JPH0233108Y2 - - Google Patents

Info

Publication number
JPH0233108Y2
JPH0233108Y2 JP20249182U JP20249182U JPH0233108Y2 JP H0233108 Y2 JPH0233108 Y2 JP H0233108Y2 JP 20249182 U JP20249182 U JP 20249182U JP 20249182 U JP20249182 U JP 20249182U JP H0233108 Y2 JPH0233108 Y2 JP H0233108Y2
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
water supply
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20249182U
Other languages
Japanese (ja)
Other versions
JPS59105970U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20249182U priority Critical patent/JPS59105970U/en
Publication of JPS59105970U publication Critical patent/JPS59105970U/en
Application granted granted Critical
Publication of JPH0233108Y2 publication Critical patent/JPH0233108Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、ヒートポンプ式暖房給湯機に関し、
特に暖房運転時において室外熱交換器がフロスト
状態になると、該室外熱交換器に冷媒であるホツ
トガスを流してデフロスト(融解)するようにし
たヒートポンプ暖房給湯機のデフロスト運転制御
の改良に関するものである。 (従来の技術) 従来より、この種のヒートポンプ式冷暖房給湯
機として、第3図に示すように、圧縮機aと、室
内熱交換器bと、室外熱交換器cと、貯湯槽d内
の湯を加熱するための給湯用熱交換器eとを備
え、暖房運転時には冷媒循環系統を暖房サイクル
に切換えて圧縮機aからの冷媒を室内熱交換器b
から室外熱交換器cに圧送循環させることにより
室内を暖房する一方、給湯運転時には圧縮機aか
らの冷媒を給湯用熱交換器eから室外熱交換器c
に圧送循環させることにより、貯湯槽d内の湯を
加熱するようにしたものは知られている(例えば
特公昭57−43830号公報等参照)。 そして、上記の如きヒートポンプ式暖房給湯機
による暖房運転時における室外熱交換器cがフロ
ストすると、冷媒循環系統を暖房サイクルとは逆
サイクル(冷房サイクル)に切換えて、圧縮機a
からの冷媒を室外熱交換器cから室内熱交換器b
に圧送循環させることにより、冷媒であるホツト
ガスを室外熱交換器cに流してデフロストするこ
とが行われている。 (考案が解決しようとする課題) しかしながら、上記従来のものでは、冷媒循環
系統が冷房サイクルとなるために、通常、上記デ
フロスト運転は室内を極度に冷却することがない
よう室内フアンを停止させた状態で行われる。こ
のため、室内熱交換器bでの熱取得量が少なくな
つてデフロスト時間が長くなるとともに、室内も
ある程度冷却されることになり、快適暖房を行い
得ないという欠点があつた。 本考案は斯かる点に鑑みてなされたもので、デ
フロスト熱源として貯湯槽内の湯の熱量を使用す
ることに着目し、暖房運転時におけるフロスト時
には、圧縮機からの冷媒を室外熱交換器から給湯
用熱交換器に圧送循環させるようにすることによ
り、給湯用熱交換器において多量の熱を収得して
デフロスト時間を短縮するとともに、室内の温度
低下を招くことがないようにして快適暖房を行い
得るようにすることを目的とするものである。そ
の際、貯湯槽内の湯温が低い場合には、貯湯槽が
凍結し給湯用熱交換器が破損する危険性が高くな
るため、貯湯槽内の湯温が所定温度より低い場合
には上記給湯用熱交換器を熱源とするデフロスト
運転を停止し、従来と同様に室内熱交換器を熱源
とするデフロスト運転を行つて、給湯用熱交換器
の破損を未然に防止しつつ快適暖房を行うように
するものである。 (課題を解決するための手段) この目的を達成するため、本考案の解決手段
は、第1図に示すように、圧縮機1、室内熱交換
器2及び室外熱交換器3を順に接続してなる逆サ
イクル運転可能な暖房用冷媒回路を備えるととも
に、上記圧縮機1、給湯用熱交換器5及び上記室
外熱交換器3を順に接続してなる逆サイクル運転
可能な給湯用冷媒回路を備える。さらに、上記両
冷媒回路の接続の切換及び各冷媒回路の逆サイク
ルへの切換を行う切換手段を備える。そして、上
記給湯用熱交換器5近傍の温度を検出し、該温度
が所定温度以上のときには給湯用熱交換器選択信
号を出力する一方、該温度が所定温度より低いと
きには室内熱交換器選択信号を出力する温度検出
器11と、暖房運転時における室外熱交換器3の
フロスト時を検出するフロスト検出装置12とを
備える。その上で、該フロスト検出装置12の検
出信号の出力時であつて上記温度検出器11から
給湯用熱交換器選択信号を受けたときには上記給
湯用冷媒回路を給湯用熱交換器5を熱源とする逆
サイクルに、上記温度検出器11から室内熱交換
器選択信号を受けたときには上記暖房用冷媒回路
を室内熱交換器2を熱源とする逆サイクルにして
それぞれ室外熱交換器2のデフロストを行うよう
に上記切換手段を切換制御する制御回路13を備
えるものとする。 (作用) これにより、本考案では、フロスト検出装置1
2の検出信号の出力時、貯湯槽内の湯温が所定温
度以上のときには温度検出器11からの給湯用熱
交換器選択信号を受けて制御回路13の制御によ
り、給湯用冷媒回路を給湯用熱交換器5を熱源と
する逆サイクルにしてデフロスト運転を行う。一
方、貯湯槽内の湯温が所定温度より低いときには
温度検出器11からの室内熱交換器選択信号を受
けて制御回路13の制御により、暖房用冷媒回路
を室内熱交換器2を熱源とする逆サイクルにして
デフロスト運転を行うものである。 (実施例) 以下、本考案の実施例を図面に基いて詳細に説
明する。 第1図はヒートポンプ式冷暖房給湯機の冷媒配
管系統を示し、1は圧縮機、2は室内熱交換器、
3は室外熱交換器、4は内部に水を貯溜する貯湯
槽、5は該貯湯槽4内の貯溜水を加熱するための
給湯用熱交換器である。6は上記室内熱交換器2
および給湯用熱交換器5から室外熱交換器3への
冷媒が流通する膨張弁、7は給湯用熱交換器5お
よび室外熱交換器3から室内熱交換器2への冷媒
が流通する膨張弁、8は受液器、9はアキユムレ
ータである。また、SV1は圧縮機1から室内熱交
換器2への冷媒通路を開閉する電磁弁、SV2は圧
縮機1から室外熱交換器3への冷媒通路を開閉す
る電磁弁、SV3は圧縮機1から給湯用熱交換器5
への冷媒通路を開閉する電磁弁、SV4は室内熱交
換器2からアキユムレータ9への冷媒通路を開閉
する電磁弁、SV5は膨張弁6への冷媒通路を開閉
する電磁弁、SV6は受液器8から給湯用熱交換器
5への冷媒通路を開閉する電磁弁、SV7は室外熱
交換器3からアキユムレータ9への冷媒通路を開
閉する電磁弁、SV8は給湯用熱交換器5からアキ
ユムレータ9への冷媒通路を開閉する電磁弁、
SV9は膨張弁7への冷媒通路を開閉する電磁弁、
SV10は圧縮機1から室内熱交換器2への冷媒通
路を開閉する電磁弁である。以上により、圧縮機
1、室内熱交換器2及び室外熱交換器3を順に接
続してなる逆サイクル運転可能な冷暖房用冷媒回
路と、圧縮機1、給湯用熱交換器5及び室外熱交
換器3を順に接続してなる逆サイクル運転可能な
給湯用冷媒回路と、圧縮機1、給湯用熱交換器5
及び室内熱交換器2を順に接続してなる冷房給湯
用冷媒回路とが構成される。また、電磁弁SV1
SV10により、上記各冷媒回路間の接続の切換及
び各冷媒回路の逆サイクルへの切換を行う切換手
