JP5376796B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP5376796B2
JP5376796B2 JP2007322003A JP2007322003A JP5376796B2 JP 5376796 B2 JP5376796 B2 JP 5376796B2 JP 2007322003 A JP2007322003 A JP 2007322003A JP 2007322003 A JP2007322003 A JP 2007322003A JP 5376796 B2 JP5376796 B2 JP 5376796B2
Authority
JP
Japan
Prior art keywords
refrigerator
temperature
control mode
refrigeration cycle
detects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007322003A
Other languages
Japanese (ja)
Other versions
JP2009144969A (en
Inventor
勝久 天生
明裕 野口
宣博 菊地
好文 野口
和宏 神山
萌子 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Electronics Holdings Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Electronics Holdings Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2007322003A priority Critical patent/JP5376796B2/en
Publication of JP2009144969A publication Critical patent/JP2009144969A/en
Application granted granted Critical
Publication of JP5376796B2 publication Critical patent/JP5376796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of suppressing degradation of cooling efficiency caused by flooded refrigerant, loss of power consumption and increase of noise. <P>SOLUTION: This refrigerator 10 comprising a refrigerating cycle 50, and a radiation fan 73 for cooling a compressor 56 disposed in the refrigerating cycle 50, further comprises an outside temperature sensor 68 detecting a room temperature, a load detecting means 47 detecting load of the refrigerating cycle 50, and a control means 66 executing a first control mode for stopping a radiation fan 73 when the outside temperature sensor 68 detects a temperature lower than a first prescribed temperature, and shifting to a second control mode for rotating the radiation fan 73 when the load detecting means 47 detects a high load state of the refrigerating cycle 50 during the execution of the first control mode. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、冷凍サイクルを構成する圧縮機を冷却する放熱ファンを備えた冷蔵庫に関する。   The present invention relates to a refrigerator provided with a heat dissipation fan for cooling a compressor constituting a refrigeration cycle.

冷蔵庫では、冷凍サイクルを構成する圧縮機や凝縮器の温度を下げることによって、冷媒の凝縮温度を下げ冷却効率の向上を図ると共に、圧縮機モータの巻線温度の上昇による損失を低減させるため、圧縮機の駆動に対応させて放熱ファンを回転させて圧縮機や凝縮器の放熱を行っていた。   In the refrigerator, by lowering the temperature of the compressor and the condenser constituting the refrigeration cycle, the condensation temperature of the refrigerant is lowered to improve the cooling efficiency, and the loss due to the rise in the winding temperature of the compressor motor is reduced. The heat radiation fan is rotated to correspond to the driving of the compressor to radiate heat from the compressor and the condenser.

ところが、外気温が低いとき、例えば、冷蔵庫の設置場所の温度が10℃以下の場合、放熱ファンの駆動により圧縮機の温度が過剰に下がり、冷凍機油中に溶け込む冷媒量が多くなり、冷媒が冷凍サイクルに循環されずに冷却効率が低下してしまう、いわゆる冷媒の寝込み現象を生じることになる。   However, when the outside air temperature is low, for example, when the temperature of the refrigerator installation place is 10 ° C. or less, the temperature of the compressor is excessively lowered by driving the heat radiating fan, and the amount of refrigerant that dissolves in the refrigeration oil increases. This causes a so-called refrigerant stagnation phenomenon in which the cooling efficiency is lowered without being circulated through the refrigeration cycle.

そこで、従来、外気温が低い条件において圧縮機の駆動と独立して放熱ファンを停止させることにより圧縮機や凝縮器の過剰冷却を防止して冷媒の寝込みを抑制していた(例えば、特許文献1参照)。   Therefore, conventionally, the cooling fan is prevented from being overcooled by stopping the heat dissipating fan independently of the driving of the compressor under a condition where the outside air temperature is low (for example, Patent Documents). 1).

しかしながら、冷蔵庫の設置場所の雰囲気温度が低温以上の中室温、例えば、10℃〜20℃の場合において、外気温が低いときと同じように放熱ファンを停止させると、温かい食品が入れられるなど突発的に高負荷になった時には冷媒の凝縮温度を十分に下げることができず冷却効率が悪化するおそれがあり、一方、庫内温度が設定温度で安定した状態では放熱ファンを回転させ続けると、不要な放熱ファンの駆動となり消費電力のロスや騒音の増加を招くことになる問題がある。
特開2003−287334号
However, in the case where the ambient temperature of the refrigerator installation location is a medium or higher room temperature, for example, 10 ° C. to 20 ° C., when the heat dissipating fan is stopped in the same manner as when the outside air temperature is low, hot food is put in suddenly. However, when the load is high, the refrigerant condensation temperature cannot be lowered sufficiently and the cooling efficiency may deteriorate.On the other hand, if the heat dissipation fan continues to rotate while the internal temperature is stable at the set temperature, There is a problem that an unnecessary heat dissipation fan is driven, resulting in a loss of power consumption and an increase in noise.
JP 2003-287334 A

本発明は上記問題を考慮してなされたものであり、消費電力のロスや騒音の増加を抑えることができる冷蔵庫を提供することを目的とする。   The present invention has been made in consideration of the above problems, and an object thereof is to provide a refrigerator capable of suppressing power consumption loss and noise increase.

本発明の冷蔵庫は、冷凍サイクルと、前記冷凍サイクルが備える圧縮機を冷却する放熱ファンと、を備える冷蔵庫において、室温を検知する庫外温度センサと、前記冷凍サイクルの負荷を検知する負荷検知手段と、前記庫外温度センサが第1所定温度以下を検出すると前記放熱ファンを停止させる第1制御モードを実行し、前記第1制御モード実行中に前記負荷検知手段が前記冷凍サイクルの高負荷状態を検知すると前記放熱ファンを回転させる第2制御モードに移行する制御手段とを有し、前記制御手段は、電源投入から冷蔵庫の除霜が実行されるまでの間は、前記第2制御モードの実行を禁止することを特徴とする。 The refrigerator of the present invention is a refrigerator including a refrigeration cycle and a heat dissipating fan that cools a compressor included in the refrigeration cycle. An outside temperature sensor that detects a room temperature, and a load detection unit that detects a load of the refrigeration cycle. When the outside temperature sensor detects a temperature equal to or lower than the first predetermined temperature, a first control mode for stopping the heat radiating fan is executed, and the load detection means is in a high load state of the refrigeration cycle during the execution of the first control mode. And a control means for shifting to the second control mode for rotating the heat radiating fan when the control is detected, and the control means is in the second control mode until the defrosting of the refrigerator is executed after the power is turned on. Execution is prohibited.

