JP2022063354A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2022063354A
JP2022063354A JP2022026984A JP2022026984A JP2022063354A JP 2022063354 A JP2022063354 A JP 2022063354A JP 2022026984 A JP2022026984 A JP 2022026984A JP 2022026984 A JP2022026984 A JP 2022026984A JP 2022063354 A JP2022063354 A JP 2022063354A
Authority
JP
Japan
Prior art keywords
chamber
refrigerating
evaporator
vegetable
temperature zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022026984A
Other languages
Japanese (ja)
Other versions
JP7254227B2 (en
Inventor
良二 河井
Ryoji Kawai
晴樹 額賀
Haruki Nukaga
慎一郎 岡留
Shinichiro Okadome
真申 小川
Masanobu Ogawa
智史 小沼
Tomohito Konuma
福太郎 岡田
Fukutaro Okada
大 板倉
Masaru Itakura
謙治 塩野
Kenji Shiono
陽平 門傳
Yohei Kadoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=87885244&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022063354(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2017206769A external-priority patent/JP7267673B2/en
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2022026984A priority Critical patent/JP7254227B2/en
Publication of JP2022063354A publication Critical patent/JP2022063354A/en
Priority to JP2023049451A priority patent/JP2023068192A/en
Application granted granted Critical
Publication of JP7254227B2 publication Critical patent/JP7254227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator that can exert high energy-saving performance regardless of outside temperature, and has high space efficiency.
SOLUTION: A refrigerator 1 is equipped with a heat insulation partition wall 28 that blows air exchanging heat with a freezing evaporator 14b by the drive of a freezing fan 9b to cool a freezing zone chamber 7 and a vegetable compartment cooler 6, and partitions the freezing temperature zone chamber 7 and a refrigeration cooler 2, and a heat insulation partition wall 29 that partitions the freezing temperature zone chamber 7 and the vegetable compartment cooler 6. A vegetable compartment cooler returning air path 18 is provided in the heat insulation partition wall 29. When sending cold air to the vegetable compartment cooler 6, the rotation speed of a compressor 24 is brought into a higher-speed drive state than rotation speed during refrigerating operation, thereby making the freezing evaporator 14b lower than the temperature of the freezing evaporator during the refrigerating operation. The amount of air supplied to the vegetable compartment cooler 6 is smaller than the amount of air supplied to the freezing temperature zone chamber 7.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は,冷蔵庫に関する。 The present invention relates to a refrigerator.

本技術分野の背景技術として,例えば特開2006-64256号公報(特許文献1)及び特開2006-250406号公報(特許文献2)がある。 As background techniques in this technical field, for example, Japanese Patent Application Laid-Open No. 2006-64256 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2006-250406 (Patent Document 2) are available.

特許文献1には,本体である外郭が断熱箱体で構成されており,この断熱箱体の内部空間(すなわち庫内)は,上方から冷蔵室,アイス室,冷凍や冷蔵を選べるセレクト室,冷凍室,野菜室を備え,冷蔵室は冷蔵室用蒸発器である第一蒸発器で,また,アイス室,セレクト室および冷凍室は冷凍室用蒸発器である第二蒸発器で冷却され,野菜室は,冷凍室との間の隔壁などを介して,冷凍室の冷気で間接的に冷却される冷蔵庫が開示されている(例えば特許文献1の図3)。 In Patent Document 1, the outer shell of the main body is composed of a heat insulating box body, and the internal space (that is, the inside of the refrigerator) of the heat insulating box body is a refrigerating room, an ice room, a select room in which freezing or refrigerating can be selected from above. It is equipped with a freezer room and a vegetable room, and the refrigerating room is cooled by the first evaporator, which is an evaporator for the refrigerating room, and the ice room, the select room, and the freezer room are cooled by the second evaporator, which is the evaporator for the freezer room. As the vegetable compartment, a refrigerator that is indirectly cooled by the cold air of the freezer compartment is disclosed (for example, FIG. 3 of Patent Document 1).

特許文献2には,上から冷蔵室 ,冷凍室,野菜室が形成され,冷蔵室に設けられた冷却器で,冷蔵室及び野菜室を冷却する冷蔵庫が開示されている(例えば特許文献2の段落0011)。 Patent Document 2 discloses a refrigerator in which a refrigerating room, a freezing room, and a vegetable room are formed from above, and a refrigerator provided in the refrigerating room cools the refrigerating room and the vegetable room (for example, Patent Document 2). Paragraph 0011).

特開2006-64256号公報Japanese Unexamined Patent Publication No. 2006-64256 特開2006-250406号公報Japanese Unexamined Patent Publication No. 2006-250406

特許文献1に記載の冷蔵庫は,冷蔵室用蒸発器によって冷蔵室を冷却し,冷凍室用蒸発器によって,アイス室,セレクト室および冷凍室を冷却し,冷凍室の下方に設けられた野菜室は,冷凍室との間の隔壁などを介して,冷凍室の冷気で間接的に冷却する。 In the refrigerator described in Patent Document 1, the refrigerating room is cooled by the evaporator for the refrigerating room, the ice room, the select room and the freezing room are cooled by the evaporator for the freezing room, and the vegetable room provided below the freezing room is provided. Is indirectly cooled by the cold air of the freezer through a partition wall between the freezer and the freezer.

野菜室を間接的に冷却する場合,野菜室の冷却能力を高めるためには隔壁を介した熱移動を促進する必要がある。一般に隔壁を介した熱移動の促進には,隔壁によって隔てられた空間(冷凍室と野菜室)の温度差を拡大することが有効となる。したがって,周囲環境温度が高い,野菜室に温度が高い食品を収納した,あるいは,食品等を挟み込むことにより野菜室扉と箱体の間に隙間が生じているといった事由により野菜室の負荷が大きく,冷却能力を十分高める必要がある場合には,冷凍室を過度に低温に維持する必要があり,省エネルギー性能が低下するといった問題が生じていた。 When indirectly cooling the vegetable compartment, it is necessary to promote heat transfer through the partition wall in order to increase the cooling capacity of the vegetable compartment. Generally, in order to promote heat transfer through a partition wall, it is effective to widen the temperature difference between the spaces (freezing room and vegetable room) separated by the partition wall. Therefore, the load on the vegetable compartment is large due to reasons such as the high ambient temperature, storing high-temperature food in the vegetable compartment, or creating a gap between the vegetable compartment door and the box due to sandwiching food or the like. When it is necessary to sufficiently increase the cooling capacity, it is necessary to keep the freezing room at an excessively low temperature, which causes a problem that the energy saving performance is deteriorated.

また,特許文献2に記載の冷蔵庫は,冷蔵室に設けられた冷却器で,冷蔵室及び野菜室を冷却するので,冷蔵室からの冷気を野菜室に送るための経路や,野菜室から冷蔵室に冷気を戻す経路が必要になるため,スペース効率が低い,すなわち,内容積が減少することが問題となっていた。 Further, the refrigerator described in Patent Document 2 is a cooler provided in the refrigerating room to cool the refrigerating room and the vegetable room. Therefore, a route for sending cold air from the refrigerating room to the vegetable room and refrigerating from the vegetable room are used. Since a route for returning cold air to the room is required, the problem is that the space efficiency is low, that is, the internal volume is reduced.

本発明は上記課題に鑑みてなされたものであり,外気温度の高低によらず高い省エネルギー性能を発揮でき,さらにスペース効率も高い冷蔵庫を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a refrigerator capable of exhibiting high energy-saving performance regardless of the temperature of the outside air and having high space efficiency.

上記課題を解決するために,例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,冷凍温度帯室の上方に第一冷蔵温度帯室、前記冷凍温度帯室の下方に冷蔵温度帯に固定された野菜室とを備え、前記第一冷蔵温度帯室の略背部に位置する第一蒸発器と、該第一蒸発器を収納する第一蒸発器収納室と、前記第一蒸発器と熱交換した空気を前記第一蒸発器収納室から前記第一冷蔵温度帯室に導く第一送風経路と、前記第一冷蔵温度帯室から前記第一蒸発器収納室に空気を導く第一戻り経路と、前記第一冷蔵温度帯室に循環気流を形成する第一送風機と、前記冷凍温度帯室の略背部に位置し、冷凍運転中の温度が冷蔵運転中の前記第一蒸発器よりも低い第二蒸発器と、該第二蒸発器を収納する第二蒸発器収納室と、前記第二蒸発器と熱交換した空気を前記第二蒸発器収納室から前記冷凍温度帯室に導く第二送風経路と、前記冷凍温度帯室から前記第二蒸発器収納室に空気を導く第二戻り経路と、前記第二送風経路から前記野菜室に空気を導く野菜室送風路と、前記野菜室から前記第二蒸発器収納室に空気を導く野菜室戻り風路と、前記冷凍温度帯室及び前記野菜室に循環気流を形成する第二送風機と、を有し、前記第二蒸発器と熱交換した空気を、前記第二送風機の駆動により送風して前記冷凍温度帯室及び前記野菜室を冷却し、前記冷凍温度帯室と前記第一冷蔵温度帯室とを隔てる第一の断熱仕切壁と、前記冷凍温度帯室と前記野菜室とを隔てる第二の断熱仕切壁と、をさらに備え、前記野菜室戻り風路は、前記第二の断熱仕切壁内に設けられ、前記野菜室に冷気を送る際には、圧縮機の回転速度を、冷蔵運転中の回転速度よりも高速駆動状態にすることで、前記第二蒸発器を、冷蔵運転中の前記第一蒸発器の温度よりも低温にし、前記野菜室に供給する風量は前記冷凍温度帯室に供給する風量より少ないことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above problems. For example, the first refrigerating temperature zone chamber is fixed above the refrigerating temperature zone chamber, and the refrigerating temperature zone is fixed below the refrigerating temperature zone chamber. The first evaporator, which is provided with a vegetable compartment and is located substantially behind the first refrigerating temperature zone chamber, the first evaporator storage chamber for accommodating the first evaporator, and heat exchange with the first evaporator. A first air blowing path that guides the air from the first refrigerating temperature zone chamber to the first refrigerating temperature zone chamber, and a first return path that guides air from the first refrigerating temperature zone chamber to the first refrigerating temperature zone chamber. The first blower that forms a circulating air flow in the first refrigerating temperature zone chamber and the first evaporator that is located substantially behind the refrigerating temperature zone chamber and whose temperature during the refrigerating operation is lower than that of the first evaporator during the refrigerating operation. (Ii) The second evaporator, the second evaporator storage chamber for accommodating the second evaporator, and the second air blower that guides the air that has exchanged heat with the second evaporator from the second evaporator storage chamber to the refrigerating temperature zone chamber. The path, the second return path for guiding air from the refrigerating temperature zone chamber to the second evaporator storage chamber, the vegetable chamber air passage for guiding air from the second air passage to the vegetable chamber, and the vegetable chamber to the vegetable chamber. It has a vegetable compartment return air passage that guides air to the second evaporator storage chamber, and a second blower that forms a circulating air flow in the refrigerating temperature zone chamber and the vegetable compartment, and exchanges heat with the second evaporator. The first heat insulating partition wall that separates the refrigerating temperature zone chamber and the first refrigerating temperature zone chamber by blowing air by driving the second blower to cool the refrigerating temperature zone chamber and the vegetable chamber. A second heat insulating partition wall separating the refrigerating temperature zone room and the vegetable room is further provided, and the vegetable room return air passage is provided in the second heat insulating partition wall to allow cold air to the vegetable room. At the time of feeding, the rotation speed of the compressor is set to a drive state higher than the rotation speed during the refrigerating operation, so that the temperature of the second evaporator is lower than the temperature of the first evaporator during the refrigerating operation. The air volume supplied to the vegetable compartment is smaller than the air volume supplied to the refrigerating temperature zone chamber.

本発明によれば,外気温度の高低によらず高い省エネルギー性能を発揮でき,さらにスペース効率も高い冷蔵庫を提供することができる。 According to the present invention, it is possible to provide a refrigerator that can exhibit high energy-saving performance regardless of the temperature of the outside air and has high space efficiency.

実施例1に係る冷蔵庫の正面図Front view of the refrigerator according to the first embodiment 図1のA-A断面図AA sectional view of FIG. 図2のB-B断面図BB sectional view of FIG. 実施例1に係る冷蔵庫の冷凍サイクル構成を表す概略図Schematic diagram showing the refrigerating cycle configuration of the refrigerator according to the first embodiment. 実施例1に係る冷蔵庫の制御を表すフローチャートA flowchart showing the control of the refrigerator according to the first embodiment. 実施例1に係る冷蔵庫の制御を表すタイムチャートの一例An example of a time chart showing the control of the refrigerator according to the first embodiment. 実施例1に係る冷蔵庫の冷媒の状態を示すモリエル線図Moriel diagram showing the state of the refrigerant of the refrigerator according to the first embodiment. 比較例の冷蔵庫の構成を表す模式図。The schematic diagram which shows the structure of the refrigerator of the comparative example. 実施例2の冷蔵庫の構成を表す模式図Schematic diagram showing the configuration of the refrigerator of Example 2. 実施例3の冷蔵庫の構成を表す模式図Schematic diagram showing the configuration of the refrigerator of Example 3

以下,本発明の実施例について,適宜図面を参照しながら詳細に説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings as appropriate.

本発明に係る冷蔵庫の第一の実施例(実施例1)について説明する。まず,実施例1に係る冷蔵庫の構成を図1~図4を参照しながら説明する。図1は実施例1に係る冷蔵庫の正面図,図2は図1のA-A断面図,図3は図2のB-B断面図,図4は実施例1に係る冷蔵庫の冷凍サイクルの構成を表す概略図である。冷蔵庫1の箱体10は,前方に開口しており,上方から冷蔵室2(第一冷蔵温度帯室),左右に並設された製氷室3と上段冷凍室4,下段冷凍室5,野菜室6(第二冷蔵温度帯室)の順に貯蔵室を形成している。冷蔵室2の前方の開口は,左右に分割された回転式の冷蔵室扉2a,2bにより開閉され,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6の前方の開口は,引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aによってそれぞれ開閉される。各扉は庫内側外周にパッキン(不図示)を備えており,扉を閉状態とした場合に,箱体10の前縁部と接触することにより庫内外の空気の流通を抑制するようにしている。以下では,製氷室3,上段冷凍室4,下段冷凍室5は,まとめて冷凍温度帯室7と呼ぶ。 A first embodiment (Example 1) of the refrigerator according to the present invention will be described. First, the configuration of the refrigerator according to the first embodiment will be described with reference to FIGS. 1 to 4. 1 is a front view of the refrigerator according to the first embodiment, FIG. 2 is a sectional view taken along the line AA of FIG. 1, FIG. 3 is a sectional view taken along the line BB of FIG. 2, and FIG. 4 is a refrigerating cycle of the refrigerator according to the first embodiment. It is a schematic diagram which shows the structure. The box body 10 of the refrigerator 1 is open to the front, and from above, the refrigerating chamber 2 (first refrigerating temperature zone chamber), the ice making chambers 3 arranged side by side on the left and right, the upper freezing chamber 4, the lower freezing chamber 5, and the vegetables. Storage chambers are formed in the order of chamber 6 (second refrigerated temperature zone chamber). The front opening of the refrigerating room 2 is opened and closed by the rotary refrigerating room doors 2a and 2b divided into left and right, and the front opening of the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 is. It is opened and closed by a pull-out type ice making room door 3a, an upper freezing room door 4a, a lower freezing room door 5a, and a vegetable room door 6a, respectively. Each door is equipped with packing (not shown) on the inner periphery of the refrigerator, and when the door is closed, it comes into contact with the leading edge of the box 10 to suppress the flow of air inside and outside the refrigerator. There is. In the following, the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5 are collectively referred to as a freezing temperature zone chamber 7.

