JP2011252681A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2011252681A
JP2011252681A JP2010128409A JP2010128409A JP2011252681A JP 2011252681 A JP2011252681 A JP 2011252681A JP 2010128409 A JP2010128409 A JP 2010128409A JP 2010128409 A JP2010128409 A JP 2010128409A JP 2011252681 A JP2011252681 A JP 2011252681A
Authority
JP
Japan
Prior art keywords
cooler
air
temperature
storage room
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010128409A
Other languages
Japanese (ja)
Inventor
Takuya Otsuka
拓也 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010128409A priority Critical patent/JP2011252681A/en
Publication of JP2011252681A publication Critical patent/JP2011252681A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator which is reduced in power consumption and improved in freshness-preservability by performing a defrosting operation according to an amount of frosting on a cooler.SOLUTION: The refrigerator includes a storage chamber installed in a refrigerator body, the cooler which exchanges heat with air to be sent to the storage chamber, a compressor which is connected to the cooler by a refrigerant pipe, air blowing unit of sending the air having exchanged heat by the cooler, a defrosting heater which melts frost sticking on the cooler, and a temperature detection unit which is arranged in the cooler chamber provided with the cooler. During a defrosting operation in which the compressor is stopped and the defrosting heater is placed in operation, the air blowing unit is placed in operation, a temperature gradient in a temperature zone lower than the melting temperature of frost is read from detected temperature of the temperature detecting unit, an amount of frosting on the cooler is estimated based upon the temperature gradient, and a time defrosting operation according to the estimated amount of frosting is performed.

Description

本発明は冷蔵庫に関するものである。   The present invention relates to a refrigerator.

近年の冷蔵庫は省エネ性の向上が切望されている。特に、冷却器に生長した霜を溶かす除霜運転は、除霜ヒータによって冷却器を加熱して霜を溶かすため、効率化が求められる。   In recent years, refrigerators are desired to improve energy saving. In particular, in the defrosting operation for melting the frost grown on the cooler, the cooler is heated by the defrost heater to melt the frost, so that efficiency is required.

従来の技術として、特許文献1には、除霜ヒータに通電し除霜温度検出手段に基づいて除霜終了判定温度が検出されたときに該除霜ヒータを断電する除霜運転手段と、冷蔵庫周囲の温度を検出する外気温度検出手段と、前記除霜ヒータに対する通電開始以後に前記除霜温度検出手段の検出温度の変化率を演算する温度変化率演算手段と、この温度変化率演算手段による温度変化率と前記外気温度検出手段による外気温度とにより着霜量を推定する着霜量推定手段と、この着霜量推定手段による推定着霜量に基づいて前記除霜終了判定温度を決定する除霜終了判定温度決定手段と、を具備してなる冷蔵庫の除霜装置が開示されている。   As conventional technology, Patent Document 1 includes a defrosting operation unit that energizes the defrosting heater and disconnects the defrosting heater when the defrosting end determination temperature is detected based on the defrosting temperature detection unit, Outside temperature detection means for detecting the temperature around the refrigerator, temperature change rate calculation means for calculating the rate of change of the detected temperature of the defrost temperature detection means after the start of energization of the defrost heater, and this temperature change rate calculation means The frost formation amount estimation means for estimating the frost formation amount based on the temperature change rate by the outside air temperature detection means and the estimated frost formation amount by the frost formation amount estimation means is determined based on the frost formation amount estimation means. A defrosting device for a refrigerator comprising a defrosting end determination temperature determining unit is disclosed.

特開平8−94234号公報JP-A-8-94234

しかしながら、特許文献1記載の構成では、熱の伝播が自然対流によるものであることから、着霜量の推定までに時間がかかり、結果として除霜運転が長期化する。そして、暖められた空気が貯蔵室に流入して、貯蔵室内の湿度低下を招き、貯蔵物の保鮮性が低下するおそれがある。さらに、除霜運転後の再冷却に時間がかかるという問題がある。   However, in the configuration described in Patent Document 1, since heat propagation is due to natural convection, it takes time to estimate the amount of frost formation, resulting in prolonged defrosting operation. Then, the warmed air flows into the storage room, which causes a decrease in humidity in the storage room, and may reduce the freshness of stored items. Furthermore, there is a problem that it takes time to recool after the defrosting operation.

そこで、本発明は上記課題を解決するために、冷却器の着霜量に応じた除霜運転を行うことで、消費電力量を低減して、保鮮性を向上した冷蔵庫を提供することを目的とする。   Then, in order to solve the said subject, this invention aims at providing the refrigerator which reduced the power consumption and improved the freshness by performing the defrost operation according to the amount of frost formation of a cooler. And

上記の目的を達成するために本発明は、冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器を設けた冷却器室に配置した温度検知手段とを備え、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転時、前記送風手段を運転して、霜の融解温度よりも低い温度帯の温度勾配を前記温度検知手段の検知温度から読み取り、該温度勾配に基づいて前記冷却器の着霜量を推定して、該推定した着霜量に応じた時間除霜運転をすることを特徴とする。   In order to achieve the above object, the present invention provides a storage chamber installed in a refrigerator body, a cooler for exchanging heat to the air sent to the storage chamber, a compressor connected to the cooler by refrigerant piping, Blowing means for blowing air exchanged heat by a cooler to the storage chamber, a defrosting heater for melting frost attached to the cooler, and a temperature detection means arranged in the cooler chamber provided with the cooler. And during the defrosting operation in which the compressor is stopped and the defrosting heater is operated, the air blowing unit is operated, and a temperature gradient in a temperature range lower than the melting temperature of the frost is detected from the detected temperature of the temperature detecting unit. Reading, estimating a frost formation amount of the cooler based on the temperature gradient, and performing a defrosting operation for a time according to the estimated frost formation amount.

また、前記温度勾配は一定時間内の温度上昇率、又は一定温度上昇するまでの経過時間に基づくことを特徴とする。   The temperature gradient is based on a rate of temperature increase within a certain time or an elapsed time until the temperature rises.

また、冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器のフィンに沿うように設置したパイプヒータと、前記冷却器の着霜量が異なる少なくとも2箇所の温度をそれぞれ検知する温度検知手段とを備え、前記圧縮機を停止して前記パイプヒータに通電する除霜運転の開始から一定時間経過後、前記着霜量が異なる箇所の温度差に基づいて前記冷却器の着霜量を推定して、該推定した着霜量に応じた時間除霜運転をすることを特徴とする。   In addition, a storage chamber installed in the refrigerator main body, a cooler for exchanging heat to the air to be sent to the storage chamber, a compressor connected to the cooler by refrigerant piping, and the air for heat exchange by the cooler A compressor for supplying air to the chamber, a pipe heater installed along the fin of the cooler, and a temperature detector for detecting temperatures of at least two locations where the frosting amount of the cooler is different. After a definite period of time has elapsed since the start of the defrosting operation in which the pipe heater is turned off and the pipe heater is energized, the frost formation amount of the cooler is estimated on the basis of the temperature difference at the location where the frost formation amount is different, and the estimated The defrosting operation is performed for a time corresponding to the amount of frost formation.