本発明の冷蔵庫では、冷凍サイクルの負荷に応じて放熱ファンの回転を制御するため、冷却効率の低下や騒音の増加を抑えることができる。   In the refrigerator of the present invention, since the rotation of the heat dissipation fan is controlled according to the load of the refrigeration cycle, it is possible to suppress a decrease in cooling efficiency and an increase in noise.

以下、図面に基づき本発明の1実施形態について説明する。図1は本実施形態に係る冷蔵庫10の斜視図、図2は冷蔵庫10の断面図であり、図3は冷蔵庫10の冷凍サイクル50の構成を示す図、図4は機械室部分を示す背部からの冷蔵庫10の斜視図、図5は冷蔵庫10の要部拡大断面図、図6は冷蔵庫10の電気的構成を示すブロック図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 is a perspective view of a refrigerator 10 according to the present embodiment, FIG. 2 is a cross-sectional view of the refrigerator 10, FIG. 3 is a diagram showing a configuration of a refrigeration cycle 50 of the refrigerator 10, and FIG. 4 is a back view showing a machine room portion. 5 is a perspective view of the refrigerator 10, FIG. 5 is an enlarged cross-sectional view of the main part of the refrigerator 10, and FIG.

冷蔵庫10は、図1及び図2に示すように、外箱12と内箱14との間に発泡断熱材16を充填して断熱箱体17を形成し、貯蔵室内部を断熱仕切壁18によって上部の冷蔵室20と下部の冷凍空間40とに区画している。   As shown in FIGS. 1 and 2, the refrigerator 10 is filled with a foam heat insulating material 16 between the outer box 12 and the inner box 14 to form a heat insulating box body 17, and the interior of the storage room is insulated by a heat insulating partition wall 18. It is divided into an upper refrigerator compartment 20 and a lower frozen space 40.

冷蔵室20内部は、さらに載置棚を兼ねた天井仕切板21及び仕切板22によって上下に3つの空間に区画され、上部空間を複数段の載置棚23を設けた冷蔵貯蔵空間24とし、中部空間を引き出し式の野菜容器25を配置する野菜貯蔵空間26とし、下部空間を内部が−3〜0℃程度に冷却される低温容器27を配置する低温貯蔵空間28としている。   The inside of the refrigerator compartment 20 is further divided into three spaces up and down by a ceiling partition plate 21 and a partition plate 22 that also serve as a mounting shelf, and the upper space is a refrigerated storage space 24 provided with a plurality of mounting shelves 23. The middle space is a vegetable storage space 26 in which a drawer-type vegetable container 25 is arranged, and the lower space is a low-temperature storage space 28 in which a low-temperature container 27 whose interior is cooled to about −3 to 0 ° C. is arranged.

冷蔵室20の前面開口部は、断熱箱体17に設けられたヒンジ部29,29に回動自在に取り付けられた左右の冷蔵室扉20a,20aによって観音開き方式で閉塞されている。   The front opening of the refrigerator compartment 20 is closed in a double door manner by left and right refrigerator compartment doors 20a, 20a rotatably attached to hinges 29, 29 provided in the heat insulation box 17.

冷蔵室20の下部に設けられた冷凍空間40には、断熱仕切壁18の直下において、自動製氷装置を備えた製氷室42と室内温度を切換設定することができる温度切替室44とが左右に併設されており、製氷室42及び温度切替室44の下部に冷凍室46が設けられている。製氷室42、温度切替室44、及び冷凍室46は、それぞれ内部に配設された収納容器が開扉動作に連動して引き出される引き出し式の扉42a,44a,46aによって前面開口部が閉塞されている。   In the freezing space 40 provided in the lower part of the refrigerator compartment 20, an ice making chamber 42 equipped with an automatic ice making device and a temperature switching chamber 44 capable of switching and setting the room temperature are placed right and left just below the heat insulating partition wall 18. A freezing chamber 46 is provided below the ice making chamber 42 and the temperature switching chamber 44. The ice making chamber 42, the temperature switching chamber 44, and the freezing chamber 46 are closed at the front opening by drawer-type doors 42 a, 44 a, 46 a through which the storage containers arranged inside are pulled out in conjunction with the opening operation. ing.

各貯蔵室を閉塞する扉20a,42a,44a,46aには、各扉の開閉状態を検知するための扉スイッチ47がそれぞれ設けられている。   A door switch 47 for detecting the open / closed state of each door is provided on each of the doors 20a, 42a, 44a, and 46a that close the storage chambers.

そして、冷蔵室20および冷凍空間40のそれぞれの背面部には、冷蔵用冷却器52及び冷凍用冷却器53と各冷却器に対応する冷蔵用ファン54及び冷凍用ファン55とをそれぞれ配設し、各冷却器52,53で生成された冷気をファン54,55によりダクトを介してそれぞれの貯蔵室内に導入しこれを冷却するようにしている。また、冷凍用冷却器53の下方にはパイプヒータやガラス管ヒータなどよりなる除霜ヒータ30を設けている。   Then, on the back surfaces of the refrigerating room 20 and the refrigerating space 40, a refrigerating cooler 52 and a refrigerating cooler 53, and a refrigerating fan 54 and a refrigerating fan 55 corresponding to each cooler, respectively, are disposed. The cool air generated by the coolers 52 and 53 is introduced into the respective storage chambers via the ducts by the fans 54 and 55 and cooled. Further, a defrost heater 30 made of a pipe heater, a glass tube heater or the like is provided below the refrigeration cooler 53.

冷蔵室20の背面にある冷気を送るためのダクト32には、冷蔵室20の庫内温度を測定するための冷蔵室用温度センサ34が設けられ、冷凍室46の天井面には、冷凍室46の庫内温度を測定するための冷凍室用温度センサ48が設けられている。また、冷凍用冷却器53の上方には、該冷却器53の温度を検知し、除霜の終了タイミングを検知するための除霜センサ49が設けられている。また、図1に示すようにハンドルの内部には、庫外の温度を検知する庫外温度センサ68を設けている。   The duct 32 for sending cool air on the back of the refrigerator compartment 20 is provided with a refrigerator temperature sensor 34 for measuring the internal temperature of the refrigerator compartment 20. A freezer temperature sensor 48 for measuring the internal temperature of 46 is provided. In addition, a defrost sensor 49 for detecting the temperature of the cooler 53 and detecting the end timing of the defrost is provided above the freezer cooler 53. Further, as shown in FIG. 1, an outside temperature sensor 68 for detecting the outside temperature is provided inside the handle.