冷蔵庫1の外形寸法は幅685mm,奥行き738mm,高さ1833mmであり,JIS9801-3:2015に基づく定格内容積は,冷蔵室308L,冷凍室180L,
野菜室114Lである。
The external dimensions of the refrigerator 1 are 685 mm in width, 738 mm in depth, and 1833 mm in height, and the rated internal volumes based on JIS9801-3: 2015 are the refrigerating chamber 308L, the freezing chamber 180L, and so on.
It is a vegetable room 114L.

冷凍温度帯室7は,基本的に庫内を冷凍温度帯(0℃未満)の例えば平均的に-18℃程度にした貯蔵室であり,冷蔵室2及び野菜室は庫内を冷蔵温度帯(0℃以上)とし,例えば冷蔵室2は平均的に4℃程度,野菜室は平均的に7℃程度にした貯蔵室である。 The refrigerating temperature zone chamber 7 is basically a storage chamber in which the inside of the refrigerator is set to a freezing temperature zone (less than 0 ° C.), for example, about -18 ° C on average, and the refrigerating chamber 2 and the vegetable compartment have a refrigerating temperature zone inside. (0 ° C or higher), for example, the refrigerating room 2 is a storage room having an average temperature of about 4 ° C, and the vegetable room is a storage room having an average temperature of about 7 ° C.

ドア2aには庫内の温度設定の操作を行う操作部26を設けている。冷蔵庫1とドア2a,2bを固定するためにドアヒンジ(図示せず)が冷蔵室2上部及び下部に設けてあり,上部のドアヒンジはドアヒンジカバー16で覆われている。 The door 2a is provided with an operation unit 26 for operating the temperature setting in the refrigerator. Door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2 to fix the refrigerator 1 and the doors 2a and 2b, and the upper door hinges are covered with the door hinge cover 16.

図2に示すように,外箱10aと内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される箱体10により,冷蔵庫1の庫外と庫内は隔てられている。箱体10には発泡断熱材に加えて複数の真空断熱材36を,鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と,上段冷凍室4及び製氷室3は断熱仕切壁28によって隔てられ,同様に下段冷凍室5と野菜室6は断熱仕切壁29によって隔てられている。また,製氷室3,上段冷凍室4,及び下段冷凍室5の各貯蔵室の前面側には,ドア3a,4a,5aの隙間を介した庫内外の空気の流通を防ぐために,断熱仕切壁30を設けている。 As shown in FIG. 2, the outside and inside of the refrigerator 1 are separated by a box body 10 formed by filling a foam insulating material (for example, urethane foam) between the outer box 10a and the inner box 10b. There is. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 36 are mounted on the box body 10 between the outer box 10a made of steel plate and the inner box 10b made of synthetic resin. The refrigerating room 2, the upper freezing room 4, and the ice making room 3 are separated by a heat insulating partition wall 28, and similarly, the lower freezing room 5 and the vegetable room 6 are separated by a heat insulating partition wall 29. Further, on the front side of each storage chamber of the ice making chamber 3, the upper freezing chamber 4, and the lower freezing chamber 5, a heat insulating partition wall is provided to prevent the flow of air inside and outside the refrigerator through the gaps between the doors 3a, 4a, and 5a. 30 is provided.

冷蔵室2のドア2a,2bの庫内側には複数のドアポケット33a,33b,33cと,複数の棚34a,34b,34c,34dを設け,複数の貯蔵スペースに区画されている。冷凍温度帯室7及び野菜室6には,それぞれドア3a,4a,5a,6aと一体に引き出される製氷室容器(図示せず),上段冷凍室容器4b,下段冷凍室容器5b,野菜室容器6bを備えている。野菜室容器6bは,上下2段に分かれており,下段側の前方には飲料のボトル類を収納できるボトル収納スペース6cを備えている。ボトル収納スペース6cの高さ寸法は,1.5Lや2Lの飲料のボトルを立てて収納できるように305mm以上確保している(本実施例では315mm)。また,飲料用のボトルを収納可能なことは,カタログや取扱説明書,広告媒体等の文面,図,写真,映像を通じてユーザーに周知される。 A plurality of door pockets 33a, 33b, 33c and a plurality of shelves 34a, 34b, 34c, 34d are provided inside the doors 2a, 2b of the refrigerating chamber 2, and are partitioned into a plurality of storage spaces. In the freezing temperature zone room 7 and the vegetable room 6, an ice making room container (not shown), an upper freezing room container 4b, a lower freezing room container 5b, and a vegetable room container, which are drawn out integrally with the doors 3a, 4a, 5a, and 6a, respectively. It is equipped with 6b. The vegetable compartment container 6b is divided into upper and lower tiers, and is provided with a bottle storage space 6c in front of the lower tier for storing beverage bottles. The height dimension of the bottle storage space 6c is secured to be 305 mm or more so that 1.5 L or 2 L beverage bottles can be stored upright (315 mm in this embodiment). In addition, the fact that bottles for beverages can be stored is made known to users through catalogs, instruction manuals, texts such as advertising media, figures, photographs, and videos.

断熱仕切壁28の上方には,冷蔵室2の温度帯より低めに設定可能なチルドルーム35を設けている。チルドルーム35は,ユーザーが操作部26を介して設定温度を選択することができる。例えば後述する冷蔵用蒸発器14aと冷蔵用ファン9aの制御,及び断熱仕切壁28内に設けたヒータ(図示せず)により,冷蔵温度帯の例えば約0~3℃にするモードと冷凍温度帯の例えば約-3~0℃にするモードに切換えることができる。 Above the heat insulating partition wall 28, a chilled room 35 that can be set lower than the temperature zone of the refrigerating room 2 is provided. In the chilled room 35, the user can select the set temperature via the operation unit 26. For example, by controlling the refrigerating evaporator 14a and the refrigerating fan 9a, which will be described later, and by using a heater (not shown) provided in the heat insulating partition wall 28, the refrigerating temperature range is set to, for example, about 0 to 3 ° C. and the freezing temperature range. For example, it is possible to switch to a mode of about -3 to 0 ° C.

冷蔵室2の略背部には冷蔵用蒸発器室8aを備えており,冷蔵用蒸発器室8a内には,冷蔵用蒸発器14a(第一蒸発器)が収納されている。冷蔵用蒸発器14aの上方には冷蔵用ファン9aを備えている。また,冷蔵室2背部の幅方向の略中心には冷蔵室送風路11を備えており,冷蔵室送風路11の上部には冷蔵室2への冷気が吹き出す冷蔵室吐出口11aを備えている。冷蔵用蒸発器室8aの下部前方と右側上方には冷蔵室2に送られた空気が戻る冷蔵室戻り口15a及び15b(図3参照)を備えている。冷蔵用蒸発器14aと熱交換して低温になった空気は,冷蔵用ファン9aを駆動することにより,冷蔵室送風路11,冷蔵室吐出口11aを介して冷蔵室2に送風され,冷蔵室2内を冷却する。冷蔵室2に送られた空気は,第一戻り経路を構成する冷蔵室戻り口15a及び15b(図3参照)から冷蔵用蒸発器室8aに戻る。 A refrigerating evaporator chamber 8a is provided substantially behind the refrigerating chamber 2, and a refrigerating evaporator 14a (first evaporator) is housed in the refrigerating evaporator chamber 8a. A refrigerating fan 9a is provided above the refrigerating evaporator 14a. Further, a refrigerating chamber air passage 11 is provided at substantially the center of the back of the refrigerating chamber 2 in the width direction, and a refrigerating chamber discharge port 11a for blowing cold air to the refrigerating chamber 2 is provided above the refrigerating chamber air passage 11. .. Refrigerating chamber return ports 15a and 15b (see FIG. 3) for returning air sent to the refrigerating chamber 2 are provided in front of the lower part and upper right side of the refrigerating evaporator chamber 8a. The air that has become cold due to heat exchange with the refrigerating evaporator 14a is blown to the refrigerating chamber 2 through the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a by driving the refrigerating fan 9a. 2 Cool the inside. The air sent to the refrigerating chamber 2 returns to the refrigerating evaporator chamber 8a from the refrigerating chamber return ports 15a and 15b (see FIG. 3) constituting the first return path.

冷凍温度帯室7の略背部には冷凍用蒸発器室8bを備えており,冷凍用蒸発器室8b内には,冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bを備えている。また,冷凍温度帯室7の背部には冷凍室送風路12
を備えており,冷凍用ファン9bの前方の冷凍室送風路12には複数の冷凍室吐出口12aを備えている。冷凍室用蒸発器室8bの下部前方には冷凍温度帯室7に送られた空気が戻る冷凍室戻り口17(図2及び図3参照)を備えている。
A freezing evaporator chamber 8b is provided substantially behind the freezing temperature zone chamber 7, and a freezing evaporator 14b (second evaporator) is housed in the freezing evaporator chamber 8b. A freezing fan 9b is provided above the freezing evaporator 14b. Further, in the back of the freezing temperature zone chamber 7, there is a freezing chamber air passage 12
The freezing chamber air passage 12 in front of the freezing fan 9b is provided with a plurality of freezing chamber discharge ports 12a. A freezing chamber return port 17 (see FIGS. 2 and 3) for returning air sent to the freezing temperature zone chamber 7 is provided in front of the lower part of the freezing chamber evaporator chamber 8b.

野菜室6への風路となる野菜室送風路13(第一連通経路)は,冷凍室送風路12の右下から分岐形成され,断熱仕切壁29を通過している。野菜室送風路13の出口となる野菜室吐出口13aは,野菜室6背部右上の断熱仕切壁29下面の高さと略一致するように設けられ,下方に開口している。野菜室送風路13には,野菜室6の冷却制御手段である野菜室ダンパ19を備えている(図3参照)。野菜室6と冷凍温度帯室7の間の断熱仕切壁29の左下部前方には,野菜室戻り流入口18aを備えており,断熱仕切壁29内を通過する野菜室戻り風路18(第二連通経路)を介して冷凍用蒸発器室8bの下部前方に設けられた野菜室戻り流出口18bに至る流路が形成されている。 The vegetable chamber air passage 13 (first series of passages), which serves as an air passage to the vegetable chamber 6, is branched from the lower right of the freezing chamber air passage 12 and passes through the heat insulating partition wall 29. The vegetable compartment discharge port 13a, which is the outlet of the vegetable compartment air passage 13, is provided so as to substantially coincide with the height of the lower surface of the heat insulating partition wall 29 on the upper right of the back of the vegetable chamber 6 and opens downward. The vegetable compartment air passage 13 is provided with a vegetable compartment damper 19 which is a cooling control means for the vegetable compartment 6 (see FIG. 3). A vegetable chamber return inlet 18a is provided in front of the lower left of the heat insulating partition wall 29 between the vegetable chamber 6 and the freezing temperature zone chamber 7, and the vegetable chamber return air passage 18 (No. 1) passing through the heat insulating partition wall 29. A flow path leading to the return outlet 18b of the vegetable chamber provided in front of the lower part of the freezing evaporator chamber 8b is formed via the double communication path).

冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍温度帯室7に送風され,冷凍温度帯室7内を冷却する。冷凍温度帯室7に送られた空気は,第二戻り経路を構成する冷凍室戻り口17から冷凍用蒸発器室8bに戻る。また,野菜室ダンパ19が開放状態の場合には,冷凍室送風路12に流入した冷気の一部が野菜室送風路13を流れ,野菜室吐出口13aを介して野菜室6に至り,野菜室6内を冷却する。野菜室6に送られた空気は,第三戻り経路を構成する野菜室戻り流入口18aから野菜室戻り風路18に入り,野菜室戻り流出口18bから冷凍用蒸発器室8bに戻る。 The air that has become cold due to heat exchange with the freezing evaporator 14b is blown to the freezing temperature zone chamber 7 through the freezing chamber air passage 12 and the freezing chamber discharge port 12a by driving the freezing fan 9b. The inside of the freezing temperature zone chamber 7 is cooled. The air sent to the freezing temperature zone chamber 7 returns to the freezing evaporator chamber 8b from the freezing chamber return port 17 constituting the second return path. When the vegetable compartment damper 19 is in the open state, a part of the cold air flowing into the freezing chamber air passage 12 flows through the vegetable chamber air passage 13 and reaches the vegetable chamber 6 through the vegetable chamber discharge port 13a, and the vegetables Cool the inside of the chamber 6. The air sent to the vegetable chamber 6 enters the vegetable chamber return air passage 18 from the vegetable chamber return inlet 18a constituting the third return path, and returns to the freezing evaporator chamber 8b from the vegetable chamber return outlet 18b.

本実施例の冷蔵庫では,冷蔵用ファン9aは翼径が100mmの遠心ファン(後向きファン)であり,冷凍用ファン9bは翼径が110mmの軸流ファン(プロペラファン)である。通常の冷却運転時における冷蔵室ファンの回転速度は1000min-1以上であり,冷蔵室2を冷却する空気の風量は0.3m/min以上である。また,冷凍室ファン9bの回転速度は約1300min-1であり,野菜室ダンパ19が開放状態では,冷凍温度帯室7を冷却する空気の風量は約0.6m/minであり,野菜室6を冷却する空気の風量は約0.1m/minである。遠心ファンは軸方向から吸込んだ空気を90度転向して径方向に吹き出す特性を有する。一方,軸流ファンは軸方向から吸込んだ空気を軸方向に吹き出す特性を有する。したがって,軸方向に吸込んだ流れを90度転向させる風路では,遠心ファンが実装性に優れ,軸方向に吸込んだ流れを軸方向に吹き出す風路では軸流ファンが実装性に優れる。従って,冷蔵用ファン9aとしては,前方から吸込んだ空気を,90度転向して上方の冷蔵室送風路11に吹き出す構成となるため,遠心ファンである後向きファンを採用し,冷凍用ファン9bとしては,後方から吸込んだ空気を前方の冷凍室送風路12に吹き出す構成となるために,軸流ファンであるプロペラファンを採用してスペース効率が高い冷蔵庫としている。 In the refrigerator of this embodiment, the refrigerating fan 9a is a centrifugal fan (rearward fan) having a blade diameter of 100 mm, and the refrigerating fan 9b is an axial flow fan (propeller fan) having a blade diameter of 110 mm. The rotation speed of the refrigerating chamber fan during normal cooling operation is 1000 min -1 or more, and the air volume of the air cooling the refrigerating chamber 2 is 0.3 m 3 / min or more. The rotation speed of the freezer chamber fan 9b is about 1300 min -1 , and when the vegetable chamber damper 19 is open, the air volume of the air cooling the freezing temperature zone chamber 7 is about 0.6 m 3 / min, and the vegetable chamber is about 0.6 m 3 / min. The air volume of the air cooling 6 is about 0.1 m 3 / min. The centrifugal fan has the property of turning the air sucked in from the axial direction by 90 degrees and blowing it out in the radial direction. On the other hand, the axial fan has the characteristic of blowing out the air sucked from the axial direction in the axial direction. Therefore, the centrifugal fan is excellent in mountability in the air passage that diverts the flow sucked in the axial direction by 90 degrees, and the axial flow fan is excellent in the mountability in the air passage that blows out the flow sucked in the axial direction in the axial direction. Therefore, as the refrigerating fan 9a, the air sucked from the front is turned 90 degrees and blown out to the upper refrigerating chamber air passage 11. Therefore, a rearward fan, which is a centrifugal fan, is adopted as the refrigerating fan 9b. Is a refrigerator with high space efficiency by adopting a propeller fan, which is an axial flow fan, in order to blow out the air sucked from the rear to the air passage 12 in the freezer compartment in the front.

