temperature decreases. Further, since the defrost water E remaining in the concave portion 44 is frozen during the cooling operation, heat is taken away to melt the ice in the concave portion 44 at the next defrosting. Therefore, the temperature detected by the defrosting temperature sensor 37 can be lowered.
Further, a notch 45 is provided to adjust the water surface in the recess 44, so that the defrost water E in the recess 44 rises upward from the recess 44 so that ice does not grow.

前記した第1から第3の変形例の除霜用温度センサ37の設置方法に応じて、除霜用温度センサ37で検出される温度は異なるので、少なくとも着霜量判定温度Tthは変形例に応じて決める。   Since the temperature detected by the defrosting temperature sensor 37 differs depending on the installation method of the defrosting temperature sensor 37 of the first to third modifications described above, at least the frosting amount determination temperature Tth is changed to the modification. Decide accordingly.

なお、前記した実施形態及びその第1から第3の変形例において、除霜用温度センサ37が温度検出する温度検出部材であるカバー部材53aは、除霜ヒータ22と一体に組み立てられているものとして説明したがそれに限定されるものではない。
例えば、冷却器収納室8(図2参照)内において、上部カバー53を、冷却器7の最下段のユニットが上方から上部カバー53を吊るようにして支える構造とし、冷却器7の下方であって、除霜ヒータ22を構成するヒータ部22a及び放熱フィン22bから上方に離間して、除霜ヒータ22と別体に上部カバー53を配置する構成とする。
In the above-described embodiment and the first to third modifications thereof, the cover member 53a, which is a temperature detection member that detects the temperature of the defrosting temperature sensor 37, is assembled integrally with the defrosting heater 22. However, the present invention is not limited to this.
For example, in the cooler storage chamber 8 (see FIG. 2), the upper cover 53 is supported so that the lowermost unit of the cooler 7 suspends the upper cover 53 from above, and below the cooler 7. Thus, the upper cover 53 is arranged separately from the defrosting heater 22 so as to be spaced apart upward from the heater portions 22a and the radiation fins 22b constituting the defrosting heater 22.

本発明の実施形態に係る冷蔵庫の正面外形図である。It is a front external view of the refrigerator which concerns on embodiment of this invention. 冷蔵庫の庫内の構成を表す縦断面図である。It is a longitudinal cross-sectional view showing the structure in the store | warehouse | chamber of a refrigerator. 冷蔵庫の庫内の構成を表す正面図である。It is a front view showing the structure in the store | warehouse | chamber of a refrigerator. 冷却器とその周辺部の正面部分拡大図である。It is a front partial enlarged view of a cooler and its peripheral part. 冷却器とその周辺部の側面部分拡大図である。It is a side surface partial enlarged view of a cooler and its peripheral part. 除霜ヒータの詳細斜視図である。It is a detailed perspective view of a defrost heater. 除霜運転の制御の流れを示すフローチャートであるIt is a flowchart which shows the flow of control of a defrost operation. 着霜量が多い場合の除霜開始後の冷却器温度センサの検出温度の推移を示す図である。It is a figure which shows transition of the detected temperature of the cooler temperature sensor after the start of defrosting when there is much frost formation amount. 着霜量が少ない場合の除霜開始後の冷却器温度センサの検出温度の推移を示す図である。It is a figure which shows transition of the detection temperature of the cooler temperature sensor after the start of defrosting when there is little frost formation amount. 着霜量に対するそれに要する除霜時間の関係を示す図である。It is a figure which shows the relationship of the defrosting time required for it with respect to the amount of frost formation. 冷却器温度センサをカバー部材に取り付ける方法の第1の変形例を示す図である。It is a figure which shows the 1st modification of the method of attaching a cooler temperature sensor to a cover member. 冷却器温度センサをカバー部材に取り付ける方法の第2の変形例を示す図である。It is a figure which shows the 2nd modification of the method of attaching a cooler temperature sensor to a cover member. 冷却器温度センサをカバー部材に取り付ける方法の第3の変形例を示す図である。It is a figure which shows the 3rd modification of the method of attaching a cooler temperature sensor to a cover member.