冷蔵冷却器52及び冷凍冷却器53は、冷蔵庫10の下部に設けたインバータによる周波数変換などで能力可変式の圧縮機56から吐出される冷媒を、図3に示すような冷凍サイクル50により交互に導いて冷却される。   The refrigeration cooler 52 and the refrigeration cooler 53 are alternately supplied with refrigerant discharged from a variable capacity compressor 56 by frequency conversion by an inverter provided in the lower part of the refrigerator 10 by a refrigeration cycle 50 as shown in FIG. Guided and cooled.

冷凍サイクル50は、圧縮機56の吐出側に凝縮器58が接続され、凝縮器58には三方弁60が接続されている。三方弁60から二股に分かれた冷媒流路の一方に冷蔵用キャピラリチューブ62を介して冷蔵用冷却器52が接続され、他方の冷媒流路に冷凍用キャピラリチューブ64を介して冷凍用冷却器53が接続されており、三方弁62を切り替えることで、凝縮器58により放熱液化された冷媒を冷蔵用冷却器52側及び冷凍用冷却器53側へ分流し、また、両冷却器52,53への該冷媒供給を遮断するようになっている。また、各冷却器52,53と圧縮機56の吸込側が接続されており、各冷却器52,53を流れた冷媒は再び圧縮機56に取り込まれ冷凍サイクル50を循環する。   In the refrigeration cycle 50, a condenser 58 is connected to the discharge side of the compressor 56, and a three-way valve 60 is connected to the condenser 58. A refrigeration cooler 52 is connected to one of the refrigerant flow paths divided from the three-way valve 60 via a refrigeration capillary tube 62, and a refrigeration cooler 53 is connected to the other refrigerant flow path via a refrigeration capillary tube 64. Is switched, and the refrigerant liquefied by the condenser 58 is diverted to the refrigeration cooler 52 side and the refrigeration cooler 53 side by switching the three-way valve 62, and to both the coolers 52 and 53. The refrigerant supply is cut off. Further, the coolers 52 and 53 and the suction side of the compressor 56 are connected, and the refrigerant flowing through the coolers 52 and 53 is again taken into the compressor 56 and circulates through the refrigeration cycle 50.

なお、冷蔵庫10に用いられる冷凍サイクルは、図4に示すものに限らず、圧縮機、凝縮器、1つの冷却器を順次接続したいわゆる1エバタイプや、凝縮器から流出した冷媒が三方弁を介することなく冷蔵用冷却器と冷凍用冷却器に分流され、冷蔵用冷却器を流通した冷媒が冷凍用冷却器の流入口側へ合流するいわゆるセミパラレルタイプなど、各種冷凍サイクルを用いることができる。   Note that the refrigeration cycle used in the refrigerator 10 is not limited to that shown in FIG. Various refrigeration cycles such as a so-called semi-parallel type in which the refrigerant that is divided into the refrigeration cooler and the refrigeration cooler and flows through the refrigeration cooler joins to the inlet of the refrigeration cooler can be used.

圧縮機56は、図4に示すように冷蔵庫10の背面下部に形成された機械室70に設置されており、冷蔵庫本体の幅方向にわたって設けたコンプ台71上にクッション体を介して取り付けられている。   The compressor 56 is installed in a machine room 70 formed at the lower back of the refrigerator 10 as shown in FIG. 4, and is attached to a compressor base 71 provided across the width direction of the refrigerator body via a cushion body. Yes.

機械室70は、本体の背面下部に冷凍室46側に突出する段部72を形成し、この段部72によって幅方向に亙る所定の奥行きと高さ寸法を有する空間をなしている。機械室70の幅方向の一方に寄せて圧縮機56を設置し、幅方向の他方側を放熱ダクトとして外気を機械室70内に導入する放熱ファン73、凝縮器58、及び除霜水を蒸発させる蒸発皿74などを設置している。   The machine room 70 has a stepped portion 72 protruding toward the freezer compartment 46 at the lower back of the main body, and the stepped portion 72 forms a space having a predetermined depth and height dimension extending in the width direction. The compressor 56 is installed close to one side in the width direction of the machine room 70, and the heat radiation fan 73 that introduces outside air into the machine room 70 using the other side in the width direction as a heat radiating duct, the condenser 58, and defrost water is evaporated. An evaporating dish 74 is installed.

放熱ファン73は、段部72との間に若干の間隙を形成し、周縁を機械室70の上下面に、左右部分を段部72に当接するように設置して機械室70内と外部とを区画したファンケーシング75に取り付けられており、軸流が機械室70の前後方向となるように配置されている。   The heat dissipating fan 73 is formed with a slight gap between the stepped portion 72, the peripheral edge thereof is disposed on the upper and lower surfaces of the machine chamber 70, and the left and right portions are in contact with the stepped portion 72. Are arranged so that the axial flow is in the longitudinal direction of the machine room 70.

この放熱ファン73を取り付けたファンケーシング75の下端前方のコンプ台71には、図5に示すように、ファンケーシング75幅に亙って複数の開口からなる外気の吸込み口76を穿設している。放熱ファン73の後方には、凝縮器58を配置しており、凝縮器58はその下端を放熱ファン73に対向させ、上部は機械室70より上方まで延出して外箱後板12aに形成した凹部77に沿うように立設させている。   As shown in FIG. 5, the compressor base 71 in front of the lower end of the fan casing 75 to which the heat radiating fan 73 is attached is provided with an outside air suction port 76 having a plurality of openings over the width of the fan casing 75. Yes. A condenser 58 is arranged behind the heat radiating fan 73. The condenser 58 has its lower end opposed to the heat radiating fan 73, and the upper part extends upward from the machine room 70 and is formed on the outer box rear plate 12a. It is erected along the recess 77.