冷蔵室2,冷凍温度帯室7,野菜室6の庫内背面側には,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43を備え,それぞれ冷蔵室2,冷凍温度帯室7,野菜室6の温度を検知している。また,冷蔵用蒸発器14aの上部には冷蔵用蒸発器温度センサ40a,冷凍用蒸発器14bの上部には冷凍用蒸発器温度センサ40bを備え,冷蔵用蒸発器14a,及び冷凍用蒸発器14bの温度を検知している。また,冷蔵庫1の天井部のドアヒンジカバー16の内部には,外気(庫外空気)の温度,湿度を検知する外気温湿度センサ37を備え,ドア2a,2b,3a,4a,5a,6aには,開閉状態をそれぞれ検知するドアセンサ(不図示)を備えている。 The refrigerating room 2, the freezing temperature zone room 7, and the vegetable room 6 are provided with a refrigerating room temperature sensor 41, a freezing room temperature sensor 42, and a vegetable room temperature sensor 43, respectively. 7. The temperature of the vegetable compartment 6 is detected. Further, a refrigerating evaporator temperature sensor 40a is provided above the refrigerating evaporator 14a, and a refrigerating evaporator temperature sensor 40b is provided above the refrigerating evaporator 14b, and the refrigerating evaporator 14a and the refrigerating evaporator 14b are provided. The temperature of is detected. Further, inside the door hinge cover 16 on the ceiling of the refrigerator 1, an outside air temperature / humidity sensor 37 for detecting the temperature and humidity of the outside air (outside air) is provided in the doors 2a, 2b, 3a, 4a, 5a, 6a. Is equipped with a door sensor (not shown) that detects the open / closed state.

図2及び図3に示すように,冷凍用蒸発器室8bの下部には,冷凍用蒸発器14bを加熱する除霜ヒータ21を備えている。除霜ヒータ21は,例えば50W~200Wの電気ヒータで,本実施例では150Wのラジアントヒータを設けている。冷凍用蒸発器14b
の除霜時に発生した除霜水(融解水)は,冷凍用蒸発器室8bの下部に備えた樋23bに流下し,排水口22b,冷凍用排水管27bを介して冷蔵庫1の後方(背面側)下部に設けられた機械室39に至り、機械室39内に設置された圧縮機24の上部の蒸発皿32に排出される。
As shown in FIGS. 2 and 3, a defrost heater 21 for heating the freezing evaporator 14b is provided in the lower part of the freezing evaporator chamber 8b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and in this embodiment, a radiant heater of 150 W is provided. Freezing evaporator 14b
The defrosted water (melted water) generated at the time of defrosting flows down to the trough 23b provided in the lower part of the refrigerating evaporator chamber 8b, and is behind the refrigerator 1 (rear surface) via the drain port 22b and the refrigerating drain pipe 27b. Side) It reaches the machine chamber 39 provided in the lower part, and is discharged to the evaporation tray 32 in the upper part of the compressor 24 installed in the machine room 39.

また,冷蔵用蒸発器14aの除霜方法については後述するが,冷蔵用蒸発器14aの除霜時に発生した除霜水は,冷蔵用蒸発器室8aの下部に備えた樋23aに流下し,排水口22a,冷蔵用排水管27aを介して圧縮機24の上部に備えた蒸発皿32に排出される。 The method for defrosting the refrigerating evaporator 14a will be described later, but the defrosting water generated during the defrosting of the refrigerating evaporator 14a flows down to the trough 23a provided in the lower part of the refrigerating evaporator chamber 8a. It is discharged to the evaporator 32 provided in the upper part of the compressor 24 via the drain port 22a and the refrigerating drain pipe 27a.

機械室39内には、上述の圧縮機24、蒸発皿32とともに、フィンチューブ式熱交換器である庫外放熱器50a、庫外ファン26を備えている。庫外ファン26の駆動により圧縮機24、庫外放熱器50a蒸発皿32に空気が流れ、圧縮機24と庫外放熱器50aからの放熱が促進され、省エネルギー性能を高めるとともに、蒸発皿32に通風することで、蒸発皿32に溜まった除霜水の蒸発を促進して溢水を抑制し、信頼性を高めている。 In the machine room 39, along with the compressor 24 and the evaporating dish 32 described above, a fin tube type heat exchanger, an outside radiator 50a, and an outside fan 26 are provided. By driving the outside fan 26, air flows through the compressor 24 and the outside radiator 50a evaporating dish 32, promoting heat dissipation from the compressor 24 and the outside radiator 50a, improving energy saving performance and making the evaporating dish 32. By ventilating, the evaporation of the defrosted water accumulated in the evaporating dish 32 is promoted, the overflow is suppressed, and the reliability is improved.

図3に示すように,樋23aには,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101を備えている。また,冷蔵用排水管27aには排水管上部ヒータ102及び排水管下部ヒータ103を備えている。なお,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103は,何れも除霜ヒータ21よりも容量が低いヒータであり,本実施例では樋ヒータ101を6W,排水管上部ヒータ102を3W,排水管下部ヒータ103を1Wとしている。 As shown in FIG. 3, the gutter 23a is provided with a gutter heater 101 that melts the defrosted water frozen in the gutter 23a. Further, the drainage pipe 27a for refrigeration is provided with a drainage pipe upper heater 102 and a drainage pipe lower heater 103. The gutter heater 101, the drain pipe upper heater 102, and the drain pipe lower heater 103 are all heaters having a lower capacity than the defrost heater 21, and in this embodiment, the gutter heater 101 is 6 W and the drain pipe upper heater 102 is used. 3W, the drainage pipe lower heater 103 is 1W.

ここで,冷蔵用ファン9aを駆動すると,冷蔵用蒸発器室8aの右上に設けられた冷蔵室戻り口15bを介して,冷蔵室2からの戻り空気を樋23aに向けて下方に流し,樋23aを加熱して温度を上げるようにしている。これにより,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101の加熱量を低減する効果が得られ,省エネルギー性能を高めることができる。 Here, when the refrigerating fan 9a is driven, the return air from the refrigerating chamber 2 flows downward toward the gutter 23a through the refrigerating chamber return port 15b provided in the upper right of the refrigerating evaporator chamber 8a, and the gutter is used. 23a is heated to raise the temperature. As a result, the effect of reducing the heating amount of the gutter heater 101 that melts the frozen defrost water in the gutter 23a can be obtained, and the energy saving performance can be improved.

また,排水管27a下部は,冷凍温度帯室7及び冷凍用蒸発器室8bよりも外箱10aに近接させている。これにより,排水管27aにおいて凍結した除霜水を融解させる排水管下部ヒータ103の加熱量を低減することができ,省エネルギー性能が高くなる。 Further, the lower part of the drain pipe 27a is closer to the outer box 10a than the freezing temperature zone chamber 7 and the freezing evaporator chamber 8b. As a result, the amount of heat of the drainage pipe lower heater 103 that melts the frozen defrosted water in the drainage pipe 27a can be reduced, and the energy saving performance is improved.

冷蔵庫1の天井部(図2参照)には,制御装置の一部であるCPU,ROMやRAM等のメモリ,インターフェース回路等を搭載した制御基板31を配置している。制御基板31は,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43,蒸発器温度センサ40a,40b等と接続され,前述のCPUは,これらの出力値や操作部26の設定,前述のROMに予め記録されたプログラム等を基に,圧縮機24や冷蔵用ファン9a,冷凍用ファン9bのON/OFFや回転速度制御,除霜ヒータ21,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103,及び,後述する三方弁52の制御等を行っている。 On the ceiling of the refrigerator 1 (see FIG. 2), a control board 31 on which a CPU, a memory such as a ROM or RAM, an interface circuit, etc., which are a part of the control device, is arranged is arranged. The control board 31 is connected to the refrigerating room temperature sensor 41, the freezing room temperature sensor 42, the vegetable room temperature sensor 43, the evaporator temperature sensors 40a, 40b, etc., and the CPU described above sets these output values and the operation unit 26. , ON / OFF and rotation speed control of compressor 24, refrigerating fan 9a, refrigerating fan 9b, defrost heater 21, gutter heater 101, drain pipe upper heater, based on the program recorded in advance in the above-mentioned ROM. It controls 102, the drain pipe lower heater 103, and the three-way valve 52, which will be described later.

図4は,実施例1に係る冷蔵庫の冷凍サイクル(冷媒流路)である。本実施例の冷蔵庫1では,圧縮機24,冷媒の放熱を行う庫外放熱器50aと壁面放熱配管50b,断熱仕切壁28,29,30の前縁部への結露を抑制する結露抑制配管50c(庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを放熱手段と呼ぶ),冷媒流制御手段である三方弁52,冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53b,冷媒と庫内の空気を熱交換させて,庫内の熱を吸熱する冷蔵用蒸発器14a,及び,冷凍用蒸発器14bを備えている。また,三方弁52の上流には,冷凍サイクル中の水分を除去するドライヤ51を備え,冷蔵用蒸発器14aの下流と,
冷凍用蒸発器14bの下流には,それぞれ液冷媒が圧縮機24に流入するのを防止する気液分離器54a,54bをそれぞれ備えている。さらに気液分離器54bの下流には逆止弁56を備えている。これらの構成要素を冷媒配管により接続することで冷凍サイクルを構成している。 なお本実施例の冷蔵庫は,冷媒に可燃性冷媒のイソブタンを用いており,冷媒量封入量は88gである。
FIG. 4 is a refrigerating cycle (refrigerant flow path) of the refrigerator according to the first embodiment. In the refrigerator 1 of the present embodiment, the compressor 24, the outside radiator 50a for radiating the refrigerant, the wall surface heat radiating pipe 50b, and the dew condensation suppressing pipe 50c for suppressing dew condensation on the front edges of the heat insulating partition walls 28, 29, 30. (The outside radiator 50a, the outside radiator 50b, and the dew condensation suppressing pipe 50c are called heat dissipation means), the three-way valve 52 which is a refrigerant flow control means, the refrigerator tube 53a which is a decompression means for reducing the pressure of the refrigerant, and for freezing. It is provided with a capillary tube 53b, a refrigerating evaporator 14a that absorbs heat in the refrigerator by exchanging heat between the refrigerant and the air in the refrigerator, and a refrigerating evaporator 14b. Further, a dryer 51 for removing water during the refrigeration cycle is provided upstream of the three-way valve 52, and downstream of the refrigerating evaporator 14a.
Downstream of the freezing evaporator 14b, gas-liquid separators 54a and 54b are provided, respectively, to prevent the liquid refrigerant from flowing into the compressor 24. Further, a check valve 56 is provided downstream of the gas-liquid separator 54b. A refrigeration cycle is configured by connecting these components with a refrigerant pipe. The refrigerator of this embodiment uses isobutane, which is a flammable refrigerant, as a refrigerant, and the amount of the refrigerant enclosed is 88 g.

三方弁52は,流出口52aと,流出口52bを備えており,流出口52aを開放状態,流出口52bを閉鎖状態として,冷蔵用キャピラリチューブ53a側に冷媒を流す状態1(冷蔵モード),流出口52aを閉鎖状態,流出口52bを開放状態として,冷凍用キャピラリチューブ53b側に冷媒を流す状態2(冷凍モード),及び,流出口52a,52bの何れも閉鎖状態とする状態3(全閉モード)を備えた冷媒流制御弁である。 The three-way valve 52 includes an outlet 52a and an outlet 52b, with the outlet 52a open and the outlet 52b closed, and a state 1 (refrigerating mode) in which the refrigerant flows to the refrigerating capillary tube 53a side. With the outlet 52a closed and the outlet 52b open, the refrigerant flows to the refrigerating capillary tube 53b side (freezing mode), and both the outlets 52a and 52b are closed 3 (all). It is a refrigerant flow control valve equipped with a closed mode).

三方弁52が状態1(冷蔵モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態1(流出口52aが開放状態,流出口52bが閉鎖状態)となっているため,続いて,冷媒は冷蔵用キャピラリチューブ53aを流れて減圧され冷蔵用蒸発器14aに至り,冷蔵室2の戻り空気と熱交換する。冷蔵用蒸発器14aを出た冷媒は,気液分離器54aを通り,キャピラリチューブ53aとの接触部57aを流れることでキャピラリチューブ53a内を流れる冷媒と熱交換した後に圧縮機24に戻る。 When the three-way valve 52 is controlled to the state 1 (refrigerating mode), the refrigerant discharged from the compressor 24 flows through the outside heat sink 50a, the outside heat sink 50b, and the dew condensation suppression pipe 50c to dissipate heat, and the dryer 51. It reaches the three-way valve 52 via. Since the three-way valve 52 is in the state 1 (the outflow port 52a is in the open state and the outflow port 52b is in the closed state), the refrigerant subsequently flows through the refrigerating capillary tube 53a and is depressurized to reach the refrigerating evaporator 14a. It exchanges heat with the return air of the refrigerator compartment 2. The refrigerant leaving the refrigerating evaporator 14a passes through the gas-liquid separator 54a, flows through the contact portion 57a with the capillary tube 53a, exchanges heat with the refrigerant flowing in the capillary tube 53a, and then returns to the compressor 24.

三方弁52が状態2(冷凍モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態2(流出口52aが閉鎖状態,流出口52bが開放状態)となっているため,続いて,冷媒は冷凍用キャピラリチューブ53bを流れて減圧されて低温化し,冷凍用蒸発器14bで,冷凍温度帯室7の戻り空気及び野菜室6の戻り空気(野菜室ダンパ19が開放状態の場合)と熱交換する。冷凍用蒸発器14bを出た冷媒は,気液分離器54bを通り,キャピラリチューブ53bとの接触部57bを流れることでキャピラリチューブ53b内を流れる冷媒と熱交換した後に圧縮機24に戻る。 When the three-way valve 52 is controlled to the state 2 (refrigeration mode), the refrigerant discharged from the compressor 24 flows through the outside radiator 50a, the outside radiator 50b, and the dew condensation suppression pipe 50c to dissipate heat, and the dryer 51. It reaches the three-way valve 52 via. Since the three-way valve 52 is in the state 2 (the outflow port 52a is in the closed state and the outflow port 52b is in the open state), the refrigerant subsequently flows through the refrigerating capillary tube 53b and is depressurized to lower the temperature, and the refrigerating evaporator At 14b, heat is exchanged with the return air of the freezing temperature zone chamber 7 and the return air of the vegetable chamber 6 (when the vegetable chamber damper 19 is in the open state). The refrigerant leaving the refrigerating evaporator 14b passes through the gas-liquid separator 54b, flows through the contact portion 57b with the capillary tube 53b, exchanges heat with the refrigerant flowing in the capillary tube 53b, and then returns to the compressor 24.

