JP6186187B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP6186187B2
JP6186187B2 JP2013133279A JP2013133279A JP6186187B2 JP 6186187 B2 JP6186187 B2 JP 6186187B2 JP 2013133279 A JP2013133279 A JP 2013133279A JP 2013133279 A JP2013133279 A JP 2013133279A JP 6186187 B2 JP6186187 B2 JP 6186187B2
Authority
JP
Japan
Prior art keywords
cooler
cold air
temperature
frost
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013133279A
Other languages
Japanese (ja)
Other versions
JP2015007510A (en
Inventor
大平 昭義
昭義 大平
慎一郎 岡留
慎一郎 岡留
小谷 正直
正直 小谷
良二 河井
良二 河井
真也 岩渕
真也 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013133279A priority Critical patent/JP6186187B2/en
Publication of JP2015007510A publication Critical patent/JP2015007510A/en
Application granted granted Critical
Publication of JP6186187B2 publication Critical patent/JP6186187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Defrosting Systems (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は冷蔵庫に関するものである。   The present invention relates to a refrigerator.

冷蔵庫内に流入した空気中の水分や食品から蒸発した水分は、冷却器で凝縮された後、霜になって成長していく。冷却器に成長した霜は冷却性能を悪化させるため、定期的に電気ヒータ等の加熱手段を用いて解かしている。除霜運転は、庫内の熱負荷の増加をもたらし、省エネ性能を悪化させるため、効率的に除霜を実施する制御方式が公開されている。
家庭用冷蔵庫の除霜運転を開始するタイミングは、例えば、圧縮機の積算運転時間が所定の値に到達した時点で実施する場合が多く、それに加えて、外気温度が高い場合には高湿な条件が多いことから、除霜運転の開始を早める制御も行なっている。しかしながら、外気温度が高い場合や圧縮機の積算運転時間が長い場合は、冷却器に成長する霜が多くなる可能性は高くなるが、着霜量と関連付けた現象をセンサによって直接検出していないので、必ずしも効率的な除霜運転を実施していない。また、着霜量が予想できないため、霜の量によらず冷却器に成長した霜が解け残らないように、除霜終了時の加熱温度を高くして、信頼性を満足させている場合が多い。
Moisture in the air that has flowed into the refrigerator and moisture that has evaporated from the food is condensed by the cooler and then grows as frost. Since the frost grown on the cooler deteriorates the cooling performance, it is periodically unwound using a heating means such as an electric heater. Since the defrosting operation increases the heat load in the cabinet and deteriorates the energy saving performance, a control method for efficiently performing the defrosting is disclosed.
The timing of starting the defrosting operation of the household refrigerator is often performed, for example, when the cumulative operation time of the compressor reaches a predetermined value, and in addition, when the outside air temperature is high, the humidity is high. Since there are many conditions, the control which accelerates the start of a defrost operation is also performed. However, when the outside air temperature is high or the accumulated operation time of the compressor is long, there is a high possibility that more frost grows on the cooler, but the phenomenon associated with the amount of frost formation is not directly detected by the sensor. Therefore, efficient defrosting operation is not necessarily performed. In addition, since the amount of frost formation cannot be predicted, the heating temperature at the end of defrosting may be increased to satisfy the reliability so that the frost that has grown on the cooler does not melt regardless of the amount of frost. Many.

除霜運転開始のタイミングに関して、例えば、特許文献1に記載の冷蔵庫では、冷却器の温度を検出する冷却器温度検出手段と、冷却器の周辺温度を検出する冷却器周辺温度検出手段と、冷却器温度検出手段及び冷却器周辺温度検出手段の両検出情報から冷却器の着霜量を予測して除霜タイミングを決定している。   Regarding the timing of starting the defrosting operation, for example, in the refrigerator described in Patent Document 1, a cooler temperature detecting means for detecting the temperature of the cooler, a cooler ambient temperature detecting means for detecting the ambient temperature of the cooler, and a cooling The defrosting timing is determined by predicting the frost formation amount of the cooler from both detection information of the cooler temperature detecting means and the cooler ambient temperature detecting means.

特開平10−227555号JP-A-10-227555

特許文献1に記載の冷蔵庫では、着霜検知センサは冷却器温度検出部と冷却器周辺温度検出部から構成されている。これらの温度検知部で検知された温度の差を用いて、着霜検知を行なっている。冷却器周辺温度検出部に霜が多いと、冷却器周辺温度検出部は冷却器周囲の空気と接触できなくなり、冷却器周辺温度検出部の温度は、冷却器温度検出部の温度との差が小さくなる。一方、冷却器周辺温度検出部に霜が少ないと、冷却器周辺温度検出部は冷却器周囲の空気と接触し易くなるので、冷却器周辺温度検出部の温度は、冷却器温度検出部の温度との差が大きくなる。これらの原理を用いて着霜検知を実施しているので、圧縮機停止中には冷却器周辺温度検出部の温度と冷却器温度検出部の温度には差が現れないため着霜検知は実施されず、圧縮機運転中に着霜検知を実施している。   In the refrigerator described in Patent Document 1, the frost detection sensor includes a cooler temperature detector and a cooler ambient temperature detector. Frost detection is performed using the temperature difference detected by these temperature detection units. If there is a lot of frost in the cooler ambient temperature detector, the cooler ambient temperature detector cannot contact the air around the cooler, and the temperature of the cooler ambient temperature detector is different from the temperature of the cooler temperature detector. Get smaller. On the other hand, if there is little frost in the cooler ambient temperature detection unit, the cooler ambient temperature detection unit can easily come into contact with the air around the cooler, so the temperature of the cooler ambient temperature detection unit is the temperature of the cooler temperature detection unit. And the difference becomes larger. Because frost detection is performed using these principles, frost detection is not performed because there is no difference between the temperature of the cooler ambient temperature detector and the temperature of the cooler temperature detector while the compressor is stopped. However, frost detection is performed during compressor operation.

しかしながら、冷蔵庫の使用状況に応じて圧縮機の回転数は変化するので、圧縮機回転数が高くなると冷却器温度は低下し、更に冷却器のフィン間に成長した霜が多くなると、冷却器を通過する空気との交換熱量が少なくなるので、圧縮機の回転数を高くしなくても冷却器温度は低下する場合がある。このように圧縮機運転中の冷却器温度検出部で検知される温度は、圧縮機起動による冷却温度の影響と、冷却器の霜の量による影響を同時に受けるため、着霜量の増減による冷却器周辺温度の変化と、冷却器温度の変化が必ずしも連動していない場合がある。   However, since the rotation speed of the compressor changes depending on the usage situation of the refrigerator, if the compressor rotation speed increases, the cooler temperature decreases, and if more frost grows between the fins of the cooler, the cooler is turned off. Since the amount of heat exchanged with the passing air is reduced, the cooler temperature may be lowered without increasing the rotational speed of the compressor. Thus, the temperature detected by the cooler temperature detection unit during operation of the compressor is simultaneously affected by the cooling temperature due to the start of the compressor and the amount of frost in the cooler. The change in the ambient temperature of the cooler and the change in the cooler temperature may not always be linked.

従って、冷却器周辺温度検出部の温度と冷却器温度検出部の温度との差による着霜検知の精度は、必ずしも良いものではない。また、冷却器周辺温度検出部の設置場所については特に言及しておらず、着霜量に応じた加熱方法についても記述されていない。   Therefore, the accuracy of frost detection based on the difference between the temperature of the cooler ambient temperature detection unit and the temperature of the cooler temperature detection unit is not necessarily good. In addition, the installation location of the cooler ambient temperature detection unit is not particularly mentioned, and the heating method according to the amount of frost formation is not described.

本発明は、以上のような課題に鑑みてなされたものであり、除霜運転を実施する前に、着霜量を予測し、除霜時のヒータ加熱に消費される電力量を少なくして、省エネ性に優れた冷蔵庫を提供することを目的とする。   The present invention has been made in view of the problems as described above, and predicts the amount of frost formation before carrying out the defrosting operation, and reduces the amount of power consumed for heater heating during defrosting. An object is to provide a refrigerator with excellent energy saving performance.

上記課題を解決するために、例えば特許請求項の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、冷蔵温度帯の貯蔵室に冷気を供給する冷気供給手段と、前記冷蔵温度帯の貯蔵室を冷却する冷却器と、該冷却器、圧縮機、放熱器、絞りを冷媒配管で接続して構成される冷凍サイクルと、前記冷却器の冷媒配管の一部に設けた温度検知手段と、前記貯蔵室からの冷気を前記冷却器へ流入させる貯蔵室冷気戻りダクトと、前記冷却器を加熱する除霜ヒータと、前記貯蔵室冷気戻りダクトを加熱するダクトヒータとを含む冷蔵庫において、前記圧縮機停止後、前記冷気供給手段によって所定時間冷気を循環させた後、前記温度検知手段によって検知した前記除霜ヒータおよび前記ダクトヒータの通電前の温度を基に、前記除霜ヒータは通電し前記ダクトヒータは通電しない制御を行うか、前記除霜ヒータおよび前記ダクトヒータの両方に通電する制御を行うか、を決定することを特徴とする。
In order to solve the above problems, for example, the configuration described in the scope of the claims is adopted. The present application includes a plurality of means for solving the above-mentioned problems. For example, a cool air supply means for supplying cold air to a storage room in a refrigerated temperature zone, and a cooler for cooling the storage room in the refrigeration temperature zone. A refrigeration cycle configured by connecting the cooler, the compressor, the radiator, and the throttle with a refrigerant pipe, temperature detection means provided in a part of the refrigerant pipe of the cooler, and cold air from the storage chamber In the refrigerator including a storage room cold air return duct that flows into the cooler, a defrost heater that heats the cooler, and a duct heater that heats the storage room cold air return duct , the cold air supply after the compressor is stopped after circulated for a predetermined time cold air by means based on the temperature before the supply of the defrosting heater and the Dakutohita detected by said temperature detecting means, said Dakutohita the defrost heater is energized energized Whether to no control, the defrost heater and whether to control for energizing both the Dakutohita, and determining the.

本発明によれば、除霜運転を実施する前に、着霜量を予測することができるので、除霜時のヒータ加熱に消費される電力量が少なくなり、省エネ性に優れた冷蔵庫を提供することが可能となる。   According to the present invention, since the amount of frost formation can be predicted before the defrosting operation is performed, the amount of electric power consumed for heating the heater during the defrosting is reduced, and a refrigerator excellent in energy saving is provided. It becomes possible to do.