機械室70の背面は、カバー体78で覆われており、カバー体78は、放熱ファン73から吹き出された空気が冷蔵庫10本体幅のやや中心方向に向かって流れるような形状をなしており、圧縮機56の後方に不図示の空気流出口が形成されている。また、カバー体78は、凝縮器58の上端部まで覆うように延設されており、凹部77のとの間に形成されるダクトに連なる空気流出口79が穿設されている。   The back surface of the machine room 70 is covered with a cover body 78, and the cover body 78 has such a shape that the air blown from the heat radiating fan 73 flows toward the central direction of the refrigerator 10 main body width. An air outlet (not shown) is formed behind the compressor 56. Further, the cover body 78 extends so as to cover the upper end portion of the condenser 58, and an air outlet 79 connected to a duct formed between the cover body 78 and the concave portion 77 is formed.

放熱ファン73によって機械室70内に吹き出され後方に送流され空気の一部は、カバー体78に衝突することで本体幅の中心方向に分流され、圧縮機56と熱交換してこれを冷却した後、圧縮機56の後方においてカバー体78に穿設された上記の空気流出口から外部に流出する。   A part of the air blown into the machine room 70 by the heat radiating fan 73 and sent backward is collided with the cover body 78 to be diverted toward the center of the main body width, and is cooled by exchanging heat with the compressor 56. After that, the air flows out from the air outlet formed in the cover body 78 behind the compressor 56.

機械室70内に吹き出された空気の一部は、図5中の矢印にように、上方に分流されて凹部77とカバー体78で形成されるダクト内に流入し、凝縮器58と熱交換してこれを冷却して、カバー体78上部の空気流出口79から外部に流出する。   A part of the air blown into the machine chamber 70 is divided upward and flows into a duct formed by the recess 77 and the cover body 78 as shown by an arrow in FIG. Then, it is cooled and flows out from the air outlet 79 above the cover body 78.

また、凹部77には、凝縮器58に隣接する圧縮機56の上方に冷蔵庫の運転を制御する電源回路やインバータスイッチング回路、モーターコントロール回路、整流回路などを搭載したプリント配線基板からなる制御部66が配設されている。制御部66には、図6に示すように、除霜ヒータ30、冷蔵室用温度センサ34、ドアスイッチ47、冷凍室用温度センサ48、除霜センサ49、冷蔵室用ファン54、冷凍室用ファン55、圧縮機56のモータ、庫外温度センサ68が接続され、これらを動作制御されるとともに、冷凍室扉46aの開閉回数及び開扉時間の積算や圧縮機56のモータの運転状況や冷蔵庫10が設置される雰囲気温度Tを計測しこれらを記憶する。また、制御部66には、庫外温度センサ68が接続されており、冷蔵庫10が設置される雰囲気温度Tを計測し記憶するようになっている。 Further, in the recess 77, a control unit 66 made of a printed circuit board on which a power supply circuit, an inverter switching circuit, a motor control circuit, a rectification circuit, etc. are mounted above the compressor 56 adjacent to the condenser 58. Is arranged. As shown in FIG. 6, the controller 66 includes a defrost heater 30, a refrigerator temperature sensor 34, a door switch 47, a freezer temperature sensor 48, a defrost sensor 49, a refrigerator fan 54, and a freezer compartment. The fan 55, the motor of the compressor 56, and the outside temperature sensor 68 are connected and their operation is controlled, and the number of times of opening and closing the freezer compartment door 46a and the opening time are integrated, the operating condition of the motor of the compressor 56, the refrigerator measuring the ambient temperature T a of 10 is installed to store them. The control unit 66, is connected to the refrigerator outside temperature sensor 68 is adapted to store measuring the ambient temperature T a refrigerator 10 is installed.

次に、上記構成の冷蔵庫10の放熱ファン73の制御方法について、図7に示すフロー図に基づいて説明する。   Next, the control method of the heat radiating fan 73 of the refrigerator 10 having the above-described configuration will be described based on the flowchart shown in FIG.

まず、ステップS1において、圧縮機56が回転駆動し冷凍サイクル50が動作しているか否か判断し、圧縮機56が動作していなければ圧縮機56及び凝縮器58を冷却する必要がないためステップS2において放熱ファン73を停止させ、既に放熱ファン73が停止している場合は停止させたまま制御を終了し、圧縮機56が動作していればステップS3に進む。   First, in step S1, it is determined whether or not the compressor 56 is rotationally driven and the refrigeration cycle 50 is operating. If the compressor 56 is not operating, it is not necessary to cool the compressor 56 and the condenser 58. In S2, the heat radiating fan 73 is stopped. If the heat radiating fan 73 is already stopped, the control is finished while the heat radiating fan 73 is stopped. If the compressor 56 is operating, the process proceeds to step S3.

ステップS3において、庫外温度センサ68より検出される冷蔵庫10の設置場所の雰囲気温度Tが第1所定温度(例えば、20℃)より低いか否か判断し、第1所定温度以上であればステップS4に進み、第1所定温度より低ければステップS5に進む。 In step S3, it is determined whether or not the ambient temperature Ta at the installation location of the refrigerator 10 detected by the outside temperature sensor 68 is lower than a first predetermined temperature (for example, 20 ° C.). The process proceeds to step S4, and if lower than the first predetermined temperature, the process proceeds to step S5.

ステップS4では、冷蔵庫外の室温が高く冷媒の凝縮温度を下げ冷却効率の向上を図るため、圧縮機56の回転数に合わせて放熱ファン73を所定の回転速度で回転駆動させ圧縮機56や凝縮器58の冷却を行いステップS1に戻る。   In step S4, the room temperature outside the refrigerator is high, and the condensation temperature of the refrigerant is lowered to improve the cooling efficiency. In order to improve the cooling efficiency, the heat radiating fan 73 is rotated at a predetermined rotational speed according to the rotational speed of the compressor 56. The vessel 58 is cooled and the process returns to step S1.

ステップS5では、庫外温度センサ68より検出される雰囲気温度Tが第2所定温度(例えば、10℃)より高いか否か判断し、第2所定温度以下であればステップS6に進み、第2所定温度より高ければステップS7に進む。 In step S5, it is determined whether or not the ambient temperature Ta detected by the outside temperature sensor 68 is higher than a second predetermined temperature (for example, 10 ° C.). 2 If the temperature is higher than the predetermined temperature, the process proceeds to step S7.