三方弁52が状態3(全閉モード)に制御されている場合,圧縮機24を駆動すると,冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53bから冷媒が供給されない状態となるため,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒が放熱手段側に回収される(詳細は後述)。 When the three-way valve 52 is controlled to the state 3 (fully closed mode), when the compressor 24 is driven, the refrigerant is not supplied from the refrigerating capillary tube 53a and the refrigerating capillary tube 53b, so that the refrigerating evaporator The refrigerant in 14a or the refrigerant in the refrigerating evaporator 14b is recovered on the heat radiating means side (details will be described later).

本実施例の冷蔵庫は,三方弁52を状態1(冷蔵モード)に制御し,圧縮機24を駆動状態,冷蔵用ファン9aを駆動状態,冷凍用ファン9bを停止状態とすることで冷蔵室2を冷却する「冷蔵運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を開放状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍温度帯室7と野菜室6を冷却する「冷凍野菜運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を閉鎖状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍温度帯室7を冷却する「冷凍運転」,三方弁52を状態3(全閉モード)に制御し,圧縮機24を駆動状態として,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する「冷媒回収運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを停止状態,冷凍用ファン9bを停止状態とする「運転停止」,三方弁52を状態2(冷凍モード)且つ圧縮機24を駆動状態に制御,または,三方弁52を状態3(全閉モード)且つ圧縮機24を停止状態に制御して,冷蔵用蒸発器14aに冷媒が流れない状態として冷蔵用ファン
を駆動状態として,冷蔵用蒸発器14aの表面に成長した霜や蒸発器自体の蓄冷熱で冷蔵室2を冷却しつつ冷蔵用蒸発器14aの除霜を行う「冷蔵用蒸発器除霜運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを停止状態,除霜ヒータ21を通電状態とすることで,冷凍用蒸発器14bの除霜を行う「冷凍用蒸発器除霜運転」の各運転を適宜実施することで,冷蔵庫1の庫内各貯蔵室を良好に冷却するようにしている。
In the refrigerator of this embodiment, the three-way valve 52 is controlled to the state 1 (refrigerating mode), the compressor 24 is driven, the refrigerating fan 9a is driven, and the refrigerating fan 9b is stopped. "Refrigerating operation", the three-way valve 52 is controlled to state 2 (refrigerating mode), the compressor 24 is in the driving state, the vegetable compartment damper 19 is in the open state, the refrigerating fan 9a is in the driving state or stopped state, and for refrigeration. "Frozen vegetable operation" that cools the refrigerating temperature zone chamber 7 and the vegetable compartment 6 by driving the fan 9b, controls the three-way valve 52 to the state 2 (freezing mode), drives the compressor 24, and the vegetable compartment. "Frozen operation" to cool the refrigerating temperature zone chamber 7 by setting the damper 19 in the closed state, the refrigerating fan 9a in the driving state or the stopped state, and the refrigerating fan 9b in the driving state, and the three-way valve 52 in the state 3 (fully closed). Mode), with the compressor 24 in the driving state, the "refrigerator recovery operation" to recover the refrigerant in the refrigerating evaporator 14a or the refrigerant in the refrigerating evaporator 14b to the heat dissipation means side, the three-way valve 52. As state 3 (fully closed mode), the compressor 24 is stopped, the refrigerating fan 9a is stopped, the refrigerating fan 9b is stopped, and the three-way valve 52 is in state 2 (refrigerating mode) and the compressor. The refrigerating fan is driven so that the refrigerant does not flow to the refrigerating evaporator 14a by controlling the 24 to the driving state or controlling the three-way valve 52 to the state 3 (fully closed mode) and the compressor 24 to the stopped state. As a result, "refrigerator evaporator defrosting operation", which defrosts the refrigerating evaporator 14a while cooling the refrigerating chamber 2 with the frost grown on the surface of the refrigerating evaporator 14a and the cold storage heat of the refrigerator itself, is a three-way valve. When 52 is set to state 3 (fully closed mode), the compressor 24 is stopped, the refrigerating fan 9a is driven or stopped, the refrigerating fan 9b is stopped, and the defrost heater 21 is energized for refrigeration. By appropriately performing each operation of the "refrigerator defrosting operation" for defrosting the evaporator 14b, each storage room in the refrigerator 1 is satisfactorily cooled.

以上で,本実施例に係る冷蔵庫の構成を説明したが,次に本実施例に係る冷蔵庫の制御について,図5及び図6を参照しながら説明する。図5は,本実施例に係る冷蔵庫の制御を表すフローチャート,図6は,本実施例に係る冷蔵庫の制御を表すタイムチャートである。 The configuration of the refrigerator according to the present embodiment has been described above. Next, the control of the refrigerator according to the present embodiment will be described with reference to FIGS. 5 and 6. FIG. 5 is a flowchart showing the control of the refrigerator according to the present embodiment, and FIG. 6 is a time chart showing the control of the refrigerator according to the present embodiment.

図5に示すように,本実施例の冷蔵庫は,電源の投入により(スタート),三方弁52を状態1(冷蔵モード),圧縮機24を低速駆動(800min-1),冷蔵用ファン9aを駆動,冷凍用ファン9bを停止,野菜室ダンパ19を閉鎖して,冷蔵運転を開始する(ステップS101)。続いて,冷蔵運転終了条件が成立しているか否かが判定され(ステップS102),ステップS102が成立するまで冷蔵運転が継続される。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転終了温度TRoff以下(T≦TRoff)の場合にステップS102が成立する。ステップS102が成立した場合(Yes),圧縮機24を低速駆動(継続),三方弁52を状態3(全閉モード)として,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS103)。このとき,冷蔵用ファン9aは駆動を継続し,冷媒回収運転中も冷蔵室2の冷却を行う。冷媒回収運転を所定時間実施し(本実施例の冷蔵庫では2分間)(ステップS104),続いて三方弁を状態2(冷凍モード),圧縮機24を高速駆動(1400min-1),冷蔵用ファン9aを駆動(継続),冷凍用ファン9bを駆動,野菜室ダンパ19を開放して,冷凍野菜運転,及び,冷蔵用蒸発器除霜運転を実施する(ステップS105)。 As shown in FIG. 5, in the refrigerator of this embodiment, when the power is turned on (start), the three-way valve 52 is in state 1 (refrigerating mode), the compressor 24 is driven at low speed (800min -1 ), and the refrigerating fan 9a is operated. The drive, the refrigerating fan 9b is stopped, the vegetable compartment damper 19 is closed, and the refrigerating operation is started (step S101). Subsequently, it is determined whether or not the refrigerating operation end condition is satisfied (step S102), and the refrigerating operation is continued until step S102 is satisfied. In the refrigerator of this embodiment, step S102 is established when the refrigerating room temperature TR detected by the refrigerating room temperature sensor 41 is equal to or less than the refrigerating operation end temperature TR Roff ( TR ≤ T Roff ). When step S102 is established (Yes), the compressor 24 is driven at low speed (continued), the three-way valve 52 is set to state 3 (fully closed mode), and the refrigerant in the refrigerating evaporator 14a is recovered to the heat dissipation means side. The operation is performed (step S103). At this time, the refrigerating fan 9a continues to be driven and cools the refrigerating chamber 2 even during the refrigerant recovery operation. Refrigerant recovery operation is carried out for a predetermined time (2 minutes in the refrigerator of this embodiment) (step S104), then the three-way valve is in state 2 (freezing mode), the compressor 24 is driven at high speed (1400min-1), and the refrigerating fan. 9a is driven (continued), the refrigerating fan 9b is driven, the vegetable compartment damper 19 is opened, and frozen vegetable operation and refrigerating evaporator defrosting operation are performed (step S105).

次に,野菜室ダンパ閉条件が成立しているか否かが判定される(ステップS106)。本実施例の冷蔵庫では,野菜室温度センサ43が検知する野菜室温度Tが,野菜室ダンパ閉温度TVoff以下(TV≦TVoff)の場合にステップS106が成立する。ステップS106が成立していない場合(No),続いて冷蔵用蒸発器除霜運転終了条件が成立しているか否かが判定される(ステップS107)。ステップS106が成立した場合(Yes),野菜室ダンパ19が閉鎖され(ステップS201),冷凍運転に移行後,ステップS107の判定に移る。本実施例の冷蔵庫では,冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器温度TRevpが冷蔵用蒸発器除霜運転終了温度TRDoff以上(TRevp≧TRDoff)の場合にステップS107が成立する。ステップS107が成立していない場合(No),続いて冷凍運転終了条件が成立しているか否かが判定される(ステップS108)。ステップS107が成立した場合(Yes),冷蔵用ファン9aが停止され(ステップS202),冷蔵用蒸発器除霜運転終了後,ステップS108の判定に移る。本実施例の冷蔵庫では,野菜室ダンパ19が閉鎖状態,且つ,冷凍室温度Tが冷凍運転終了温度TFoff以下(T≧TFoff)の場合にステップS108が成立する。ステップS108が成立していない場合(No),ステップS106の判定に戻る。ステップS108が成立した場合(Yes),圧縮機24を高速駆動(継続),三方弁52を状態3(全閉モード)として,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS109)。このとき,冷凍用ファン9bは駆動を継続し,冷媒回収運転中も冷凍温度帯室7の冷却を行う。 Next, it is determined whether or not the condition for closing the vegetable compartment damper is satisfied (step S106). In the refrigerator of this embodiment, step S106 is established when the vegetable room temperature TV detected by the vegetable room temperature sensor 43 is equal to or less than the vegetable room damper closing temperature T Voff ( TV ≤ T Voff ). If step S106 is not satisfied (No), it is subsequently determined whether or not the refrigerating evaporator defrosting operation end condition is satisfied (step S107). When step S106 is established (Yes), the vegetable compartment damper 19 is closed (step S201), and after shifting to the freezing operation, the determination in step S107 is performed. In the refrigerator of this embodiment, step S107 is performed when the refrigerating evaporator temperature T Revp detected by the refrigerating evaporator temperature sensor 40a is equal to or higher than the refrigerating evaporator defrosting operation end temperature T RDoff (T Revp ≧ TR Doff ). To establish. If step S107 is not satisfied (No), it is subsequently determined whether or not the refrigerating operation end condition is satisfied (step S108). When step S107 is established (Yes), the refrigerating fan 9a is stopped (step S202), and after the refrigerating evaporator defrosting operation is completed, the determination in step S108 is started. In the refrigerator of this embodiment, step S108 is established when the vegetable compartment damper 19 is closed and the freezing chamber temperature TF is equal to or less than the freezing operation end temperature TFoff ( TFTFoff ). If step S108 is not established (No), the process returns to the determination in step S106. When step S108 is established (Yes), the compressor 24 is driven at high speed (continued), the three-way valve 52 is set to state 3 (fully closed mode), and the refrigerant in the refrigerating evaporator 14b is recovered to the heat dissipation means side. The operation is performed (step S109). At this time, the refrigerating fan 9b continues to be driven, and the refrigerating temperature zone chamber 7 is cooled even during the refrigerant recovery operation.

冷媒回収運転を所定時間実施し(本実施例の冷蔵庫では1.5分間)(ステップS110),続いて冷蔵運転開始条件が成立しているか否かが判定される(ステップS111)
。本実施例の冷蔵庫では,冷蔵室温度Tが冷蔵運転開始温度TRon以上(T≧TRon)の場合にステップS111が成立する。ステップS111が成立した場合(Yes),ステップS101に戻り,冷蔵運転が行われる。ステップS111が成立していない場合(No),圧縮機24を停止,冷凍用ファン9bを停止し(ステップS112),冷蔵用蒸発器除霜運転終了条件の判定に移行する(ステップS113)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TRevpが冷蔵用蒸発器除霜運転終了温度TRDoff以上(TRevp≧TRDoff)の場合に成立する(ステップS107と同様の条件)。ステップS113が成立していない場合(No),続いて冷蔵運転開始条件が成立しているか否かが判定される(ステップS114)。ステップS113が成立した場合(Yes),冷蔵用ファン9aが停止され(ステップS203),冷蔵用蒸発器除霜運転終了後ステップS114の判定に移行する。ステップS114は冷蔵室温度Tが冷蔵運転開始温度TRon以上(T≧TRon)の場合に成立する(ステップS111と同様の条件)。ステップS114が成立していない場合(No),ステップS113の判定に戻り,ステップS114が成立した場合,ステップS101に戻り冷蔵運転が行われる。
The refrigerant recovery operation is carried out for a predetermined time (1.5 minutes in the refrigerator of this embodiment) (step S110), and then it is determined whether or not the refrigerating operation start condition is satisfied (step S111).
.. In the refrigerator of this embodiment, step S111 is established when the refrigerating chamber temperature TR is equal to or higher than the refrigerating operation start temperature TR ( TR ≧ TR on). When step S111 is established (Yes), the process returns to step S101 and the refrigerating operation is performed. If step S111 is not satisfied (No), the compressor 24 is stopped, the freezing fan 9b is stopped (step S112), and the process proceeds to the determination of the refrigerating evaporator defrosting operation end condition (step S113). The refrigerating evaporator defrosting operation end condition is satisfied when the refrigerating evaporator temperature T Revp is equal to or higher than the refrigerating evaporator defrosting operation end temperature TRDoff (T Revp TRDoff ) (the same conditions as in step S107). ). If step S113 is not satisfied (No), it is subsequently determined whether or not the refrigerating operation start condition is satisfied (step S114). When step S113 is established (Yes), the refrigerating fan 9a is stopped (step S203), and the process proceeds to the determination in step S114 after the refrigerating evaporator defrosting operation is completed. Step S114 is established when the refrigerating chamber temperature TR is equal to or higher than the refrigerating operation start temperature TR ( TR ≧ TR on) (the same conditions as in step S111). If step S114 is not established (No), the determination in step S113 is returned, and if step S114 is established, the process returns to step S101 and the refrigerating operation is performed.

図6は本実施例に係る冷蔵庫を,32℃,相対湿度70%に設置した場合の運転状態を表すタイムチャートである。時刻tは冷蔵室2を冷却する冷蔵運転を開始(図5のステップS101)した時刻である。冷蔵運転では,三方弁52を状態1(冷蔵モード)に制御し,圧縮機24を低速(800min-1)で駆動して冷蔵用蒸発器14aに冷媒を流し,冷蔵用蒸発器14aを低温にする。この状態で冷蔵用ファン9aを運転することで,冷蔵用蒸発器14aを通過して低温になった空気により冷蔵室2を冷却する。ここで,冷蔵運転中の冷蔵用蒸発器14aの温度は,後述する冷凍運転中の冷凍用蒸発器14bの温度よりも高くしている。一般に蒸発器の温度(蒸発温度)が高い方が,冷凍サイクル成績係数(圧縮機24の入力に対する吸熱量の割合)が高く,省エネルギー性能が高い。冷凍温度帯室7は冷凍温度に維持するために冷凍用蒸発器14bの温度を低温にする必要があるが,冷蔵室2は冷蔵温度に維持すれば良いので,冷蔵用蒸発器14aの温度を高めて省エネルギー性能を向上している。なお,本実施例の冷蔵庫1では,冷蔵運転中の冷蔵用蒸発器14aの温度が高くなるよう,冷蔵運転中の圧縮機24の回転速度を冷凍運転中よりも低速(800min-1)にしている。 FIG. 6 is a time chart showing an operating state when the refrigerator according to this embodiment is installed at 32 ° C. and a relative humidity of 70%. Time t 0 is the time when the refrigerating operation for cooling the refrigerating chamber 2 is started (step S101 in FIG. 5). In the refrigerating operation, the three-way valve 52 is controlled to the state 1 (refrigerating mode), the compressor 24 is driven at a low speed (800min -1 ) to flow the refrigerant through the refrigerating evaporator 14a, and the refrigerating evaporator 14a is cooled to a low temperature. do. By operating the refrigerating fan 9a in this state, the refrigerating chamber 2 is cooled by the air that has passed through the refrigerating evaporator 14a and has become cold. Here, the temperature of the refrigerating evaporator 14a during the refrigerating operation is higher than the temperature of the refrigerating evaporator 14b during the refrigerating operation, which will be described later. Generally, the higher the temperature of the evaporator (evaporation temperature), the higher the coefficient of performance of the refrigeration cycle (the ratio of the amount of heat absorbed to the input of the compressor 24), and the higher the energy saving performance. In the refrigerating temperature zone chamber 7, it is necessary to lower the temperature of the refrigerating evaporator 14b in order to maintain the refrigerating temperature, but since the refrigerating chamber 2 may be maintained at the refrigerating temperature, the temperature of the refrigerating evaporator 14a may be changed. It has been enhanced to improve energy saving performance. In the refrigerator 1 of the present embodiment, the rotation speed of the compressor 24 during the refrigerating operation is set to a lower speed (800 min -1 ) than during the refrigerating operation so that the temperature of the refrigerating evaporator 14a during the refrigerating operation becomes high. There is.