段を構成している。 また、10は上記10個の電磁弁SV1〜SV10
開閉制御する制御装置であつて、該制御装置10
は下表に示すように、10個の電磁弁SV1〜SV10
のうち所定のものを開作動させることにより運転
状態を4通りに切換える。表中第1列目の場合に
は圧縮機1からの冷媒を室外熱交換器3から室内
熱交換器2に循環させて冷房運転を行い、表中第
2列目の場合には圧縮機1からの冷媒を給湯用熱
交換器5から室内熱交換器2に循環させて室内を
冷房すると同時に室内から吸収した排熱により貯
湯槽4内の湯を加熱するようにした冷房給湯運転
を行い、また表中第3列目の場合には圧縮機1か
らの冷媒を給湯用熱交換器5から室外熱交換器3
に循環させて給湯運転を行い、さらに表中第4列
目の場合には圧縮機1からの冷媒を室内熱交換器
2から室外熱交換器3に循環させて暖房運転を行
うように構成されている。
(Industrial Application Field) The present invention relates to a heat pump type heating and water heater.
In particular, this invention relates to an improvement in the defrost operation control of a heat pump heating water heater, in which when an outdoor heat exchanger becomes frosted during heating operation, hot gas, which is a refrigerant, is caused to flow through the outdoor heat exchanger to defrost (melt) the outdoor heat exchanger. . (Prior Art) Conventionally, as shown in FIG. 3, this type of heat pump type air-conditioning/heating water heater has a compressor a, an indoor heat exchanger b, an outdoor heat exchanger c, and a hot water storage tank d. During heating operation, the refrigerant circulation system is switched to the heating cycle and the refrigerant from the compressor a is transferred to the indoor heat exchanger b.
During hot water supply operation, the refrigerant from the compressor a is transferred from the hot water supply heat exchanger e to the outdoor heat exchanger c to heat the room.
A system is known in which hot water in a hot water storage tank d is heated by circulating it under pressure (for example, see Japanese Patent Publication No. 57-43830). When the outdoor heat exchanger c becomes frosted during the heating operation using the heat pump heating water heater as described above, the refrigerant circulation system is switched to the opposite cycle (cooling cycle) from the heating cycle, and the compressor a
The refrigerant from outdoor heat exchanger c to indoor heat exchanger b
By force-feeding and circulating hot gas as a refrigerant, it is defrosted by flowing it into the outdoor heat exchanger c. (Problem to be solved by the invention) However, in the conventional system described above, since the refrigerant circulation system is a cooling cycle, the defrost operation is usually performed by stopping the indoor fan to avoid excessively cooling the room. done in the state. As a result, the amount of heat acquired by the indoor heat exchanger b decreases, the defrost time becomes longer, and the room is also cooled to some extent, making it impossible to provide comfortable heating. The present invention was developed in consideration of these points, and focused on using the heat of hot water in the hot water storage tank as a defrosting heat source.When frosting occurs during heating operation, the refrigerant from the compressor is transferred from the outdoor heat exchanger. By circulating the heat through the hot water supply heat exchanger under pressure, a large amount of heat is collected in the hot water heat exchanger, shortening the defrosting time, and providing comfortable heating without causing a drop in indoor temperature. The purpose is to make it possible to do so. At that time, if the water temperature in the hot water storage tank is low, there is a high risk that the hot water storage tank will freeze and the hot water heat exchanger will be damaged. Defrost operation that uses the hot water heat exchanger as a heat source is stopped, and defrost operation that uses the indoor heat exchanger as a heat source is performed as before to provide comfortable heating while preventing