ステップS6では、冷蔵庫外の室温が低いことから、送風ファン73を駆動させることなく自然冷却でも適度に圧縮機56及び凝縮器58を冷却でき、また、送風ファン73を駆動すると圧縮機56等が過度に冷却され、不要に騒音が発生してしまうため、冷媒の寝込み現象が生じる可能性が高くなるため、放熱ファン73を停止させ、既に放熱ファン73が停止している場合は停止させたままステップS1に戻る。   In step S6, since the room temperature outside the refrigerator is low, the compressor 56 and the condenser 58 can be appropriately cooled even by natural cooling without driving the blower fan 73. When the blower fan 73 is driven, the compressor 56 and the like are cooled. Since it is excessively cooled and noise is generated unnecessarily, there is a high possibility that a refrigerant stagnation phenomenon will occur. Therefore, the radiating fan 73 is stopped, and if the radiating fan 73 is already stopped, it remains stopped. Return to step S1.

ステップS7では、第1所定温度より低く第2所定温度より高い状態、いわゆる中室温の場合、庫内温度が設定温度で安定した状態であれば放熱ファン73を回転させると過度に冷却してしまい、不要に騒音が発生してしまうため、ここでは放熱ファン73を停止する第1制御モードを実行してステップS8に進む。   In step S7, in a case where the temperature is lower than the first predetermined temperature and higher than the second predetermined temperature, that is, the so-called medium room temperature, if the internal temperature is stable at the set temperature, rotating the heat radiating fan 73 causes excessive cooling. Since unnecessary noise is generated, the first control mode for stopping the heat dissipation fan 73 is executed here, and the process proceeds to step S8.

ステップS8では、冷蔵庫1に電源が投入されてから除霜ヒータ30を通電し冷凍用冷却器55の除霜を実行したことがあるか否か判断し、冷蔵庫1に電源が投入されてから一度も除霜を実行していない場合は上記の第1制御モードを継続しステップS1に戻り、冷蔵庫1に電源が投入されてから一度でも除霜を実行していればステップS9に進む。   In step S8, it is determined whether or not the defrost heater 30 has been energized by turning on the power to the refrigerator 1 and defrosting of the refrigeration cooler 55 has been performed. If the defrosting is not executed, the first control mode is continued and the process returns to step S1. If the defrosting has been executed even once after the refrigerator 1 is turned on, the process proceeds to step S9.

ステップS9では、圧縮機56が駆動されてからいずれかの貯蔵室扉の開閉があったか否か判断し、貯蔵室扉の開閉があれば冷蔵庫内に外気が流入したり新たな貯蔵物が収納されたりすることから冷凍サイクル50が高負荷状態にあるとしてステップS10に進み、貯蔵室扉の開閉がなければ第1制御モードを継続しステップS1に戻る。つまり、本実施形態ではドアスイッチ47が貯蔵室扉の開閉を検知することにより冷凍サイクル50の高負荷状態を検知する。   In step S9, it is determined whether or not any storage room door has been opened or closed after the compressor 56 is driven. If the storage room door is opened or closed, outside air flows into the refrigerator or new storage items are stored. Therefore, if the refrigeration cycle 50 is in a high load state, the process proceeds to step S10. If the storage chamber door is not opened or closed, the first control mode is continued and the process returns to step S1. That is, in the present embodiment, the door switch 47 detects the high load state of the refrigeration cycle 50 by detecting the opening / closing of the storage compartment door.

ステップS10では、冷蔵庫外の室温は第1所定温度より低いため、庫内温度が安定した状態では放熱ファン73を回転させなくても良いが、ステップS9で判断したように高負荷状態の場合には冷却不足となり放熱ファン73を停止させるよりも冷却効率を優先させる方がよいため、放熱ファン73を回転駆動させ圧縮機56や凝縮器58の冷却を行いステップS11に進み、ステップS11において第2制御モードを所定時間t1実行する。その際、放熱ファン73の回転数は、庫外温度センサ68が第1所定温度以上を検出した場合の放熱ファン73を低速で回転駆動させることが好ましい。   In step S10, since the room temperature outside the refrigerator is lower than the first predetermined temperature, it is not necessary to rotate the radiating fan 73 when the internal temperature is stable. However, in the case of a high load state as determined in step S9. Since cooling is insufficient and it is better to give priority to the cooling efficiency than to stop the radiating fan 73, the radiating fan 73 is driven to rotate, the compressor 56 and the condenser 58 are cooled, and the process proceeds to step S11. The control mode is executed for a predetermined time t1. At that time, the rotational speed of the heat dissipation fan 73 is preferably such that the heat dissipation fan 73 is rotated at a low speed when the outside temperature sensor 68 detects the first predetermined temperature or higher.

そして、第2制御モードを所定時間t1実行した後、ステップS12において送風ファン73を停止して第2制御モードから第1制御モードに移行し、その後、ステップS1に戻る。なお、この所定時間t1は、冷凍サイクル50の運転状況に合わせて変更しても良く、例えば、圧縮機56が停止するまで、あるいは冷蔵用冷却器52に冷媒を流し冷蔵室20の冷却を行う冷蔵モードと冷凍用冷却器53に冷媒を流し冷凍空間40の冷却を行う冷蔵モードとを所定回数行うまでの時間を所定時間t1としても良い。   Then, after the second control mode is executed for a predetermined time t1, the blower fan 73 is stopped in step S12 to shift from the second control mode to the first control mode, and then the process returns to step S1. The predetermined time t1 may be changed according to the operation state of the refrigeration cycle 50. For example, until the compressor 56 stops or the refrigerant is allowed to flow through the refrigeration cooler 52, the refrigeration chamber 20 is cooled. The time until the refrigeration mode and the refrigeration mode in which the refrigerant flows through the refrigeration cooler 53 and cools the refrigeration space 40 is performed a predetermined number of times may be set as the predetermined time t1.