冷蔵運転により冷蔵室2が冷却され,時刻tで冷蔵室温度センサ42により検知する冷蔵室温度TRが冷蔵運転終了温度TRoffまで低下したことで,冷蔵運転から冷媒回収運転に切換わる(図5のステップS102)。冷媒回収運転では三方弁52を状態3(全閉モード)に制御し,圧縮機24を低速駆動状態(800min-1)で,冷蔵用蒸発器14a内の冷媒を2分間回収する(図5のステップS103,S104)。これにより,次の冷凍野菜運転及び冷凍運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷蔵用ファン9aを駆動させることで,冷蔵用蒸発器14a内の残留冷媒を冷蔵室2の冷却に活用するとともに,冷蔵室2内の空気による加熱で,冷蔵用蒸発器14a内の圧力低下が緩和される。これにより,圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 The refrigerating chamber 2 is cooled by the refrigerating operation, and the refrigerating chamber temperature TR detected by the refrigerating chamber temperature sensor 42 at time t1 drops to the refrigerating operation end temperature TRoff , so that the refrigerating operation is switched to the refrigerant recovery operation ( Step S102 in FIG. 5). In the refrigerant recovery operation, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is in the low speed drive state (800 min -1 ), and the refrigerant in the refrigerating evaporator 14a is recovered for 2 minutes (FIG. 5). Steps S103, S104). As a result, it is possible to suppress a decrease in cooling efficiency due to a shortage of refrigerant in the next frozen vegetable operation and the freezing operation. At this time, by driving the refrigerating fan 9a, the residual refrigerant in the refrigerating evaporator 14a is utilized for cooling the refrigerating chamber 2, and the refrigerating evaporator 14a is heated by heating with air in the refrigerating chamber 2. Pressure drop is alleviated. As a result, the increase in the specific volume of the suction refrigerant of the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short time, and the cooling efficiency can be improved.

冷媒回収運転が終わると(時刻t),続いて冷凍温度帯室7を冷却する冷凍野菜運転に切換わる(図5のステップS105)。冷凍野菜運転では,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を高速駆動状態(1400min-1)とし,冷凍用蒸発器14bに冷媒を流し,冷凍用蒸発器14bを低温にする。この状態で野菜室ダンパ19を開放して,冷凍用ファン9bを運転することで,冷凍用蒸発器14bを通過して低温になった空気で冷凍温度帯室7と野菜室6を冷却する。このとき冷蔵用ファン9aの運転を継続することで,冷蔵用蒸発器除霜運転を実施している。これにより冷蔵用蒸発器14aの温度が上昇するとともに,霜や冷蔵用蒸発器の蓄冷熱による冷却効果によって,冷蔵室2の
温度上昇が緩和される。
When the refrigerant recovery operation is completed (time t 2 ), the operation is subsequently switched to the frozen vegetable operation for cooling the freezing temperature zone chamber 7 (step S105 in FIG. 5). In frozen vegetable operation, the three-way valve 52 is controlled to the state 2 (freezing mode), the compressor 24 is set to the high-speed driving state (1400min -1 ), the refrigerant flows through the refrigerating evaporator 14b, and the refrigerating evaporator 14b is cooled at a low temperature. To. In this state, the vegetable compartment damper 19 is opened and the refrigerating fan 9b is operated to cool the refrigerating temperature zone chamber 7 and the vegetable compartment 6 with the air that has passed through the refrigerating evaporator 14b and has become cold. At this time, by continuing the operation of the refrigerating fan 9a, the refrigerating evaporator defrosting operation is carried out. As a result, the temperature of the refrigerating evaporator 14a rises, and the temperature rise of the refrigerating chamber 2 is alleviated by the cooling effect of frost and the cold storage heat of the refrigerating evaporator.

時刻tで野菜室温度センサ43により検知する野菜室温度Tが野菜室ダンパ閉温度TVoffに到達したことにより,野菜室ダンパ19が閉鎖され(図5のステップS106,S201),冷凍運転に移行している。 When the vegetable room temperature TV detected by the vegetable room temperature sensor 43 at time t3 reaches the vegetable room damper closing temperature T Voff , the vegetable room damper 19 is closed (steps S106 and S201 in FIG. 5), and the freezing operation is performed. Has moved to.

続いて時刻tに冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器14aの温度TRevpが冷蔵用蒸発器除霜運転終了温度TRDoffに到達したことにより,冷蔵用ファン9aが停止され,冷蔵用蒸発器除霜運転が終了している(図5のステップS107,S202)。 Subsequently, at time t4, the temperature T Revp of the refrigerating evaporator 14a detected by the refrigerating evaporator temperature sensor 40a reaches the refrigerating evaporator defrosting operation end temperature TRDoff , so that the refrigerating fan 9a is stopped. , The refrigerating evaporator defrosting operation has been completed (steps S107 and S202 in FIG. 5).

時刻tで冷凍室温度センサ41が検知する冷凍室温度Tが冷凍運転終了温度TFoffに到達し,且つ,野菜室ダンパ19が閉鎖されていることから,冷凍運転が終了し(図5のステップS108),三方弁52を状態3(全閉モード)に制御し,圧縮機24を高速駆動状態(1400min-1)で,冷凍用蒸発器14b内の冷媒を1.5分間回収する(図5のステップS109,S110)。これにより,次の冷蔵運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷凍用ファン9bを駆動させることで,冷凍用蒸発器14b内の残留冷媒を冷凍温度帯室7の冷却に活用するとともに,冷凍温度帯室7内の空気による加熱で,冷凍用蒸発器14b内の圧力低下が緩和される。これにより圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 Since the freezing room temperature T F detected by the freezing room temperature sensor 41 reaches the freezing operation end temperature T Refoff at time t5 and the vegetable room damper 19 is closed, the freezing operation is completed (FIG. 5). Step S108), the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is in the high-speed drive state (1400min -1 ), and the refrigerant in the freezing evaporator 14b is recovered for 1.5 minutes (1400min -1). Steps S109 and S110 in FIG. 5). As a result, it is possible to suppress a decrease in cooling efficiency due to a shortage of refrigerant in the next refrigeration operation. At this time, by driving the refrigerating fan 9b, the residual refrigerant in the refrigerating evaporator 14b is utilized for cooling the refrigerating temperature zone chamber 7, and the refrigerating temperature zone chamber 7 is heated by air for freezing. The pressure drop in the evaporator 14b is alleviated. As a result, the increase in the specific volume of the suction refrigerant of the compressor 24 is suppressed, a large amount of refrigerant can be recovered in a relatively short time, and the cooling efficiency can be improved.

冷媒回収運転が終了した時刻tにおいて,冷蔵室温度TRが冷蔵運転開始温度TRon以上に達していることから,冷蔵運転開始条件が成立し(図7のステップS111),再び冷蔵運転が開始される(図7のステップS101)。 Since the refrigerating chamber temperature T R has reached the refrigerating operation start temperature T Ron or higher at the time t 6 when the refrigerant recovery operation is completed, the refrigerating operation start condition is satisfied (step S111 in FIG. 7), and the refrigerating operation is performed again. It is started (step S101 in FIG. 7).

以上で,本実施例の冷蔵庫の構成と,制御方法の説明をしたが,次に,本実施形態の冷蔵庫の奏する効果について説明する。 The configuration of the refrigerator and the control method of the present embodiment have been described above. Next, the effects of the refrigerator of the present embodiment will be described.

本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備え,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7及び野菜室6を冷却している。これにより高い省エネルギー性能を発揮でき,さらにスペース効率も高い冷蔵庫を提供することができる。理由を,図7及び図8を参照しながら以下で説明する。 The refrigerator of this embodiment is provided with a refrigerating chamber 2 (first refrigerating temperature zone chamber), a refrigerating temperature zone chamber 7, and a vegetable compartment 6 (second refrigerating temperature zone chamber) from above, and evaporates for refrigeration on the back of the refrigerating chamber 2. A vessel 14a (first evaporator) and a refrigerating fan 9a, a refrigerating evaporator 14b (second evaporator) and a refrigerating fan 9b are provided at the back of the freezer chamber, and air exchanged with the refrigerating evaporator 14a is provided. The refrigerating fan 9a drives the air to cool the refrigerating chamber 2, and the air exchanged with the refrigerating evaporator 14b is blown to cool the refrigerating temperature zone chamber 7 and the vegetable compartment 6 by driving the refrigerating fan 9b. are doing. As a result, it is possible to provide a refrigerator that can exhibit high energy-saving performance and has high space efficiency. The reason will be described below with reference to FIGS. 7 and 8.

図7は本実施例の冷蔵庫に係る蒸発器の温度と成績係数の関係を示すモリエル線図,図8は比較例を示す冷蔵庫の模式図である。 FIG. 7 is a Moriel diagram showing the relationship between the temperature of the evaporator according to the refrigerator of this embodiment and the coefficient of performance, and FIG. 8 is a schematic diagram of the refrigerator showing a comparative example.

まず,図4及び図7を参照しながら本実施例の冷蔵庫における冷凍サイクルの冷媒状態を説明する。本実施例の冷蔵庫では,冷蔵運転においては,圧縮機24の入口における低圧の冷媒(状態R1)が圧縮機24により圧縮され,高圧の状態R2で吐出される。その後,圧縮機24の筐体からの放熱及び放熱手段である庫外放熱器50a,庫外放熱器50b,結露抑制配管50cにおける放熱によって比エンタルピが低下し,状態R3(液状態)となる。冷蔵運転では,三方弁は状態1(冷蔵モード)となっているので,続いて,冷蔵用キャピラリチューブ53aを流れて減圧され,低温低圧の状態R4となって冷蔵用蒸発器14aに流入する。冷蔵用蒸発器14aでは,冷蔵室2からの戻り空気と熱交換して比エンタルピが上昇し冷蔵用蒸発器14aの出口において状態R5(ガス状態)となる。冷蔵用
蒸発器14aから流れ出た冷媒は,冷蔵用キャピラリチューブ53aを流れる冷媒と熱交換することで比エンタルピが上昇し圧縮機24の入口(状態R1)に至る。冷蔵運転における冷蔵用蒸発器14aの吸熱量をQ1,冷蔵運転における圧縮機動力をW1,冷蔵運転時の冷凍サイクル成績係数COP1は,COP1=Q1/W1となる。
First, the refrigerant state of the refrigerating cycle in the refrigerator of this embodiment will be described with reference to FIGS. 4 and 7. In the refrigerator of this embodiment, in the refrigerating operation, the low-pressure refrigerant (state R1) at the inlet of the compressor 24 is compressed by the compressor 24 and discharged in the high-pressure state R2. After that, the specific enthalpy is lowered by the heat radiation from the housing of the compressor 24 and the heat radiation in the heat dissipation means of the heat dissipation device 50a, the heat dissipation device 50b, and the dew condensation suppression pipe 50c, and the state R3 (liquid state) is reached. In the refrigerating operation, since the three-way valve is in the state 1 (refrigerating mode), it subsequently flows through the refrigerating capillary tube 53a to be depressurized, becomes a low-temperature low-pressure state R4, and flows into the refrigerating evaporator 14a. In the refrigerating evaporator 14a, heat is exchanged with the return air from the refrigerating chamber 2, the specific enthalpy rises, and the state R5 (gas state) is reached at the outlet of the refrigerating evaporator 14a. The refrigerant flowing out of the refrigerating evaporator 14a exchanges heat with the refrigerant flowing through the refrigerating capillary tube 53a, so that the specific enthalpy rises and reaches the inlet (state R1) of the compressor 24. The heat absorption of the refrigerating evaporator 14a in the refrigerating operation is Q1, the compressor power in the refrigerating operation is W1, and the refrigerating cycle coefficient of performance COP1 in the refrigerating operation is COP1 = Q1 / W1.

また,冷凍温度帯室7を冷却する冷凍運転または冷凍野菜運転においては,圧縮機24の入口における低圧の冷媒(状態F1)が圧縮機24により圧縮され,高圧の状態F2で吐出される。その後,圧縮機24の筐体からの放熱及び放熱手段である庫外放熱器50a,庫外放熱器50b,結露抑制配管50cにおける放熱によって比エンタルピが低下し,状態F3(液状態)となる。冷凍運転または冷凍野菜運転では,三方弁は状態2(冷凍モード)となっているので,続いて,冷凍用キャピラリチューブ53bを流れて減圧され,低温低圧の状態F4となって冷凍用蒸発器14bに流入する。冷凍用蒸発器14bでは,冷凍温度帯室7あるいは野菜室6からの戻り空気と熱交換して比エンタルピが上昇し冷凍用蒸発器14bの出口において状態F5(ガス状態)となる。冷凍用蒸発器14bから流れ出た冷媒は,冷凍用キャピラリチューブ53bを流れる冷媒と熱交換することで比エンタルピが上昇し圧縮機24の入口(状態F1)に至る。冷凍運転または冷凍野菜運転における冷凍用蒸発器14bの吸熱量をQ2,冷凍運転または冷凍野菜運転における圧縮機動力をW2とすると,冷凍運転時の冷凍サイクル成績係数COP2は,COP2=Q2/W2となる。 Further, in the refrigerating operation or the frozen vegetable operation for cooling the refrigerating temperature zone chamber 7, the low-pressure refrigerant (state F1) at the inlet of the compressor 24 is compressed by the compressor 24 and discharged in the high-pressure state F2. After that, the specific enthalpy is lowered by the heat radiation from the housing of the compressor 24 and the heat radiation in the heat dissipation means of the heat dissipation device 50a, the heat dissipation device 50b, and the dew condensation suppressing pipe 50c, and the state becomes F3 (liquid state). In the freezing operation or the frozen vegetable operation, the three-way valve is in the state 2 (freezing mode). Inflow to. In the refrigerating evaporator 14b, the specific enthalpy rises by exchanging heat with the return air from the refrigerating temperature zone chamber 7 or the vegetable chamber 6, and the state F5 (gas state) is reached at the outlet of the refrigerating evaporator 14b. The refrigerant flowing out of the refrigerating evaporator 14b exchanges heat with the refrigerant flowing through the refrigerating capillary tube 53b, so that the specific enthalpy rises and reaches the inlet (state F1) of the compressor 24. Assuming that the heat absorption of the freezing evaporator 14b in the freezing operation or frozen vegetable operation is Q2 and the compressor power in the freezing operation or frozen vegetable operation is W2, the freezing cycle coefficient of performance COP2 during the freezing operation is COP2 = Q2 / W2. Become.