符号の説明Explanation of symbols

1 冷蔵庫
2 冷蔵室
3 製氷室
4 上段冷凍室
5 下段冷凍室
6 野菜室
7 冷却器
7a 冷却器配管
7b フィン
8 冷却器収納室
9 庫内送風機(送風機)
10 断熱箱体
11 冷蔵室送風ダクト
12 上段冷凍室送風ダクト
13 下段冷凍室送風ダクト
16 冷蔵室戻りダクト
17 冷凍室戻り口
20 冷蔵室ダンパ
22 除霜ヒータ
22a ヒータ部
22b 放熱フィン
24 圧縮機
31 制御基板
35 冷却器温度センサ
37 除霜用温度センサ
38,38A ホルダ
38a 開口部
39 断熱部材
41 取り付け部材
41a 垂直部
41b 水平部
44 凹部
45 切り欠き部
50 冷凍室ダンパ
53 上部カバー
53a カバー部材(温度検出部材)
53b 端部材
53c 補強部材
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigerated room 3 Ice making room 4 Upper stage freezer room 5 Lower stage freezer room 6 Vegetable room 7 Cooler 7a Cooler piping 7b Fin 8 Cooler storage room 9 Blower (blower)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Refrigerating room air duct 12 Upper stage freezer room air duct 13 Lower stage freezer room air duct 16 Refrigerating room return duct 17 Freezer room return port 20 Refrigerating room damper 22 Defrost heater 22a Heater part 22b Radiation fin 24 Compressor 31 Control Substrate 35 Cooler temperature sensor 37 Defrosting temperature sensor 38, 38A Holder 38a Opening 39 Heat insulation member 41 Mounting member 41a Vertical portion 41b Horizontal portion 44 Recess 45 Notch 50 Freezer damper 53 Upper cover 53a Cover member (temperature detection) Element)
53b End member 53c Reinforcing member

Claims (3)

圧縮機、凝縮機、絞り、冷却器を順次冷媒配管で接続した冷凍サイクルと、前記冷却器で冷却した空気を循環する送風機と前記冷却器の下方に設けた除霜ヒータと、を備えた冷蔵庫において、
前記冷却器と前記除霜ヒータとの間に、除霜用温度センサを設けたことを特徴とする冷蔵庫。
A refrigerator including a refrigeration cycle in which a compressor, a condenser, a throttle, and a cooler are sequentially connected by a refrigerant pipe, a blower that circulates air cooled by the cooler, and a defrost heater provided below the cooler In
A refrigerator having a defrosting temperature sensor provided between the cooler and the defrosting heater.
前記除霜ヒータの上方を覆うカバー部材を設け、
前記除霜用温度センサが、前記カバー部材の温度を検出するように取り付けられたことを特徴とする請求項1に記載の冷蔵庫。
A cover member is provided to cover the top of the defrost heater,
The refrigerator according to claim 1, wherein the defrosting temperature sensor is attached so as to detect a temperature of the cover member.
前記除霜ヒータは、前記カバー部材に熱接触するように取り付けられたことを特徴とする請求項2に記載の冷蔵庫。   The refrigerator according to claim 2, wherein the defrost heater is attached so as to be in thermal contact with the cover member.
JP2008158976A 2008-06-18 2008-06-18 Refrigerator Withdrawn JP2010002071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008158976A JP2010002071A (en) 2008-06-18 2008-06-18 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008158976A JP2010002071A (en) 2008-06-18 2008-06-18 Refrigerator

Publications (1)

Publication Number Publication Date
JP2010002071A true JP2010002071A (en) 2010-01-07

Family

ID=41583938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008158976A Withdrawn JP2010002071A (en) 2008-06-18 2008-06-18 Refrigerator

Country Status (1)