以上のように、本実施形態では、冷蔵庫の設置場所の雰囲気温度Tが第1所定温度より低い場合において冷凍サイクルの負荷状態に応じて放熱ファン73の回転を制御するため、冷凍サイクル50の高負荷状態では放熱ファン73を回転駆動させる第2制御モードを実行して冷媒の凝縮温度を下げ冷却効率の向上を図り、冷凍サイクル50の低負荷又は無負荷状態では放熱ファン73を停止させる第1制御モードを実行して不要な放熱ファンの回転を防止して消費電力のロスや騒音の増加を抑えることができる。また、冷蔵庫の設置場所の雰囲気温度Tが第2所定温度より低い場合には、冷凍サイクルの負荷状態に関わらず、放熱ファン73を停止させて消費電力のロスや騒音の増加を抑えることができる。 As described above, in the present embodiment, since the ambient temperature T a refrigerator installation site to control the rotation of the cooling fan 73 according to the load condition of the refrigeration cycle in the case lower than the first predetermined temperature, the refrigeration cycle 50 In a high load state, a second control mode for rotating the radiating fan 73 is executed to lower the refrigerant condensing temperature to improve the cooling efficiency. In a low load or no load state of the refrigeration cycle 50, the second radiating fan 73 is stopped. By executing one control mode, unnecessary rotation of the heat dissipation fan can be prevented, and loss of power consumption and increase in noise can be suppressed. Moreover, the ambient temperature T a refrigerator installation site is lower than the second predetermined temperature, regardless of the load condition of the refrigerating cycle, it is possible to suppress the increase in power consumption of the loss and noise by a cooling fan 73 is stopped it can.

しかも、冷蔵庫10の電源投入直後は、庫内温度は安定していないとみなして、冷蔵庫10の電源投入から最初の除霜が実行されるまで冷凍サイクル50の負荷状態に関わらず第2制御モードの実行を禁止しているため、冷却を優先することで効果的に冷蔵庫10を冷却することができる。   In addition, immediately after the refrigerator 10 is turned on, the internal temperature is regarded as not stable, and the second control mode is performed regardless of the load state of the refrigeration cycle 50 until the first defrosting is performed after the refrigerator 10 is turned on. Therefore, the refrigerator 10 can be effectively cooled by prioritizing cooling.

(変更例1)
本実施形態の変更例1について図8を参照して説明する。なお、上記した実施形態と同一又は対応する要素には同一符号を付し、重複する説明は省略する。
(Modification 1)
Modification 1 of the present embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the element which is the same as that of above-described embodiment, or the overlapping description is abbreviate | omitted.

上記の本実施形態ではドアスイッチ47が貯蔵室扉の開閉を検知することにより冷凍サイクル50の高負荷状態を検知するが、本変更例1は、冷蔵室用温度センサ34及び冷凍室用温度センサ48が検出する冷蔵庫内温度により冷凍サイクル50の高負荷状態を検知する点で、上記の本実施形態と相違する。   In the present embodiment, the door switch 47 detects the high load state of the refrigeration cycle 50 by detecting the opening / closing of the storage room door. However, in the first modification, the temperature sensor 34 for the refrigerator compartment and the temperature sensor for the freezer compartment are used. The present embodiment is different from the above-described embodiment in that the high load state of the refrigeration cycle 50 is detected by the temperature in the refrigerator detected by 48.

すなわち、変更例1では、図8のステップ9において、設定温度に対する冷蔵庫内温度の偏差が所定値以上である場合、すなわち、冷蔵室用温度センサ34により検出される冷蔵室温度と冷蔵室20の設定温度との温度差ΔTRが所定値(例えば、5℃)より大きい場合、あるいは、冷凍室用温度センサ48により検出される冷凍室46の温度と冷蔵室20の設定温度との温度差ΔTが所定値(例えば、5℃)より大きい場合に冷凍サイクル50の高負荷状態を検知する。 That is, in the modified example 1, in step 9 of FIG. 8, when the deviation of the refrigerator temperature with respect to the set temperature is equal to or greater than a predetermined value, that is, the refrigerator temperature detected by the refrigerator temperature sensor 34 and the refrigerator 20 When the temperature difference ΔT R with the set temperature is larger than a predetermined value (for example, 5 ° C.), or the temperature difference ΔT between the temperature of the freezer compartment 46 detected by the freezer temperature sensor 48 and the set temperature of the refrigerator compartment 20. When F is larger than a predetermined value (for example, 5 ° C.), the high load state of the refrigeration cycle 50 is detected.

本変更例1では、温度差ΔTR及びΔTの両方が所定値以内になるまで放熱ファン73を回転駆動する第2制御モードを実行し(ステップS11)、温度差ΔTR及びΔTの両方が所定値以内になると送風ファン73を停止させ第1制御モードへ移行する(ステップS12)。 In the first modification example, the second control mode in which the heat dissipation fan 73 is rotationally driven until both the temperature differences ΔT R and ΔT F are within a predetermined value is executed (step S11), and both the temperature differences ΔT R and ΔT F are performed. Is within the predetermined value, the blower fan 73 is stopped and the process proceeds to the first control mode (step S12).

このような本変更例1の場合であっても、簡易な構成により冷凍サイクル50の高負荷状態を検知することができる。   Even in the case of this first modification, it is possible to detect a high load state of the refrigeration cycle 50 with a simple configuration.

(変更例2)
本実施形態の変更例について図9を参照して説明する。なお、上記した実施形態と同一又は対応する要素には同一符号を付し、重複する説明は省略する。
(Modification 2)
A modification of this embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the element which is the same as that of above-described embodiment, or the overlapping description is abbreviate | omitted.

上記の本実施形態ではドアスイッチ47が貯蔵室扉の開閉を検知することにより冷凍サイクル50の高負荷状態を検知するが、本変更例2は、圧縮機56の回転数Nにより冷凍サイクル50の高負荷状態を検知する点で、上記の本実施形態と相違する。 In the present embodiment described above, the door switch 47 detects the high load state of the refrigeration cycle 50 by detecting the opening and closing of the storage compartment door. In the second modification, the refrigeration cycle 50 is determined by the rotational speed Nc of the compressor 56. The present embodiment is different from the above-described embodiment in that a high load state is detected.

すなわち、変更例2では、図9のステップ9において、圧縮機56の回転数Nが所定回転数NHより大きい場合に冷凍サイクル50の高負荷状態を検知して(ステップS9)、放熱ファン73を回転駆動する第2制御モードを継続して実行し(ステップS10、ステップS11)、圧縮機56の回転数Nが所定回転数NH以下になると、送風ファン73を停止させ第1制御モードへ移行する(ステップS12)。 That is, in the modified example 2, in step 9 of FIG. 9, when the rotational speed Nc of the compressor 56 is larger than the predetermined rotational speed NH , the high load state of the refrigeration cycle 50 is detected (step S9), and the heat radiating fan. The second control mode for rotationally driving 73 is continuously executed (steps S10 and S11), and when the rotational speed Nc of the compressor 56 becomes equal to or lower than the predetermined rotational speed NH , the blower fan 73 is stopped to perform the first control. The mode is changed (step S12).