本発明の実施形態に係る冷蔵庫の正面図である。It is a front view of the refrigerator which concerns on embodiment of this invention. 本発明に係る冷蔵庫のA-A断面図である。It is AA sectional drawing of the refrigerator which concerns on this invention. 冷却器7の周辺部を正面から見た図で、冷蔵室冷却時の冷気の流れである。It is the figure which looked at the peripheral part of the cooler 7 from the front, and is a flow of the cold air at the time of cooling-room cooling. 冷却器7の周辺部を正面から見た図で、冷凍室冷却時の冷気の流れである。It is the figure which looked at the peripheral part of the cooler 7 from the front, and is a flow of the cold air at the time of freezing room cooling. 冷却器7のB-B断面図である。2 is a cross-sectional view of the cooler 7 along BB. 冷却運転中の温度チャートと各部の動作である。It is the temperature chart and operation | movement of each part in cooling operation. 冷却器7に成長した霜が少ない場合の冷却器7の概略図である。It is the schematic of the cooler 7 when there is little frost which grew on the cooler 7. FIG. 冷却器7に成長した霜が多い場合の冷却器7の概略図である。It is the schematic of the cooler 7 when there is much frost which grew in the cooler 7. FIG. 着霜量Gに対する着霜検知運転時の温度T1、T2の関係である。It is the relationship between the temperatures T1 and T2 during the frost detection operation with respect to the frost amount G. 着霜量Gに対する着霜検知運転中の温度上昇率である。It is the temperature increase rate during the frost detection operation with respect to the frost amount G. 着霜量Gに対する温度T2と冷凍室温度の関係である。It is the relationship between temperature T2 with respect to the amount of frost formation G, and freezer compartment temperature. 着霜量Gに対する温度T2と庫内ファン入力値の関係である。It is the relationship between temperature T2 with respect to the amount of frost formation G, and an internal fan input value. 霜が少ない場合の除霜時のヒータ加熱制御の一例である。It is an example of the heater heating control at the time of defrosting when there is little frost. 霜が多い場合の除霜時のヒータ加熱制御の一例である。It is an example of the heater heating control at the time of defrosting when there is much frost. 霜が多い場合の除霜時のヒータ加熱制御の他の実施例である。It is another Example of the heater heating control at the time of defrosting when there is much frost. 霜が少ない場合の着霜分布と冷蔵室戻り冷気の流れの様子Frost distribution when there is little frost and the flow of cold air returning to the refrigerator compartment 霜が少ない場合の冷凍室5の断面を上から見た図The figure which looked at the section of freezer room 5 when there is little frost from the top 霜が多い場合の着霜分布と冷蔵室戻り冷気の流れの様子Frost distribution when there is a lot of frost and the flow of cold air returning to the refrigerator compartment 霜が多い場合の冷凍室5の断面を上から見た図The figure which looked at the section of freezer compartment 5 when there is much frost from the top 着霜量Gに対する着霜検知運転時の各部のセンサ温度である。It is the sensor temperature of each part at the time of the frost detection operation with respect to the frost amount G.

本発明の実施形態例について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施例に係る冷蔵庫の外観である。図1に示すように本実施形態の冷蔵庫1は、上方から冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6から構成されている。冷蔵室2は左右に分割された冷蔵室ドア2a、2bを備え、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aを備えている。以下では、冷蔵室ドア2a、2b、製氷室ドア3a、上段冷凍室ドア4a、下段冷凍室ドア5a、野菜室ドア6aを、単にドア2a、2b、3a、4a、5a、6aと呼ぶ。冷蔵庫1とドア2a、2bを固定するドアヒンジが冷蔵庫上部に設けてあり、ドアヒンジはドアヒンジカバー53で覆われている。   FIG. 1 is an external view of a refrigerator according to an embodiment of the present invention. As shown in FIG. 1, the refrigerator 1 of this embodiment is comprised from the upper part from the refrigerator compartment 2, the ice making room 3, the upper stage freezer room 4, the lower stage freezer room 5, and the vegetable compartment 6. As shown in FIG. The refrigerating room 2 includes left and right refrigerating room doors 2a and 2b. The ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 are a pull-out ice making room door 3a and an upper freezing room door, respectively. 4a, a lower freezer compartment door 5a, and a vegetable compartment door 6a. Hereinafter, the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are simply referred to as doors 2a, 2b, 3a, 4a, 5a, and 6a. A door hinge for fixing the refrigerator 1 and the doors 2 a and 2 b is provided at the upper part of the refrigerator, and the door hinge is covered with a door hinge cover 53.

図2は本発明に係る冷蔵庫のA-A断面図である。冷蔵庫1の庫外と庫内は、発泡断熱材を充填することにより形成される断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10には、複数の真空断熱材25を実装している。断熱仕切壁28により、冷蔵室2と上段冷凍室4及び製氷室3が隔てられ、また、同様に断熱仕切壁29により、下段冷凍室5と野菜室6が隔てられている。ドア2a、2bの庫内側には複数のドアポケットが上から33a、33b、33cの順番で備えてあり、冷蔵室2は複数の棚34により複数の貯蔵スペースに区画されている。冷蔵室2の下部には、減圧して食品を貯蔵する減圧貯蔵室35を設けている。減圧貯蔵室35の内部の圧力を低下させるために、減圧用ポンプ(図示なし)を備えてあり、内部の圧力を維持するために減圧貯蔵室にはドアが設けられ、ハンドルでロックできるようになっている。   FIG. 2 is a cross-sectional view taken along the line AA of the refrigerator according to the present invention. The outside of the refrigerator 1 and the inside of the refrigerator are separated by a heat insulating box 10 formed by filling a foam heat insulating material. A plurality of vacuum heat insulating materials 25 are mounted on the heat insulating box 10 of the refrigerator 1. The refrigerating compartment 2 is separated from the upper freezing compartment 4 and the ice making compartment 3 by the heat insulating partition wall 28, and the lower freezing compartment 5 and the vegetable compartment 6 are similarly separated by the heat insulating partition wall 29. A plurality of door pockets are provided on the inner side of the doors 2a, 2b in the order of 33a, 33b, 33c from the top, and the refrigerator compartment 2 is partitioned into a plurality of storage spaces by a plurality of shelves 34. In the lower part of the refrigerator compartment 2, a reduced pressure storage chamber 35 for storing food by reducing the pressure is provided. In order to reduce the pressure inside the decompression storage chamber 35, a decompression pump (not shown) is provided, and in order to maintain the internal pressure, a door is provided in the decompression storage chamber so that it can be locked with a handle. It has become.

上段冷凍室4と下段冷凍室5の間には、冷凍室の断熱仕切壁40を設けている。上段冷凍室4、下段冷凍室5及び野菜室6には、それぞれの冷却室の前方に備えられたドア3a、4a、5a、6aと一体に収納容器3b、4b、5b、6bがそれぞれ設けられており、ドア4a、5a、6aを手前側に引き出すことにより、収納容器4b、5b、6bも引き出せるようになっている。製氷室3にもドア3aと一体に収納容器が設けられ、ドア3aを手前側に引き出すことにより、収納容器3bも引き出せる。また、庫外温度センサ52は、例えば、冷蔵庫1のドアヒンジカバー53の内部に設けている。   Between the upper freezer compartment 4 and the lower freezer compartment 5, the heat insulation partition wall 40 of the freezer compartment is provided. In the upper freezer compartment 4, the lower freezer compartment 5, and the vegetable compartment 6, storage containers 3b, 4b, 5b, 6b are provided integrally with doors 3a, 4a, 5a, 6a provided in front of the respective cooling compartments. The storage containers 4b, 5b, 6b can also be pulled out by pulling out the doors 4a, 5a, 6a to the front side. The ice making chamber 3 is also provided with a storage container integrally with the door 3a, and the storage container 3b can also be pulled out by pulling the door 3a forward. Moreover, the outside temperature sensor 52 is provided, for example, inside the door hinge cover 53 of the refrigerator 1.

冷却器7は下段冷凍室5の略背部に備えた冷却器収納室8内に設けてあり、冷却器7の上方に設けた庫内ファン9(冷気供給手段)により、冷却器7と熱交換した冷気が冷蔵室冷気ダクト11、上段冷凍室冷気ダクト12、下段冷凍室送風ダクト13、及び製氷室送風ダクト(図示なし)を介して、冷蔵室2、上段冷凍室4、下段冷凍室5、製氷室3の各貯蔵室へそれぞれ送られる。   The cooler 7 is provided in a cooler storage chamber 8 provided substantially at the back of the lower freezing chamber 5, and heat is exchanged with the cooler 7 by an internal fan 9 (cold air supply means) provided above the cooler 7. The chilled air passes through the refrigeration chamber 2, the upper freezer compartment 4, the lower freezer compartment duct 12, the lower freezer compartment air duct 13, and the ice making compartment air duct (not shown). It is sent to each storage room of the ice making room 3.

各貯蔵室への冷気の送風は、冷気送風調整手段、すなわち冷蔵室ダンパ20と、冷凍室ダンパ60の開閉により制御される。冷蔵室ダンパ20と冷凍室ダンパ60は、モータ駆動部(図示なし)によってそれぞれのダンパの開口部に設けたバッフルを開閉させて風量を調整する。   Cooling air blowing to each storage room is controlled by opening / closing of the cold air blowing adjusting means, that is, the refrigerator compartment damper 20 and the freezer compartment damper 60. The refrigerator compartment damper 20 and the freezer compartment damper 60 adjust the air volume by opening and closing the baffles provided at the openings of the respective dampers by a motor drive unit (not shown).

冷蔵室2を冷却する冷蔵室冷却運転の場合には、冷蔵室20を開、冷凍室ダンパ60を閉にし、冷蔵室ダクト11を経て吹き出し口(図示なし)から冷蔵室2に冷気が送られる。冷蔵室2に冷気を循環した後、冷蔵室下部に設けた冷蔵室冷気戻り口54(図3参照)に冷気が流入し、その後、冷却器7の右側方から戻される。   In the case of the refrigerating room cooling operation for cooling the refrigerating room 2, the refrigerating room 20 is opened, the freezing room damper 60 is closed, and cold air is sent from the outlet (not shown) to the refrigerating room 2 through the refrigerating room duct 11. . After circulating cold air to the refrigerator compartment 2, the cold air flows into the refrigerator compartment cold air return port 54 (see FIG. 3) provided at the lower part of the refrigerator compartment, and then returned from the right side of the cooler 7.

野菜室6の冷却手段については種々の方法があるが、例えば、冷蔵室2を冷却した後に野菜室6に冷気を直接送る方法や、野菜室専用のダンパを用いて冷却器7で発生した冷気を直接野菜室6に送る方法が考えられる。本願においては、野菜室6への冷気の供給方法についてはいずれの場合でも良い。図2に記載の例では、野菜室6に流入した冷気は、断熱仕切壁29の下部前方に設けた、野菜室冷気戻り口18aから野菜室戻りダクト18を介して、野菜室戻り吐出口18bから冷却器7に流入する。   There are various methods for cooling the vegetable compartment 6, for example, a method of directly sending cold air to the vegetable compartment 6 after cooling the refrigerator compartment 2, or cold air generated by the cooler 7 using a damper dedicated to the vegetable compartment Can be considered as a method of directly sending to the vegetable compartment 6. In the present application, any method may be used for supplying cold air to the vegetable compartment 6. In the example shown in FIG. 2, the cold air that has flowed into the vegetable compartment 6 flows from the vegetable compartment cold air return port 18 a provided in front of the lower part of the heat insulating partition wall 29 to the vegetable compartment return discharge port 18 b via the vegetable compartment return duct 18. To the cooler 7.

冷凍室4、5(製氷室3も含むが以下省略)を冷却する冷凍室冷却運転の場合には、冷蔵室ダンパ20を閉、冷凍室ダンパ60を開にし、冷気は上段冷凍室4、下段冷凍室5、及び製氷室3を冷却した後、冷凍室冷気戻り口17から冷却器7に戻される。庫内の温度に応じて、冷蔵室2と冷凍室4、5を同時に冷却する運転もあり、その場合には冷蔵室ダンパ20と冷凍室ダンパ60をいずれも開にして各貯蔵室に冷気を送風する。冷蔵室2、冷凍室4、5の送風は、冷蔵室2の庫内温度を検知する温度センサ42で検出される温度と、冷凍室3、4の庫内温度を検知する温度センサ43で検出される温度に応じて、冷蔵室ダンパ20及び冷凍室ダンパ60のバッフルの開閉制御が行なわれる。   In the case of the freezing room cooling operation for cooling the freezing rooms 4 and 5 (including the ice making room 3 but omitted below), the refrigerating room damper 20 is closed and the freezing room damper 60 is opened, and the cold air is in the upper freezing room 4 and the lower stage. After the freezing room 5 and the ice making room 3 are cooled, they are returned to the cooler 7 through the freezing room cold air return port 17. There is also an operation of cooling the refrigerator compartment 2 and the freezer compartments 4 and 5 at the same time depending on the temperature in the refrigerator. In this case, both the refrigerator compartment damper 20 and the freezer compartment damper 60 are opened to cool each storage compartment. Blow. The ventilation of the refrigerator compartment 2 and the freezer compartments 4 and 5 is detected by a temperature sensor 42 that detects the internal temperature of the refrigerator compartment 2 and a temperature sensor 43 that detects the internal temperature of the freezer compartments 3 and 4. The opening / closing control of the baffles of the refrigerator compartment damper 20 and the freezer compartment damper 60 is performed according to the temperature to be performed.