また、冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器のフィン間に照射する発光体と、前記冷却器のフィン間の照度を検知する照度検知手段とを備え、前記照度検知手段の検出値に基づいて前記冷却器のフィン間の着霜量を推定して、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする。   In addition, a storage chamber installed in the refrigerator main body, a cooler for exchanging heat to the air to be sent to the storage chamber, a compressor connected to the cooler by refrigerant piping, and the air for heat exchange by the cooler Blower means for blowing air to the chamber, a defrost heater for melting frost attached to the cooler, a light emitter for irradiation between the fins of the cooler, and an illuminance detection means for detecting the illuminance between the fins of the cooler The amount of frost formation between the fins of the cooler is estimated based on the detection value of the illuminance detection means, and the compressor is stopped for a time corresponding to the estimated amount of frost formation. A defrosting operation for operating the heater is performed.

また、前記発光体は前記冷却器の異なるフィン間に照射するように複数配置し、前記照度検知手段の検出値に基づいて前記冷却器の異なるフィン間の着霜量の分布を推定することを特徴とする。   In addition, a plurality of the light emitters are arranged so as to irradiate between different fins of the cooler, and the distribution of frost formation between the different fins of the cooler is estimated based on a detection value of the illuminance detection means. Features.

また、冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器の上流側及び下流側の風速をそれぞれ検知する風速センサとを備え、前記風速センサで検知した前記冷却器の上流側と下流側との風速差によって前記冷却器の着霜量を推定し、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする。   In addition, a storage chamber installed in the refrigerator main body, a cooler for exchanging heat to the air to be sent to the storage chamber, a compressor connected to the cooler by refrigerant piping, and the air for heat exchange by the cooler A blower that blows air to the chamber, a defrost heater that melts frost attached to the cooler, and a wind speed sensor that detects the wind speed on the upstream side and the downstream side of the cooler, and is detected by the wind speed sensor. The frost formation amount of the cooler is estimated from the difference in wind speed between the upstream side and the downstream side of the cooler, and the compressor is stopped for a time corresponding to the estimated frost formation amount, and the defrost heater is operated. A defrosting operation is performed.

また、冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器のフィンに向けて発信した音波を受信することで距離を検出する音波センサとを備え、前記音波センサによって検出したフィンまでの距離に基づいて前記冷却器の着霜量を推定し、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする。   In addition, a storage chamber installed in the refrigerator main body, a cooler for exchanging heat to the air to be sent to the storage chamber, a compressor connected to the cooler by refrigerant piping, and the air for heat exchange by the cooler An air blowing means for blowing air to the chamber, a defrost heater for melting frost attached to the cooler, and a sound wave sensor for detecting a distance by receiving a sound wave transmitted toward the fin of the cooler, Defrosting by estimating the frost formation amount of the cooler based on the distance to the fin detected by the sonic sensor, and stopping the compressor and operating the defrost heater for a time corresponding to the estimated frost formation amount It is characterized by performing driving.

また、冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器の上流側及び下流側の風圧をそれぞれ検知する風圧センサとを備え、前記風圧センサで検知した前記冷却器の上流側と下流側との圧力差によって前記冷却器の着霜量を推定し、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする。   In addition, a storage chamber installed in the refrigerator main body, a cooler for exchanging heat to the air to be sent to the storage chamber, a compressor connected to the cooler by refrigerant piping, and the air for heat exchange by the cooler A blower for blowing air to the chamber, a defrost heater for melting frost attached to the cooler, and a wind pressure sensor for detecting the wind pressure on the upstream side and the downstream side of the cooler, and detected by the wind pressure sensor. The frost formation amount of the cooler is estimated from the pressure difference between the upstream side and the downstream side of the cooler, and the compressor is stopped for a time corresponding to the estimated frost formation amount, and the defrost heater is operated. A defrosting operation is performed.

本発明によれば、冷却器の着霜量に応じた除霜運転を行うことで、消費電力量を低減して、保鮮性を向上した冷蔵庫を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the power consumption can be reduced by performing the defrost operation according to the amount of frost formation of a cooler, and the refrigerator which improved freshness can be provided.

本発明の実施例1に係る冷蔵庫の概略縦断面図。The schematic longitudinal cross-sectional view of the refrigerator which concerns on Example 1 of this invention. 実施例1における除霜時間とセンサ検知温度の変化との関係を示す図。The figure which shows the relationship between the defrost time in Example 1, and the change of sensor detection temperature. 図2aにおける除霜時間初期の拡大図。The enlarged view of the defrosting time initial stage in FIG. 2a. 本発明の実施例2に係る冷却器の概略斜視図。The schematic perspective view of the cooler concerning Example 2 of the present invention. 実施例2における除霜時間とセンサ検知温度の変化との関係を示す図。The figure which shows the relationship between the defrost time in Example 2, and the change of sensor detection temperature. 本発明の実施例3に係る冷却器の概略正面図。The schematic front view of the cooler concerning Example 3 of the present invention. 実施例3におけるける冷却器に着霜した状態を示す図。The figure which shows the state which frosted to the cooler in Example 3. FIG. 実施例3におけるセンサの配置例と感知度との関係を示す図。FIG. 10 is a diagram illustrating a relationship between an example of sensor arrangement and sensitivity in Example 3. 本発明の実施例4に係る冷却器の概略斜視図。The schematic perspective view of the cooler concerning Example 4 of the present invention. 本発明の実施例5に係る冷却器の着霜検知を説明する概略図。Schematic explaining the frost formation detection of the cooler which concerns on Example 5 of this invention. 本発明の実施例5に係る冷却器の着霜検知を説明する概略図。Schematic explaining the frost formation detection of the cooler which concerns on Example 5 of this invention. 本発明の実施例6に係る冷却器の概略斜視図。The schematic perspective view of the cooler concerning Example 6 of the present invention.

本発明の実施例について、以下、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず冷蔵庫全体の構成について説明する。図1に示すように本実施例の冷蔵庫は、冷蔵庫本体1内に複数に区画して設置された貯蔵室を有する。これらの貯蔵室は使用頻度の高い順に上から配置し、冷蔵庫の使い勝手が向上するように構成してある。例えば、上から順に冷蔵室14,冷凍温度帯室15,野菜室16を設け、異なる温度帯の貯蔵室の間は断熱仕切壁19,20で仕切られている。すなわち、冷蔵室14と冷凍温度帯室15との間は断熱仕切壁19で断熱的に仕切り、冷凍温度帯室15と野菜室16との間は断熱仕切壁20で断熱的に仕切られている。   First, the configuration of the entire refrigerator will be described. As shown in FIG. 1, the refrigerator of a present Example has the storage chamber divided and installed in the refrigerator main body 1 in plurality. These storage rooms are arranged from the top in order of frequency of use, and are configured to improve the convenience of the refrigerator. For example, the refrigerator compartment 14, the freezing temperature zone 15 and the vegetable compartment 16 are provided in order from the top, and the storage compartments in different temperature zones are partitioned by heat insulating partition walls 19 and 20. That is, the refrigerator compartment 14 and the refrigeration temperature zone chamber 15 are partitioned adiabatically by the heat insulating partition wall 19, and the refrigeration temperature zone chamber 15 and the vegetable compartment 16 are adiabatically partitioned by the heat insulating partition wall 20. .