このような本変更例2の場合であっても、簡易な構成により冷凍サイクル50の高負荷状態を検知することができる。   Even in the case of this second modification, the high load state of the refrigeration cycle 50 can be detected with a simple configuration.

なお、本変更例2において、圧縮機56の回転数Nが所定回転数より大きい高回転状態の積算時間が、所定の時間を超えた場合に、冷凍サイクル50の高負荷状態と判断するようにしても良い。 In the second modification, when the accumulated time in the high rotation state where the rotation speed Nc of the compressor 56 is greater than the predetermined rotation speed exceeds a predetermined time, it is determined that the refrigeration cycle 50 is in a high load state. Anyway.

(変更例3)
本実施形態の変更例について図10を参照して説明する。なお、上記した実施形態と同一又は対応する要素には同一符号を付し、重複する説明は省略する。
(Modification 3)
A modification of this embodiment will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the element which is the same as that of above-described embodiment, or the overlapping description is abbreviate | omitted.

冷蔵庫10は所定の周期(例えば、圧縮機56の積算運転時間が10時間に到達する)ごとに除霜を行うが、この除霜終了後は比較的庫内温度が高いため、除霜終了から所定時間経過していない場合や冷蔵モードと冷凍モードとの実行回数か所定回数に達していない場合に冷凍サイクル50が高負荷状態にあるとみなして(ステップS9)、中室温時には放熱ファン73を回転駆動する第2制御モードを継続して実行し(ステップS10、ステップS11)、除霜終了から所定時間経過したり、あるいは冷蔵モードと冷凍モードとを所定回数実行すると、庫内温度が安定しているとみなして、第1制御モードに移行する(ステップS12)。また、本変更例3でも第1所定温度以上の高室温の時は放熱ファン73を回転させ(ステップS4)、第2所定温度以下の低室温の時は放熱ファン73を停止させる(ステップS6)。   The refrigerator 10 performs defrosting every predetermined cycle (for example, the cumulative operation time of the compressor 56 reaches 10 hours), but since the internal temperature is relatively high after the defrosting, If the predetermined time has not elapsed, or if the number of executions of the refrigeration mode and the refrigeration mode or the predetermined number of times has not been reached, the refrigeration cycle 50 is considered to be in a high load state (step S9). When the second control mode for rotational driving is continuously executed (steps S10 and S11) and a predetermined time elapses after the defrosting is completed, or when the refrigeration mode and the freezing mode are executed a predetermined number of times, the inside temperature is stabilized. And shift to the first control mode (step S12). Also in the third modification, the radiating fan 73 is rotated when the room temperature is higher than the first predetermined temperature (step S4), and the radiating fan 73 is stopped when the room temperature is lower than the second predetermined temperature (step S6). .

このような本変更例3の場合であっても、簡易な構成により冷凍サイクル50の高負荷状態を検知することができる。   Even in the case of this third modification, the high load state of the refrigeration cycle 50 can be detected with a simple configuration.

本発明の1実施形態に係る冷蔵庫の外観斜視図である。It is an appearance perspective view of a refrigerator concerning one embodiment of the present invention. 本発明の1実施形態に係る冷蔵庫の縦断面図である。It is a longitudinal section of the refrigerator concerning one embodiment of the present invention. 本発明の1実施形態に係る冷蔵庫の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the refrigerator which concerns on 1 embodiment of this invention. 本発明の1実施形態に係る冷蔵庫背部からの斜視図である。It is a perspective view from the refrigerator back part which concerns on one Embodiment of this invention. 本発明の1実施形態に係る冷蔵庫の要部拡大断面図である。It is a principal part expanded sectional view of the refrigerator which concerns on one Embodiment of this invention. 本発明の1実施形態に係る冷蔵庫の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the refrigerator which concerns on one Embodiment of this invention. 本発明の1実施形態に係る冷蔵庫の放熱ファンの制御方法を示すフロー図である。It is a flowchart which shows the control method of the thermal radiation fan of the refrigerator which concerns on 1 embodiment of this invention. 本発明の1実施形態の変更例1に係る冷蔵庫の放熱ファンの制御方法を示すフロー図である。It is a flowchart which shows the control method of the thermal radiation fan of the refrigerator which concerns on the modification 1 of 1 embodiment of this invention. 本発明の1実施形態の変更例2に係る冷蔵庫の放熱ファンの制御方法を示すフロー図である。It is a flowchart which shows the control method of the thermal radiation fan of the refrigerator which concerns on the modification 2 of 1 embodiment of this invention. 本発明の1実施形態の変更例3に係る冷蔵庫の放熱ファンの制御方法を示すフロー図である。It is a flowchart which shows the control method of the thermal radiation fan of the refrigerator which concerns on the modification 3 of 1 embodiment of this invention.

符号の説明Explanation of symbols

10…冷蔵庫 20…冷蔵室 46…冷凍室
47…ドアスイッチ 48…冷凍室用温度センサ 50…冷凍サイクル
56…圧縮機 58…凝縮器 66…制御部
68…庫外温度センサ 70…機械室 73…放熱ファン
DESCRIPTION OF SYMBOLS 10 ... Refrigerator 20 ... Refrigeration room 46 ... Freezing room 47 ... Door switch 48 ... Freezing room temperature sensor 50 ... Freezing cycle 56 ... Compressor 58 ... Condenser 66 ... Control part 68 ... Outside temperature sensor 70 ... Machine room 73 ... Heat dissipation fan

Claims (8)