damage to the hot water heat exchanger. It is intended to do so. (Means for Solving the Problem) In order to achieve this object, the solving means of the present invention connects a compressor 1, an indoor heat exchanger 2, and an outdoor heat exchanger 3 in order, as shown in FIG. It is equipped with a heating refrigerant circuit capable of reverse cycle operation, and a hot water supply refrigerant circuit capable of reverse cycle operation, which is formed by sequentially connecting the compressor 1, the hot water supply heat exchanger 5, and the outdoor heat exchanger 3. . Furthermore, a switching means is provided for switching the connection of both the refrigerant circuits and switching each refrigerant circuit to a reverse cycle. Then, the temperature near the hot water supply heat exchanger 5 is detected, and when the temperature is above a predetermined temperature, a hot water supply heat exchanger selection signal is output, while when the temperature is lower than the predetermined temperature, an indoor heat exchanger selection signal is output. The temperature detector 11 outputs the temperature, and the frost detection device 12 detects when the outdoor heat exchanger 3 is frosted during heating operation. Then, when the frost detection device 12 outputs a detection signal and receives a hot water supply heat exchanger selection signal from the temperature detector 11, the hot water supply refrigerant circuit is set to the hot water supply heat exchanger 5 as a heat source. In the reverse cycle, when an indoor heat exchanger selection signal is received from the temperature detector 11, the heating refrigerant circuit is set to a reverse cycle with the indoor heat exchanger 2 as the heat source, and the outdoor heat exchanger 2 is defrosted. A control circuit 13 is provided for controlling the switching means as shown in FIG. (Function) As a result, in the present invention, the frost detection device 1
When the detection signal 2 is output, if the temperature of the hot water in the hot water storage tank is higher than a predetermined temperature, the hot water supply refrigerant circuit is switched to the hot water supply heat exchanger circuit under the control of the control circuit 13 in response to the hot water supply heat exchanger selection signal from the temperature detector 11. Defrost operation is performed in a reverse cycle using the heat exchanger 5 as a heat source. On the other hand, when the water temperature in the hot water storage tank is lower than the predetermined temperature, the indoor heat exchanger selection signal from the temperature detector 11 is received and the control circuit 13 controls the heating refrigerant circuit to use the indoor heat exchanger 2 as the heat source. The defrost operation is performed in reverse cycle. (Example) Hereinafter, an example of the present invention will be described in detail based on the drawings. Figure 1 shows the refrigerant piping system of a heat pump type air conditioning/heating water heater, where 1 is a compressor, 2 is an indoor heat exchanger,
3 is an outdoor heat exchanger, 4 is a hot water tank for storing water therein, and 5 is a hot water supply heat exchanger for heating the water stored in the hot water tank 4. 6 is the above indoor heat exchanger 2