冷凍温度帯室15は、例えば、−6〜−40℃程度の冷凍温度帯に保持されて、氷を生成する製氷室18と貯蔵物を冷凍保存する冷凍室17とに上下に区画される。冷蔵室14と野菜室16は、例えば、0℃〜10℃程度の冷蔵温度帯に温度制御して構成される。   The freezing temperature zone chamber 15 is maintained in a freezing temperature zone of, for example, about −6 to −40 ° C., and is divided into an ice making chamber 18 for generating ice and a freezing chamber 17 for freezing and storing stored items. The refrigerator compartment 14 and the vegetable compartment 16 are configured by controlling the temperature in a refrigeration temperature range of about 0 ° C. to 10 ° C., for example.

冷凍温度帯室15の後方には冷却器室2が配置される。この冷却器室2には、各貯蔵室へ送る空気を熱交換する冷却器13が設置されている。また、冷却器13にて熱交換した冷気を送風循環する庫内ファン21(送風手段)が、冷却器室2内であって冷却器13の上方に設置される。具体的には、冷気を冷凍温度帯室15,冷蔵室14及び野菜室16へと送り、冷気循環が行われる。   The cooler chamber 2 is disposed behind the freezing temperature zone chamber 15. The cooler chamber 2 is provided with a cooler 13 for exchanging heat of air sent to each storage chamber. In addition, an internal fan 21 (air blowing means) that blows and circulates cold air exchanged by the cooler 13 is installed in the cooler chamber 2 and above the cooler 13. Specifically, cold air is sent to the freezing temperature zone chamber 15, the refrigerator compartment 14, and the vegetable compartment 16, and cold air circulation is performed.

冷却器13とともに冷凍サイクルを構成する圧縮機12は、冷蔵庫本体1背面側の機械室30内に位置しており、図示しない凝縮器あるいはキャピラリチューブと冷媒配管で接続される。この圧縮機12は、冷凍温度帯室温度検出手段25及び冷蔵温度帯室温度検出手段26の検出値によって回転数が制御される。冷凍温度帯室温度検出手段25は、冷凍温度帯室15に設けられて冷凍温度帯室15内の温度を検出する。冷蔵温度帯室温度検出手段26は、冷蔵室14(冷蔵温度帯室)に設けられて、冷蔵室14の温度を検出する。なお、圧縮機12を含む冷凍サイクルの運転制御は、冷蔵庫本体1の上部後方に設けた制御装置11によって行われる。   The compressor 12 that constitutes the refrigeration cycle together with the cooler 13 is located in the machine room 30 on the back side of the refrigerator body 1 and is connected to a condenser or capillary tube (not shown) by a refrigerant pipe. The rotation speed of the compressor 12 is controlled by the detection values of the refrigeration temperature zone chamber temperature detection means 25 and the refrigeration temperature zone chamber temperature detection means 26. The refrigeration temperature zone chamber temperature detection means 25 is provided in the refrigeration temperature zone chamber 15 and detects the temperature in the refrigeration temperature zone chamber 15. The refrigeration temperature zone temperature detecting means 26 is provided in the refrigeration chamber 14 (refrigeration temperature zone) and detects the temperature of the refrigeration chamber 14. The operation control of the refrigeration cycle including the compressor 12 is performed by the control device 11 provided at the upper rear of the refrigerator body 1.

冷却器13によって生成された冷気は、庫内ファン21によって冷却器室2から各貯蔵室へと送られる。ここで、各貯蔵室へと連通する冷気通路には第一の電動ダンパ22及び第二の電動ダンパ23がそれぞれ取り付けられている。冷蔵室冷気通路3には、第二の電動ダンパ23が設置されて、冷蔵室14への送風量を制御する。冷凍温度帯室冷気通路4には、第一の電動ダンパ22が設置されて、冷凍温度帯室15への送風量を制御する。   The cool air generated by the cooler 13 is sent from the cooler chamber 2 to each storage chamber by the internal fan 21. Here, the 1st electric damper 22 and the 2nd electric damper 23 are each attached to the cold air | gas channel | path connected to each store room. A second electric damper 23 is installed in the refrigerator compartment cold air passage 3 to control the amount of air blown to the refrigerator compartment 14. A first electric damper 22 is installed in the freezing temperature zone cold air passage 4 to control the amount of air blown to the freezing temperature zone 15.

冷凍温度帯室温度検出手段25及び冷蔵温度帯室温度検出手段26によって各貯蔵室内の温度が検出されると、検出値は制御装置11に入力される。制御装置11は、第一の電動ダンパ22及び第二の電動ダンパ23の開閉,庫内ファン21の運転,各ヒータの通電、及び冷凍サイクルの運転を制御する。   When the temperature in each storage chamber is detected by the freezing temperature zone temperature detecting means 25 and the refrigeration temperature zone temperature detecting means 26, the detected value is input to the control device 11. The control device 11 controls the opening and closing of the first electric damper 22 and the second electric damper 23, the operation of the internal fan 21, the energization of each heater, and the operation of the refrigeration cycle.

また、冷却器13に付着した霜は、冷却器13下部に備えた除霜ヒータ32により定期的に融解される。除霜ヒータ32に通電して冷却器13の霜が溶けることで生じる除霜水は、排水パイプ33から圧縮機12が設置された機械室30へ滴下する。機械室30に設置された圧縮機12の上方には、蒸発皿31が設置されており、排水パイプ33からの除霜水を受けて蒸発させる。   Moreover, the frost adhering to the cooler 13 is periodically melted by a defrost heater 32 provided at the lower part of the cooler 13. The defrost water generated by energizing the defrost heater 32 and melting the frost in the cooler 13 is dropped from the drain pipe 33 to the machine room 30 where the compressor 12 is installed. Above the compressor 12 installed in the machine room 30, an evaporating dish 31 is installed and receives defrost water from the drain pipe 33 to evaporate.