冷却器7の下部には加熱手段の一例である除霜ヒータ22を設けてある。除霜時に発生したドレン水は樋23に一旦落下し、ドレン孔27を介して圧縮機24の上部に設けた蒸発皿21に放出される。冷蔵庫の背面下部に設けた機械室58内には、圧縮機24の他に放熱器と放熱用のファン(図示なし)が配置されている。   A defrost heater 22, which is an example of a heating unit, is provided below the cooler 7. The drain water generated at the time of defrosting once falls into the tub 23 and is discharged through the drain hole 27 to the evaporating dish 21 provided at the upper part of the compressor 24. In addition to the compressor 24, a radiator and a heat radiating fan (not shown) are arranged in the machine room 58 provided at the lower back of the refrigerator.

冷蔵庫1の天井壁上面にはメモリー、インターフェース回路を搭載した制御基板51が配置されており、制御基板51に記憶された制御内容に従って、冷却運転、除霜運転等が実施される。制御基板51は基板カバー50で覆われている。   A control board 51 equipped with a memory and an interface circuit is disposed on the upper surface of the ceiling wall of the refrigerator 1, and a cooling operation, a defrosting operation, and the like are performed according to the control contents stored in the control board 51. The control board 51 is covered with a board cover 50.

図3は冷却器7の周辺部を正面から見た図で、冷蔵室冷却時の冷気の流れである。冷蔵室戻り冷気57は、冷却器7の横に設けた冷蔵室冷気戻りダクト54を通過して、冷蔵室冷気戻りダクト54の先端部に設けた曲がり部61によって、流れの向きを約90度変え、正面から見て冷却器7の右側方下部から流入する。その後、流れの向きを再び約90度変えて、冷却器7の上部に向かって流れる。冷却器7、及びその周辺部の冷却器収納室8に成長した霜を解かす除霜ヒータ22と、冷蔵室冷気戻りダクト54の表面には、冷蔵室冷気戻りダクト54の表面に成長した霜を解かすダクトヒータ55をそれぞれ設けている。図3に示した冷気の流れは、圧縮機24を運転して冷蔵室2を冷却する(以下「R運転」とする)場合、また、圧縮機24を停止して、庫内ファン9を運転し、冷却器2の霜を利用して冷却(霜冷却)する場合に相当する。圧縮機24の運転によらず冷蔵室2を冷却する際には、図3で示した冷気の流れとなる。また、冷却器7の上部には、冷却器7に接続する冷媒配管に温度検知手段56を設けてあり、主に冷却器7の温度を検知している。   FIG. 3 is a view of the periphery of the cooler 7 as viewed from the front, and shows the flow of cold air during cooling in the refrigerator compartment. The refrigerating room return air 57 passes through the refrigerating room cold air return duct 54 provided on the side of the cooler 7, and the direction of flow is changed by about 90 degrees by the bent portion 61 provided at the front end of the refrigerating room cold air return duct 54. Instead, it flows from the lower right side of the cooler 7 when viewed from the front. Thereafter, the flow direction is changed again by about 90 degrees, and the flow flows toward the upper part of the cooler 7. The defrost heater 22 for defrosting the frost grown in the cooler 7 and the cooler storage chamber 8 in the periphery of the cooler 7, and the frost grown on the surface of the refrigerating room cold air return duct 54 on the surface of the refrigerating room cold air return duct 54 Duct heaters 55 for solving the above are provided. The cold air flow shown in FIG. 3 is used when the compressor 24 is operated to cool the refrigerator compartment 2 (hereinafter referred to as “R operation”), and the compressor 24 is stopped and the internal fan 9 is operated. It corresponds to the case of cooling (frost cooling) using the frost of the cooler 2. When the refrigerator compartment 2 is cooled regardless of the operation of the compressor 24, the flow of cold air shown in FIG. Further, a temperature detection means 56 is provided on the refrigerant pipe connected to the cooler 7 at the upper part of the cooler 7, and mainly detects the temperature of the cooler 7.

図4aは冷却器7の周辺部を正面から見た図で、冷凍室冷却時の冷気の流れである。図4bは冷却器7のB-B断面図である。圧縮機24を運転して冷凍室4、5を冷却(以下「F運転」とする)場合、冷却器7の前面側に設けた冷凍室冷気戻り口17(図2参照)から、冷凍室戻り冷気63が流入するようになっている。従って、F運転時には冷却器7の前方下部から冷凍室戻り冷気63が流入し、その後、約90度向きを変えて冷却器7の上部に向かって冷気が流れる。また、冷蔵室2と冷凍室4、5を同時に冷却する場合には、図3、図4aで示した冷気の流れが同時に発生するので冷却器7に流入する際には複雑な流れとなる。   FIG. 4A is a view of the periphery of the cooler 7 as viewed from the front, and shows the flow of cold air during cooling of the freezer compartment. FIG. 4 b is a cross-sectional view of the cooler 7 taken along the line BB. When the compressor 24 is operated to cool the freezer compartments 4 and 5 (hereinafter referred to as “F operation”), the freezer return to the freezer compartment 17 (see FIG. 2) provided on the front side of the cooler 7 is performed. Cold air 63 flows in. Accordingly, during the F operation, the freezer return cold air 63 flows from the lower front part of the cooler 7, and then the cool air flows toward the upper part of the cooler 7 by changing the direction by about 90 degrees. Further, when the refrigerator compartment 2 and the freezer compartments 4 and 5 are cooled at the same time, the flow of the cold air shown in FIGS. 3 and 4a is generated at the same time.

図5は冷却運転中の温度チャートと各部の動作である。冷蔵庫1の冷却運転は、圧縮機24を運転し、冷蔵室ダンパ20(以下、「Rダンパ20」と称する場合がある)を開、冷凍室ダンパ60(以下、「Fダンパ60」と称する場合がある)を閉にして冷蔵室2を冷却するR運転、Rダンパを閉、Fダンパを開にして冷凍室4、5を冷却するF運転、圧縮機24を停止し、Rダンパを開、Fダンパを閉にして冷蔵室2を冷却する霜冷却運転の順番を1サイクルとし、庫内の熱負荷の変動が少ない場合には、これらを繰り返して安定的した冷却が継続される。   FIG. 5 is a temperature chart during the cooling operation and the operation of each part. In the cooling operation of the refrigerator 1, the compressor 24 is operated, the refrigerator compartment damper 20 (hereinafter sometimes referred to as “R damper 20”) is opened, and the freezer compartment damper 60 (hereinafter referred to as “F damper 60”). Is closed and the refrigerator 2 is cooled, the R damper is closed, the F damper is opened, the F damper is opened and the refrigerators 4 and 5 are cooled, the compressor 24 is stopped, and the R damper is opened. The order of the frost cooling operation in which the F damper is closed and the refrigerator compartment 2 is cooled is one cycle, and when the fluctuation of the heat load in the warehouse is small, these are repeated and stable cooling is continued.

各冷却運転時の制御について簡単に説明する。冷凍室3、4の温度を検知する温度センサ43がTFCに到達した際に、圧縮機24を起動する。冷蔵室温度センサ42の下限値TRMin、あるいは冷凍室温度センサ43の上限値TFMaxに到達するまで、いずれかの条件が成立するまでR運転から冷却運転を実施する。その後、冷凍室温度センサ43の下限値TFMinに到達するまで、F運転を実施する。霜冷却は圧縮機停止中にRダンパ20を開、Fダンパ60を閉にして、冷却器7に成長した霜の冷熱エネルギーを利用して冷蔵室2を冷却する。   The control during each cooling operation will be briefly described. When the temperature sensor 43 that detects the temperature of the freezer compartments 3 and 4 reaches the TFC, the compressor 24 is started. The cooling operation is performed from the R operation until one of the conditions is satisfied until the lower limit value TRMin of the refrigerator compartment temperature sensor 42 or the upper limit value TFMax of the freezer compartment temperature sensor 43 is reached. Thereafter, the F operation is performed until the lower limit value TFMin of the freezer temperature sensor 43 is reached. In frost cooling, the R damper 20 is opened while the compressor is stopped, the F damper 60 is closed, and the refrigeration chamber 2 is cooled by using the cold energy of the frost grown on the cooler 7.

温度センサ56は、冷却器7の上部に接続する冷媒配管に接触するように設けているので、圧縮機24が運転中の場合、冷却器7の配管内部を流れる冷媒温度の影響を強く受ける。一方、F運転終了時、すなわち圧縮機24を停止して、霜冷却を開始する時の冷蔵室2の温度は、庫内の設定温度を変えない限り、毎回概ね同じ温度になるので、冷却器7に流入する冷蔵室戻り冷気57の温度も毎回同じである。また、冷凍室3、4の温度も同様に、設定温度を変えない限り、毎回同じ温度TFMinに到達するまで冷却しているので、F運転が終了する際の冷凍室3、4の温度も同じになる。従って、温度センサ56で検出される温度は、圧縮機24を停止した方が冷却器7の冷媒温度の影響を受け難く、冷却器7を流入した冷気による冷却器7の温度変化を測定し易くなる。また、冷蔵庫1の冷凍サイクルの構成部分となる放熱器と冷却器を接続する配管途中に開閉弁を設けて、圧縮機停止時に高圧側の放熱器から低圧側の冷却器に流入する冷媒を一時的に止め、冷媒による冷却器7の温度上昇を抑制して冷却器7に流入する冷気の影響による温度変化を、温度センサ56で検知すると着霜量検知の精度を更に高めることができる。以上のような理由により、圧縮機24を停止中に霜冷却を行ないながら、着霜量検知運転を同時に行なうことにする。   Since the temperature sensor 56 is provided so as to be in contact with the refrigerant pipe connected to the upper part of the cooler 7, when the compressor 24 is in operation, it is strongly influenced by the temperature of the refrigerant flowing through the pipe of the cooler 7. On the other hand, at the end of the F operation, that is, when the compressor 24 is stopped and the frost cooling is started, the temperature of the refrigerator compartment 2 is approximately the same every time unless the set temperature in the refrigerator is changed. The temperature of the refrigeration chamber return cold air 57 that flows into the refrigeration chamber 7 is also the same every time. Similarly, the temperature of the freezer compartments 3 and 4 is also cooled until the same temperature TFMin is reached every time unless the set temperature is changed, so the temperatures of the freezer compartments 3 and 4 when the F operation ends are also the same. become. Therefore, the temperature detected by the temperature sensor 56 is less affected by the refrigerant temperature of the cooler 7 when the compressor 24 is stopped, and the temperature change of the cooler 7 due to the cool air flowing into the cooler 7 can be easily measured. Become. In addition, an on-off valve is provided in the middle of the pipe connecting the radiator and the cooler constituting the refrigeration cycle of the refrigerator 1 so that the refrigerant flowing from the high-pressure side radiator to the low-pressure side cooler temporarily when the compressor is stopped. If the temperature sensor 56 detects the temperature change due to the influence of the cold air flowing into the cooler 7 while suppressing the temperature rise of the cooler 7 due to the refrigerant, the accuracy of detecting the amount of frost formation can be further improved. For the reasons as described above, the frosting amount detection operation is simultaneously performed while frost cooling is performed while the compressor 24 is stopped.