and an expansion valve through which the refrigerant flows from the hot water supply heat exchanger 5 to the outdoor heat exchanger 3; and 7, an expansion valve through which the refrigerant flows from the hot water supply heat exchanger 5 and the outdoor heat exchanger 3 to the indoor heat exchanger 2. , 8 is a liquid receiver, and 9 is an accumulator. Also, SV 1 is a solenoid valve that opens and closes the refrigerant passage from the compressor 1 to the indoor heat exchanger 2, SV 2 is a solenoid valve that opens and closes the refrigerant passage from the compressor 1 to the outdoor heat exchanger 3, and SV 3 is a compression valve. From machine 1 to hot water heat exchanger 5
SV 4 is a solenoid valve that opens and closes the refrigerant passage from the indoor heat exchanger 2 to the accumulator 9, SV 5 is a solenoid valve that opens and closes the refrigerant passage to the expansion valve 6, and SV 6 is a solenoid valve that opens and closes the refrigerant passage from the indoor heat exchanger 2 to the accumulator 9. SV 7 is a solenoid valve that opens and closes the refrigerant passage from the liquid receiver 8 to the heat exchanger 5 for hot water supply, SV 7 is a solenoid valve that opens and closes the refrigerant passage from the outdoor heat exchanger 3 to the accumulator 9, and SV 8 is the heat exchanger for hot water supply. a solenoid valve that opens and closes a refrigerant passage from 5 to an accumulator 9;
SV 9 is a solenoid valve that opens and closes the refrigerant passage to the expansion valve 7;
SV 10 is a solenoid valve that opens and closes the refrigerant passage from the compressor 1 to the indoor heat exchanger 2. As described above, a refrigerant circuit for heating and cooling capable of reverse cycle operation, which is formed by sequentially connecting the compressor 1, the indoor heat exchanger 2, and the outdoor heat exchanger 3, and the compressor 1, the hot water supply heat exchanger 5, and the outdoor heat exchanger are constructed. A refrigerant circuit for hot water supply that can be operated in a reverse cycle by connecting 3 in sequence, a compressor 1, and a heat exchanger 5 for hot water supply.
A refrigerant circuit for cooling and hot water supply is constructed by connecting the indoor heat exchanger 2 and the indoor heat exchanger 2 in this order. In addition, solenoid valve SV 1 ~
The SV 10 constitutes a switching means for switching the connections between the refrigerant circuits and switching the refrigerant circuits to the reverse cycle. Further, 10 is a control device that controls opening and closing of the ten electromagnetic valves SV 1 to SV 10 , and the control device 10
10 solenoid valves SV 1 ~ SV 10 as shown in the table below
By opening a predetermined one of them, the operating state can be switched into four ways. In the case of the first column in the table, cooling operation is performed by circulating the refrigerant from the compressor 1 from the outdoor heat exchanger 3 to the indoor heat exchanger 2, and in the case of the second column in the table, the refrigerant from the compressor 1 is circulated to the indoor heat exchanger 2. A cooling hot water supply operation is performed in which the refrigerant from the hot water supply heat exchanger 5 is circulated to the indoor heat exchanger 2 to cool the room, and at the same time hot water in the hot water storage tank 4 is heated by exhaust heat absorbed from the room. In the case of the third column in the table, the refrigerant from the compressor 1 is transferred from the hot water supply heat exchanger 5 to the outdoor heat exchanger 3.
In the case of the fourth column in the table, the refrigerant from the compressor 1 is circulated from the indoor heat exchanger 2 to the outdoor heat exchanger 3 to perform the heating operation. ing.