Country Link
JP (1) JP2010002071A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037073A (en) * 2010-08-04 2012-02-23 Hitachi Appliances Inc Refrigerator
JP2012047363A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Refrigerator
JP2012047362A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Refrigerator
JP2013061113A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigerator
JP2013088081A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Refrigerator
JP2013145079A (en) * 2012-01-13 2013-07-25 Mitsubishi Electric Corp Refrigerator
JP2013242079A (en) * 2012-05-21 2013-12-05 Nakano Refrigerators Co Ltd Device and method for control of showcase
JP2015007510A (en) * 2013-06-26 2015-01-15 日立アプライアンス株式会社 Refrigerator
JP2015025567A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Refrigerator
JP2015143579A (en) * 2014-01-31 2015-08-06 株式会社東芝 refrigerator
JP2016145658A (en) * 2015-02-06 2016-08-12 シャープ株式会社 Defrosting heater and refrigerator
WO2017056212A1 (en) * 2015-09-30 2017-04-06 三菱電機株式会社 Refrigerator
CN110793265A (en) * 2019-11-18 2020-02-14 珠海格力电器股份有限公司 Defrosting detection device capable of improving defrosting effect, refrigerator and control method
CN110887315A (en) * 2019-12-03 2020-03-17 珠海格力电器股份有限公司 Refrigerator defrosting detection device, refrigerator defrosting control method and refrigerator
JP2020101299A (en) * 2018-12-20 2020-07-02 日立グローバルライフソリューションズ株式会社 refrigerator
CN111486646A (en) * 2020-04-17 2020-08-04 合肥华凌股份有限公司 Refrigerator and defrosting control method and device thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037073A (en) * 2010-08-04 2012-02-23 Hitachi Appliances Inc Refrigerator
JP2012047363A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Refrigerator
JP2012047362A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Refrigerator
JP2013061113A (en) * 2011-09-13 2013-04-04 Mitsubishi Electric Corp Refrigerator
JP2013088081A (en) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp Refrigerator
JP2013145079A (en) * 2012-01-13 2013-07-25 Mitsubishi Electric Corp Refrigerator
JP2013242079A (en) * 2012-05-21 2013-12-05 Nakano Refrigerators Co Ltd Device and method for control of showcase
JP2015007510A (en) * 2013-06-26 2015-01-15 日立アプライアンス株式会社 Refrigerator
JP2015025567A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Refrigerator
JP2015143579A (en) * 2014-01-31 2015-08-06 株式会社東芝 refrigerator
JP2016145658A (en) * 2015-02-06 2016-08-12 シャープ株式会社 Defrosting heater and refrigerator
WO2017056212A1 (en) * 2015-09-30 2017-04-06 三菱電機株式会社 Refrigerator
AU2015410544B2 (en) * 2015-09-30 2018-12-13 Mitsubishi Electric Corporation Refrigerator
JP2020101299A (en) * 2018-12-20 2020-07-02 日立グローバルライフソリューションズ株式会社 refrigerator
CN110793265A (en) * 2019-11-18 2020-02-14 珠海格力电器股份有限公司 Defrosting detection device capable of improving defrosting effect, refrigerator and control method
CN110887315A (en) * 2019-12-03 2020-03-17 珠海格力电器股份有限公司 Refrigerator defrosting detection device, refrigerator defrosting control method and refrigerator
CN111486646A (en) * 2020-04-17 2020-08-04 合肥华凌股份有限公司 Refrigerator and defrosting control method and device thereof

Similar Documents

Publication Publication Date Title
JP2010002071A (en) Refrigerator
EP2574868B1 (en) Refrigerator
JP5017340B2 (en) refrigerator
KR102241307B1 (en) Defrost device, refrigerator having the device and control method thereof
JP4954484B2 (en) Cooling storage
JP5530852B2 (en) refrigerator
JP2011038715A (en) Refrigerator
JP2012007760A (en) Refrigerator
JP6752107B2 (en) refrigerator
KR100701955B1 (en) Process for controling thawing room unit of refrigerator
DK2757335T3 (en) Refrigerator with defrost and control method
US20220170675A1 (en) Method for controlling refrigerator
JP2017215108A (en) refrigerator
JP5313813B2 (en) refrigerator
JP6894389B2 (en) refrigerator
JP4982537B2 (en) refrigerator
JPH11311473A (en) Method for controlling refrigerator
JP6270375B2 (en) refrigerator
JP4498261B2 (en) refrigerator
JP7090198B2 (en) refrigerator
JP2015143579A (en) refrigerator
JP6186187B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP6837423B2 (en) refrigerator
JP5376796B2 (en) refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906