霜冷却中の庫内ファン9の回転数は大きく変わることはなく、また冷却器7に流入する冷蔵室戻り冷気の温度もほぼ一定であるため、霜冷却開始時、すなわち着霜量検知運転開始時の温度センサ56の温度は、ほぼ一定温度T1となる。温度センサ56によって、冷蔵室戻り冷気57と冷却器7に成長した霜と熱交換した後の冷却器7の温度を検知できる。冷却器7の着霜量(霜による蓄熱量)と、冷却器7(霜層)を通過する冷蔵室戻り冷気57の風量(冷気による加熱)の影響を受けて、温度センサ56は温度上昇するので、Δt後には温度T2に到達する。着霜量検知運転を実施する際には、検知運転時間によって温度センサ56の到達温度T2が異なるため、着霜量検知運転を実施する際には運転時間Δtを予め決めるようにする。   The number of rotations of the internal fan 9 during frost cooling does not change greatly, and the temperature of the cold room return cold air flowing into the cooler 7 is also substantially constant. Therefore, when the frost cooling starts, that is, the frost amount detection operation starts. The temperature of the temperature sensor 56 at the time becomes a substantially constant temperature T1. The temperature sensor 56 can detect the temperature of the cooler 7 after exchanging heat with the refrigerated room return air 57 and the frost grown on the cooler 7. The temperature sensor 56 rises in temperature under the influence of the frost formation amount (heat storage amount due to frost) of the cooler 7 and the air volume (heating by cold air) of the cold room return cold air 57 passing through the cooler 7 (frost layer). Therefore, the temperature T2 is reached after Δt. When the frost formation amount detection operation is performed, the temperature T2 reached by the temperature sensor 56 differs depending on the detection operation time. Therefore, when the frost formation amount detection operation is performed, the operation time Δt is determined in advance.

図6は冷却器7に成長した霜が少ない場合、図7は冷却器7に成長した霜が多い場合のそれぞれ冷却器7の概略図である。   6 is a schematic diagram of the cooler 7 when there is little frost grown on the cooler 7, and FIG. 7 is a schematic view of the cooler 7 when there is much frost grown on the cooler 7, respectively.

冷却器7に成長する霜の主な原因は、冷蔵室冷気戻りダクト54から流入する冷蔵室戻り冷気57によるところが大きい。冷蔵室冷気戻りダクト54は曲がり流路のため、冷却器7の下部から冷蔵室戻り冷気57が流入する際には、曲がり半径が大きい外側に偏った流れとなる。従って、冷却器7に成長する霜は、冷蔵室冷気戻りダクト54とは反対側の冷却器7(冷蔵庫1正面から見て左側)から霜が成長し始め、徐々に冷蔵室冷気戻りダクト54側に向かって成長することが分かっている。霜が少ない場合(図6参照)は、冷却器7に成長する霜は、正面から見て左側に霜が多く、右側に向かって霜が少ない分布となる。一方、霜が多い場合(図7参照)は、冷却器7に成長する霜が全体的に多いが、霜が着き始める冷却器7の左側が多くなる傾向にある。   The main cause of the frost growing on the cooler 7 is largely due to the cold room return cold air 57 flowing from the cold room cold air return duct 54. Since the refrigeration chamber cold air return duct 54 is a curved flow path, when the refrigeration chamber return cold air 57 flows from the lower part of the cooler 7, the flow is biased to the outside with a large bending radius. Therefore, the frost that grows in the cooler 7 begins to grow from the cooler 7 on the opposite side to the cold room cool air return duct 54 (left side as viewed from the front of the refrigerator 1), and gradually, the cold room cool air return duct 54 side. It is known to grow towards. When there is little frost (refer FIG. 6), the frost which grows to the cooler 7 becomes distribution with much frost on the left side seeing from the front, and few frost toward the right side. On the other hand, when there is a lot of frost (see FIG. 7), the frost that grows on the cooler 7 as a whole is large, but the left side of the cooler 7 that starts to frost tends to increase.

サイクル毎に行なわれる着霜量検知運転開始時の、冷蔵室戻り冷気57の温度はほぼ同じであるので、圧縮機24を停止して冷却器7に接続する冷媒配管に接触させて設けた温度センサ56は、着霜量と流入してくる冷蔵室戻り冷気57の風量の影響を同時に受けた後の、冷却器7の温度変化を測定することができる。冷蔵室戻り冷気57が冷却器7を通過する際に霜と熱交換するため、冷却器7に付着した霜層と共に冷却器7の温度は上昇する。冷却器7、あるいは冷却器に成長した霜層に、冷蔵室戻り戻り冷気57から移動する熱量が同じであれば、霜が多い方が霜による蓄熱量が多いため、着霜量検知運転中の温度上昇は抑制され、着霜量検知運転終了時の温度T2は低くなる。一方、冷却器7に成長した霜によって除々に通風抵抗が増え、その結果、冷蔵室戻り戻り冷気57の風量が減少し、冷蔵室戻り戻り冷気57から冷却器7、または霜層に移動する熱量が少なくなるため、温度センサ56の温度上昇が抑制される。実際にはこれらの両方の影響を受け、霜の増加と共に霜による蓄熱量が増加し、また冷蔵室戻り冷気57の風量が減少するため、冷却器7、または霜層に移動する熱量が少なくなるので、着霜量検知運転終了時の温度T2の上昇は抑制されて低くなる。   Since the temperature of the refrigeration chamber return cold air 57 at the start of the frost amount detection operation performed for each cycle is substantially the same, the temperature provided by contacting the refrigerant pipe connected to the cooler 7 by stopping the compressor 24 The sensor 56 can measure the temperature change of the cooler 7 after being simultaneously affected by the amount of frost formation and the air volume of the inflowing cold room return cold air 57. Since the cold air 57 returning from the refrigerator compartment exchanges heat with frost when passing through the cooler 7, the temperature of the cooler 7 rises together with the frost layer adhering to the cooler 7. If the amount of heat transferred from the cooler 57 or the frost layer that has grown into the cooler returns from the refrigerator compartment 57 is the same, the amount of heat stored by the frost is greater when the amount of frost is larger. The temperature rise is suppressed, and the temperature T2 at the end of the frost amount detection operation is lowered. On the other hand, the resistance to ventilation gradually increases due to the frost grown on the cooler 7, and as a result, the air volume of the cold air 57 returning to the refrigerator compartment decreases, and the amount of heat transferred from the cold air 57 returning to the cooler 7 or the frost layer. Therefore, the temperature rise of the temperature sensor 56 is suppressed. In actuality, both of these influences cause an increase in the amount of heat stored by the frost as the frost increases, and the amount of air in the refrigeration room return cold air 57 decreases, so the amount of heat transferred to the cooler 7 or frost layer decreases. Therefore, the rise in temperature T2 at the end of the frost amount detection operation is suppressed and becomes low.

以上のような現象を利用したのが本発明に係る着霜量検知運転で、冷却器7に成長した霜が少ない時には、温度センサ56によって検知される温度は上昇し易く、霜が多い時には温度センサ56によって検知される温度の上昇は抑制されるため、着霜量検知運転終了時の温度は低くなる。また、着霜が生じる箇所は冷却器7とその周辺、及び冷蔵室冷気戻りダクト54の内側が考えられるが、温度センサ56の温度変化の原因が、いずれの場所の着霜によってもたらされるかは区別することはできない。冷蔵室冷気戻りダクト54に成長した霜が多くなると、冷蔵室冷気戻りダクト54を通過する際にも通風抵抗が増えるので、冷却器7に霜が少なく場合でも温度センサ56で検知される温度は低くなる。   The phenomenon described above is utilized in the frost formation amount detection operation according to the present invention. When the frost grown on the cooler 7 is small, the temperature detected by the temperature sensor 56 is likely to rise, and when there is a lot of frost, the temperature is detected. Since the rise in temperature detected by the sensor 56 is suppressed, the temperature at the end of the frosting amount detection operation is lowered. In addition, the place where the frost is generated may be the cooler 7 and its surroundings and the inside of the refrigeration room cold air return duct 54, but the location of the temperature change of the temperature sensor 56 is caused by the frost formation. It cannot be distinguished. If the amount of frost that has grown in the refrigerator compartment cool air return duct 54 increases, the ventilation resistance also increases when passing through the refrigerator compartment cool air return duct 54, so the temperature detected by the temperature sensor 56 even when the refrigerator 7 has little frost, Lower.

次に着霜量検知運転時に、温度センサ56で検知した温度と着霜量の関係について説明する。   Next, the relationship between the temperature detected by the temperature sensor 56 and the frost amount during the frost amount detection operation will be described.

図8aは着霜量Gに対する着霜検知運転時の温度T1、T2の関係である。前述の通り、着霜検知運転開始時の温度センサ56の検知温度は、ほぼ一定でT1となる(例えば、T1=−28℃)。着霜検知運転中(霜冷却中)は、冷蔵室戻り冷気57による加熱で冷却器7の温度は徐々に上昇していき、時間Δt後の温度センサ56で検知される温度はT2となる。到達温度T2は冷却時間の経過と共に、温度が低下することが実験により確認されている。すなわち、図5の温度チャートに示したように、着霜検知運転終了時の温度T2を結んだ線83は、冷却時間の経過と共に直線的に低下する。従って、図8aに示すように、着霜量検知運転開始時に温度センサ56で検知される温度T1は、着霜量によらずほぼ一定となる。時間Δt後の温度T2は、冷却時間と共に、すなわち着霜量の増加と共に直線的に低下するので、予め着霜量に対する温度センサ56で検知される温度変化を記憶させておけば、実際に霜の量を測定しなくても、温度センサ56によって温度検知すれば、除霜前に着霜量を予測することができる。   FIG. 8a shows the relationship between the temperatures T1 and T2 during the frost detection operation with respect to the frost amount G. As described above, the temperature detected by the temperature sensor 56 at the start of the frost detection operation is substantially constant and becomes T1 (for example, T1 = −28 ° C.). During the frosting detection operation (during frost cooling), the temperature of the cooler 7 gradually rises due to heating by the refrigerating room return cold air 57, and the temperature detected by the temperature sensor 56 after time Δt is T2. It has been confirmed by experiments that the temperature T2 decreases as the cooling time elapses. That is, as shown in the temperature chart of FIG. 5, the line 83 connecting the temperature T2 at the end of the frost detection operation linearly decreases with the elapse of the cooling time. Therefore, as shown in FIG. 8a, the temperature T1 detected by the temperature sensor 56 at the start of the frost formation amount detection operation is substantially constant regardless of the frost formation amount. The temperature T2 after the time Δt decreases linearly with the cooling time, that is, with the increase in the amount of frost formation. Therefore, if the temperature change detected by the temperature sensor 56 with respect to the amount of frost formation is stored in advance, the frost Even if the amount is not measured, if the temperature is detected by the temperature sensor 56, the amount of frost formation can be predicted before defrosting.

図8bは着霜量Gに対する着霜検知運転中の温度上昇率である。温度上昇率(傾き)Aは、着霜検知運転開始時の温度センサ56の検知温度T1と、Δt後の温度T2の差から求まる、着霜量検知運転中の平均的な温度上昇率である。温度上昇率Aは、図5の温度チャートに示すように冷却時間が長くなるほど、すなわち、着霜量が多くなるほど、温度センサ56の検知温度T1は同じであるがT2は低くなるので、Δt間の温度上昇率は小さくなっていく。   FIG. 8 b is a temperature increase rate during the frost detection operation with respect to the frost amount G. The temperature increase rate (slope) A is an average temperature increase rate during the frost amount detection operation, which is obtained from the difference between the detection temperature T1 of the temperature sensor 56 at the start of the frost detection operation and the temperature T2 after Δt. . As shown in the temperature chart of FIG. 5, the temperature increase rate A is the same as the detected temperature T1 of the temperature sensor 56, but the T2 is lower as the amount of frost formation increases. The temperature rise rate of becomes smaller.