次に除霜運転について説明する。除霜運転は圧縮機12を停止して除霜ヒータ32を運転する。図2aは、冷却器13の温度を検知するサーミスタ35(温度検知手段)の検知温度変化と除霜時間との関係を示す。図2aに示すように、除霜運転は冷却器13の着霜量が多いほど全体の時間は長くなる。検知温度の変化は、霜の融解温度まで時間とともに上昇する。融解温度に達すると、霜の融解が始まり一定温度で時間が経過する。その後、霜の融解が終わると再び温度が上昇するが、除霜ヒータ32を停止して圧縮機12を運転することで温度は低下する。   Next, the defrosting operation will be described. In the defrosting operation, the compressor 12 is stopped and the defrosting heater 32 is operated. FIG. 2 a shows the relationship between the temperature change detected by the thermistor 35 (temperature detection means) that detects the temperature of the cooler 13 and the defrosting time. As shown in FIG. 2a, the defrosting operation takes a longer time as the amount of frost on the cooler 13 increases. The change in the detected temperature increases with time until the frost melting temperature. When the melting temperature is reached, frost begins to melt and time passes at a constant temperature. Thereafter, the temperature rises again when the frost is melted, but the temperature is lowered by stopping the defrost heater 32 and operating the compressor 12.

ここで、除霜運転の初期の温度変化に着目すると、図2bに示すように、着霜量が多いほど、冷却器13及び冷却器室2の温度上昇が小さくなる。そのため、温度勾配も小さくなる。この温度勾配と着霜量との関係は事前実験によって把握可能である。冷却器室2に設置されて冷却器13近傍に備えられたサーミスタ35によって、除霜ヒータ32への通電開始時の検知温度と、一定時間経過後のサーミスタ35の検知温度とを比較する。そして、除霜運転中の温度勾配を求め、その傾きの大きさにより着霜量を推定する。なお、一定時間経過後の検知温度は、霜の融解温度以下の温度とする。また、温度勾配は一定時間内の温度上昇率に基づくものであっても、同様の効果を奏するものである。この場合、庫内ファン21の運転時間が長期化することがなく、除霜ヒータ32で暖められた空気が必要以上に各貯蔵室へ流入することを抑制できる。さらに、除霜運転初期の間だけ庫内ファン21を運転することとすれば、冷却器13の付着した霜の持つ冷熱エネルギーを、各貯蔵室の冷却エネルギーに変換できるので、エネルギー効率がよい。   Here, paying attention to the initial temperature change of the defrosting operation, as shown in FIG. 2b, the temperature rises in the cooler 13 and the cooler chamber 2 become smaller as the amount of frost formation increases. Therefore, the temperature gradient is also reduced. The relationship between this temperature gradient and the amount of frost formation can be grasped by preliminary experiments. A thermistor 35 installed in the cooler chamber 2 and provided in the vicinity of the cooler 13 compares the detected temperature at the start of energization of the defrost heater 32 with the detected temperature of the thermistor 35 after a predetermined time has elapsed. And the temperature gradient during a defrost operation is calculated | required and the amount of frost formation is estimated by the magnitude | size of the inclination. The detected temperature after the elapse of a certain time is set to a temperature equal to or lower than the melting temperature of frost. Moreover, even if the temperature gradient is based on the rate of temperature increase within a certain time, the same effect can be obtained. In this case, the operation time of the internal fan 21 is not prolonged, and it is possible to suppress the air warmed by the defrost heater 32 from flowing into each storage room more than necessary. Furthermore, if the internal fan 21 is operated only during the initial stage of the defrosting operation, the cooling energy of the frost attached to the cooler 13 can be converted into the cooling energy of each storage chamber, so that energy efficiency is good.

このとき、除霜ヒータ32への通電開始から一定時間、庫内ファン21も同時に回転させる。このとき、強制対流によってサーミスタ35周辺の温度は、着霜量の差で大きく変化するので、着霜量の多少を判断し易くなる。   At this time, the internal fan 21 is also rotated at the same time for a certain time from the start of energization to the defrost heater 32. At this time, the temperature around the thermistor 35 largely changes due to the difference in the amount of frost formation due to forced convection, so that it becomes easy to determine the amount of frost formation.

また、着霜量が少ないと判断した場合、除霜運転を開始せずに延期することで、余計な除霜運転を排除することができる。   Moreover, when it is judged that the amount of frost formation is small, an extra defrost operation can be excluded by postponing without starting a defrost operation.

また、除霜運転開始時に着霜量が少ないと判断した場合、温度検知手段による除霜終了判定温度を通常時よりも低くシフトして設定することで、余計な除霜運転を排除することができる。   In addition, when it is determined that the amount of frost formation is small at the start of the defrosting operation, it is possible to eliminate the extra defrosting operation by setting the defrosting end determination temperature by the temperature detection means to be shifted lower than the normal time. it can.

本実施例によれば、除霜運転開始後の初期段階の温度変化から着霜量を推定することにより、その後の除霜ヒータ32の通電時間制御や除霜終了条件の変更などが可能となり、除霜運転の効率化が可能となる。   According to the present embodiment, by estimating the amount of frost formation from the temperature change in the initial stage after the start of the defrosting operation, it becomes possible to control the energization time of the subsequent defrosting heater 32, change the defrosting termination condition, and the like. Efficiency of defrosting operation becomes possible.

次に実施例2について図3及び図4を参照して説明する。なお、実施例1と同様の構成については、説明を省略する。   Next, a second embodiment will be described with reference to FIGS. Note that the description of the same configuration as that of the first embodiment is omitted.

まず、図3に示すように、冷却器13aには、パイプヒータ41を備える。パイプヒータ41は、冷却器13aの各段のフィンに沿うように複数段に亘って配置されており、この複数段のパイプをU字管で接続した蛇行形状をなしている。   First, as shown in FIG. 3, the cooler 13 a includes a pipe heater 41. The pipe heater 41 is arranged in a plurality of stages along the fins of each stage of the cooler 13a, and has a meandering shape in which the plurality of stages of pipes are connected by a U-shaped tube.

本実施例では、実施例1で説明した除霜ヒータ32からの輻射熱に加えて、パイプヒータ41によって直接冷却器13aの伝熱フィンを均等に加熱することができる。また、着霜量に差異がある位置に、第一のサーミスタ35a及び第2のサーミスタ35bをそれぞれ備える。第一のサーミスタ35aは、冷却器13aの上部に設け、第二のサーミスタ35bは、冷却器13aの下部に設ける。ここで、各貯蔵室を循環した冷気は、冷却器13aの下部から上部に向かって流れる。すなわち、湿度の高い空気が冷却器13aの下部に接触するので、冷却器13aの下部に多くの霜が生長する。一方、冷却器13aの上部は、下部から流れてきて湿度が低くなった空気が接触するので、霜の生長が比較的少ない。   In the present embodiment, in addition to the radiant heat from the defrost heater 32 described in the first embodiment, the heat transfer fins of the cooler 13a can be directly heated by the pipe heater 41. Moreover, the 1st thermistor 35a and the 2nd thermistor 35b are each provided in the position which has a difference in the amount of frost formation. The first thermistor 35a is provided at the upper part of the cooler 13a, and the second thermistor 35b is provided at the lower part of the cooler 13a. Here, the cold air circulated through each storage chamber flows from the lower part to the upper part of the cooler 13a. That is, since high humidity air contacts the lower part of the cooler 13a, a lot of frost grows in the lower part of the cooler 13a. On the other hand, the upper part of the cooler 13a comes in contact with air that has flowed from the lower part and has a low humidity, so that the growth of frost is relatively small.