冷凍サイクルと、前記冷凍サイクルが備える圧縮機を冷却する放熱ファンと、を備える冷蔵庫において、
室温を検知する庫外温度センサと、
前記冷凍サイクルの負荷を検知する負荷検知手段と、
前記庫外温度センサが第1所定温度以下を検出すると前記放熱ファンを停止させる第1制御モードを実行し、前記第1制御モード実行中に前記負荷検知手段が前記冷凍サイクルの高負荷状態を検知すると前記放熱ファンを回転させる第2制御モードに移行する制御手段とを有し、
前記制御手段は、電源投入から冷蔵庫の除霜が実行されるまでの間、前記第2制御モードの実行を禁止することを特徴とする冷蔵庫。
In a refrigerator comprising a refrigeration cycle and a heat dissipating fan that cools a compressor included in the refrigeration cycle,
An outside temperature sensor for detecting room temperature;
Load detecting means for detecting the load of the refrigeration cycle;
When the outside temperature sensor detects a temperature equal to or lower than a first predetermined temperature, a first control mode for stopping the heat radiating fan is executed, and the load detecting means detects a high load state of the refrigeration cycle during the execution of the first control mode. Then, a control means for shifting to the second control mode for rotating the heat dissipation fan,
The said control means prohibits execution of said 2nd control mode from power-on until it defrosts a refrigerator.
前記制御手段は、第2制御モードを所定時間実行すると前記第1制御モードに移行することを特徴とする請求項1に記載の冷蔵庫。The refrigerator according to claim 1, wherein the control unit shifts to the first control mode when the second control mode is executed for a predetermined time. 前記庫外温度センサが前記第1所定温度より低い温度に設定された第2所定温度以下を検出すると、前記負荷検知手段が前記冷凍サイクルの高負荷状態を検知しても第2制御モードに移行せず前記第1制御モードを実行することを特徴とする請求項1又は2に記載の冷蔵庫。 When the outside temperature sensor detects a second predetermined temperature or lower set to a temperature lower than the first predetermined temperature, the second detection mode is entered even if the load detection means detects a high load state of the refrigeration cycle. The refrigerator according to claim 1 or 2 , wherein the first control mode is executed. 前記負荷検知手段は、冷蔵庫扉の開閉により前記冷凍サイクルの高負荷状態を検知する扉開閉検知手段であることを特徴とする請求項1〜3のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the load detection means is a door open / close detection means for detecting a high load state of the refrigeration cycle by opening / closing a refrigerator door. 前記負荷検知手段は、冷蔵庫内温度により前記冷凍サイクルの高負荷状態を検知する庫内温度センサであることを特徴とする請求項1〜3のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the load detection means is an internal temperature sensor that detects a high load state of the refrigeration cycle based on an internal temperature of the refrigerator. 前記負荷検知手段は、前記圧縮機の回転数により前記冷凍サイクルの高負荷状態を検知することを特徴とする請求項1〜3のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the load detection means detects a high load state of the refrigeration cycle based on a rotation speed of the compressor. 前記負荷検知手段は、除霜が行われたことで高負荷状態を検知することを特徴とする請求項1〜3のいずれか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 3, wherein the load detection unit detects a high load state by performing defrosting. 前記庫外温度センサが前記第1所定温度より高い温度を検出すると、制御手段は、前記放熱ファンを前記第2制御モードより高速回転させる第3制御モードを実行することを特徴とする請求項1〜のいずれか1項に記載の冷蔵庫。 The control means executes a third control mode for rotating the heat radiating fan at a higher speed than the second control mode when the outside temperature sensor detects a temperature higher than the first predetermined temperature. the refrigerator according to any one of claims 1 to 7.
JP2007322003A 2007-12-13 2007-12-13 refrigerator Active JP5376796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007322003A JP5376796B2 (en) 2007-12-13 2007-12-13 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007322003A JP5376796B2 (en) 2007-12-13 2007-12-13 refrigerator

Publications (2)

Publication Number Publication Date
JP2009144969A JP2009144969A (en) 2009-07-02
JP5376796B2 true JP5376796B2 (en) 2013-12-25

Family

ID=40915755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007322003A Active JP5376796B2 (en) 2007-12-13 2007-12-13 refrigerator

Country Status (1)

Country Link
JP (1) JP5376796B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158176A (en) * 2010-02-01 2011-08-18 Panasonic Corp Refrigeration apparatus
JP5386390B2 (en) * 2010-02-04 2014-01-15 日立アプライアンス株式会社 refrigerator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445009Y2 (en) * 1985-11-29 1992-10-22
JPS6343071U (en) * 1986-09-04 1988-03-22
JPH02136669A (en) * 1988-11-18 1990-05-25 Matsushita Refrig Co Ltd Refrigerator
JPH05240556A (en) * 1992-02-28 1993-09-17 Toshiba Corp Refrigerator
JPH05332671A (en) * 1992-06-02 1993-12-14 Mitsubishi Electric Corp Freezing refrigerator
JPH06300419A (en) * 1993-04-14 1994-10-28 Matsushita Refrig Co Ltd Control apparatus for refrigerator
JPH0749169A (en) * 1993-08-04 1995-02-21 Matsushita Refrig Co Ltd Controller of refrigerator
JPH0777375A (en) * 1993-09-07 1995-03-20 Matsushita Refrig Co Ltd Controller for refrigerator
KR0138049B1 (en) * 1994-03-31 1998-07-01 김광호 Control method of compressor running velocity for a refrigerator
JPH0989432A (en) * 1995-09-20 1997-04-04 Hitachi Ltd Controller for refrigerator
JPH09178320A (en) * 1995-12-22 1997-07-11 Toshiba Corp Heat radiation fan operation control method of refrigerator

Also Published As

Publication number Publication date
JP2009144969A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5017340B2 (en) refrigerator
JP5391250B2 (en) Refrigerator and freezer
JP5530852B2 (en) refrigerator
JP5571044B2 (en) refrigerator
JP5178642B2 (en) refrigerator
JP5135045B2 (en) refrigerator
JP5507511B2 (en) refrigerator
JP6687384B2 (en) refrigerator
JP2013061089A (en) Refrigerator
TW200813381A (en) Refrigerator
JP2012007760A (en) Refrigerator
JP6752107B2 (en) refrigerator
JP2019138513A (en) refrigerator
JP5376796B2 (en) refrigerator
JP5838238B2 (en) refrigerator
JP2005180719A (en) Refrigerator
JP2007309530A (en) Refrigerator
JP2009085502A (en) Refrigerator
JP6837423B2 (en) refrigerator
JP2012063026A (en) Refrigerator
JP4103384B2 (en) refrigerator
JP2019138510A (en) refrigerator
JP2019027649A (en) refrigerator
JP2011052934A (en) Refrigerator
JP4286106B2 (en) Freezer refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Ref document number: 5376796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350