図8cは着霜量Gに対する温度T2と冷凍室温度の関係である。着霜量検知運転終了時、すなわち圧縮機24の起動は冷凍室温度センサ43で検出される温度がTFCに到達した時に実施されるので(図5参照)、冷凍室温度センサ43で代表される冷凍室4、5の温度も、着霜量によらずほぼ一定となる(例えば冷凍室温度センサ43の温度は−22℃)。温度センサ56で検知される温度T2と、冷凍室温度センサ43で代表される冷凍室4、5の温度の間にも、図8aと同様な関係が見られる。   FIG. 8c shows the relationship between the temperature T2 and the freezer compartment temperature with respect to the frost amount G. At the end of the frosting amount detection operation, that is, when the compressor 24 is started when the temperature detected by the freezer temperature sensor 43 reaches TFC (see FIG. 5), it is represented by the freezer temperature sensor 43. The temperatures of the freezing rooms 4 and 5 are also substantially constant regardless of the amount of frost formation (for example, the temperature of the freezing room temperature sensor 43 is −22 ° C.). A relationship similar to that in FIG. 8 a is also observed between the temperature T 2 detected by the temperature sensor 56 and the temperatures of the freezing rooms 4 and 5 represented by the freezing room temperature sensor 43.

図8dは着霜量Gに対する温度T2と庫内ファン9の入力指令値の関係である。温度センサ56で検知される温度T2は、着霜量に関連して変化する。着霜量の増加に伴い通風抵抗が大きくなるので、所定の回転数を維持するために庫内ファン9の指令電圧も増加する。着霜量と庫内ファン9の指令電圧の関係を予め測定しておけば、温度センサ56で検知される温度T2による着霜量の検知と合わせて、着霜量を予測することができるので、予測精度を高くすることができる。   FIG. 8d shows the relationship between the temperature T2 and the input command value of the internal fan 9 with respect to the frost amount G. The temperature T2 detected by the temperature sensor 56 changes in relation to the amount of frost formation. Since the ventilation resistance increases with the increase in the amount of frost formation, the command voltage of the internal fan 9 increases in order to maintain a predetermined rotational speed. If the relationship between the amount of frost formation and the command voltage of the internal fan 9 is measured in advance, the amount of frost formation can be predicted together with the detection of the amount of frost formation by the temperature T2 detected by the temperature sensor 56. The prediction accuracy can be increased.

次に除霜時のヒータ加熱制御ついて説明する。   Next, heater heating control during defrosting will be described.

図9は霜が少ない場合の除霜時のヒータ加熱制御の一例である。外気温度に応じて予め決めた、除霜開始判定を行なう圧縮機積算時間をtsとする。積算時間tsに到達する時刻に対して、最も近い時刻に実施した着霜量検知運転終了時の温度センサ56で検知された温度(T2)Gを、予め決めていたしきい値温度(T2)Gt(着霜量Gt)と比較することで、除霜時のヒータ加熱制御を決める。しきい値温度(T2)Gtは予め実験で決めた温度で、冷却器7やその周辺部の着霜状態、及び冷蔵室冷気戻りダクト54の着霜状態を基に決め、除霜終了時の霜の解け残りが発生しないように考慮して決めた。しきい値温度(T2)Gtは冷蔵庫によって異なるが、例えば、着霜量Gt=250gの時の温度T2をしきい値温度にすると(T2)Gt=−16℃になる。このしきい値温度(T2)Gtと着霜量検知運転終了時の温度(T2)Gを比較することで、着霜量に応じたヒータ加熱制御を実施する。   FIG. 9 is an example of heater heating control during defrosting when there is little frost. The compressor integrated time for performing the defrosting start determination determined in advance according to the outside air temperature is ts. The temperature (T2) G detected by the temperature sensor 56 at the end of the frosting amount detection operation performed at the nearest time with respect to the time reaching the integrated time ts is set to a predetermined threshold temperature (T2) Gt. By comparing with (frosting amount Gt), heater heating control at the time of defrosting is determined. The threshold temperature (T2) Gt is a temperature determined in advance by experiment. The threshold temperature (T2) Gt is determined based on the frosting state of the cooler 7 and its surroundings and the frosting state of the cold room return air duct 54. The decision was made in consideration of the fact that no frost thaw occurred. Although the threshold temperature (T2) Gt varies depending on the refrigerator, for example, when the temperature T2 when the frost formation amount Gt = 250 g is set as the threshold temperature, (T2) Gt = −16 ° C. By comparing the threshold temperature (T2) Gt with the temperature (T2) G at the end of the frost amount detection operation, the heater heating control according to the frost amount is performed.

除霜時には冷却器7の下部に設けた除霜ヒータ22と、ダクトヒータ55を主な加熱源としているが、着霜量が多い場合には、冷却器7の周辺部に成長した霜も解かす目的で、除霜終了の判定温度は温度センサ56で検知される温度が例えば約10℃になるまで、除霜ヒータ22とダクトヒータ55によって加熱し続ける場合がある。着霜量検知運転により、除霜開始前に着霜量を予測することができるので、着霜量に応じたヒータ加熱制御が行なえるようになる。   At the time of defrosting, the defrosting heater 22 provided at the lower part of the cooler 7 and the duct heater 55 are used as main heating sources. However, when the amount of frost formation is large, the frost that has grown on the periphery of the cooler 7 is also released. For the purpose, the defrosting end determination temperature may continue to be heated by the defrosting heater 22 and the duct heater 55 until the temperature detected by the temperature sensor 56 reaches, for example, about 10 ° C. Since the amount of frost formation can be predicted before the start of defrosting by the frost amount detection operation, heater heating control according to the amount of frost formation can be performed.

積算時間tsに到達する最も近い時刻に実施した着霜量検知運転終了時の温度(T2)Gが、しきい値温度(T2)Gtよりも高い場合、すなわち除霜開始時の着霜量が少ない場合を考える。具体例として、例えば、着霜量検知運転終了時の温度(T2)G=−14℃(着霜量G=100g)、しきい値温度(T2)Gt=−16℃よりも高い場合を考える。霜が多い場合には、冷却器7以外の周辺部に霜が多く成長する場合が考えられるが、冷却器7の霜が少ない場合には、冷却器7以外の周辺部に成長する霜も少ないため、融点0℃を大きく上回る状態まで加熱することは、冷却器7の温度を単に上げるだけになる。
このような場合、ヒータの電力量増加に加えて、除霜時にヒータによって庫内に加えられた熱量も増加するため、冷却時の消費電力が増加することになり、省エネ性を悪化させる要因になる。従って、除霜前の着霜量の検知は、除霜時のヒータ加熱制御を決める上で重要となる。
When the temperature (T2) G at the end of the frost amount detection operation performed at the closest time reaching the integrated time ts is higher than the threshold temperature (T2) Gt, that is, the frost amount at the start of defrosting. Consider the case of few. As a specific example, for example, a case where the temperature at the end of the frost amount detection operation (T2) G = −14 ° C. (frost amount G = 100 g) and the threshold temperature (T2) Gt = −16 ° C. is considered. . When there is a lot of frost, a case where a lot of frost grows in the peripheral part other than the cooler 7 can be considered, but when there is little frost in the cooler 7, a little frost grows in the peripheral part other than the cooler 7. Therefore, heating to a state that greatly exceeds the melting point of 0 ° C. merely raises the temperature of the cooler 7.
In such a case, in addition to the increase in the power consumption of the heater, the amount of heat applied to the interior by the heater during defrosting also increases, so the power consumption during cooling increases, which is a factor that deteriorates energy saving performance. Become. Therefore, detection of the amount of frost formation before defrosting is important in determining heater heating control during defrosting.

本実施形態に関する冷蔵庫1では、除霜ヒータ22に通電しながら庫内ファン9を運転し、冷蔵室2を循環する冷気を除霜時の加熱源として利用できる(Rダンパ20開、Fダンパ60閉)。従って、除霜時に必要とされる加熱量を一定とした場合、冷蔵室2を循環する冷気による加熱量分だけ、除霜ヒータ22で消費されるエネルギーは少なくなり、省エネ性が高くなる。また、庫内ファン9を運転しているので、霜によって冷気が発生し、冷蔵室2の温度を下げることができる。従って、温度センサ56によって検知した温度が除霜開始(時刻t1)から例えば、約3℃(時刻t2)に到達するまで庫内ファン9を運転し、除霜ヒータ22に通電して加熱する。この時、Rダンパ20は開、Fダンパ60は閉にしてある。また、ダクトヒータ55の通電は行なわない。   In the refrigerator 1 according to the present embodiment, the internal fan 9 is operated while the defrost heater 22 is energized, and the cold air circulating in the refrigerator compartment 2 can be used as a heating source at the time of defrosting (R damper 20 open, F damper 60 Closed). Therefore, when the heating amount required at the time of defrosting is made constant, the energy consumed by the defrosting heater 22 is reduced by the heating amount by the cold air circulating in the refrigerator compartment 2, and the energy saving performance is improved. Moreover, since the internal fan 9 is operated, cold air is generated by frost, and the temperature of the refrigerator compartment 2 can be lowered. Accordingly, the internal fan 9 is operated until the temperature detected by the temperature sensor 56 reaches, for example, about 3 ° C. (time t2) from the start of defrosting (time t1), and the defrosting heater 22 is energized and heated. At this time, the R damper 20 is open and the F damper 60 is closed. Further, the duct heater 55 is not energized.

図10は霜が多い場合の除霜時のヒータ加熱制御の一例である。霜が少ない場合と同様の考え方で、温度センサ56で検知した温度(T2)Gが、しきい値温度(T2)Gtよりも低い場合、すなわち除霜開始時の着霜量が多い場合を考える。具体例として、例えば、着霜量検知運転終了時の温度(T2)G=−18℃(着霜量G=400g)、しきい値温度(T2)Gt=−16℃よりも低い場合を考える。冷却器7以外の冷却器周辺部と、冷蔵室冷気戻りダクト54にも霜が成長している場合を考慮する必要がある。除霜ヒータ22とダクトヒータ55に通電し、温度センサ56によって検知した温度が例えば、約3℃(時刻t2)になるまで庫内ファン9を運転(Rダンパ20は開、Fダンパ60は閉)し、その後庫内ファン9の運転を止め、除霜ヒータ22とダクトヒータ55を継続して通電し、温度センサ56によって検知した温度が例えば、約10℃(時刻t3)になるまで加熱する。時刻t2と時刻t3の間は、Rダンパ20は閉、Fダンパ60は開にして、除霜ヒータ22で加熱して生じた自然対流を促進させて、冷却器7の上方の温度を速く上げるようにしている。   FIG. 10 is an example of heater heating control during defrosting when there is a lot of frost. Consider the case where the temperature (T2) G detected by the temperature sensor 56 is lower than the threshold temperature (T2) Gt, that is, when the amount of frost formation at the start of defrosting is large, in the same way as when there is little frost. . As a specific example, for example, consider a case where the temperature at the end of the frost amount detection operation (T2) G = −18 ° C. (frost amount G = 400 g) and the threshold temperature (T2) Gt = −16 ° C. . It is necessary to consider the case where frost grows in the cooler peripheral part other than the cooler 7 and also in the refrigerator compartment cold air return duct 54. The defrost heater 22 and the duct heater 55 are energized, and the internal fan 9 is operated until the temperature detected by the temperature sensor 56 reaches, for example, about 3 ° C. (time t2) (R damper 20 is open and F damper 60 is closed). Thereafter, the operation of the internal fan 9 is stopped, the defrost heater 22 and the duct heater 55 are continuously energized, and the temperature detected by the temperature sensor 56 is heated to, for example, about 10 ° C. (time t3). Between the time t2 and the time t3, the R damper 20 is closed and the F damper 60 is opened to promote natural convection generated by heating with the defrost heater 22 and quickly raise the temperature above the cooler 7. I am doing so.

図11は霜が多い場合の除霜時のヒータ加熱制御の他の実施例である。温度セン56で検知する温度(T2)Gが、しきい値温度(T2)Gtよりも低い場合、すなわち着霜量が多いと判断した場合のヒータ加熱制御については図10で説明した通りであるが、ダクトヒータ55による加熱量を抑えて更に省エネ性を高めた加熱制御について説明する。   FIG. 11 shows another embodiment of heater heating control during defrosting when there is a lot of frost. The heater heating control when the temperature (T2) G detected by the temperature sensor 56 is lower than the threshold temperature (T2) Gt, that is, when it is determined that the amount of frost formation is large is as described in FIG. However, the heating control in which the amount of heating by the duct heater 55 is suppressed to further improve energy saving will be described.