【表】 尚、表中○印は開作動を、×印は閉作動
を示す。
そして、上記貯湯槽4内には、給湯用熱交換器
5近傍の温度を検出するサーモスタツトよりなる
温度検出器11が設けられている。該温度検出器
11は、給湯用熱交換器5近傍の温度が所定温度
(例えば3℃)以上のときにはOFF信号として給
湯用熱交換器選択信号を出力する一方、該温度が
所定温度より低いときにはON信号として室内熱
交換器選択信号を出力するように構成されてい
る。 また、12は上記室外熱交換器3でのフロスト
を検出して検出信号を発生するデイアイサを備え
たフロスト検出装置であつて、該フロスト検出装
置12は上記制御装置10による暖房運転時の
み、すなわち電磁弁SV1の開作動時のみ上記デイ
アイサからの検出信号の外部出力が可能となるよ
うに構成されている。 さらに、13は上記フロスト検出装置12から
の検出信号と上記温度検出器11からの給湯用熱
交換器選択信号又は室内熱交換器選択信号とを受
ける制御回路であつて、該制御回路13は、上記
フロスト検出装置12からの検出信号の出力時で
あつて温度検出器11からの給湯用熱交換器選択
信号の受信時には各電磁弁SV1〜SV10を上記表
中第5列目に示す如く開閉制御することにより、
圧縮機1から圧送された冷媒を室外熱交換器3に
流したのち受液器8から給湯用熱交換器5を経て
再び圧縮機1に戻すように上記給湯用冷媒回路を
給湯用熱交換器5を熱源とする逆サイクルに切換
えて、室外熱交換器3のデフロストを行う。一
方、温度検出器11からの室内熱交換器選択信号
の受信時には各電磁弁SV1〜SV10を上記表中第
6列目に示す如く開閉制御することにより、圧縮
機1から室外熱交換器3に吐出された冷媒を受液
器8から室内熱交換器2を経て圧縮機1に戻すよ
うに冷暖房用冷媒回路を冷房サイクルに切換え
て、室内熱交換器2の熱源により室外熱交換器3
のデフロストを行うように構成されている。尚、
上記制御回路13による冷媒循環系統の切換時に
は制御装置10は各電磁弁SV1〜SV10の開閉制
御機能を停止して冷媒循環系統の切換えを行わな
いように構成されている。 したがつて、上記実施例においては、暖房運転
時、室外熱交換器3でフロストすると、フロスト
検出装置12からの検出信号の外部出力により制
御回路13が作動して冷媒循環系統が切換わり、
給湯用熱交換器5の近傍の温度が所定温度以上の
場合には給湯用熱交換器5を熱源として、また該
温度が所定温度より低い場合には室内熱交換器2
を熱源としてそれぞれ逆サイクルデフロスト運転
により室外熱交換器3のデフロストが行われるの
で、室内を可及的に冷却することなく、しかも貯
湯槽4を凍結させることなく室外熱交換器3のデ
フロストを短時間で効率良く行うことができる。 すなわち、給湯用熱交換器5近傍の温度が所定
温度以上のときには、温度検出器11からの給湯
用熱交換器選択信号を受けた制御回路13の作動
により電磁弁SV2,SV6,SV8が開作動して(上
記表中第5段目参照)、冷媒は給湯用熱交換器5
内で貯湯槽4内の湯により加熱されて気化したの
ち、圧縮機1により室外熱交換器3に圧送されて
デフロストし、該室外熱交換器3で液化して、受
液器8を経て給湯用熱交換器5に戻ることを繰返
すので、室外熱交換器3でのデフロストは貯湯槽
4の湯を熱源として短時間で効率よく行われるこ
とになる。しかも、貯湯槽4内の湯を熱源として
いるので室内を冷却することがない。 一方、給湯用熱交換器5近傍の温度が所定温度
より低いとき、又は上記の如く貯湯槽4内の湯を
熱源としたデフロストにより給湯用熱交換器5近
傍の温度が所定温度より低くなつたときには、温
度検出器11からの室内熱交換器選択信号を受け
た制御回路13の作動により電磁弁SV2,SV4
SV9が開作動して冷媒循環系統が切換わり、冷媒
は室内熱交換器2内で室内空気により加熱されて
気化したのち圧縮機1により室外熱交換器3に圧
装されてデフロストすることを繰返すので、貯湯
槽4内の湯温は低下せず、貯湯槽4の凍結を未然
に防止することができる。 尚、給湯用熱交換器5を熱源とする逆サイクル
デフロスト運転に起因して給湯される湯の温度が
低下するのを防止するため、貯湯槽4内の下部に
給湯用熱交換器5を配設するとともに、貯湯槽4
内の上部の湯を給湯するようにすれば、給湯され
る湯の温度低下を可及的に抑制することができ、
より好ましい。 また、上記実施例では、切換手段として冷媒循
環系統の切換えを10個の電磁弁SV1〜SV10の開
閉作動により行つたが、その他、第2図に示すよ
うに、2個の四路切換弁14,15を用いても同
様に切換えることができるのは言うまでもない。 (考案の効果) 以上説明したように、本考案によれば、暖房運
転時におけるフロスト時(すなわちフロスト検出
装置の検出信号の出力時)、給湯用熱交換器近傍
の温度が所定温度以上のときには温度検出器から
の給湯用熱交換器選択信号の出力に基いて制御回
路により給湯用熱交換器を熱源とする逆サイクル
デフロスト運転を行うように切換える一方、給湯
用熱交換器近傍の温度が所定温度より低いときに
は温度検出器からの室内熱交換器選択信号の出力
に基いて上記制御回路により室内熱交換器を熱源
とする逆サイクルデフロスト運転を行うように切
換えるようにしたので、室内を可及的に冷却する
ことなく且つ貯湯槽を凍結させることなくデフロ
スト時間の短縮化を図ることができ、快適暖房を
可能とするものである。
[Table] In the table, the ○ mark indicates opening operation, and the × mark indicates closing operation.
A temperature detector 11 made of a thermostat is provided in the hot water storage tank 4 to detect the temperature near the hot water supply heat exchanger 5. The temperature detector 11 outputs a hot water supply heat exchanger selection signal as an OFF signal when the temperature near the hot water supply heat exchanger 5 is higher than a predetermined temperature (for example, 3° C.), and outputs a hot water supply heat exchanger selection signal as an OFF signal when the temperature is lower than the predetermined temperature. It is configured to output an indoor heat exchanger selection signal as an ON signal. Reference numeral 12 denotes a frost detection device equipped with a de-icer that detects frost in the outdoor heat exchanger 3 and generates a detection signal, and the frost detection device 12 is used only during heating operation by the control device 10; The configuration is such that the detection signal from the de-Icer can be output to the outside only when the solenoid valve SV 1 is opened. Further, 13 is a control circuit that receives a detection signal from the frost detection device 12 and a hot water supply heat exchanger selection signal or an indoor heat exchanger selection signal from the temperature detector 11, and the control circuit 13 includes: When the detection signal is output from the frost detection device 12 and the hot water supply heat exchanger selection signal is received from the temperature sensor 11, the solenoid valves SV 1 to SV 10 are set as shown in the fifth column in the table above. By controlling opening and closing,
The hot water supply refrigerant circuit is connected to the hot water supply heat exchanger so that the refrigerant pumped from the compressor 1 flows into the outdoor heat exchanger 3 and then returns to the compressor 1 via the liquid receiver 8, the hot water supply heat exchanger 5, and the hot water supply heat exchanger 5. The outdoor heat exchanger 3 is defrosted by switching to a reverse cycle using the heat source 5 as the heat source. On the other hand, when the indoor heat exchanger selection signal is received from the temperature detector 11, the solenoid valves SV 1 to SV 10 are controlled to open and close as shown in the sixth column of the table above, so that the compressor 1 is connected to the outdoor heat exchanger. The air-conditioning refrigerant circuit is switched to a cooling cycle so that the refrigerant discharged from the liquid receiver 8 is returned to the compressor 1 via the indoor heat exchanger 2, and the heat source of the indoor heat exchanger 2 is used to transfer the refrigerant to the outdoor heat exchanger 3.
It is configured to defrost. still,