本実施例においては、除霜運転開始時に除霜ヒータ32を運転せずに、パイプヒータ41のみを通電して、除霜運転開始から一定時間経過後における、第一のサーミスタ35a及び第二のサーミスタ35bの検知温度を比較する。このとき、冷却器13aの着霜量がより多い部位の温度は、霜を溶かすためにより多くのエネルギーが消費される。そのため、図4に示すように、着霜量が少ない部位よりも低い温度が維持される。そこで、除霜運転開始から一定時間経過後の第一のサーミスタ35a及び第二のサーミスタ35bの検知温度の差に基づいて着霜量を推定し、実施例1と同様に除霜運転の時間制御に利用する。   In this embodiment, only the pipe heater 41 is energized without operating the defrost heater 32 at the start of the defrost operation, and the first thermistor 35a and the second thermistor 35a after a certain time has elapsed since the start of the defrost operation. The detected temperature of the thermistor 35b is compared. At this time, more energy is consumed at the temperature of the portion where the frosting amount of the cooler 13a is larger to melt the frost. Therefore, as shown in FIG. 4, the temperature lower than the site | part with few amounts of frost formation is maintained. Therefore, the amount of frost formation is estimated based on the difference between the detected temperatures of the first thermistor 35a and the second thermistor 35b after the elapse of a certain time from the start of the defrosting operation, and the time control of the defrosting operation is performed as in the first embodiment. To use.

次に実施例3について、図5a及び図5bを参照して説明する。なお、実施例1と同様の構成については、説明を省略する。   Next, Example 3 will be described with reference to FIGS. 5a and 5b. Note that the description of the same configuration as that of the first embodiment is omitted.

図5aに示すように本実施例の冷蔵庫は、冷却器13bのフィン間に光を照射する発光体45と、冷却器13bのフィン間の照度を検知する照度検知手段である照度センサ46を備える。発光体45及び照度センサ46は、冷却器13のフィンで遮られないように冷却器13bを隔てて対向するように配置する。発光体45は制御装置11(図1参照)で制御され、照度センサ46の検知情報は制御装置11へ入力される。   As shown in FIG. 5a, the refrigerator of the present embodiment includes a light emitter 45 that emits light between the fins of the cooler 13b, and an illuminance sensor 46 that is an illuminance detection unit that detects the illuminance between the fins of the cooler 13b. . The light emitter 45 and the illuminance sensor 46 are arranged so as to face each other across the cooler 13b so as not to be blocked by the fins of the cooler 13. The light emitter 45 is controlled by the control device 11 (see FIG. 1), and detection information of the illuminance sensor 46 is input to the control device 11.

本実施例においては、照度センサ46の検出値に基づいて冷却器13bのフィン間の着霜量を推定して、この推定した着霜量に応じた時間、除霜運転を行う。より詳細な制御として、一定時間毎に発光体45を発光させ、その照度を照度センサ46で計測する。発光体45と照度センサ46の間には、冷却器13bが位置している。冷却器13bが着霜状態の場合、図5bに示すように着霜部47が現れる。着霜部47を有する場合、着霜していない場合(図5aの場合)と比べて発光体45−照度センサ46間の障害物が増える。その結果、検出される照度は低下する。このため、照度センサ46の検出値によって、発光体45−照度センサ46間、すなわち冷却器13bのフィン間の着霜量を推定することができる。よって、予め計測部位と全体の着霜量の関係を調査しておくことで、除霜運転の時間制御或いは除霜開始判定に利用することが可能となる。   In the present embodiment, the amount of frost formation between the fins of the cooler 13b is estimated based on the detection value of the illuminance sensor 46, and the defrosting operation is performed for a time corresponding to the estimated amount of frost formation. As more detailed control, the light emitter 45 is caused to emit light at regular intervals, and the illuminance sensor 46 measures the illuminance. Between the light emitter 45 and the illuminance sensor 46, the cooler 13b is located. When the cooler 13b is in a frosting state, a frosting portion 47 appears as shown in FIG. 5b. When the frosting part 47 is provided, the number of obstacles between the light emitter 45 and the illuminance sensor 46 increases as compared with the case where frosting is not performed (in the case of FIG. 5a). As a result, the detected illuminance decreases. For this reason, the amount of frost formation between the light emitter 45 and the illuminance sensor 46, that is, between the fins of the cooler 13b, can be estimated based on the detection value of the illuminance sensor 46. Therefore, by investigating the relationship between the measurement site and the total amount of frost formation in advance, it can be used for time control of the defrosting operation or the defrosting start determination.

また、冷却器13bの異なるフィン間に光を照射するように発光体を複数配置し、照度センサ46の検出値に基づいて冷却器13bの異なるフィン間の着霜量の分布を推定する。図6に示すように、発光体45a,45b,45c,45d,45eを異なるフィン間をそれぞれ照射するように配置する。そして、それぞれの発光体と対向するように、冷却器13bを隔てて光センサ46a,46b,46c,46d,46eを配置する。これにより、照度分布に基づいて冷却器13b全体の着霜量の分布を推定することが可能となり、より正確な着霜量を把握した上で除霜運転ができる。   Further, a plurality of light emitters are arranged so as to irradiate light between different fins of the cooler 13b, and the distribution of frost formation between the different fins of the cooler 13b is estimated based on the detection value of the illuminance sensor 46. As shown in FIG. 6, the light emitters 45a, 45b, 45c, 45d, and 45e are arranged so as to irradiate between different fins. And the optical sensors 46a, 46b, 46c, 46d, and 46e are arrange | positioned through the cooler 13b so that each light-emitting body may be opposed. Thereby, it becomes possible to estimate the distribution of the frost amount of the entire cooler 13b based on the illuminance distribution, and the defrosting operation can be performed after grasping the more accurate frost amount.

次に実施例4について、図7を参照して説明する。なお、実施例1と同様の構成については、説明を省略する。   Next, Example 4 will be described with reference to FIG. Note that the description of the same configuration as that of the first embodiment is omitted.

図7に示すように本実施例の冷蔵庫は、冷却器13cの上流側及び下流側のそれぞれの風速を検知する風速センサを備え、風速センサで検知した冷却器13cの上流側と下流側との風速差によって、冷却器13cの着霜量を推定し、この推定した着霜量に応じた時間、除霜運転を行う。   As shown in FIG. 7, the refrigerator of the present embodiment includes a wind speed sensor that detects the upstream and downstream wind speeds of the cooler 13c, and the upstream and downstream sides of the cooler 13c detected by the wind speed sensor. The frost formation amount of the cooler 13c is estimated based on the wind speed difference, and the defrosting operation is performed for a time corresponding to the estimated frost formation amount.