着霜量検知運転時の温度センサ56の検知温度(T2)Gが、しきい値温度(T2)Gtよりも低くなる原因が、必ずしも冷却器7に成長した霜と、冷蔵室冷気戻りダクト54に成長した霜の両方によるものではなく、実際には冷却器7に成長した霜によって検知温度(T2)Gが低下すること方が多い。従って、まず初めに除霜ヒータ22に通電し、温度センサ56によって検知した温度が例えば、約3℃(時刻t2)になるまで庫内ファン9を運転(Rダンパ20は開、Fダンパ60は閉)し、その後庫内ファン9の運転を止め、除霜ヒータ22は継続通電して、温度センサ56によって検知した温度が例えば、約10℃(時刻t3)になるまで加熱する。時刻t2と時刻t3の間は、Rダンパ20は閉、Fダンパ60は開にして、除霜ヒータ22で加熱して生じる自然対流を促進させて、冷却器7の上方の温度を速く上げるようにしている。   The reason why the detection temperature (T2) G of the temperature sensor 56 during the frosting amount detection operation is lower than the threshold temperature (T2) Gt is not necessarily the frost that has grown in the cooler 7 and the cold room return air duct 54. In many cases, the detected temperature (T2) G is actually lowered by the frost that has grown on the cooler 7, not by the frost that has grown on the cooler 7. Therefore, first, the defrost heater 22 is energized, and the internal fan 9 is operated until the temperature detected by the temperature sensor 56 reaches, for example, about 3 ° C. (time t2) (the R damper 20 is opened and the F damper 60 is opened). Then, the operation of the internal fan 9 is stopped, the defrost heater 22 is energized continuously, and heated until the temperature detected by the temperature sensor 56 becomes, for example, about 10 ° C. (time t3). Between the time t2 and the time t3, the R damper 20 is closed and the F damper 60 is opened to promote the natural convection generated by heating with the defrost heater 22 so as to increase the temperature above the cooler 7 quickly. I have to.

除霜終了後、圧縮機24を運転し、所定の庫内温度に到達(時刻t4)した後、最初の圧縮機停止時に着霜量検知運転を実施する。除霜運転が終了し、最初の圧縮機停止時に着霜量検知運転を実施するので、通常、冷却器7に成長する霜の量は少ない。従って、Δt後の検知温度(T2)Gが、冷却器7に霜がほとんどついていない時のしきい値(T2)Gt’(例えば、(T2)Gt’=−12℃)と比較して低くなる時には、冷蔵室冷気戻りダクト54に成長した霜によるものと判断し、着霜量検知運転が終了する時刻t5からダクトヒータ55に通電する。温度センサ56で検知される温度が例えば、約3℃に到達した時点(時刻t6)でダクトヒータ55の通電を止める。この時、庫内ファン9を運転し、冷蔵室冷気戻り戻りダクト54に成長した霜によって冷蔵室2を冷却しても良く、冷蔵室戻り冷気57を加熱源にすることもできるので、ダクトヒータ55で消費する電力量が抑えられる。一方、Δt後の検知温度(T2)Gが、冷却器7に霜がほとんどついていない時のしきい値(T2)Gt’と比較して高くなる時には、冷蔵室冷気戻りダクト54に霜がないとして、ダクトヒータ55の通電は行なわない。   After the defrosting is completed, the compressor 24 is operated, and after reaching a predetermined internal temperature (time t4), the frosting amount detection operation is performed when the compressor is stopped for the first time. Since the defrosting operation is completed and the frosting amount detection operation is performed when the compressor is stopped for the first time, the amount of frost that grows in the cooler 7 is usually small. Therefore, the detected temperature (T2) G after Δt is lower than the threshold value (T2) Gt ′ (for example, (T2) Gt ′ = − 12 ° C.) when the cooler 7 has almost no frost. At that time, it is determined that the frost has grown on the cold air return duct 54, and the duct heater 55 is energized from time t5 when the frost amount detection operation ends. For example, when the temperature detected by the temperature sensor 56 reaches about 3 ° C. (time t6), the duct heater 55 is deenergized. At this time, the internal fan 9 is operated, and the refrigeration chamber 2 may be cooled by the frost that has grown in the refrigeration chamber cold air return return duct 54, and the refrigeration chamber return cold air 57 can be used as a heating source. Can reduce the amount of power consumed. On the other hand, when the detected temperature (T2) G after Δt is higher than the threshold value (T2) Gt ′ when the chiller 7 has almost no frost, the refrigeration chamber cold air return duct 54 has no frost. As a result, the duct heater 55 is not energized.

以上のように、着霜量検知運転時に温度センサ56で検知された温度(T2)Gによって、予め決めたしきい値温度(T2)Gtと比較することによって着霜量を予測し、除霜時の加熱手段を決定する制御について説明した。また、図8aに示したように、しきい値(T2)GtとT1の温度差と(T2)GとT1の温度差を比較することにより同様に除霜時の加熱手段を決定することができる。同様に、図8b示した温度上昇率Aのしきい値(A)Gに対する温度上昇率(A)Gの比較をすることで、除霜時の加熱手段を決定することができる。図8cでは、着霜量検知運転開始時のF室温度(温度センサ43)は、着霜量検知運転開始時には一定となる。従って、温度センサ56で検知される温度T1の代わりに、温度センサ43で検知したF室温度を用いることができるので、しきい値温度(T2)GtとF室温度(温度センさ43)の差を利用しても同様に着霜量の予測が行なえる。更に図8dでは、庫内ファン9の指令電圧と温度センサ56で検知される温度T2との関係を示している。温度センサ56で検知される温度で決めたしきい値(T2)Gと同様に、合わせて庫内ファン9の指令電圧に対してしきい値を設けることによっても、着霜量の予測を行なうことができるので、予測精度が高くなる。   As described above, the amount of frost formation is predicted by comparing with a predetermined threshold temperature (T2) Gt based on the temperature (T2) G detected by the temperature sensor 56 during the frost amount detection operation, and defrosting is performed. The control for determining the heating means at the time has been described. Further, as shown in FIG. 8a, the heating means at the time of defrosting can be similarly determined by comparing the temperature difference between the threshold values (T2) Gt and T1 and the temperature difference between (T2) G and T1. it can. Similarly, the heating means at the time of defrosting can be determined by comparing the temperature increase rate (A) G with the threshold value (A) G of the temperature increase rate A shown in FIG. 8b. In FIG. 8c, the F room temperature (temperature sensor 43) at the start of the frost amount detection operation is constant at the start of the frost amount detection operation. Accordingly, since the F room temperature detected by the temperature sensor 43 can be used instead of the temperature T1 detected by the temperature sensor 56, the threshold temperature (T2) Gt and the F room temperature (temperature sensor 43) can be used. Even if the difference is used, the amount of frost formation can be similarly predicted. Further, FIG. 8 d shows the relationship between the command voltage of the internal fan 9 and the temperature T 2 detected by the temperature sensor 56. Similarly to the threshold value (T2) G determined by the temperature detected by the temperature sensor 56, the amount of frost formation is also predicted by providing a threshold value for the command voltage of the internal fan 9 together. Therefore, the prediction accuracy is increased.

次に着霜検知手段を他の設置場所に設けた場合の実施例について説明する。   Next, an embodiment in which the frost detection means is provided at another installation location will be described.

図12aは霜が少ない場合の着霜分布と冷蔵室戻り冷気の流れの様子、図12bは霜が少ない場合の冷凍室5の断面を上から見た図である。図13aは霜が多い場合の着霜分布と冷蔵室戻り冷気の流れの様子、図13bは霜が多い場合の冷凍室5の断面を上から見た図である。   Fig. 12a is a frost distribution when there is little frost and the flow of cold air returning from the refrigerator compartment, and Fig. 12b is a top view of the cross section of the freezer compartment 5 when there is little frost. FIG. 13A is a view of the frost distribution when the frost is high and the flow of the refrigeration room return cold air, and FIG.

冷却器7に成長する霜は、冷蔵室冷気戻りダクト54から冷却器7に流入する、冷蔵室戻り冷気57に含まれる水分が主な原因である。冷蔵室冷気戻りダクト54は曲がり流路のため、冷却器7の下部から冷蔵室戻り冷気57が流入する際には、曲がり半径が大きい外側に偏った流れとなる。従って、冷却器7に成長する霜は、冷蔵室冷気戻りダクト54とは反対側の冷却器7(冷蔵庫1正面から見て左側)から霜が成長し始め、徐々に冷蔵室冷気戻りダクト54側に向かって成長する。   The frost that grows in the cooler 7 is mainly caused by moisture contained in the cooler return cool air 57 that flows into the cooler 7 from the cooler cooler return duct 54. Since the refrigeration chamber cold air return duct 54 is a curved flow path, when the refrigeration chamber return cold air 57 flows from the lower part of the cooler 7, the flow is biased to the outside with a large bending radius. Therefore, the frost that grows in the cooler 7 begins to grow from the cooler 7 on the opposite side to the cold room cool air return duct 54 (left side as viewed from the front of the refrigerator 1), and gradually, the cold room cool air return duct 54 side. Grows towards.

霜が少ない時の着霜分布は、相対的に冷却器7の左側が「密」で、右側が「疎」になり易い(図12a参照)。冷却時間と共に着霜量は増えるので、霜の成長と共に着霜分布の「密」の部分が右側に拡大していくのが特徴である(図13a参照)。このような冷却器7の霜の成長過程を利用して、着霜量の予測をする手段について以下に説明する。   The frost distribution when there is little frost tends to be “dense” on the left side of the cooler 7 and “sparse” on the right side (see FIG. 12A). Since the amount of frost formation increases with the cooling time, the “dense” portion of the frost distribution expands to the right as the frost grows (see FIG. 13a). Means for predicting the amount of frost formation using the frost growth process of the cooler 7 will be described below.

冷蔵室2を冷却している場合の冷気流れは、図12aと図13aに示した通りである。
図12bと図13bは冷凍室5の断面を上から見た図である。冷凍室冷気戻り口17は、冷却器7の前方に設けてあり、冷凍室冷気戻り口の左側に温度センサ73、中央に温度センサ74、右側に温度センサ75を設けてある。冷蔵室冷気戻りダクト54から流入する冷蔵室戻り冷気57は、図12a、図13aに示すように冷却器7の右側から左側に向かって流入した後、冷却器収納室18の側壁面と冷却器7に設けたフィンに沿って冷却器7の上部に流れる。
The cold air flow when the refrigerator compartment 2 is cooled is as shown in FIGS. 12a and 13a.
12b and 13b are views of the cross section of the freezer compartment 5 as seen from above. The freezer compartment cool air return port 17 is provided in front of the cooler 7, and a temperature sensor 73 is provided on the left side of the freezer compartment cool air return port, a temperature sensor 74 is provided in the center, and a temperature sensor 75 is provided on the right side. The cold room return cold air 57 flowing in from the cold room cold air return duct 54 flows from the right side to the left side of the cooler 7 as shown in FIGS. 12a and 13a, and then the side wall surface of the cooler storage chamber 18 and the cooler. 7 flows to the upper part of the cooler 7 along the fins provided in FIG.