このとき,冷蔵室2を冷却する冷蔵運転における冷蔵用蒸発器14aの温度(蒸発温度)と,冷凍温度帯室7を冷却する冷凍運転または冷凍野菜運転における冷凍用蒸発器14bの温度(蒸発温度)を比較すると,冷蔵運転における冷蔵用蒸発器14aの温度が高くなるようにしている。これは,冷蔵温度帯に維持される冷蔵室2を流れる空気の循環経路と,低温の冷凍温度帯に維持される冷凍温度帯室7を流れる空気の循環経路を分離することによって,冷蔵用蒸発器14aに低温の冷凍温度帯室7の空気が戻らないようにすることにより実現している。このように,冷蔵用蒸発器14aの温度を高くすることで,冷凍サイクル成績係数が向上するので,省エネルギー性能が高い冷蔵庫となる。 At this time, the temperature (evaporation temperature) of the refrigerating evaporator 14a in the refrigerating operation for cooling the refrigerating chamber 2 and the temperature (evaporation temperature) of the refrigerating evaporator 14b in the refrigerating operation or the frozen vegetable operation for cooling the refrigerating temperature zone chamber 7. ), The temperature of the refrigerating evaporator 14a in the refrigerating operation is increased. This evaporates for refrigeration by separating the circulation path of air flowing through the refrigerating chamber 2 maintained in the refrigerating temperature zone and the circulation path of air flowing through the refrigerating temperature zone chamber 7 maintained in the low-temperature freezing temperature zone. This is realized by preventing the air in the low-temperature refrigerating temperature zone chamber 7 from returning to the vessel 14a. By raising the temperature of the refrigerating evaporator 14a in this way, the coefficient of performance of the refrigerating cycle is improved, so that the refrigerator has high energy-saving performance.

図8(a),(b)は比較例の冷蔵庫であり,何れも上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵温度帯に維持される冷蔵室2を流れる空気の循環経路と,低温の冷凍温度帯に維持される冷凍温度帯室7を流れる空気の循環経路が分離され,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備えた冷蔵庫である。 8 (a) and 8 (b) are comparative examples of refrigerators, all of which are a refrigerating room 2 (first refrigerating temperature zone room), a freezing temperature zone room 7, and a vegetable room 6 (second refrigerating temperature zone room) from above. The circulation path of air flowing through the refrigerating chamber 2 maintained in the refrigerating temperature zone and the circulation path of air flowing through the refrigerating temperature zone chamber 7 maintained in the low-temperature freezing temperature zone are separated, and the back of the refrigerating chamber 2 is separated. A refrigerator equipped with a refrigerating evaporator 14a (first evaporator) and a refrigerating fan 9a, and a refrigerating evaporator 14b (second evaporator) and a refrigerating fan 9b at the back of the freezer compartment.

図8(a)は,特許文献1に記載の冷蔵庫の構成を採用するものであり,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7を冷却するものである。野菜室6は,冷凍温度帯室7の冷気により断熱仕切壁29を介して間接的に冷却される。一般に,仕切壁を介した熱移動量は温度差に比例するため,熱移動量を増加させ,野菜室6の冷却能力を高める必要がある場合は,温度差を拡大するように制御することが有効となる。従って,外気温度が高い場合や,野菜室に温度が高い食品を収納した場合,あるいは,食品等を挟み込むことにより野菜室扉と箱体の間に隙間が生じている等により野菜室の負荷が大きく,冷却能力を十分高める必要がある場合には,冷凍室を過度に低温に維持する必要があり,省エネルギー性能が低下するといった問題が生じる。尚,野菜室の負荷が大きい条件に合わせて仕切壁の断熱性能を低くすることも考えられるが,この場合は,外気温度が低く負荷が小さくなった場合に,野菜室6が過度に冷却され野菜が凍結するといった不具合が生じるため,電気ヒータによる加温(温度補償)が必要となり省エネルギー性能が低下する。 FIG. 8A adopts the configuration of the refrigerator described in Patent Document 1, in which the air exchanged with the refrigerating evaporator 14a is blown by the drive of the refrigerating fan 9a to cool the refrigerating chamber 2. Then, the air that has exchanged heat with the refrigerating evaporator 14b is blown by the driving of the refrigerating fan 9b to cool the refrigerating temperature zone chamber 7. The vegetable compartment 6 is indirectly cooled by the cold air of the freezing temperature zone chamber 7 through the heat insulating partition wall 29. In general, the amount of heat transfer through the partition wall is proportional to the temperature difference, so if it is necessary to increase the amount of heat transfer and increase the cooling capacity of the vegetable compartment 6, it is possible to control the temperature difference to increase. It becomes valid. Therefore, when the outside air temperature is high, when food with a high temperature is stored in the vegetable room, or when food etc. is sandwiched between the vegetable room door and the box body, a gap is created between the vegetable room door and the box body, so that the load on the vegetable room is increased. If it is large and it is necessary to sufficiently increase the cooling capacity, it is necessary to keep the freezing chamber at an excessively low temperature, which causes problems such as deterioration of energy saving performance. It is conceivable to lower the heat insulating performance of the partition wall according to the condition that the load of the vegetable room is large, but in this case, when the outside air temperature is low and the load is small, the vegetable room 6 is excessively cooled. Since vegetables freeze and other problems occur, heating (temperature compensation) with an electric heater is required, which reduces energy-saving performance.

図8(b)は,特許文献2に記載の冷蔵庫の構成を採用するものであり,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2及び野菜室6を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7を冷却するものである。この構成では,冷蔵用ファン9aにより送り出された空気を野菜室6に送風する野菜室送風路13と,野菜室6を冷却した空気を冷蔵室用蒸発器室8aに戻す野菜室戻り風路18が低温の冷凍室2または冷凍用蒸発器室8bを通過する。野菜室送風路13及び野菜室戻り風路18を流れる空気の温度は比較的高いため,絶対湿度も高くなりやすく,野菜室送風路13及び野菜室戻り風路18内には霜が成長しやすい。霜による風路の閉塞を防ぐためには,野菜室送風路13及び野菜室戻り風路18と冷凍室2または冷凍用蒸発器室8bの間に断熱壁(断熱部材)を設けて,野菜室送風路13及び野菜室戻り風路18の内側表面の温度が低下しすぎないようにする必要がある。従って風路のスペースと,断熱壁(断熱部材)のスペースが必要となるため冷凍室2または冷凍用蒸発器室8bの縮小を伴う。冷凍室2を縮小する場合,有効内容積が減少するためスペース効率が悪化し,冷凍用蒸発器室8bを縮小する場合,収納される冷凍用蒸発器14bの縮小を伴うため,熱交換性能低下による省エネルギー性能の低下を招く。 FIG. 8B adopts the configuration of the refrigerator described in Patent Document 2, in which the air exchanged with the refrigerating evaporator 14a is blown by the drive of the refrigerating fan 9a to blow the refrigerating chamber 2 and the vegetables. The chamber 6 is cooled, and the air that has exchanged heat with the refrigerating evaporator 14b is blown by the drive of the refrigerating fan 9b to cool the refrigerating temperature zone chamber 7. In this configuration, the vegetable chamber air passage 13 that blows the air sent out by the refrigerating fan 9a to the vegetable chamber 6 and the vegetable chamber return air passage 18 that returns the air that has cooled the vegetable chamber 6 to the refrigerator chamber 8a for the refrigerating chamber. Passes through the low temperature freezer chamber 2 or the refrigerating evaporator chamber 8b. Since the temperature of the air flowing through the vegetable room air passage 13 and the vegetable room return air passage 18 is relatively high, the absolute humidity tends to be high, and frost tends to grow in the vegetable room air passage 13 and the vegetable room return air passage 18. .. In order to prevent the air passage from being blocked by frost, a heat insulating wall (insulation member) is provided between the vegetable room air passage 13 and the vegetable room return air passage 18 and the freezing room 2 or the freezing evaporator room 8b to blow air into the vegetable room. It is necessary to prevent the temperature of the inner surface of the passage 13 and the vegetable chamber return air passage 18 from dropping too much. Therefore, since the space of the air passage and the space of the heat insulating wall (heat insulating member) are required, the freezing chamber 2 or the freezing evaporator chamber 8b is reduced. When the freezing chamber 2 is reduced, the effective internal volume is reduced and the space efficiency is deteriorated. When the freezing evaporator chamber 8b is reduced, the stored freezing evaporator 14b is reduced and the heat exchange performance is deteriorated. Causes deterioration of energy saving performance.

一方,本実施例の冷蔵庫は,図3に示すように,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により送風して冷凍温度帯室7及び野菜室6を冷却している。これにより,冷蔵室2は冷蔵用ファン9a,冷凍温度帯室7及び野菜室6は冷凍用ファン9bにより冷却能力を制御できるので,野菜室の負荷の大小に依らず冷蔵室2,冷凍温度帯室7及び野菜室6を効率良く冷却でき,省エネルギー性能が高い冷蔵庫となる。また,冷蔵温度帯の貯蔵室を流れる空気が冷凍室2または冷凍用蒸発器室8bを通過する構成とならないため,スペース効率が高くなる。すなわち省エネルギー性能が高く,スペース効率も高い冷蔵庫となる。 On the other hand, in the refrigerator of this embodiment, as shown in FIG. 3, the air exchanged with the refrigerating evaporator 14a is blown by the driving of the refrigerating fan 9a to cool the refrigerating chamber 2 and the refrigerating evaporator 14b. The air that has exchanged heat with the refrigerator is blown by the drive of the refrigerating fan 9b to cool the refrigerating temperature zone chamber 7 and the vegetable compartment 6. As a result, the cooling capacity of the refrigerating chamber 2 can be controlled by the refrigerating fan 9a, and the refrigerating temperature zone chamber 7 and the vegetable compartment 6 can be controlled by the refrigerating fan 9b. The room 7 and the vegetable room 6 can be efficiently cooled, and the refrigerator has high energy-saving performance. Further, since the air flowing through the storage chamber in the refrigerating temperature zone does not pass through the freezing chamber 2 or the freezing evaporator chamber 8b, the space efficiency is improved. That is, the refrigerator has high energy-saving performance and high space efficiency.

本実施例の冷蔵庫は,野菜室送風路13が断熱仕切壁29を通過するように設けている。これにより,冷凍用蒸発器室8b,冷凍室送風路12,冷凍温度帯室7または冷凍室戻り口17の何れかと野菜室6とが連通される。その結果,送風経路の長さを短く抑えることができ,スペース効率を高めることができるとともに,風路抵抗も低く抑えることができるので,送風効率が高く省エネルギー性能に優れた冷蔵庫になる。 The refrigerator of this embodiment is provided so that the vegetable compartment air passage 13 passes through the heat insulating partition wall 29. As a result, any one of the freezing evaporator chamber 8b, the freezing chamber air passage 12, the freezing temperature zone chamber 7, or the freezing chamber return port 17 is communicated with the vegetable chamber 6. As a result, the length of the air passage can be shortened, the space efficiency can be improved, and the air passage resistance can be suppressed low, so that the refrigerator has high air efficiency and excellent energy saving performance.

本実施例の冷蔵庫は,野菜室戻り風路18が断熱仕切壁29内を流れるように設けている。これにより,冷蔵温度帯の野菜室6からの温度が比較的高い戻り冷気が冷凍温度帯室7に影響することを抑制するための断熱手段として,別体の断熱部材を用いる必要がなくなるため,スペース効率に優れた冷蔵庫となる。
本実施例の冷蔵庫は,野菜室送風路13の下端の開口(野菜室吐出口13a)の高さ位置を,断熱仕切壁29の高さ位置と略一致させ,野菜室6の上方から冷却空気を吹き出すようにしている(図3参照)。冷凍用蒸発器14bと熱交換した低温冷気を野菜室6内(例えば背面)に導く場合は,風路の野菜室6側の表面が低温となり,結露が生じやすくなるため,野菜室6と風路の間に断熱壁(断熱部材)を設ける必要がある。また,低温空気は密度が大きいことから,下方に向かって流れる性質があるため,上方の空間に低温空気を供給することが冷却効率向上には有効となる。本実施例の冷蔵庫では,野菜室送風路13の下端の開口(野菜室吐出口13a)の高さ位置を,断熱仕切壁29の高さ位置と略一致させることで,野菜室送風路13の下端近傍の断熱壁を断熱仕切壁29で兼ね,送風経路の長さも短く抑えることで,野菜室6内に断熱壁(断熱部材)や風路を設けることによるスペース効率低下を抑制しつつ,野菜室6の上方から冷却空気を吹き出すことで,野菜室6の冷却効率を高めている。
The refrigerator of this embodiment is provided so that the vegetable compartment return air passage 18 flows through the heat insulating partition wall 29. This eliminates the need to use a separate heat insulating member as a heat insulating means for suppressing the influence of the return cold air having a relatively high temperature from the vegetable chamber 6 in the refrigerated temperature zone on the freezing temperature zone chamber 7. It will be a space-efficient refrigerator.
In the refrigerator of this embodiment, the height position of the opening (vegetable chamber discharge port 13a) at the lower end of the vegetable compartment air passage 13 is substantially matched with the height position of the heat insulating partition wall 29, and the cooling air is cooled from above the vegetable chamber 6. (See Fig. 3). When the low-temperature cold air that has exchanged heat with the freezing evaporator 14b is guided to the inside of the vegetable chamber 6 (for example, the back surface), the surface of the air passage on the vegetable chamber 6 side becomes low temperature and dew condensation is likely to occur. It is necessary to provide a heat insulating wall (heat insulating member) between the roads. In addition, since low-temperature air has a high density and has the property of flowing downward, supplying low-temperature air to the upper space is effective in improving cooling efficiency. In the refrigerator of this embodiment, the height position of the opening (vegetable room discharge port 13a) at the lower end of the vegetable room air passage 13 is substantially matched with the height position of the heat insulating partition wall 29, so that the vegetable room air passage 13 has a height position. The heat insulating wall near the lower end is also used as the heat insulating partition wall 29, and the length of the ventilation path is kept short, so that the heat insulating wall (heat insulating member) and the air passage are provided in the vegetable compartment 6 to suppress the decrease in space efficiency, and the vegetables. By blowing cooling air from above the chamber 6, the cooling efficiency of the vegetable chamber 6 is improved.

本実施例の冷蔵庫は野菜室6の温度を検知する野菜室温度センサ43を備え,野菜室送風路13に野菜室ダンパ19を備えている。これにより,野菜室の冷却の過不足に応じて,野菜室ダンパ19を開閉して野菜室への送風を制御することができるので,冷却効率が高い省エネ性に優れた冷蔵庫となる。 The refrigerator of this embodiment is provided with a vegetable room temperature sensor 43 for detecting the temperature of the vegetable room 6, and is provided with a vegetable room damper 19 in the vegetable room air passage 13. As a result, the vegetable compartment damper 19 can be opened and closed to control the ventilation to the vegetable compartment according to the excess or deficiency of cooling of the vegetable compartment, so that the refrigerator has high cooling efficiency and excellent energy saving.

本実施例の冷蔵庫は,野菜室ダンパ19を野菜室送風路13の下端近傍に設けている。例えば,野菜室送風路13の上端近傍(冷凍室6の内部)に野菜室ダンパ19を設けた場合,野菜室ダンパ19を閉鎖状態としても野菜室ダンパ19より下流(野菜室6側)の空気が冷凍室6によって冷却されて低温になり,下降流を形成することがある。このように野菜室ダンパ19を閉塞しても野菜室6に低温空気が供給されると,特に野菜室6の負荷が小さい場合などには野菜室6の温度が下がりすぎる場合があるため,本実施例の冷蔵庫では,野菜室ダンパ19を野菜室送風路13の下端近傍に設けることで,野菜室ダンパ19を閉鎖状態としても野菜室送風路13から低温空気が野菜室6に流れ込み野菜室6が冷えすぎることを抑制できるので,野菜室6を効率良く冷却できる。 In the refrigerator of this embodiment, the vegetable compartment damper 19 is provided near the lower end of the vegetable compartment air passage 13. For example, when the vegetable room damper 19 is provided near the upper end of the vegetable room air passage 13 (inside the freezing room 6), the air downstream from the vegetable room damper 19 (on the vegetable room 6 side) even when the vegetable room damper 19 is closed. May be cooled by the freezing chamber 6 to a low temperature and form a downward flow. If low-temperature air is supplied to the vegetable compartment 6 even if the vegetable compartment damper 19 is closed in this way, the temperature of the vegetable compartment 6 may drop too much, especially when the load on the vegetable compartment 6 is small. In the refrigerator of the embodiment, by providing the vegetable chamber damper 19 near the lower end of the vegetable chamber air passage 13, low temperature air flows from the vegetable chamber air passage 13 into the vegetable chamber 6 even when the vegetable chamber damper 19 is closed. Since it is possible to prevent the vegetable chamber 6 from becoming too cold, the vegetable compartment 6 can be efficiently cooled.

本実施例の冷蔵庫は,野菜室6内に飲料のボトルを収納するボトル収納スペース6cを備えており,野菜室6に低温の冷凍室6からの冷気を供給するようにしている。これにより飲料のボトルを効率良く冷却することができる。 The refrigerator of this embodiment is provided with a bottle storage space 6c for storing beverage bottles in the vegetable compartment 6 so that the vegetable compartment 6 is supplied with cold air from the low-temperature freezing chamber 6. This makes it possible to efficiently cool the beverage bottle.

本発明に係る冷蔵庫の第二の実施例を,図9を参照しながら説明する。なお,実施例1と同様の構成については説明を省略する。図9は本実施例の冷蔵庫の構成を表す模式図である。 A second embodiment of the refrigerator according to the present invention will be described with reference to FIG. The description of the same configuration as that of the first embodiment will be omitted. FIG. 9 is a schematic view showing the configuration of the refrigerator of this embodiment.

図9に示すように,本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)の順に貯蔵室を形成している。冷蔵室2の略背部には冷蔵用蒸発器室8aが備えられており,冷蔵用蒸発器室8a内には,冷蔵用蒸発器14a(第一蒸発器)が収納されている。冷蔵用蒸発器14aの上方には冷蔵用ファン9aが設けられている。冷蔵用蒸発器14aと熱交換して低温になった空気は,冷蔵用ファン9aを駆動することにより,冷蔵室送風路11,冷蔵室吐出口11aを介して冷蔵室2に送風され,冷蔵室2内を冷却する。冷蔵室2に送られた空気は冷蔵室戻り口15aから冷蔵用蒸発器室8aに戻る。 As shown in FIG. 9, the refrigerator of this embodiment has storage chambers in the order of refrigerating chamber 2 (first refrigerating temperature zone chamber), refrigerating temperature zone chamber 7, and vegetable chamber 6 (second refrigerating temperature zone chamber) from above. Is forming. A refrigerating evaporator chamber 8a is provided substantially behind the refrigerating chamber 2, and a refrigerating evaporator 14a (first evaporator) is housed in the refrigerating evaporator chamber 8a. A refrigerating fan 9a is provided above the refrigerating evaporator 14a. The air that has become cold due to heat exchange with the refrigerating evaporator 14a is blown to the refrigerating chamber 2 through the refrigerating chamber air passage 11 and the refrigerating chamber discharge port 11a by driving the refrigerating fan 9a. 2 Cool the inside. The air sent to the refrigerating chamber 2 returns to the refrigerating evaporator chamber 8a from the refrigerating chamber return port 15a.

冷凍温度帯室7の略背部には冷凍用蒸発器室8bが備えられており,冷凍用蒸発器室8b内には,冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bが設けられている。また,冷凍用ファン9bの下流には,冷凍温度帯室7への送風量を制御する手段である冷凍室ダンパ20が設けられている。また,野菜室6への風路となる野菜室送風路13は,冷凍室送風路12から分岐形成され,野菜室背部右上の野菜室吐出口13aに至る。野菜室送風路13には,野菜室6への送風量を制御する手段である野菜室ダンパ19が設けられている。このように,冷凍用ファン9bの下流における風路は,冷凍室ダンパ20へ向かう冷凍室送風路12と,野菜室ダンパ19へ向かう野菜室送風路13とに分岐している。野菜室6と冷凍温度帯室7の間の断熱仕切壁29には,野菜室戻り流入口18aが設けられており,野菜室戻り風路18を介して冷凍用蒸発器室8bの下部に空気が戻る流路が形成されている。 A freezing evaporator chamber 8b is provided substantially behind the freezing temperature zone chamber 7, and a freezing evaporator 14b (second evaporator) is housed in the freezing evaporator chamber 8b. A freezing fan 9b is provided above the freezing evaporator 14b. Further, downstream of the freezing fan 9b, a freezing chamber damper 20 is provided as a means for controlling the amount of air blown to the freezing temperature zone chamber 7. Further, the vegetable chamber air passage 13 serving as an air passage to the vegetable chamber 6 is branched from the freezing chamber air passage 12 and reaches the vegetable chamber discharge port 13a on the upper right of the back of the vegetable chamber. The vegetable compartment air passage 13 is provided with a vegetable compartment damper 19 which is a means for controlling the amount of air blown to the vegetable compartment 6. As described above, the air passage downstream of the freezing fan 9b is branched into a freezing room air passage 12 toward the freezing room damper 20 and a vegetable room air passage 13 toward the vegetable room damper 19. The heat insulating partition wall 29 between the vegetable compartment 6 and the freezing temperature zone chamber 7 is provided with a vegetable compartment return inlet 18a, and air is provided in the lower part of the freezing evaporator chamber 8b via the vegetable compartment return air passage 18. A flow path is formed.

冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍室ダンパ20が開放状態の場合には,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍温度帯室7に送風され,冷凍温度帯室7内を冷却する。冷凍温度帯室7に送られた空気は冷凍室戻り口17から冷凍用蒸発器室8bに戻る。また,野菜室ダンパ19が開放状態の場合には,冷凍室送風路12に流入した冷気の一部が野菜室送風路13を流れ,野菜室吐出口13aを介して野菜室6に送風され,野菜室6内を冷却する。野菜
室6に送られた空気は野菜室戻り流入口18aから野菜室戻り風路18に入り,野菜室戻り流出口18bから冷凍用蒸発器室8bに戻る。
When the freezing chamber damper 20 is in the open state, the air that has become cold due to heat exchange with the freezing evaporator 14b is driven by the freezing fan 9b to open the freezing chamber air passage 12 and the freezing chamber discharge port 12a. The air is blown into the freezing temperature zone chamber 7 through the freezing temperature zone chamber 7 to cool the inside of the freezing temperature zone chamber 7. The air sent to the freezing temperature zone chamber 7 returns to the freezing evaporator chamber 8b from the freezing chamber return port 17. When the vegetable compartment damper 19 is in the open state, a part of the cold air flowing into the freezing chamber air passage 12 flows through the vegetable chamber air passage 13 and is blown to the vegetable chamber 6 through the vegetable chamber discharge port 13a. Cool the inside of the vegetable compartment 6. The air sent to the vegetable compartment 6 enters the vegetable compartment return air passage 18 from the vegetable compartment return inlet 18a, and returns to the freezing evaporator chamber 8b from the vegetable compartment return outlet 18b.

以上のように本実施例の冷蔵庫は,本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備え,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍室ダンパ20が開放状態の場合には,冷凍用ファン9bの駆動により冷凍温度帯室7に送風し,野菜室ダンパ19が開放状態の場合には,冷凍用ファン9bの駆動により野菜室6に送風して冷却することができる。また,冷凍室ダンパ20と野菜室ダンパ19が何れも開放状態の場合には,冷凍用ファン9bの駆動により冷凍温度帯室7と野菜室6の双方に送風して冷却することができる。これにより,例えば冷凍温度帯室7のみに温度が高い食品を収納した,あるいは,野菜室6のみに温度が高い食品を収納したといった事由により,冷凍温度帯室7または野菜室6の一方の負荷が高く,他方は十分冷却されている場合においては,冷凍室ダンパ20または野菜室ダンパ19のうち負荷が高い側の貯蔵室に向かう送風路に設けられたダンパのみを開放状態として冷却を行うことができる。従って,十分冷却されている貯蔵室を過度に冷却することを抑制できるので,省エネルギー性能の高い冷蔵庫となる。 As described above, the refrigerator of this embodiment has a refrigerating room 2 (first refrigerating temperature zone room), a freezing temperature zone room 7, and a vegetable room 6 (second refrigerating temperature zone room) from above. The back of the refrigerating chamber 2 is equipped with a refrigerating evaporator 14a (first evaporator) and a refrigerating fan 9a, and the back of the freezing chamber is provided with a refrigerating evaporator 14b (second evaporator) and a refrigerating fan 9b. When the air exchanged with the refrigerator 14a is blown by the drive of the refrigerating fan 9a to cool the refrigerating chamber 2, and the air exchanged heat with the refrigerating evaporator 14b is opened. Can blow air to the refrigerating temperature zone chamber 7 by driving the refrigerating fan 9b, and when the vegetable compartment damper 19 is in the open state, blow air to the vegetable compartment 6 by driving the refrigerating fan 9b to cool the refrigerator. When both the freezing chamber damper 20 and the vegetable compartment damper 19 are in the open state, air can be blown to both the freezing temperature zone chamber 7 and the vegetable compartment 6 to cool by driving the freezing fan 9b. As a result, for example, because the food having a high temperature is stored only in the freezing temperature zone chamber 7 or the food having a high temperature is stored only in the vegetable chamber 6, the load on either the freezing temperature zone chamber 7 or the vegetable chamber 6 is loaded. When the temperature is high and the other is sufficiently cooled, only the damper provided in the air passage toward the storage room on the side with the higher load of the freezer room damper 20 or the vegetable room damper 19 should be opened for cooling. Can be done. Therefore, it is possible to suppress excessive cooling of the sufficiently cooled storage chamber, so that the refrigerator has high energy-saving performance.

本発明に係る冷蔵庫の第三の実施例を,図10を参照しながら説明する。なお,実施例1または実施例2と同様の構成については説明を省略する。図8は本実施例の冷蔵庫の構成を表す模式図である。 A third embodiment of the refrigerator according to the present invention will be described with reference to FIG. The same configuration as in Example 1 or Example 2 will be omitted. FIG. 8 is a schematic view showing the configuration of the refrigerator of this embodiment.

図10に示すように,本実施例の冷蔵庫は,冷凍温度帯室7の略背部には冷凍用蒸発器室8bが備えられており,冷凍用蒸発器室8b内には,冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bが設けられている。冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍温度帯室7に送風され,冷凍温度帯室7内を冷却する。冷凍温度帯室7に送られた空気は冷凍室戻り口17から冷凍用蒸発器室8bに戻る。 As shown in FIG. 10, the refrigerator of this embodiment is provided with a freezing evaporator chamber 8b substantially behind the freezing temperature zone chamber 7, and a freezing evaporator is provided in the freezing evaporator chamber 8b. 14b (second evaporator) is stored. A freezing fan 9b is provided above the freezing evaporator 14b. The air that has become cold due to heat exchange with the freezing evaporator 14b is blown to the freezing temperature zone chamber 7 through the freezing chamber air passage 12 and the freezing chamber discharge port 12a by driving the freezing fan 9b. The inside of the freezing temperature zone chamber 7 is cooled. The air sent to the freezing temperature zone chamber 7 returns to the freezing evaporator chamber 8b from the freezing chamber return port 17.

また,断熱仕切壁29には冷凍温度帯室7と野菜室6が連通する風路25(連通経路)が備えられている。風路25内には,野菜室6の冷却制御手段である野菜室ダンパ19が設けられている。野菜室ダンパ19が開放状態の場合には,冷凍室の低温冷気が対流により風路25を介して野菜室6に流入し,野菜室6を冷却する。野菜室ダンパ19が閉鎖状態の場合には,風路25を介した対流が抑制されるので,野菜室6の冷却が抑えられる。 Further, the heat insulating partition wall 29 is provided with an air passage 25 (communication route) in which the freezing temperature zone chamber 7 and the vegetable chamber 6 communicate with each other. In the air passage 25, a vegetable compartment damper 19 which is a cooling control means for the vegetable compartment 6 is provided. When the vegetable compartment damper 19 is in the open state, the low-temperature cold air in the freezing chamber flows into the vegetable compartment 6 through the air passage 25 by convection to cool the vegetable compartment 6. When the vegetable compartment damper 19 is in the closed state, convection through the air passage 25 is suppressed, so that cooling of the vegetable compartment 6 is suppressed.

以上のように本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍温度帯室7,野菜室6(第二冷蔵温度帯室)を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用ファン9a,冷凍室の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9bを備え,冷蔵用蒸発器14aと熱交換した空気を,冷蔵用ファン9aの駆動により送風して冷蔵室2を冷却し,冷凍用蒸発器14bと熱交換した空気を,冷凍用ファン9bの駆動により冷凍温度帯室7に送風して冷凍温度帯室7を冷却し,野菜室6は,冷凍温度帯室7と野菜室6が連通する風路25を介した対流により冷却するようにしている。風路25を介した空気の移動は,
冷凍温度帯室7内の低温の空気と,野菜室6内の温度が高い空気の密度差に起因する対流(自然対流)が主となるので,野菜室6内の負荷が大きく,温度が上昇した場合には,冷凍温度帯室7との温度差(空気の密度差)が拡大して積極的な冷気の流入が起きる。すな
わち,風路25を介して野菜室6の負荷に応じた自己調整機能が働き,野菜室への送風動力を要さずに野菜室6内の冷却能力を調整できる。これにより省エネルギー性能に優れた冷蔵庫となる
本実施例の冷蔵庫は,風路25を断熱仕切壁29に設けている。これにより,新たな風路設置スペースを必要としないため,スペース効率にも優れた冷蔵庫となる。
As described above, the refrigerator of this embodiment is provided with a refrigerating room 2 (first refrigerating temperature zone room), a refrigerating temperature zone room 7, a vegetable room 6 (second refrigerating temperature zone room) from above, and the back of the refrigerating room 2. Is equipped with a refrigerating evaporator 14a (first evaporator) and a refrigerating fan 9a, and a refrigerating evaporator 14b (second evaporator) and a refrigerating fan 9b are provided at the back of the freezer chamber, and heat is exchanged with the refrigerating evaporator 14a. The air is blown to cool the refrigerating chamber 2 by driving the refrigerating fan 9a, and the air that has exchanged heat with the refrigerating evaporator 14b is blown to the refrigerating temperature zone chamber 7 by driving the refrigerating fan 9b to freeze. The temperature zone chamber 7 is cooled, and the vegetable chamber 6 is cooled by convection through the air passage 25 in which the refrigerating temperature zone chamber 7 and the vegetable chamber 6 communicate with each other. The movement of air through the air passage 25 is
Since the main convection (natural convection) is caused by the density difference between the low temperature air in the freezing temperature zone chamber 7 and the high temperature air in the vegetable chamber 6, the load in the vegetable chamber 6 is large and the temperature rises. In that case, the temperature difference (difference in air density) from the freezing temperature zone chamber 7 increases, and an active inflow of cold air occurs. That is, the self-adjusting function according to the load of the vegetable chamber 6 works through the air passage 25, and the cooling capacity in the vegetable chamber 6 can be adjusted without requiring the blowing power to the vegetable chamber. As a result, the refrigerator of this embodiment becomes a refrigerator having excellent energy-saving performance. The air passage 25 is provided in the heat insulating partition wall 29. As a result, a new air passage installation space is not required, and the refrigerator has excellent space efficiency.

また,本実施例の冷蔵庫は,風路25に野菜室ダンパ19を設けている。これにより風路25を縮小または閉鎖するように制御することができるため,特に野菜室の負荷が小さい場合に過度に野菜室が冷やされることを抑制できるので,省エネルギー性能に優れた冷蔵庫となる。 Further, the refrigerator of this embodiment is provided with a vegetable compartment damper 19 in the air passage 25. As a result, the air passage 25 can be controlled to be reduced or closed, so that it is possible to prevent the vegetable compartment from being excessively cooled, especially when the load on the vegetable compartment is small, so that the refrigerator has excellent energy-saving performance.

以上が,本実施の形態例を示す実施例である。なお,本発明は前述した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。また,実施例の構成の一部について,他の構成の追加・削除・置換をすることが可能である。 The above is an example showing the embodiment of the present embodiment. The present invention is not limited to the above-mentioned examples, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. In addition, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.

1 冷蔵庫
2 冷蔵室(第一冷蔵温度帯室)
2a,2b 冷蔵室ドア
3 製氷室
4 上段冷凍室
5 下段冷凍室冷凍室
3a,4a,5a 冷凍室ドア
6 野菜室(第二冷蔵温度帯室)
6a 野菜室ドア
7 冷凍温度帯室(3,4,5の総称)
8a 冷蔵用蒸発器室(第一蒸発器収納室)
8b 冷凍用蒸発器室(第二蒸発器収納室)
9a 冷蔵用ファン(第一送風機)
9b 冷凍用ファン(第二送風機)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室送風路(第一送風経路)
11a 冷蔵室吐出口
12 冷凍室送風路(第二送風経路)
12a 冷凍室吐出口
13 野菜室送風路(第三送風経路)
13a 野菜室吐出口
14a 冷蔵用蒸発器(第一蒸発器)
14b 冷凍用蒸発器(第二蒸発器)
15a,b 冷蔵室戻り口
16 ヒンジカバー
17 冷凍室戻り口
18 野菜室戻り風路
18a 野菜室戻り口
19 野菜室ダンパ
20 冷凍室ダンパ
21 ラジアントヒータ
22a,22b 排水口
23a,23b 樋
24 圧縮機
25 風路
26 庫外ファン
27a 冷蔵用排水管
27b 冷凍用排水管
28,29,30 断熱仕切壁
31 制御基板
32 蒸発皿
35 チルドルーム
39 機械室
40a 冷蔵用蒸発器温度センサ
40b 冷凍用蒸発器温度センサ
41 冷蔵室温度センサ
42 冷凍室温度センサ
43 野菜室温度センサ
50a,50b 放熱器(放熱手段)
51 結露抑制パイプ(放熱手段)
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54b 冷蔵用気液分離器
54b 冷凍用気液分離器
55a,55b 熱交換部
56 逆止弁
101 樋部ヒータ
102 排水管上部ヒータ
103 排水管下部ヒータ
1 Refrigerator 2 Refrigerator room (1st refrigerating temperature zone room)
2a, 2b Refrigerator door 3 Ice making room 4 Upper freezing room 5 Lower freezing room Freezing room 3a, 4a, 5a Freezing room door 6 Vegetable room (second refrigerating temperature zone room)
6a Vegetable room door 7 Freezing temperature zone room (general term for 3, 4, 5)
8a Refrigerator evaporator room (first evaporator storage room)
8b Freezing evaporator room (second evaporator storage room)
9a Refrigerator fan (first blower)
9b Freezing fan (second blower)
10 Insulation box body 10a Outer box 10b Inner box 11 Refrigerator room air passage (first air passage)
11a Refrigerator room discharge port 12 Freezing room air passage (second air passage)
12a Freezing room discharge port 13 Vegetable room air passage (third air passage)
13a Vegetable room discharge port 14a Refrigerator evaporator (first evaporator)
14b Freezing evaporator (second evaporator)
15a, b Refrigerator room return port 16 Hing cover 17 Freezer room return port 18 Vegetable room return air passage 18a Vegetable room return port 19 Vegetable room damper 20 Freezer room damper 21 Radiant heater 22a, 22b Drain port 23a, 23b Gutter 24 Compressor 25 Air passage 26 Outer fan 27a Refrigerator drain pipe 27b Refrigerator drain pipe 28, 29, 30 Insulation partition wall 31 Control board 32 Evaporator 35 Chilled room 39 Machine room 40a Refrigerator evaporator temperature sensor 40 b Refrigerator evaporator temperature sensor 41 Refrigerator room temperature sensor 42 Freezer room temperature sensor 43 Vegetable room temperature sensor 50a, 50b Dissipator (heat dissipation means)
51 Dew condensation suppression pipe (heat dissipation means)
52 Three-way valve (refrigerant control means)
53a Refrigerating capillary tube (decompression means)
53b Freezing capillary tube (decompression means)
54b Air-liquid separator for refrigeration 54b Air-liquid separator for refrigeration 55a, 55b Heat exchange part 56 Check valve 101 Gutter heater 102 Drain pipe upper heater 103 Drain pipe lower heater

Claims (4)

冷凍温度帯室の上方に第一冷蔵温度帯室、前記冷凍温度帯室の下方に冷蔵温度帯に固定された野菜室とを備え、
前記第一冷蔵温度帯室の略背部に位置する第一蒸発器と、該第一蒸発器を収納する第一蒸発器収納室と、前記第一蒸発器と熱交換した空気を前記第一蒸発器収納室から前記第一冷蔵温度帯室に導く第一送風経路と、前記第一冷蔵温度帯室から前記第一蒸発器収納室に空気を導く第一戻り経路と、前記第一冷蔵温度帯室に循環気流を形成する第一送風機と、
前記冷凍温度帯室の略背部に位置し、冷凍運転中の温度が冷蔵運転中の前記第一蒸発器よりも低い第二蒸発器と、該第二蒸発器を収納する第二蒸発器収納室と、前記第二蒸発器と熱交換した空気を前記第二蒸発器収納室から前記冷凍温度帯室に導く第二送風経路と、前記冷凍温度帯室から前記第二蒸発器収納室に空気を導く第二戻り経路と、前記第二送風経路から前記野菜室に空気を導く野菜室送風路と、前記野菜室から前記第二蒸発器収納室に空気を導く野菜室戻り風路と、前記冷凍温度帯室及び前記野菜室に循環気流を形成する第二送風機と、を有し、
前記第二蒸発器と熱交換した空気を、前記第二送風機の駆動により送風して前記冷凍温度帯室及び前記野菜室を冷却し、
前記冷凍温度帯室と前記第一冷蔵温度帯室とを隔てる第一の断熱仕切壁と、前記冷凍温度帯室と前記野菜室とを隔てる第二の断熱仕切壁と、をさらに備え、
前記野菜室戻り風路は、前記第二の断熱仕切壁内に設けられ、
前記野菜室に冷気を送る際には、圧縮機の回転速度を、冷蔵運転中の回転速度よりも高速駆動状態にすることで、前記第二蒸発器を、冷蔵運転中の前記第一蒸発器の温度よりも低温にし、
前記野菜室に供給する風量は前記冷凍温度帯室に供給する風量より少ない
ことを特徴とする冷蔵庫。
A first refrigerating temperature zone chamber is provided above the freezing temperature zone chamber, and a vegetable chamber fixed to the refrigerating temperature zone is provided below the refrigerating temperature zone chamber.
The first evaporator located substantially behind the first refrigerating temperature zone chamber, the first evaporator storage chamber for accommodating the first evaporator, and the air heat-exchanged with the first evaporator are first evaporated. The first ventilation path leading from the vessel storage chamber to the first refrigerating temperature zone chamber, the first return path leading air from the first refrigerating temperature zone chamber to the first evaporator storage chamber, and the first refrigerating temperature zone. The first blower that forms a circulating air flow in the room,
A second evaporator, which is located substantially behind the refrigerating temperature zone chamber and whose temperature during the refrigerating operation is lower than that of the first evaporator during the refrigerating operation, and a second evaporator storage chamber for accommodating the second evaporator. And the second air passage that guides the air that has exchanged heat with the second evaporator from the second evaporator storage chamber to the refrigerating temperature zone chamber, and the air from the refrigerating temperature zone chamber to the second evaporator storage chamber. The second return path to be guided, the vegetable chamber return path for guiding air from the second air passage to the vegetable chamber, the vegetable chamber return path for guiding air from the vegetable chamber to the second evaporator storage chamber, and the refrigeration. It has a second blower that forms a circulating air flow in the temperature zone chamber and the vegetable chamber.
The air that has exchanged heat with the second evaporator is blown by the drive of the second blower to cool the freezing temperature zone chamber and the vegetable chamber.
Further, a first heat insulating partition wall separating the freezing temperature zone chamber and the first refrigerating temperature zone chamber and a second heat insulating partition wall separating the freezing temperature zone chamber and the vegetable chamber are further provided.
The vegetable compartment return air passage is provided in the second heat insulating partition wall.
When sending cold air to the vegetable compartment, the second evaporator is driven at a higher speed than the rotation speed during the refrigeration operation, so that the second evaporator is driven at a higher speed than the rotation speed during the refrigeration operation. Make it cooler than the temperature of
A refrigerator characterized in that the amount of air supplied to the vegetable compartment is less than the amount of air supplied to the freezing temperature zone chamber.
前記冷凍温度帯室は、冷凍温度帯に固定した貯蔵室であり、
前記第一冷蔵温度帯室は、冷蔵温度帯に固定した貯蔵室である
ことを特徴とする請求項1に記載の冷蔵庫。
The freezing temperature zone chamber is a storage chamber fixed to the freezing temperature zone.
The refrigerator according to claim 1, wherein the first refrigerated temperature zone chamber is a storage chamber fixed to the refrigerated temperature zone.
前記野菜室戻り風路の流入口は、前記第二の断熱仕切壁の前方側に備えられる
ことを特徴とする請求項1に記載の冷蔵庫。
The refrigerator according to claim 1, wherein the inlet of the vegetable compartment return air passage is provided on the front side of the second heat insulating partition wall.
前記野菜室は、
前記第二の断熱仕切壁を介して、前記冷凍温度帯室の、前記第二蒸発器と熱交換した空気により冷却されると共に、
前記野菜室の冷却の過不足に応じて前記第二蒸発器と熱交換した空気が送風され、
前記野菜室の下方には、貯蔵室を備えない
ことを特徴とする請求項1に記載の冷蔵庫。
The vegetable room
Through the second heat insulating partition wall, the freezing temperature zone chamber is cooled by the air that has exchanged heat with the second evaporator, and is also cooled.
The air that has exchanged heat with the second evaporator is blown according to the excess or deficiency of cooling of the vegetable chamber.
The refrigerator according to claim 1, wherein the refrigerator is not provided with a storage chamber below the vegetable compartment.
JP2022026984A 2017-10-26 2022-02-24 refrigerator Active JP7254227B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022026984A JP7254227B2 (en) 2017-10-26 2022-02-24 refrigerator
JP2023049451A JP2023068192A (en) 2022-02-24 2023-03-27 refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017206769A JP7267673B2 (en) 2017-10-26 2017-10-26 refrigerator
JP2022026984A JP7254227B2 (en) 2017-10-26 2022-02-24 refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017206769A Division JP7267673B2 (en) 2017-10-26 2017-10-26 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023049451A Division JP2023068192A (en) 2022-02-24 2023-03-27 refrigerator

Publications (2)

Publication Number Publication Date
JP2022063354A true JP2022063354A (en) 2022-04-21
JP7254227B2 JP7254227B2 (en) 2023-04-07

Family

ID=87885244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022026984A Active JP7254227B2 (en) 2017-10-26 2022-02-24 refrigerator

Country Status (1)

Country Link
JP (1) JP7254227B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292968A (en) * 1997-04-17 1998-11-04 Toshiba Corp Refrigerator
JP2003329353A (en) * 2002-05-14 2003-11-19 Fujitsu General Ltd Refrigerator
JP2006010162A (en) * 2004-06-24 2006-01-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2006090686A (en) * 2004-08-26 2006-04-06 Toshiba Corp Refrigerator
JP2016044866A (en) * 2014-08-22 2016-04-04 日立アプライアンス株式会社 refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10292968A (en) * 1997-04-17 1998-11-04 Toshiba Corp Refrigerator
JP2003329353A (en) * 2002-05-14 2003-11-19 Fujitsu General Ltd Refrigerator
JP2006010162A (en) * 2004-06-24 2006-01-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2006090686A (en) * 2004-08-26 2006-04-06 Toshiba Corp Refrigerator
JP2016044866A (en) * 2014-08-22 2016-04-04 日立アプライアンス株式会社 refrigerator

Also Published As

Publication number Publication date
JP7254227B2 (en) 2023-04-07

Similar Documents

Publication Publication Date Title
JP5847626B2 (en) Refrigerator and operation method thereof
JP5017340B2 (en) refrigerator
JP5530852B2 (en) refrigerator
JP5507511B2 (en) refrigerator
WO2015176581A1 (en) Refrigerator
CN111473573B (en) Refrigerator with a door
JP5838238B2 (en) refrigerator
JP2019138481A (en) refrigerator
JP6890502B2 (en) refrigerator
CN112378146B (en) Refrigerator with a door
JP2022063354A (en) refrigerator
JP6940424B2 (en) refrigerator
CN109708378B (en) Refrigerator with a door
JP2023068192A (en) refrigerator
JP7454458B2 (en) refrigerator
JP2019132503A (en) refrigerator
JP7063641B2 (en) refrigerator
JP2019027649A (en) refrigerator
JP6975735B2 (en) refrigerator
JP6934433B2 (en) refrigerator
JP7369520B2 (en) refrigerator
JP2019138480A (en) refrigerator
JP2023007618A (en) refrigerator
JP6962829B2 (en) refrigerator
JP6955348B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230328

R150 Certificate of patent or registration of utility model

Ref document number: 7254227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150