風速センサ51は、庫内ファン21の運転によって発生する冷気流れの風下側の風速を検知する。風速センサ52は、庫内ファン21の運転によって発生する冷気流れの風上側の風速を検知する。風速センサ51,52の検知情報は、制御装置11(図1参照)へ入力される。本実施例においては、庫内ファン21の運転時に風速センサ51,52のそれぞれ検知した風速を比較する。冷却器13が着霜状態である場合、着霜量に応じて次第にフィン間距離、すなわち風路が狭まることで風損が大きくなる。そのため、風速センサ51,52の検知量の差が大きくなる。したがって、この風速センサ51,52の検知量の差によって着霜量を推定し、除霜運転時間の制御、或いは除霜開始判定に利用することが可能となる。   The wind speed sensor 51 detects the wind speed on the leeward side of the cool air flow generated by the operation of the internal fan 21. The wind speed sensor 52 detects the wind speed on the windward side of the cool air flow generated by the operation of the internal fan 21. Detection information of the wind speed sensors 51 and 52 is input to the control device 11 (see FIG. 1). In the present embodiment, the wind speeds detected by the wind speed sensors 51 and 52 during the operation of the internal fan 21 are compared. When the cooler 13 is in a frosting state, the windage loss increases as the distance between the fins, that is, the air passage gradually narrows according to the amount of frost formation. For this reason, the difference between the detection amounts of the wind speed sensors 51 and 52 increases. Therefore, it is possible to estimate the amount of frost formation based on the difference between the detection amounts of the wind speed sensors 51 and 52 and use it for controlling the defrosting operation time or determining the start of defrosting.

次に実施例5について、図8を参照して説明する。なお、実施例1と同様の構成については、説明を省略する。   Next, Example 5 will be described with reference to FIG. Note that the description of the same configuration as that of the first embodiment is omitted.

図8に示すように本実施例の冷蔵庫は、冷却器のフィン56に向けて発信した音波を受信することで距離を検出する音波センサ55を備え、音波センサ55によって検出したフィン56までの距離に基づいて冷却器の着霜量を推定し、この推定した着霜量に応じた時間、除霜運転を行う。   As shown in FIG. 8, the refrigerator of this embodiment includes a sound wave sensor 55 that detects a distance by receiving sound waves transmitted toward the fins 56 of the cooler, and the distance to the fins 56 detected by the sound wave sensor 55. The frost formation amount of the cooler is estimated based on the above, and the defrosting operation is performed for a time corresponding to the estimated frost formation amount.

音波センサ55は、冷却器のフィン56の平面部に対向して配置する。音波センサ55は、音波を発信する発信部55aと、この発信部55aから発信して反射した音波を受信する受信部55bを有する。音波センサ55の検知情報は、制御装置11へ入力される。この音波センサ55は、音波の発信及び受信を行い、対象までの距離を計測するものである。これによって、フィン56までの距離を計測する。冷却器が図8bに示すように、着霜状態であるとき、フィン56表面までの距離は霜の厚さ分短くなる。そのため、計測された距離から霜の厚さを測り、予め検知部位と全体の着霜量の関係を特定しておくことで、全体の着霜量を推定することができる。これにより、除霜運転時間の制御、或いは除霜開始判定に利用することが可能となる。   The sonic sensor 55 is disposed to face the flat portion of the fin 56 of the cooler. The sound wave sensor 55 includes a transmitter 55a that transmits a sound wave and a receiver 55b that receives a sound wave transmitted and reflected from the transmitter 55a. Detection information of the sonic sensor 55 is input to the control device 11. The sound wave sensor 55 transmits and receives sound waves and measures the distance to the target. Thereby, the distance to the fin 56 is measured. When the cooler is in a frosting state as shown in FIG. 8b, the distance to the fin 56 surface is shortened by the thickness of the frost. Therefore, the total amount of frost formation can be estimated by measuring the frost thickness from the measured distance and specifying the relationship between the detection site and the total amount of frost formation in advance. Thereby, it becomes possible to utilize for control of defrost operation time, or defrost start determination.

次に実施例6について、図9を参照して説明する。なお、実施例1と同様の構成については、説明を省略する。   Next, Example 6 will be described with reference to FIG. Note that the description of the same configuration as that of the first embodiment is omitted.

図9に示すように本実施例の冷蔵庫は、冷却器の上流側及び下流側の風圧をそれぞれ検知する圧力センサを備え、この圧力センサで検知した冷却器の上流側と下流側との圧力差によって冷却器の着霜量を推定し、この推定した着霜量に応じた時間、除霜運転を行う。   As shown in FIG. 9, the refrigerator of the present embodiment includes pressure sensors that respectively detect the wind pressure on the upstream side and the downstream side of the cooler, and the pressure difference between the upstream side and the downstream side of the cooler detected by this pressure sensor. The amount of frost formation of the cooler is estimated by the above, and the defrosting operation is performed for a time corresponding to the estimated amount of frost formation.

圧力センサ61は、庫内ファン21の運転によって発生する冷気流れの風下側の風圧を検知する。圧力センサ62は、庫内ファン21の運転によって発生する冷気流れの風上側の風圧を検知する。圧力センサ61,62の検知情報は、制御装置11(図1参照)へ入力される。本実施例においては、庫内ファン21の運転時に圧力センサ61,62のそれぞれ検知した風圧を比較する。冷却器13が着霜状態である場合、着霜量に応じて次第にフィン間距離、すなわち風路が狭まることで風損が大きくなる。そのため、圧力センサ61,62の検知量の差が大きくなる。したがって、この圧力センサ61,62の検知量の差によって着霜量を推定し、除霜運転時間の制御、或いは除霜開始判定に利用することが可能となる。   The pressure sensor 61 detects the wind pressure on the leeward side of the cold air flow generated by the operation of the internal fan 21. The pressure sensor 62 detects the wind pressure on the windward side of the cold air flow generated by the operation of the internal fan 21. Detection information of the pressure sensors 61 and 62 is input to the control device 11 (see FIG. 1). In the present embodiment, the wind pressures detected by the pressure sensors 61 and 62 during the operation of the internal fan 21 are compared. When the cooler 13 is in a frosting state, the windage loss increases as the distance between the fins, that is, the air passage gradually narrows according to the amount of frost formation. Therefore, the difference between the detection amounts of the pressure sensors 61 and 62 increases. Therefore, it is possible to estimate the amount of frost formation based on the difference between the detection amounts of the pressure sensors 61 and 62 and use it for controlling the defrosting operation time or determining the start of defrosting.

以上より、各実施例によって無駄な除霜運転を抑制して、庫内温度上昇を防止することで保鮮性を高めると同時に、除霜ヒータへの無駄な通電を防止することで消費電力量の低減を図ることができる。   As described above, each embodiment suppresses wasteful defrosting operation and prevents the rise in the internal temperature, thereby improving the freshness and at the same time preventing wasteful energization of the defrosting heater. Reduction can be achieved.

1 冷蔵庫本体
2 冷却器室
3 冷蔵室冷気通路
4 冷凍温度帯室冷気通路
11 制御装置
12 圧縮機
13,13a,13b,13c,13d 冷却器
14 冷蔵室(冷蔵温度帯室)
15 冷凍温度帯室
16 野菜室
17 冷凍室
18 製氷室
19,20 断熱仕切壁
21 庫内ファン(送風手段)
22 第一の電動ダンパ
23 第二の電動ダンパ
25 冷凍温度帯室温度検出手段
26 冷蔵温度帯室温度検出手段
30 機械室
31 蒸発皿
32 除霜ヒータ
33 排水パイプ
35 サーミスタ(温度検知手段)
35a 第一のサーミスタ
35b 第二のサーミスタ
41 パイプヒータ
45 発光体
46 照度センサ
47 着霜部
51,52 風速センサ
55 音波センサ
56 フィン
61,62 圧力センサ
DESCRIPTION OF SYMBOLS 1 Refrigerator body 2 Cooler room 3 Refrigeration room cold air passage 4 Freezing temperature zone room cold air passage 11 Control device 12 Compressor 13, 13a, 13b, 13c, 13d Cooler 14 Refrigerating room (refrigeration temperature zone room)
15 Freezing temperature zone 16 Vegetable room 17 Freezing room 18 Ice making room 19, 20 Insulation partition wall 21 Fan in the chamber (air blowing means)
22 1st electric damper 23 2nd electric damper 25 Freezing temperature zone room temperature detection means 26 Refrigeration temperature zone room temperature detection means 30 Machine room 31 Evaporating dish 32 Defrost heater 33 Drain pipe 35 Thermistor (temperature detection means)
35a First thermistor 35b Second thermistor 41 Pipe heater 45 Light emitter 46 Illuminance sensor 47 Frosting part 51, 52 Wind speed sensor 55 Sound wave sensor 56 Fin 61, 62 Pressure sensor

Claims (8)

冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器を設けた冷却器室に配置した温度検知手段とを備え、
前記圧縮機を停止して前記除霜ヒータを運転する除霜運転時、前記送風手段を運転して、霜の融解温度よりも低い温度帯の温度勾配を前記温度検知手段の検知温度から読み取り、該温度勾配に基づいて前記冷却器の着霜量を推定して、該推定した着霜量に応じた時間除霜運転をすることを特徴とする冷蔵庫。
A storage room installed in the refrigerator main body, a cooler for exchanging heat to the air sent to the storage room, a compressor connected to the cooler and a refrigerant pipe, and air exchanged for heat by the cooler to the storage room An air blowing means for blowing air, a defrost heater for melting frost attached to the cooler, and a temperature detection means arranged in a cooler chamber provided with the cooler,
During the defrosting operation in which the compressor is stopped and the defrosting heater is operated, the air blowing unit is operated, and a temperature gradient in a temperature zone lower than the melting temperature of frost is read from the detected temperature of the temperature detecting unit, A refrigerator characterized by estimating a frost formation amount of the cooler based on the temperature gradient and performing a defrosting operation for a time according to the estimated frost formation amount.
請求項1において、前記温度勾配は一定時間内の温度上昇率、又は一定温度上昇するまでの経過時間に基づくことを特徴とする冷蔵庫。   2. The refrigerator according to claim 1, wherein the temperature gradient is based on a temperature increase rate within a fixed time or an elapsed time until the temperature rises. 冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器のフィンに沿うように設置したパイプヒータと、前記冷却器の着霜量が異なる少なくとも2箇所の温度をそれぞれ検知する温度検知手段とを備え、
前記圧縮機を停止して前記パイプヒータに通電する除霜運転の開始から一定時間経過後、前記着霜量が異なる箇所の温度差に基づいて前記冷却器の着霜量を推定して、該推定した着霜量に応じた時間除霜運転をすることを特徴とする冷蔵庫。
A storage room installed in the refrigerator main body, a cooler for exchanging heat to the air sent to the storage room, a compressor connected to the cooler and a refrigerant pipe, and air exchanged for heat by the cooler to the storage room Blower means for blowing air, a pipe heater installed along the fins of the cooler, and temperature detection means for detecting temperatures of at least two locations where the frosting amount of the cooler is different, respectively.
After a certain period of time has elapsed since the start of the defrosting operation in which the compressor is stopped and the pipe heater is energized, the frost formation amount of the cooler is estimated based on the temperature difference between the portions where the frost formation amount is different, The refrigerator characterized by performing the time defrosting operation according to the estimated amount of frost formation.
冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器のフィン間に照射する発光体と、前記冷却器のフィン間の照度を検知する照度検知手段とを備え、
前記照度検知手段の検出値に基づいて前記冷却器のフィン間の着霜量を推定して、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする冷蔵庫。
A storage room installed in the refrigerator main body, a cooler for exchanging heat to the air sent to the storage room, a compressor connected to the cooler and a refrigerant pipe, and air exchanged for heat by the cooler to the storage room A blowing means for blowing air, a defrosting heater for melting frost attached to the cooler, a light emitter for irradiation between the fins of the cooler, and an illuminance detection means for detecting the illuminance between the fins of the cooler. Prepared,
The amount of frost formation between the fins of the cooler is estimated based on the detection value of the illuminance detection means, the compressor is stopped for a time corresponding to the estimated amount of frost formation, and the defrost heater is operated. A refrigerator characterized by performing a defrosting operation.
請求項4において、前記発光体は前記冷却器の異なるフィン間に照射するように複数配置し、前記照度検知手段の検出値に基づいて前記冷却器の異なるフィン間の着霜量の分布を推定することを特徴とする冷蔵庫。   5. The light emitting device according to claim 4, wherein a plurality of the light emitters are arranged so as to irradiate between different fins of the cooler, and a distribution of frost formation amount between the different fins of the cooler is estimated based on a detection value of the illuminance detection means. A refrigerator characterized by that. 冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器の上流側及び下流側の風速をそれぞれ検知する風速センサとを備え、
前記風速センサで検知した前記冷却器の上流側と下流側との風速差によって前記冷却器の着霜量を推定し、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする冷蔵庫。
A storage room installed in the refrigerator main body, a cooler for exchanging heat to the air sent to the storage room, a compressor connected to the cooler and a refrigerant pipe, and air exchanged for heat by the cooler to the storage room An air blowing means for blowing air, a defrost heater for melting frost attached to the cooler, and a wind speed sensor for detecting the wind speed on the upstream side and the downstream side of the cooler,
The frost formation amount of the cooler is estimated based on the difference in wind speed between the upstream side and the downstream side of the cooler detected by the wind speed sensor, and the compressor is stopped for a time corresponding to the estimated frost formation amount. The refrigerator characterized by performing the defrost operation which drives a defrost heater.
冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器のフィンに向けて発信した音波を受信することで距離を検出する音波センサとを備え、
前記音波センサによって検出したフィンまでの距離に基づいて前記冷却器の着霜量を推定し、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする冷蔵庫。
A storage room installed in the refrigerator main body, a cooler for exchanging heat to the air sent to the storage room, a compressor connected to the cooler and a refrigerant pipe, and air exchanged for heat by the cooler to the storage room An air blowing means for blowing air, a defrost heater for melting frost attached to the cooler, and a sound wave sensor for detecting a distance by receiving a sound wave transmitted toward the fin of the cooler,
The frosting amount of the cooler is estimated based on the distance to the fin detected by the acoustic wave sensor, and the compressor is stopped and the defrosting heater is operated for a time corresponding to the estimated frosting amount. A refrigerator characterized by performing frost operation.
冷蔵庫本体に設置した貯蔵室と、該貯蔵室へ送る空気を熱交換する冷却器と、該冷却器と冷媒配管で接続された圧縮機と、前記冷却器で熱交換した空気を前記貯蔵室へ送風する送風手段と、前記冷却器に付着した霜を融解する除霜ヒータと、前記冷却器の上流側及び下流側の風圧をそれぞれ検知する風圧センサとを備え、
前記風圧センサで検知した前記冷却器の上流側と下流側との圧力差によって前記冷却器の着霜量を推定し、該推定した着霜量に応じた時間、前記圧縮機を停止して前記除霜ヒータを運転する除霜運転を行うことを特徴とする冷蔵庫。
A storage room installed in the refrigerator main body, a cooler for exchanging heat to the air sent to the storage room, a compressor connected to the cooler and a refrigerant pipe, and air exchanged for heat by the cooler to the storage room An air blowing means for blowing air, a defrost heater for melting frost attached to the cooler, and a wind pressure sensor for detecting wind pressure on the upstream side and the downstream side of the cooler,
The frost formation amount of the cooler is estimated from the pressure difference between the upstream side and the downstream side of the cooler detected by the wind pressure sensor, and the compressor is stopped for a time corresponding to the estimated frost formation amount. The refrigerator characterized by performing the defrost operation which drives a defrost heater.
JP2010128409A 2010-06-04 2010-06-04 Refrigerator Withdrawn JP2011252681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128409A JP2011252681A (en) 2010-06-04 2010-06-04 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128409A JP2011252681A (en) 2010-06-04 2010-06-04 Refrigerator

Publications (1)

Publication Number Publication Date
JP2011252681A true JP2011252681A (en) 2011-12-15

Family

ID=45416748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128409A Withdrawn JP2011252681A (en) 2010-06-04 2010-06-04 Refrigerator

Country Status (1)

Country Link
JP (1) JP2011252681A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007510A (en) * 2013-06-26 2015-01-15 日立アプライアンス株式会社 Refrigerator
JP2015117889A (en) * 2013-12-18 2015-06-25 三菱重工業株式会社 Transportation refrigerator unit
JP2015206474A (en) * 2014-04-17 2015-11-19 日立アプライアンス株式会社 refrigerator
JP2016080201A (en) * 2014-10-10 2016-05-16 株式会社デンソー Electronic control device
JP2016125766A (en) * 2015-01-05 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. Cooler
CN106247742A (en) * 2016-08-12 2016-12-21 合肥美菱股份有限公司 A kind of refrigerator freezing fan defrosting device and control method thereof
WO2018020653A1 (en) * 2016-07-29 2018-02-01 三菱電機株式会社 Freezer-refrigerator
JPWO2017056212A1 (en) * 2015-09-30 2018-04-26 三菱電機株式会社 refrigerator
WO2022054278A1 (en) * 2020-09-14 2022-03-17 三菱電機株式会社 Inference device and learning device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007510A (en) * 2013-06-26 2015-01-15 日立アプライアンス株式会社 Refrigerator
JP2015117889A (en) * 2013-12-18 2015-06-25 三菱重工業株式会社 Transportation refrigerator unit
JP2015206474A (en) * 2014-04-17 2015-11-19 日立アプライアンス株式会社 refrigerator
JP2016080201A (en) * 2014-10-10 2016-05-16 株式会社デンソー Electronic control device
JP2016125766A (en) * 2015-01-05 2016-07-11 三星電子株式会社Samsung Electronics Co.,Ltd. Cooler
JPWO2017056212A1 (en) * 2015-09-30 2018-04-26 三菱電機株式会社 refrigerator
CN108139137A (en) * 2015-09-30 2018-06-08 三菱电机株式会社 Refrigerator
WO2018020653A1 (en) * 2016-07-29 2018-02-01 三菱電機株式会社 Freezer-refrigerator
CN106247742A (en) * 2016-08-12 2016-12-21 合肥美菱股份有限公司 A kind of refrigerator freezing fan defrosting device and control method thereof
CN106247742B (en) * 2016-08-12 2018-09-18 长虹美菱股份有限公司 A kind of refrigerator freezing fan defrosting device and its control method
WO2022054278A1 (en) * 2020-09-14 2022-03-17 三菱電機株式会社 Inference device and learning device
JPWO2022054278A1 (en) * 2020-09-14 2022-03-17

Similar Documents

Publication Publication Date Title
JP2011252681A (en) Refrigerator
US9243834B2 (en) Refrigerator
CN107421200B (en) A kind of wind cooling refrigerator defrosting control method
CN101970962B (en) Refrigerator
JP2010002071A (en) Refrigerator
JP4975076B2 (en) Defrosting device and defrosting method
JP2007225155A (en) Defrosting operation control device and method
JP5474024B2 (en) Refrigeration cycle equipment
JP2011038715A (en) Refrigerator
CN107543351B (en) Refrigerator and control method thereof
JP6706146B2 (en) refrigerator
JP6752107B2 (en) refrigerator
KR101771722B1 (en) Refrigerator and its defrost control method
DK2757335T3 (en) Refrigerator with defrost and control method
JP2005337613A (en) Refrigerator
JP5105276B2 (en) refrigerator
US11549740B2 (en) Refrigerator and controlling method for the same
JP5355761B2 (en) refrigerator
KR20100032532A (en) Method for controlling refrigerator
CN106052262B (en) A kind of defrosting method of refrigerator and its refrigerator room
JP5178782B2 (en) Refrigerator and refrigerator equipped with the same
JP2012225527A (en) Defrosting control device of cooling storage
JP2010117038A (en) Refrigerator
JP2019039586A (en) refrigerator
JP2001263912A (en) Refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806