霜が少ない場合、図12aに示すように、冷蔵室戻り冷気57が上向きに転向する領域72では、圧力が周囲と比べて高くなる。冷蔵庫正面から見て、冷凍室冷気戻り口17の左側の圧力が高く、右側に移動するに従い徐々に低くなる圧力分布が形成されるので、図12bに示すように、冷却器7の前方に設けた冷凍室冷気戻り口17から、冷蔵室戻り冷気57の一部が冷凍室5内に流出し、冷蔵室戻り冷気57による流れ76が発生する。冷却器7に成長する霜が多くなってくると、霜の成長と共に着霜分布の「密」の部分が右側に拡大するため、その現象に応じて冷凍室冷気戻り口17付近の高圧領域72が、左側から右側に向かって拡大してくる。霜が少ない時に形成される流れ76に加えて、霜の成長と共に新たに発生した流れ77が冷凍室5に流出することになる。冷蔵室戻り冷気57は、冷凍室5内の温度よりも高いので、その一部が流出する場合には、冷凍室冷気戻り口17に設けた温度センサ73、74、75で容易に検知することができる。   When there is little frost, as shown to FIG. 12a, in the area | region 72 to which the refrigerator compartment return cold air 57 turns upwards, a pressure becomes high compared with the circumference | surroundings. When viewed from the front of the refrigerator, a pressure distribution is formed in which the pressure on the left side of the freezer compartment cold air return port 17 is high and gradually decreases as it moves to the right side, so that it is provided in front of the cooler 7 as shown in FIG. From the freezer compartment cold air return port 17, a part of the refrigerator compartment return cold air 57 flows into the freezer compartment 5, and a flow 76 due to the refrigerator compartment return cold air 57 is generated. As the amount of frost growing on the cooler 7 increases, the “dense” portion of the frost distribution expands to the right as the frost grows. Therefore, the high-pressure region 72 near the freezer compartment cold air return port 17 according to the phenomenon. However, it expands from the left to the right. In addition to the flow 76 formed when the frost is low, a flow 77 newly generated as the frost grows flows out into the freezer compartment 5. Since the refrigeration room return cold air 57 is higher than the temperature in the freezer compartment 5, if a part of it flows out, it can be easily detected by the temperature sensors 73, 74, and 75 provided in the freezer compartment cold air return port 17. Can do.

図14は着霜量Gに対する着霜検知運転時の各部のセンサ温度である。着霜量検知運転終了時の冷凍室冷気戻り口17に設けた温度センサ73、74、75で検知した温度を、着霜量に対して示したグラフである。着霜量が多くなるに従い、温度センサ73で検知した温度は概ね直線的に減少し、温度センサ74で検知した温度は概ね直線的に増加、そして温度センサ75で検知した温度は概ね一定温度になることが実験により明らかになっている。   FIG. 14 shows the sensor temperature of each part during the frost detection operation with respect to the frost amount G. It is the graph which showed the temperature detected with the temperature sensors 73, 74, and 75 provided in the freezer compartment cold air return port 17 at the time of completion | finish of frost formation amount detection operation with respect to frost formation amount. As the amount of frost formation increases, the temperature detected by the temperature sensor 73 decreases approximately linearly, the temperature detected by the temperature sensor 74 increases approximately linearly, and the temperature detected by the temperature sensor 75 becomes substantially constant. It has become clear through experiments.

図12bと図13bで説明したように、霜が少ない場合には、冷凍室冷気戻り口17の左側に高圧領域が形成されるので、冷凍室冷気戻り口17の左側に設置した温度センサ73で検知される温度は、冷蔵室戻り冷気57の流出の影響によって高くなり、冷凍室冷気戻り口17の中央に設けた温度センサ74と右側に設けた温度センサ75で検知する温度は、冷蔵室戻り冷気57の流出の影響が少ないため、温度センサ73で検知される温度よりも低くなる。霜が多くなってくると、霜の成長と共に着霜分布の「密」の部分が右側に拡大するため、それに応じて冷凍室冷気戻り口17に沿って形成される高圧領域が左から右に向かって拡大する。着霜分布が「密」になっている部分が、温度センサ74付近に到達すると、温度センサ74付近を通過する冷蔵室戻り冷気57の流出による流れ77の影響によって、温度上昇が顕著に見られるようになる。温度センサ75で検知される温度は、温度センサ設置場所が、冷凍室冷気戻り口17の右側に設けているため、着霜分布が「密」になっている部分が、冷却器7の右端に到達するまで顕著な温度上昇は見られない。   As described with reference to FIGS. 12 b and 13 b, when there is little frost, a high pressure region is formed on the left side of the freezer compartment cool air return port 17, so the temperature sensor 73 installed on the left side of the freezer compartment cool air return port 17 The detected temperature becomes higher due to the influence of outflow of the cold room return cold air 57, and the temperature detected by the temperature sensor 74 provided in the center of the freezer room cold air return port 17 and the temperature sensor 75 provided on the right side is the temperature returned to the cold room. Since the influence of the outflow of the cold air 57 is small, the temperature is lower than the temperature detected by the temperature sensor 73. As the frost increases, the “dense” portion of the frost distribution expands to the right as the frost grows, and accordingly, the high pressure region formed along the freezer compartment cold air return port 17 changes from left to right. Enlarge towards. When the portion where the frost distribution is “dense” reaches the vicinity of the temperature sensor 74, the temperature rise is noticeable due to the influence of the flow 77 caused by the outflow of the cold room return cold air 57 passing through the vicinity of the temperature sensor 74. It becomes like this. The temperature detected by the temperature sensor 75 is provided at the right side of the freezer compartment cold air return port 17 at the temperature sensor installation location, so that the portion where the frost distribution is “dense” is at the right end of the cooler 7. There is no noticeable temperature rise until it is reached.

以上のように冷凍室冷気戻り口17に温度センサを設けて着霜量の検知を行う場合、冷却器7の霜の成長過程を利用することにより、冷凍室冷気戻り口17の中央付近に設けた温度センサ74によって、着霜量の予測も可能となる。具体的な制御方法は、図8で説明した場合と同様で、温度センサ74で検知する温度(T3)Gを温度しきい値(T3)Gtと比較することにより、着霜量が少ない場合と着霜量が多い場合に分けて、図9、図10、図11と同様に除霜時の加熱制御が実施できる。また、温度センサ73と温度センサ74で検知されるそれぞれの温度、または温度差、温度センサ74とFセンサ43で検知する冷凍室温度の差を用いても同様の制御が実施可能である。   As described above, when the temperature sensor is provided in the freezer compartment cool air return port 17 to detect the amount of frost formation, the freezing chamber cool air return port 17 is provided near the center by using the frost growth process of the cooler 7. The temperature sensor 74 can also predict the amount of frost formation. The specific control method is the same as in the case described with reference to FIG. 8. When the temperature (T3) G detected by the temperature sensor 74 is compared with the temperature threshold (T3) Gt, the amount of frost formation is small. When the amount of frost formation is large, the heating control during defrosting can be performed in the same way as in FIGS. Further, the same control can be performed by using the respective temperatures detected by the temperature sensor 73 and the temperature sensor 74, or the temperature difference, and the difference between the freezer compartment temperatures detected by the temperature sensor 74 and the F sensor 43.

冷却器7の霜の成長過程を利用して、冷凍室冷気戻り口17に設けた温度センサによって温度検知し、着霜量を予測するものであるが、図3、図4aに示したように、冷却器7に流入する冷気の流れは複雑となり、冷蔵室2と冷凍室4、5の冷却の仕方によっては、冷却器7の着霜分布にばらつきが生じる可能性がある。そのような場合には、冷凍室冷気戻り口17に設けた温度センサに加えて、冷却器7の上部に設けた温度センサ56も併用して着霜量の予測を行ない、予測精度を高めることが可能となる。   The frost growth process of the cooler 7 is used to detect the temperature by a temperature sensor provided in the freezer compartment cold air return port 17 to predict the amount of frost formation, as shown in FIGS. 3 and 4a. The flow of cool air flowing into the cooler 7 becomes complicated, and the frost formation distribution of the cooler 7 may vary depending on how the refrigerator compartment 2 and the freezer compartments 4 and 5 are cooled. In such a case, in addition to the temperature sensor provided at the freezer compartment cold air return port 17, the temperature sensor 56 provided at the upper part of the cooler 7 is also used in combination to predict the amount of frost formation and improve the prediction accuracy. Is possible.

1 冷蔵庫
2 冷蔵室
2a、2b 冷蔵室ドア
3 製氷室
3a 製氷室ドア
3b 収納容器
4 上段冷凍室
4a 上段冷凍室ドア
4b 収納容器
5 下段冷凍室
5a 下段冷凍室ドア
5b 収納容器
6 野菜室
6a 野菜室ドア
6b 収納容器
7 冷却器
8 冷却器収納室
9 庫内ファン(冷気供給手段)
10 断熱箱体
11 冷蔵室冷気ダクト
12 上段冷凍室冷気ダクト
13 下段冷凍室冷気ダクト
17 冷凍室冷気戻り口
18 野菜室戻りダクト
18a 野菜室戻り口
18b 野菜室戻り吐出口
20 冷蔵室ダンパ(冷蔵温度帯の貯蔵室の冷気送風調整手段)
21 蒸発皿
22 除霜ヒータ(加熱手段)
23 樋
24 圧縮機
25 真空断熱材
27 ドレン孔
28、29 断熱仕切壁
33a、33b、33c ドアポケット
34 棚
35 減圧貯蔵室
40 断熱仕切壁
42 冷蔵室温度センサ
50 基板カバー
51 制御基板
52 庫外温度センサ
53 ドアヒンジカバー
54 冷蔵室冷気戻りダクト
55 ダクトヒータ
56 温度センサ(温度検知手段)
57 冷蔵室戻り冷気
58 機械室
60 冷凍室ダンパ(冷凍温度帯の貯蔵室の冷気送風調整手段)
61 曲がり部
62 ドレン孔
63 冷凍室戻り冷気
70、71 霜
72 高圧領域
73、74、75 温度センサ(温度検知手段)
83 温度T2を結んだ線
DESCRIPTION OF SYMBOLS 1 Refrigerator 2 Refrigeration room 2a, 2b Refrigeration room door 3 Ice making room 3a Ice making room door 3b Storage container 4 Upper freezing room 4a Upper freezing room door 4b Storage container 5 Lower freezing room 5a Lower freezing room door 5b Storage container 6 Vegetable room 6a Vegetable Chamber door 6b Storage container 7 Cooler 8 Cooler storage chamber 9 Fan (cold air supply means)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 11 Refrigeration room cold air duct 12 Upper freezer compartment cold duct 13 Lower freezer compartment cold air duct 17 Freezer room cold air return port 18 Vegetable room return air duct 18a Vegetable room return port 18b Vegetable room return discharge port 20 Refrigeration room damper (refrigeration temperature) (Cooling air adjustment means in the belt storage room)
21 Evaporation dish 22 Defrost heater (heating means)
23 樋 24 Compressor 25 Vacuum heat insulating material 27 Drain holes 28, 29 Heat insulating partition walls 33a, 33b, 33c Door pocket 34 Shelf 35 Depressurized storage chamber 40 Heat insulating partition wall 42 Cold room temperature sensor 50 Substrate cover 51 Control substrate 52 Outside temperature Sensor 53 Door hinge cover 54 Refrigeration room cold air return duct 55 Duct heater 56 Temperature sensor (temperature detection means)
57 Cold room return cold air 58 Machine room 60 Freezer compartment damper (Cooling air ventilation adjusting means for storage room in freezing temperature zone)
61 Bent part 62 Drain hole 63 Freezing chamber return cold air 70, 71 Frost
72 High pressure region 73, 74, 75 Temperature sensor (temperature detection means)
83 Wire connecting temperature T2

Claims (5)