When the refrigerant circulation system is switched by the control circuit 13, the control device 10 is configured to stop the opening/closing control function of each electromagnetic valve SV 1 to SV 10 so as not to switch the refrigerant circulation system. Therefore, in the above embodiment, when frost occurs in the outdoor heat exchanger 3 during heating operation, the control circuit 13 is activated by the external output of the detection signal from the frost detection device 12 to switch the refrigerant circulation system.
When the temperature near the hot water supply heat exchanger 5 is higher than a predetermined temperature, the hot water supply heat exchanger 5 is used as the heat source, and when the temperature is lower than the predetermined temperature, the indoor heat exchanger 2 is used as the heat source.
Since the outdoor heat exchanger 3 is defrosted by reverse cycle defrost operation using the heat source as the heat source, the defrost of the outdoor heat exchanger 3 can be shortened without cooling the room as much as possible and without freezing the hot water tank 4. It can be done efficiently and in a timely manner. That is, when the temperature near the hot water supply heat exchanger 5 is higher than a predetermined temperature, the solenoid valves SV 2 , SV 6 , SV 8 are activated by the control circuit 13 that receives the hot water supply heat exchanger selection signal from the temperature detector 11 . is opened (see the fifth stage in the table above), and the refrigerant is transferred to the hot water supply heat exchanger 5.
After being heated and vaporized by the hot water in the hot water storage tank 4, the compressor 1 sends it under pressure to the outdoor heat exchanger 3 for defrosting, liquefies it in the outdoor heat exchanger 3, and supplies the hot water via the liquid receiver 8. Since the return to the outdoor heat exchanger 5 is repeated, defrosting in the outdoor heat exchanger 3 can be efficiently performed in a short time using the hot water in the hot water storage tank 4 as a heat source. Moreover, since the hot water in the hot water storage tank 4 is used as a heat source, there is no need to cool the room. On the other hand, when the temperature near the hot water supply heat exchanger 5 is lower than the predetermined temperature, or when the temperature near the hot water supply heat exchanger 5 becomes lower than the predetermined temperature due to defrosting using the hot water in the hot water storage tank 4 as a heat source as described above. Sometimes, the solenoid valves SV 2 , SV 4 ,
When the SV 9 is opened, the refrigerant circulation system is switched, and the refrigerant is heated and vaporized by the indoor air in the indoor heat exchanger 2, and then compressed into the outdoor heat exchanger 3 by the compressor 1 and defrosted. Since the process is repeated, the temperature of the hot water in the hot water tank 4 does not drop, and freezing of the hot water tank 4 can be prevented. Furthermore, in order to prevent the temperature of the hot water being supplied from decreasing due to the reverse cycle defrost operation using the hot water supply heat exchanger 5 as a heat source, the hot water supply heat exchanger 5 is arranged at the lower part of the hot water storage tank 4. In addition to installing hot water tank 4
By supplying hot water from the upper part of the inside, you can suppress the drop in temperature of the hot water as much as possible.
More preferred. In addition, in the above embodiment, the refrigerant circulation system was switched by opening and closing ten solenoid valves SV 1 to SV 10 as switching means, but as shown in FIG. Needless to say, switching can be performed in the same manner using the valves 14 and 15. (Effects of the invention) As explained above, according to the invention, when there is frost during heating operation (that is, when the detection signal of the frost detection device is output), when the temperature near the hot water supply heat exchanger is higher than the predetermined temperature, Based on the output of the hot water supply heat exchanger selection signal from the temperature sensor, the control circuit switches to perform a reverse cycle defrost operation using the hot water heat exchanger as the heat source, while maintaining the temperature near the hot water supply heat exchanger at a predetermined level. When the temperature is lower than the above temperature, the control circuit switches to reverse cycle defrost operation using the indoor heat exchanger as the heat source based on the output of the indoor heat exchanger selection signal from the temperature detector, so that the indoor heat exchanger can be used as much as possible. It is possible to shorten the defrost time without cooling the hot water storage tank or freezing the hot water storage tank, thereby enabling comfortable heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本考案の実施例を示し、
第1図はヒートポンプ式冷暖房給湯機の冷媒配管
系統図、第2図は第1図の冷媒配管系統の変形列
を示す図である。第3図は従来例を示す冷暖房給
湯装置の冷媒配管系統図である。 2……室内熱交換器、5……給湯用熱交換器、
11……温度検出器、12……フロスト検出装
置、13……制御回路。
1 and 2 show an embodiment of the present invention,
FIG. 1 is a refrigerant piping system diagram of a heat pump type air-conditioning/heating water heater, and FIG. 2 is a diagram showing a modified sequence of the refrigerant piping system of FIG. 1. FIG. 3 is a refrigerant piping system diagram of a conventional heating, cooling, and hot water supply system. 2...Indoor heat exchanger, 5...Hot water supply heat exchanger,
11... Temperature detector, 12... Frost detection device, 13... Control circuit.

Claims (1)

【実用新案登録請求の範囲】 圧縮機1、室内熱交換器2及び室外熱交換器3
を順に接続してなる逆サイクル運転可能な暖房用
冷媒回路と、 上記圧縮機1、給湯用熱交換器5及び上記室外
熱交換器3を順に接続してなる逆サイクル運転可
能な給湯用冷媒回路と、 上記両冷媒回路の接続の切換及び各冷媒回路の
逆サイクルへの切換を行う切換手段と、 上記給湯用熱交換器5近傍の温度を検出し、該
温度が所定温度以上のときには給湯用熱交換器選
択信号を出力する一方、該温度が所定温度より低
いときには室内熱交換器選択信号を出力する温度
検出器11と、 暖房運転時における室外熱交換器3のフロスト
時を検出するフロスト検出装置12と、 該フロスト検出装置12の検出信号の出力時で
あつて上記温度検出器11から給湯用熱交換器選
択信号を受けたときには上記給湯用冷媒回路を給
湯用熱交換器5を熱源とする逆サイクルに、上記
温度検出器11から室内熱交換器選択信号を受け
たときには上記暖房用冷媒回路を室内熱交換器2
を熱源とする逆サイクルにしてそれぞれ室外熱交
換器3のデフロストを行うように上記切換手段を
切換制御する制御回路13とを備えたことを特徴
とするヒートポンプ式暖房給湯機。
[Scope of claims for utility model registration] Compressor 1, indoor heat exchanger 2, and outdoor heat exchanger 3
A heating refrigerant circuit capable of reverse cycle operation, which is formed by sequentially connecting the compressor 1, the hot water supply heat exchanger 5, and the outdoor heat exchanger 3, and which is capable of reverse cycle operation. and a switching means for switching the connection of both refrigerant circuits and switching each refrigerant circuit to the reverse cycle; detecting the temperature near the hot water supply heat exchanger 5, and when the temperature is above a predetermined temperature, a switching means for switching the connection of the two refrigerant circuits to the reverse cycle; A temperature detector 11 that outputs a heat exchanger selection signal while outputting an indoor heat exchanger selection signal when the temperature is lower than a predetermined temperature, and a frost detection unit that detects when the outdoor heat exchanger 3 is frosted during heating operation. When the frost detection device 12 outputs a detection signal and receives a hot water supply heat exchanger selection signal from the temperature detector 11, the hot water supply refrigerant circuit is configured to use the hot water supply heat exchanger 5 as a heat source. In the reverse cycle, when an indoor heat exchanger selection signal is received from the temperature detector 11, the heating refrigerant circuit is switched to the indoor heat exchanger 2.
and a control circuit 13 that switches and controls the switching means to defrost the outdoor heat exchanger 3 in a reverse cycle using a heat source as a heat source.
JP20249182U 1982-12-29 1982-12-29 Heat pump type heating water heater Granted JPS59105970U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20249182U JPS59105970U (en) 1982-12-29 1982-12-29 Heat pump type heating water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20249182U JPS59105970U (en) 1982-12-29 1982-12-29 Heat pump type heating water heater

Publications (2)

Publication Number Publication Date
JPS59105970U JPS59105970U (en) 1984-07-17
JPH0233108Y2 true JPH0233108Y2 (en) 1990-09-06

Family

ID=30427961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20249182U Granted JPS59105970U (en) 1982-12-29 1982-12-29 Heat pump type heating water heater

Country Status (1)

Country Link
JP (1) JPS59105970U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020605A (en) * 2012-07-13 2014-02-03 Panasonic Corp Heat pump type air conditioning hot water supply device

Also Published As

Publication number Publication date
JPS59105970U (en) 1984-07-17

Similar Documents

Publication Publication Date Title
CN104832989B (en) The control method of air conditioner and air conditioner
US4102390A (en) Control system for heat pump and furnace combination
JP2667741B2 (en) Air conditioner
JPS63169457A (en) Heat pump type air conditioner
JPH0233108Y2 (en)
JPS5885043A (en) Operation control apparatus for cold insulation type air conditioner
JP7041037B2 (en) Hot water storage type water heater with air conditioning function
JPS63259342A (en) Multi-room type air conditioner
JP2001201217A (en) Air conditioner
US20230168013A1 (en) Heat pump system with flash defrosting mode
JPH09318229A (en) Refrigerating device
JP2004278814A (en) Freezing device and its controlling method
JPH0522761Y2 (en)
JPH07120092A (en) Air conditioner
JP2508812B2 (en) Heat storage type air conditioner
JPH0325106Y2 (en)
JP4186399B2 (en) Heat pump air conditioner
KR100362608B1 (en) Air conditioner for heating and cooling and method for controlling defrosting of the same
JPH0429345Y2 (en)
JPH0510191Y2 (en)
JPH0512628B2 (en)
JPS5922437Y2 (en) Air conditioning/heating water heater
JPH0431505Y2 (en)
JPH01306782A (en) Heat pump type air-conditioner
JPH03164668A (en) Heat pump device