JPS5922437Y2 - Air conditioning/heating water heater - Google Patents
Air conditioning/heating water heaterInfo
- Publication number
- JPS5922437Y2 JPS5922437Y2 JP17460178U JP17460178U JPS5922437Y2 JP S5922437 Y2 JPS5922437 Y2 JP S5922437Y2 JP 17460178 U JP17460178 U JP 17460178U JP 17460178 U JP17460178 U JP 17460178U JP S5922437 Y2 JPS5922437 Y2 JP S5922437Y2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- heat exchanger
- heating
- water supply
- throttle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Central Heating Systems (AREA)
Description
【考案の詳細な説明】
本考案は圧縮機を用いた冷暖房給湯装置に関するもので
、冷房期には冷房排熱を利用して給湯し、中間期、暖房
期には外気を熱源として給湯すると共に、所定の冷暖房
能力を保持しながら、暖房時のすみやかな除霜運転を可
能とし、省エネルギーで低コストな冷暖房給湯装置を提
供するものである。[Detailed description of the invention] This invention relates to an air-conditioning/heating water supply system using a compressor. During the cooling period, the cooling exhaust heat is used to supply hot water, and during the intermediate and heating periods, outside air is used as a heat source to supply hot water. The present invention provides an energy-saving and low-cost air-conditioning/heating-water heater that enables prompt defrosting operation during heating while maintaining a predetermined cooling/heating capacity.
従来、圧縮機を用いた冷暖房給湯装置として、例えば第
1図に示すような装置が提案されている。BACKGROUND ART Conventionally, a device as shown in FIG. 1, for example, has been proposed as an air-conditioning/heating/water supply device using a compressor.
第1図において、Aは室内ユニット、Bは室外ユニット
である。In FIG. 1, A is an indoor unit and B is an outdoor unit.
1は圧縮機、2は四方弁、3は熱源側空気熱交換器、4
a 、4 bは絞り機構、5は負荷側空気熱交換器で
、これらを一連の冷媒配管により接続し、ヒートポンプ
サイクルとすると共に、熱源側ファン6、負荷側ファン
7を配置している。1 is a compressor, 2 is a four-way valve, 3 is a heat source side air heat exchanger, 4
Reference numerals a and 4b denote a throttle mechanism, and reference numeral 5 denotes a load side air heat exchanger.These are connected by a series of refrigerant piping to form a heat pump cycle, and a heat source side fan 6 and a load side fan 7 are arranged.
さらに圧縮機1と四方弁2を結ぶ吐出冷媒配管8aの途
中から分岐し、絞り機構4 a 、4 bの間の冷媒配
管に接続される冷媒配管において給湯用水熱交換器9と
絞り機構4Cを付設し、循環ポンプ10からの循環水と
熱交換可能としている。Further, a water heat exchanger 9 for hot water supply and a throttle mechanism 4C are installed in the refrigerant pipe that branches from the middle of the discharge refrigerant pipe 8a connecting the compressor 1 and the four-way valve 2 and is connected to the refrigerant pipe between the throttle mechanisms 4a and 4b. It is attached so that heat can be exchanged with the circulating water from the circulation pump 10.
11は蓄熱槽、12は、蓄熱槽11と循環ポンプ10と
給湯用水熱交換器9を接続する水循環回路であり、蓄熱
槽11の下部から循環水を給湯用水熱交換器9で熱交換
させることによって、蓄熱槽11の上部から貯湯するよ
うに構成している。11 is a heat storage tank; 12 is a water circulation circuit that connects the heat storage tank 11, the circulation pump 10, and the water heat exchanger 9 for hot water supply; circulating water from the lower part of the heat storage tank 11 is heat-exchanged with the water heat exchanger 9 for hot water supply; Accordingly, hot water is stored from the upper part of the heat storage tank 11.
この際蓄熱槽11中の水温は低温域と高温域が若干の混
合層を境界として明確に分離されることになる。At this time, the water temperature in the heat storage tank 11 is clearly separated into a low temperature region and a high temperature region with a slight mixed layer as a boundary.
また13は給水管であり、本例では水道水の加圧により
蓄熱槽11中は常に満水状態とされると共に、蓄熱槽1
1の上部から給湯回路14を接続することにより蓄熱槽
11中の温水が下部からの押上げ式により給湯されるよ
うに構成している。Further, 13 is a water supply pipe, and in this example, the heat storage tank 11 is always kept full of water by pressurizing tap water, and the heat storage tank 11 is always filled with water.
By connecting the hot water supply circuit 14 from the top of the tank 1, hot water in the heat storage tank 11 is supplied by pushing up from the bottom.
第1図の冷暖房給湯装置における冷媒の流れを利用パタ
ーンとの対比および制御手段との関連で整理すると、第
1表のようになる。Table 1 shows the flow of refrigerant in the air conditioning, heating, and hot water supply system shown in FIG. 1 when compared with usage patterns and in relation to control means.
すなわち、冷房期においては、常に負荷側空気熱交換器
5を蒸発器として作用させ、冷房運転させながら、貯湯
が完了しない間は給湯用水熱交換器9を凝縮器として作
用させることにより、冷房排熱のすべてを貯湯に利用す
る(利用パターンA)と共に、貯湯が完了した後は熱源
側空気熱交換器3を凝縮器として作用させることにより
冷房排熱を大気に放出するように構成している。That is, during the cooling period, the load-side air heat exchanger 5 is always operated as an evaporator to perform cooling operation, while the hot water supply water heat exchanger 9 is operated as a condenser while hot water storage is not completed. All of the heat is used for hot water storage (Usage pattern A), and after the hot water storage is completed, the heat source side air heat exchanger 3 acts as a condenser to release the cooling waste heat to the atmosphere. .
(利用パターンB)。また中間期、暖房期の給湯運転時
においては、負荷側空気熱交換器5を作用させず、給湯
用水熱交換器9を凝縮器として作用させ、熱源側空気熱
交換器3を蒸発器として作用させることにより、大気を
熱源として給湯することを可能としたものである。(Usage pattern B). In addition, during hot water supply operation in the intermediate period and heating period, the load side air heat exchanger 5 is not activated, the hot water supply water heat exchanger 9 is activated as a condenser, and the heat source side air heat exchanger 3 is activated as an evaporator. This makes it possible to supply hot water using the atmosphere as a heat source.
(利用パターンC,D)。(Usage patterns C, D).
最後に暖房剤の暖房運転時には、循環ポンプ10を停止
し、負荷側空気熱交換器5を凝縮器として作用させ、熱
源側空気熱交換器3を蒸発器として作用させることによ
り、大気を熱源として暖房運転することを可能ならしめ
たものである。Finally, during heating operation of the heating agent, the circulation pump 10 is stopped, the load side air heat exchanger 5 acts as a condenser, and the heat source side air heat exchanger 3 acts as an evaporator, thereby using the atmosphere as a heat source. This makes it possible to operate the heating system.
(利用パターンE)。しかしながら、このような装置は
次のような欠点をもっている。(Usage pattern E). However, such devices have the following drawbacks.
(1)貯湯完了後の冷房運転(利用パターンB)におい
ては、循環ポンプ10が停止し給湯用水熱交換器9への
冷媒側の抵抗も小さいため、給湯用水熱交換器9中の静
止水と径々に熱交換し、冷媒がたまり込むという現象が
みられ、熱源側空気熱交換器3側への冷媒循環量が減少
し、ガス欠の状態となるため、所定の冷房能力を保持で
きないばかりか、異常な高温の吐出温度となり、運転に
支障をきたすものとなる。(1) In the cooling operation after hot water storage is completed (Usage pattern B), the circulation pump 10 stops and the resistance on the refrigerant side to the water heat exchanger 9 for hot water supply is also small, so the still water in the water heat exchanger 9 for hot water supply There is a phenomenon in which heat is exchanged gradually and the refrigerant accumulates, and the amount of refrigerant circulating to the heat source side air heat exchanger 3 side decreases, resulting in a state of gas starvation, which makes it impossible to maintain the specified cooling capacity. Otherwise, the discharge temperature will become abnormally high, which will cause problems in operation.
(2)また暖房運転(利用パターンE)においても、冷
房運転と同様に常に凝縮器として作用する給湯用水熱交
換器9側への冷媒の溜り込みが起り、極端なガス欠状態
となるため、圧縮機1への吸入圧力が極端に低下し、所
定の暖房能力を保持できないばかりか、通常の暖房負荷
条件においてすら、熱源側空気熱交換器3から吸入ライ
ンにかけて霜付きを起すものとなる。(2) Also, in heating operation (Usage pattern E), as in cooling operation, refrigerant always accumulates on the side of the water heat exchanger 9 for hot water supply, which acts as a condenser, resulting in an extreme gas shortage. The suction pressure to the compressor 1 is extremely reduced, making it impossible to maintain a predetermined heating capacity, and even under normal heating load conditions, frost builds up from the heat source side air heat exchanger 3 to the suction line.
本考案は以上のような欠点をもつ冷暖房給湯装置の改良
に係り、年間給湯を可能としながら、所定の冷暖房能力
を保持せしめると共に、低外気温時のすみやかな除霜運
転を可能としたものである。The present invention is an improvement on the air-conditioning/heating/water-heating equipment that has the above-mentioned drawbacks, and makes it possible to supply hot water all year round while maintaining the specified cooling/heating capacity, and also enables prompt defrosting operation at low outside temperatures. be.
以下本考案をその一実施例を示す第2図ないし第7図を
参考に説明する。The present invention will be explained below with reference to FIGS. 2 to 7 showing one embodiment thereof.
第2図において、圧縮機21、四方弁22、熱源側空気
熱交換器23.絞り24a。In FIG. 2, a compressor 21, a four-way valve 22, a heat source side air heat exchanger 23. Aperture 24a.
24b、負荷側空気熱交換器25、アキュムレータ26
等が通常の冷媒配管により接続されて冷暖房運転可能と
している。24b, load side air heat exchanger 25, accumulator 26
etc. are connected by normal refrigerant piping to enable heating and cooling operation.
また27.28は所定の冷暖房能力を保持すべく挿入さ
れた暖房用絞りと逆止弁であり、29.30は、絞り2
4 aと暖房用絞り27(および逆止弁28)の中間点
および四方弁22とアキュームレータ26の中間点を結
ぶバイパス回路に設けられた電磁弁と吸入バイパス用絞
りであり、これらは特に暖房期の除霜運転時に開路する
ことにより、すみやかな除霜を可能ならしめるものであ
り、通常な閉止の状態となっている。Also, 27.28 is a heating throttle and check valve inserted to maintain a predetermined heating and cooling capacity, and 29.30 is a throttle 2
A solenoid valve and a suction bypass throttle are provided in the bypass circuit connecting the midpoint between 4a and the heating throttle 27 (and check valve 28) and the midpoint between the four-way valve 22 and the accumulator 26. By opening the circuit during defrosting operation, prompt defrosting is possible, and the circuit is normally closed.
そして本実施例の特徴とするところは、圧縮機21の吐
出側と四方弁22の中間点および、暖房用絞り27(お
よび逆止弁28)と、紋’)24bの中間点を結ぶ冷媒
配管中に、圧縮機21の吐出側から順に、電磁弁31.
給湯用水熱交換器32、絞す33、逆止弁34を配置す
ると共に、絞り33と逆止弁34の中間点および電磁弁
29と吸入バイパス用紋り30の中間点を電機弁35を
介して接続したことにある。The feature of this embodiment is that the refrigerant pipe connects the midpoint between the discharge side of the compressor 21 and the four-way valve 22, and the midpoint between the heating throttle 27 (and check valve 28) and the crest 24b. Inside, in order from the discharge side of the compressor 21, there are solenoid valves 31.
A water heat exchanger 32 for hot water supply, a throttle 33, and a check valve 34 are arranged, and the intermediate point between the throttle 33 and the check valve 34 and the intermediate point between the solenoid valve 29 and the suction bypass crest 30 are connected via an electric valve 35. The reason is that I connected it.
また36は熱源側ファン、37は負荷側ファンである。Further, 36 is a heat source side fan, and 37 is a load side fan.
また38は、蓄熱槽39の下部と頂部を循環ポンプ40
、給湯用水熱交換器32、湯温制御弁41を介して接続
する水循環回路であり、湯温制御弁41は特に年間の入
口水温の変動にも拘らず給湯用水熱交換器32の出口水
温を一定にするように循環水量を制御するためのもので
ある。Further, 38 is a circulation pump 40 that connects the bottom and top of the heat storage tank 39.
, a water heat exchanger 32 for hot water supply, and a water circulation circuit connected through a hot water temperature control valve 41, and the hot water temperature control valve 41 controls the outlet water temperature of the water heat exchanger 32 for hot water supply despite yearly fluctuations in the inlet water temperature. This is to control the amount of circulating water so that it remains constant.
また42は給水管、43は給湯管である。Further, 42 is a water supply pipe, and 43 is a hot water supply pipe.
次に本実施例の作用態様を以下に説明すると、冷房給湯
運転(利用パターンA)時においては電磁弁31を開放
し、電磁弁35を閉止すると共に第1表Aに示す制御手
段を用いることによって、第3図の矢印で示す方向に冷
媒が流れ、冷房かつ給湯が可能となるものである。Next, the mode of operation of this embodiment will be explained below. During cooling hot water supply operation (usage pattern A), the solenoid valve 31 is opened, the solenoid valve 35 is closed, and the control means shown in Table 1 A is used. As a result, the refrigerant flows in the direction shown by the arrow in FIG. 3, making it possible to cool the room and supply hot water.
また貯湯完了後の冷房運転(利用パターンB)において
は、電磁弁31を閉止し、電磁弁35を開設すると共に
第1表Bに示す制御手段を用いることによってそれまで
給湯用水熱交換器32を流れていた冷媒が電磁弁35を
介して吸入ライン側に抜けると共に、その後は閉止され
た電磁弁31と逆止弁34により給湯用水熱交換器32
内には冷媒が流れず、常に低圧を維持することによって
冷媒液が溜り込むことがなく、第4図に示すような通常
の熱源側空気熱交換器23を凝縮器とした冷房運転によ
り、所定の冷房能力を保持することが可能となるもので
ある。In addition, in the cooling operation after the completion of hot water storage (Usage pattern B), the solenoid valve 31 is closed, the solenoid valve 35 is opened, and the water heat exchanger 32 for hot water supply is operated until then by using the control means shown in Table 1 B. The flowing refrigerant escapes to the suction line side via the solenoid valve 35, and then the solenoid valve 31 and check valve 34, which are closed, connect the hot water supply water heat exchanger 32.
Refrigerant does not flow inside the chamber and the pressure is always maintained at a low level, so that no refrigerant liquid accumulates. This makes it possible to maintain the cooling capacity of
また中間期、暖房期の給湯運転(利用パターンC,D)
においては、電磁弁31を開設し、電磁弁35を閉止す
ると共に、第1表C,Dに示す制御手段を用いることに
よって第5図に示すような冷媒の流れになり給湯運転が
可能となるものであり、入口水温の変動に対しては湯温
制御弁41により自動的に循環水量を調整し、常に高温
の給湯用水を貯湯することか゛できる。Also, hot water supply operation during the intermediate period and heating period (Usage patterns C and D)
In this case, by opening the solenoid valve 31 and closing the solenoid valve 35, and using the control means shown in Table 1 C and D, the refrigerant flows as shown in Fig. 5 and hot water supply operation becomes possible. The amount of circulating water is automatically adjusted by the hot water temperature control valve 41 in response to fluctuations in the inlet water temperature, and hot water for hot water supply can always be stored at a high temperature.
最後に暖房運転(利用パターンE)においては、冷房運
転(利用パターンB)と同様に、電磁弁31を閉止し、
電磁弁35を開設すると共に、第1表Eに示す制御手段
を用いることによって第6図に示すような通常の熱源側
空気熱交換器23を蒸発器とした暖房運転になり、所定
の暖房能力を保持することが可能となるものである。Finally, in the heating operation (Usage pattern E), the solenoid valve 31 is closed, as in the cooling operation (Usage pattern B).
By opening the solenoid valve 35 and using the control means shown in Table 1 E, heating operation is performed using the normal heat source side air heat exchanger 23 as an evaporator as shown in FIG. 6, and a predetermined heating capacity is achieved. This makes it possible to maintain the following.
また特に低外気温時の暖房運転(または給湯運転)にお
いては、熱源側空気熱交換器23に着霜を生ずるが、こ
の際には、四方弁22を冷房サイクルに切り換え、負荷
側ファン37を停止し電磁弁29を開放することによっ
て、第7図に示すような冷媒の流れになり、室内側には
冷風を吹き出すことなく除霜運転が可能となるものであ
る。In addition, especially during heating operation (or hot water supply operation) at low outside temperatures, frost forms on the heat source side air heat exchanger 23, but in this case, the four-way valve 22 is switched to the cooling cycle and the load side fan 37 is turned on. By stopping the operation and opening the solenoid valve 29, the refrigerant flows as shown in FIG. 7, and defrosting operation becomes possible without blowing cold air into the room.
なお暖房運転を中断することなく除霜運転を行うために
は、室内側の吹出口に補助ヒータ(図示せず)を設け、
負荷側ファン37の運転と、補助ヒータの通電を行うよ
うに制御してもよい。In order to perform defrosting operation without interrupting heating operation, an auxiliary heater (not shown) is installed at the air outlet on the indoor side.
It may be controlled to operate the load side fan 37 and energize the auxiliary heater.
以上説明したように、本実施例の特徴とするところは、
外気を熱源とした冷房および暖房運転時においては、給
湯用水熱交換器32内には冷媒を流さず、運転の切換時
においては、給湯用水熱交換器32内の冷媒を抜いて常
に吸入ラインと同じ低圧に維持することによって冷媒液
の溜り込みを防止するよう工夫したものであり、通常の
最適な冷媒量により、所定の冷暖房能力を保持するよう
にしたことにある。As explained above, the features of this embodiment are as follows:
During cooling and heating operations using outside air as a heat source, no refrigerant is flowed into the water heat exchanger 32 for hot water supply, and when switching operations, the refrigerant in the water heat exchanger 32 for hot water supply is always drawn out and connected to the suction line. The system is designed to prevent the accumulation of refrigerant liquid by maintaining the same low pressure, and maintains a predetermined heating and cooling capacity with the normal optimal amount of refrigerant.
また本実施例の他の特徴とするところは、低外気温時の
除霜運転における吸入バイパス用絞り30を、給湯用水
熱交換器32からの冷媒流れ切換時の絞りと兼用するこ
とにより、構成を簡素化したことにある。Another feature of this embodiment is that the suction bypass throttle 30 during defrosting operation at low outside temperatures is also used as the throttle when switching the refrigerant flow from the water heat exchanger 32 for hot water supply. The reason lies in the simplification of the .
上記実施例から明らかなように、本考案によれば、圧縮
機を用いた冷暖房給湯装置において、年間給湯を可能と
すると共に、給湯冷房、冷房、暖房運転時において、所
定の冷暖房能力を保持することが可能となり、また、で
きるだけ数少い電磁弁により、各種の運転パターンを満
足すべく運転可能とし、特に除霜運転時の吸入バイパス
用絞りを兼用することにより構成を簡素化できるもので
ある。As is clear from the above embodiments, according to the present invention, in an air-conditioning/heating water supply system using a compressor, hot water can be supplied throughout the year, and a predetermined heating/cooling capacity can be maintained during hot water supply cooling, cooling, and heating operations. In addition, the system can be operated to satisfy various operation patterns using as few solenoid valves as possible, and in particular, the configuration can be simplified by also serving as a suction bypass throttle during defrosting operation. .
第1図は従来の冷暖房給湯装置の構成図、第2図は本考
案の一実施例を示す冷暖房給湯装置の構成図、第3図は
同装置の冷房給湯運転時の構成図、第4図は同装置の冷
房運転時の構成図、第5図は同装置の給湯運転時の構成
図、第6図は同装置の暖房運転時の構成図、第7図は同
装置の除霜運転時の構成図である。
21・・・・・・圧縮機、22・・・・・・四方弁、2
3・・・・・・熱源側空気熱交換器、24 a 、24
b・・・・・・絞り(第1の絞り)、25・・・・・
・負荷側空気熱交換器、29・・・・・・電磁弁(第3
の電磁弁)、30・・・・・・吸入バイパス用絞り(第
3の絞す)、31・・・・・・電磁弁(第1の電磁弁)
、32・・・・・・給湯用水熱交換器、33・・・・・
・絞り(第2の絞す)、34・・・・・・逆止弁、35
・・・・・・電磁弁(第2の電磁弁)。Fig. 1 is a block diagram of a conventional air-conditioning/heating/hot water supply system, Fig. 2 is a block diagram of a cooling/heating/water supply system showing an embodiment of the present invention, Fig. 3 is a block diagram of the same system during cooling/hot water supply operation, and Fig. 4 Figure 5 is a configuration diagram of the same device during cooling operation, Figure 5 is a configuration diagram of the same equipment during hot water supply operation, Figure 6 is a configuration diagram of the same equipment during heating operation, and Figure 7 is a configuration diagram of the same equipment during defrosting operation. FIG. 21...Compressor, 22...Four-way valve, 2
3... Heat source side air heat exchanger, 24 a, 24
b...Aperture (first aperture), 25...
・Load side air heat exchanger, 29...Solenoid valve (3rd
solenoid valve), 30... suction bypass throttle (third throttle), 31... solenoid valve (first solenoid valve)
, 32... Water heat exchanger for hot water supply, 33...
- Throttle (second throttle), 34...Check valve, 35
...Solenoid valve (second solenoid valve).
Claims (1)
荷側空気熱交換器等からなり、圧縮機の吐出側から順に
第1の電磁弁、給湯用水熱交換器、第2の絞り、逆止弁
を介して、前記第1の絞りに接続される分岐冷媒配管を
設けると共に、第2の絞りと逆止弁の中間から吸入ライ
ンに至るバイパス配管に第2の電磁弁を設けた冷暖房給
湯装置。It consists of a compressor, a four-way valve, a heat source side air heat exchanger, a first throttle, a load side air heat exchanger, etc., and in order from the discharge side of the compressor, a first solenoid valve, a water heat exchanger for hot water supply, a second A branch refrigerant pipe is provided that is connected to the first throttle via a throttle and a check valve, and a second solenoid valve is provided in a bypass pipe that extends from between the second throttle and the check valve to the suction line. Air conditioning, heating, and hot water equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17460178U JPS5922437Y2 (en) | 1978-12-19 | 1978-12-19 | Air conditioning/heating water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17460178U JPS5922437Y2 (en) | 1978-12-19 | 1978-12-19 | Air conditioning/heating water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5589963U JPS5589963U (en) | 1980-06-21 |
JPS5922437Y2 true JPS5922437Y2 (en) | 1984-07-04 |
Family
ID=29181371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17460178U Expired JPS5922437Y2 (en) | 1978-12-19 | 1978-12-19 | Air conditioning/heating water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5922437Y2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013257057A (en) * | 2012-06-12 | 2013-12-26 | Panasonic Corp | Heat pump type air-conditioning water heater |
-
1978
- 1978-12-19 JP JP17460178U patent/JPS5922437Y2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013257057A (en) * | 2012-06-12 | 2013-12-26 | Panasonic Corp | Heat pump type air-conditioning water heater |
Also Published As
Publication number | Publication date |
---|---|
JPS5589963U (en) | 1980-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6155018B2 (en) | ||
JP3047831B2 (en) | Heat pump system | |
JP3430639B2 (en) | Heat pump system | |
JPS5922437Y2 (en) | Air conditioning/heating water heater | |
JP2001263800A (en) | Heat pump type of hot water supplier | |
CN111578450A (en) | Air conditioning system and defrosting method thereof | |
JPH02290476A (en) | Air-conditioning and hot water feeding system equipment | |
JP2850811B2 (en) | Water heater | |
JPH033902Y2 (en) | ||
JPH0510191Y2 (en) | ||
JPS60598Y2 (en) | Separate air conditioner/heater | |
JPH05340641A (en) | Heat pump | |
JP4144996B2 (en) | Hot water storage hot water source | |
JPH0776646B2 (en) | Air conditioner / water heater | |
JPH0233108Y2 (en) | ||
JPH055577A (en) | Heat pump type room cooling/heating hot water supplying system | |
JPS6216596Y2 (en) | ||
JPH031745Y2 (en) | ||
JP2533585B2 (en) | Multi-room air conditioner | |
JPH0245725Y2 (en) | ||
JP2719456B2 (en) | Air conditioner | |
JPH0429345Y2 (en) | ||
JPS6251370B2 (en) | ||
JPS6028934Y2 (en) | Refrigeration equipment | |
JPH029342Y2 (en) |