冷蔵温度帯の貯蔵室に冷気を供給する冷気供給手段と、前記冷蔵温度帯の貯蔵室を冷却する冷却器と、該冷却器、圧縮機、放熱器、絞りを冷媒配管で接続して構成される冷凍サイクルと、前記冷却器の冷媒配管の一部に設けた温度検知手段と、前記貯蔵室からの冷気を前記冷却器へ流入させる貯蔵室冷気戻りダクトと、前記冷却器を加熱する除霜ヒータと、前記貯蔵室冷気戻りダクトを加熱するダクトヒータと、を含む冷蔵庫において、前記圧縮機停止後、前記冷気供給手段によって所定時間冷気を循環させた後、前記温度検知手段によって検知した前記除霜ヒータおよび前記ダクトヒータの通電前の温度を基に、前記除霜ヒータは通電し前記ダクトヒータは通電しない制御を行うか、前記除霜ヒータおよび前記ダクトヒータの両方に通電する制御を行うか、を決定することを特徴とする冷蔵庫。 A cold air supply means for supplying cold air to a storage room in a refrigerated temperature zone, a cooler for cooling the storage room in the refrigerated temperature zone, and the cooler, a compressor, a radiator, and a throttle are connected by a refrigerant pipe. Refrigeration cycle, temperature detection means provided in a part of the refrigerant pipe of the cooler, a cooler return duct for storing the cool air from the store chamber into the cooler, and a defrost for heating the cooler In the refrigerator including a heater and a duct heater for heating the storage room cold air return duct, after the compressor is stopped, the cold air is circulated for a predetermined time by the cold air supply means, and then the defrosting detected by the temperature detection means based on the temperature before the supply of the heater and the Dakutohita, the defrost heater whether to control the energization to the Dakutohita it is not energized, to energizing both the defrosting heater and the Dakutohita Refrigerator and determining whether to control the. 冷蔵温度帯と冷凍温度帯に区画された貯蔵室に冷気を供給する冷気供給手段と、前記貯蔵室を冷却する冷却器と、該冷却器、圧縮機、放熱器、絞りを冷媒配管で接続して構成される冷凍サイクルと、前記冷却器の冷媒配管の一部に設けた温度検知手段と、前記貯蔵室からの冷気を前記冷却器へ流入させる貯蔵室冷気戻りダクトと、前記冷却器を加熱する除霜ヒータと、前記貯蔵室冷気戻りダクトを加熱するダクトヒータとを備えた冷蔵庫において、前記圧縮機停止後、前記冷気供給手段によって前記冷蔵温度帯の貯蔵室の冷気を所定時間循環させた後、前記温度検知手段によって検知した前記除霜ヒータおよび前記ダクトヒータの通電前の温度を基に、前記除霜ヒータは通電し前記ダクトヒータは通電しない制御を行うか、前記除霜ヒータおよび前記ダクトヒータの両方に通電する制御を行うか、を決定することを特徴とする冷蔵庫。 A cooling air supply means for supplying cold air to a storage room partitioned into a refrigeration temperature zone and a freezing temperature zone, a cooler for cooling the storage chamber, and the cooler, compressor, radiator and throttle are connected by a refrigerant pipe. A refrigeration cycle constituted by the above, a temperature detection means provided in a part of the refrigerant piping of the cooler, a storage chamber cool air return duct for allowing cool air from the storage chamber to flow into the cooler, and heating the cooler In a refrigerator comprising a defrosting heater for heating and a duct heater for heating the storage room cold air return duct, after the compressor is stopped, the cold air in the storage room in the refrigeration temperature zone is circulated for a predetermined time by the cold air supply means , based on the temperature before the supply of the defrosting heater and the Dakutohita detected by said temperature detecting means, said defrosting or heater energized the Dakutohita performs control not energized, the defrost heater Contact Refrigerator and determining whether to perform control for energizing both fine the Dakutohita and. 冷蔵温度帯と冷凍温度帯に区画された貯蔵室に冷気を供給する冷気供給手段と、前記冷蔵温度帯の貯蔵室の冷気送風調整手段と、前記冷凍温度帯の貯蔵室の冷気送風調整手段と、前記貯蔵室を冷却する冷却器と、該冷却器、圧縮機、放熱器、絞りを冷媒配管で接続して構成される冷凍サイクルと、前記冷却器の冷媒配管の一部に設けた温度検知手段と、前記貯蔵室からの冷気を前記冷却器へ流入させる貯蔵室冷気戻りダクトと、前記冷却器を加熱する除霜ヒータと、前記貯蔵室冷気戻りダクトを加熱するダクトヒータとを備えた冷蔵庫において、前記圧縮機停止後、前記冷凍温度帯の貯蔵室の冷気送風調整手段によって送風を停止し、前記冷気供給手段によって前記冷蔵温度帯の貯蔵室の冷気を所定時間循環させた後、前記温度検知手段によって検知した前記除霜ヒータおよび前記ダクトヒータの通電前の温度を基に、前記除霜ヒータは通電し前記ダクトヒータは通電しない制御を行うか、前記除霜ヒータおよび前記ダクトヒータの両方に通電する制御を行うか、を決定することを特徴とする冷蔵庫。 Cold air supply means for supplying cold air to a storage room partitioned into a refrigeration temperature zone and a freezing temperature zone; cold air blowing adjustment means for the storage room in the refrigeration temperature zone; and cold air blowing adjustment means for the storage room in the refrigeration temperature zone; A cooler for cooling the storage chamber, a refrigeration cycle configured by connecting the cooler, a compressor, a radiator, and a throttle with a refrigerant pipe, and temperature detection provided in a part of the refrigerant pipe of the cooler In a refrigerator comprising means, a storage room cold air return duct for allowing cold air from the storage room to flow into the cooler, a defrost heater for heating the cooler, and a duct heater for heating the storage room cold air return duct After the compressor is stopped, the air flow is stopped by the cool air blowing adjusting means of the storage room in the freezing temperature zone, and the cold air in the storage room in the refrigerated temperature zone is circulated for a predetermined time by the cold air supply means, and then the temperature detection By means Based on the temperature before the supply of the defrosting heater and the Dakutohita detected Te, the defrosting or heater energized the Dakutohita performs control not energized, the control for energizing both the defrosting heater and the Dakutohita A refrigerator characterized by determining whether to perform . 前記圧縮機を停止して、前記冷却器と前記放熱器の間の冷媒配管に設けた開閉弁によって該冷媒配管を閉塞させ、前記冷気供給手段によって前記冷蔵温度帯の貯蔵室の冷気を所定時間循環させて、前記冷蔵温度帯の貯蔵室の冷気を循環させた後に、前記温度検知手段によって前記除霜ヒータおよび前記ダクトヒータの通電前の温度を検知することを特徴とする、請求項1乃至3のいずれかに記載の冷蔵庫。 The compressor is stopped, the refrigerant pipe is closed by an on-off valve provided in the refrigerant pipe between the cooler and the radiator, and the cold air in the storage room in the refrigerated temperature zone is cooled by the cold air supply means for a predetermined time. by circulating, after circulating the cold air in the storage chamber of the refrigeration temperature zone, and detecting the temperature before the supply of the defrosting heater and the Dakutohita by said temperature detecting means, to claim 1 4. The refrigerator according to any one of 3. 冷蔵温度帯と冷凍温度帯に区画された貯蔵室に冷気を供給する冷気供給手段と、前記冷蔵温度帯の貯蔵室の冷気送風調整手段と、前記冷凍温度帯の貯蔵室の冷気送風調整手段と、前記貯蔵室を冷却する冷却器と、該冷却器、圧縮機、放熱器、絞りを冷媒配管で接続して構成される冷凍サイクルと、前記冷却器の側方に設けた前記冷蔵温度帯貯蔵室の冷気戻り口と、前記冷却器前方に設けた前記冷凍温度帯貯蔵室の冷気戻り口と、前記冷凍温度帯貯蔵室の冷気戻り口に温度検知手段を設け、前記冷却器を加熱する除霜ヒータと、前記冷蔵温度帯貯蔵室の冷気戻り口を加熱するダクトヒータとを備えた冷蔵庫において、前記圧縮機を停止して、前記冷凍温度帯の貯蔵室の冷気送風調整手段によって送風を停止し、前記冷気供給手段によって前記冷蔵温度帯の貯蔵室の冷気を所定時間循環させた後、前記温度検知手段によって検知した前記除霜ヒータおよび前記ダクトヒータの通電前の温度を基にして前記除霜ヒータは通電し前記ダクトヒータは通電しない制御を行うか、前記除霜ヒータおよび前記ダクトヒータの両方に通電する制御を行うか、を決定することを特徴とする冷蔵庫。 Cold air supply means for supplying cold air to a storage room partitioned into a refrigeration temperature zone and a freezing temperature zone; cold air blowing adjustment means for the storage room in the refrigeration temperature zone; and cold air blowing adjustment means for the storage room in the refrigeration temperature zone; A cooler that cools the storage chamber, a refrigeration cycle configured by connecting the cooler, a compressor, a radiator, and a throttle with a refrigerant pipe, and the refrigeration temperature zone storage provided on the side of the cooler a chamber of the cool air return port, said cooler is provided in front the freezing temperature zone storage compartment of the cool air return port, a temperature sensing means in the cool air return port of the freezing temperature zone storage compartment provided to heat the cooler removal In a refrigerator having a frost heater and a duct heater for heating a cold air return port of the refrigerated temperature zone storage chamber , the compressor is stopped, and air blowing is stopped by the cold air blowing adjusting means of the refrigeration temperature zone storage chamber. The cold air supply means. After the cool air of the storage chamber of the temperature zone by a predetermined time circulation, wherein the defrost heater and the defrosting heater based on the temperature before the supply of the Dakutohita detected by the temperature detecting means is energized the Dakutohita is not energized A refrigerator which determines whether to perform control or to perform control to energize both the defrost heater and the duct heater .
JP2013133279A 2013-06-26 2013-06-26 refrigerator Expired - Fee Related JP6186187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133279A JP6186187B2 (en) 2013-06-26 2013-06-26 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133279A JP6186187B2 (en) 2013-06-26 2013-06-26 refrigerator

Publications (2)

Publication Number Publication Date
JP2015007510A JP2015007510A (en) 2015-01-15
JP6186187B2 true JP6186187B2 (en) 2017-08-23

Family

ID=52337896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133279A Expired - Fee Related JP6186187B2 (en) 2013-06-26 2013-06-26 refrigerator

Country Status (1)

Country Link
JP (1) JP6186187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642920B (en) * 2016-12-26 2019-05-31 青岛海尔股份有限公司 Wind cooling refrigerator and its progress control method
CN113465255B (en) * 2018-12-05 2022-09-20 海尔智家股份有限公司 Air-cooled refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818062A (en) * 1981-07-23 1983-02-02 松下冷機株式会社 Refrigerator
JPH0345099Y2 (en) * 1986-01-09 1991-09-24
JP3497255B2 (en) * 1994-11-01 2004-02-16 松下冷機株式会社 Refrigeration equipment
JP2010002071A (en) * 2008-06-18 2010-01-07 Hitachi Appliances Inc Refrigerator
JP2011038715A (en) * 2009-08-12 2011-02-24 Hitachi Appliances Inc Refrigerator
JP2011252681A (en) * 2010-06-04 2011-12-15 Hitachi Appliances Inc Refrigerator

Also Published As

Publication number Publication date
JP2015007510A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
EP2578973B1 (en) Refrigerator and control method thereof
JP5571044B2 (en) refrigerator
JP4954484B2 (en) Cooling storage
CN107289707B (en) Air-cooled refrigerator
JP5507511B2 (en) refrigerator
KR102418005B1 (en) Refrigerator and controlling method thereof
US11668512B2 (en) Refrigerator and method for controlling the same
JP4867758B2 (en) refrigerator
JP2010002071A (en) Refrigerator
JP2006266585A (en) Refrigerator
JP2012007760A (en) Refrigerator
JP6752107B2 (en) refrigerator
JP5557661B2 (en) refrigerator
US20190120533A1 (en) Control method for refrigerator
JP2015010815A (en) Refrigerator
KR100725495B1 (en) Refrigerator and operating control thereof having supplement storage
KR20150029676A (en) Refrigerator
JP6890502B2 (en) refrigerator
JP2015038409A (en) Refrigerator
JP6186187B2 (en) refrigerator
JP2009014313A (en) Refrigerator
JP2011038716A (en) Refrigerator
JP6109520B2 (en) refrigerator
KR20200069723A (en) control method of refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6186187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees