JP4144996B2 - Hot water storage hot water source - Google Patents

Hot water storage hot water source Download PDF

Info

Publication number
JP4144996B2
JP4144996B2 JP2000110167A JP2000110167A JP4144996B2 JP 4144996 B2 JP4144996 B2 JP 4144996B2 JP 2000110167 A JP2000110167 A JP 2000110167A JP 2000110167 A JP2000110167 A JP 2000110167A JP 4144996 B2 JP4144996 B2 JP 4144996B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
circulation
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000110167A
Other languages
Japanese (ja)
Other versions
JP2001296054A (en
Inventor
徹 福知
寿成 酒井
康人 橋詰
敏弘 河内
泰 藤川
善夫 藤本
謙治 談議所
智也 崎石
健一 田之頭
和也 山口
直司 肆矢
実希夫 伊藤
道憲 川原
勝雪 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2000110167A priority Critical patent/JP4144996B2/en
Publication of JP2001296054A publication Critical patent/JP2001296054A/en
Application granted granted Critical
Publication of JP4144996B2 publication Critical patent/JP4144996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、給湯路が上部に接続された貯湯タンクと、前記貯湯タンクの底部から取り出した湯水をヒートポンプ式加熱手段にて加熱したのち、その温水を前記貯湯タンクの底部に戻す形態の初期運転用循環状態で湯水を循環させる貯湯初期運転と、前記貯湯タンク内に湯水が温度成層を形成して貯湯されるように、貯湯タンクの底部から取り出した湯水を前記ヒートポンプ式加熱手段にて加熱したのち、その温水を前記貯湯タンクの上部に供給する形態の貯湯運転用循環状態で湯水を循環させる貯湯運転とに切り換え自在な湯水循環手段と、貯湯運転が指令されるに伴って、前記貯湯初期運転にて前記湯水循環手段の運転を開始させ、その貯湯初期運転中において前記ヒートポンプ式加熱手段にて加熱した加熱湯水の温度が貯湯用目標温度に達するに伴って、前記貯湯運転に切り換えて前記湯水循環手段を運転するように、前記湯水循環手段の運転を制御する循環制御手段と、前記貯湯運転が指令されるに伴って、前記ヒートポンプ式加熱手段の冷媒圧縮機を起動させて、冷媒圧力が設定目標圧力になるように前記冷媒圧縮機の回転速度を制御しながら、前記ヒートポンプ式加熱手段の運転を制御するヒートポンプ運転制御手段とが設けられた貯湯式の給湯熱源装置に関する。
【0002】
【従来の技術】
上記貯湯式の給湯熱源装置は、例えば特開昭59−24137号公報に記載されているように、貯湯初期運転にて湯水循環手段の運転を開始させ、その貯湯初期運転中においてヒートポンプ式加熱手段にて加熱した加熱湯水の温度が貯湯用目標温度に達すると、貯湯運転に切り換えて、貯湯タンクの底部から取り出した湯水をヒートポンプ式加熱手段にて加熱したのち、その温水を貯湯タンクの上部に供給するようにすることにより、貯湯用目標温度の湯水を貯湯タンク内に温度成層状態で適切に貯湯できるようにしたものである。
そして、ヒートポンプ運転制御手段は、冷媒圧力が設定目標圧力になるように冷媒圧縮機の回転速度を制御することにより、加熱対象となる湯水を貯湯用目標温度に加熱するのに必要とする加熱力をヒートポンプ式加熱手段が出力する状態になるように調整することになる。
ちなみに、この回転速度制御は、検出した冷媒圧力と設定目標圧力との偏差に基づいてフィードバック制御されることになり、その制御における時定数は充分大きく設定されて、回転速度の増減変更は緩やかな速度で行われることになる。
【0003】
【発明が解決しようとする課題】
ところで、従来では、貯湯初期運転において、その運転開始時から、貯湯運転の際と同等の多量の湯水を貯湯タンクの底部とヒートポンプ式加熱手段とに亘って循環させることが行われているが、この場合、流入温度が低い多量の湯水がヒートポンプ式加熱手段に供給されるため、貯湯初期運転において、冷媒の凝縮温度が上がりにくい状態で長時間に亘って運転するものとなり、加熱湯水の温度が貯湯用目標温度に達するまでに時間がかかって、貯湯初期運転から貯湯運転への切り換えが遅くなり、その結果、貯湯初期運転を開始してから貯湯タンクの上部への貯湯が開始されるまでの時間が長くなって、早期に給湯できない欠点がある。
本発明は上記実情に鑑みてなされたものであって、貯湯初期運転を開始してから貯湯タンクの上部への貯湯が開始されるまでの時間を短縮できるようにすることを目的とする。
【0004】
【課題を解決するための手段】
請求項1記載の発明の特徴構成は、給湯路が上部に接続された貯湯タンクと、前記貯湯タンクの底部から取り出した湯水をヒートポンプ式加熱手段にて加熱したのち、その温水を前記貯湯タンクの底部に戻す形態の初期運転用循環状態で湯水を循環させる貯湯初期運転と、前記貯湯タンク内に湯水が温度成層を形成して貯湯されるように、貯湯タンクの底部から取り出した湯水を前記ヒートポンプ式加熱手段にて加熱したのち、その温水を前記貯湯タンクの上部に供給する形態の貯湯運転用循環状態で湯水を循環させる貯湯運転とに切り換え自在な湯水循環手段と、貯湯運転が指令されるに伴って、前記貯湯初期運転にて前記湯水循環手段の運転を開始させ、その貯湯初期運転中において前記ヒートポンプ式加熱手段にて加熱した加熱湯水の温度が貯湯用目標温度に達するに伴って、前記貯湯運転に切り換えて前記湯水循環手段を運転するように、前記湯水循環手段の運転を制御する循環制御手段と、前記貯湯運転が指令されるに伴って、前記ヒートポンプ式加熱手段の冷媒圧縮機を起動させて、冷媒圧力が設定目標圧力になるように前記冷媒圧縮機の回転速度を制御しながら、前記ヒートポンプ式加熱手段の運転を制御するヒートポンプ運転制御手段とが設けられた貯湯式の給湯熱源装置であって、
前記循環制御手段が、前記貯湯初期運転において、運転開始時には湯水の循環量を運転開始用設定量にし、その後、前記冷媒圧力が循環量増大制御用圧力になると、前記湯水の循環量を設定増大量分増加させて設定時間待機する循環量増大制御を、繰り返し実行するように構成されている点にある。
〔作用〕
貯湯運転が指令されるに伴って、循環制御手段は貯湯初期運転にて湯水循環手段の運転を開始させ、ヒートポンプ運転制御手段は、ヒートポンプ式加熱手段の冷媒圧縮機を起動させて、冷媒圧力が設定目標圧力になるように冷媒圧縮機の回転速度を制御するが、貯湯初期運転の運転開始時には湯水の循環量が少ないほうが冷媒圧力が上昇し易く、冷媒の凝縮温度が上昇し易い。
このため、循環制御手段は、貯湯初期運転の運転開始時には、湯水の循環量を運転開始用設定量にして運転し、冷媒圧力が循環量増大制御用圧力になると、湯水の循環量を設定増大量分増加させて設定時間待機する循環量増大制御を繰り返し実行して、ヒートポンプ式加熱手段を持ち上げるようにするので、ヒートポンプ式加熱手段にて加熱した加熱湯水の温度を貯湯用目標温度に早く上昇させることができる。
つまり、循環制御手段は、貯湯初期運転の運転開始時には、運転開始用設定量の少ない循環量で、貯湯タンクの底部から取り出した湯水をヒートポンプ式加熱手段にて加熱したのち、その温水を貯湯タンクの底部に戻す形態で湯水を循環させるので、冷媒圧力の上昇、つまり、冷媒の凝縮温度が早く上昇し、それに伴って、湯水の温度が上昇する。
そして、冷媒の凝縮温度がその循環量増大制御用圧力に対応する温度に上昇すると、湯水の循環量を設定増大量分増加させて設定時間待機する循環量増大制御を繰り返すことにより、ヒートポンプ式加熱手段を持ち上げることになるので、湯水を貯湯用目標温度に加熱する状態に迅速に至らせることができる。
〔効果〕
ヒートポンプ式加熱手段にて加熱した加熱湯水の温度を貯湯用目標温度に早く上昇させることができるので、貯湯初期運転から貯湯運転への切り換えが早くなり、貯湯初期運転を開始してから貯湯タンクの上部への貯湯が開始されるまでの時間を短縮できる。
【0005】
請求項2記載の発明の特徴構成は、前記循環量増大制御用圧力として、複数段階の循環量増大制御用圧力が設定されると共に、その複数段階の循環量増大制御用圧力に対応させて、前記湯水の循環量の設定増大量として、複数段階の設定増大量が設定され、前記循環制御手段が、循環量増大制御において、前記複数段階の循環量増大制御用圧力に応じて、複数段階の設定増大量のいずれかを選択するように構成されている点にある。
〔作用〕
循環制御手段は、循環量増大制御において、冷媒圧力の上昇に応じて、その冷媒圧力が複数段階に設定した循環量増大制御用圧力のいずれかに上昇すると、湯水の循環量をその循環量増大制御用圧力に対応した設定増大量で循環量を増大させながら、ヒートポンプ式加熱手段にて加熱した加熱湯水の温度を貯湯用目標温度に上昇させることができる。
つまり、冷媒圧力が大きく上昇したときはその大きな冷媒圧力に対応した大きな設定増大量を選択してその設定増大量で循環量を増大させながら、また、冷媒圧力の上昇が小さいときはその小さな冷媒圧力に対応した小さな設定増大量を選択してその設定増大量で循環量を増大させながら、加熱湯水の温度を貯湯用目標温度に上昇させることができる。
〔効果〕
冷媒圧力が過剰に上昇しないように、冷媒圧力の大きさに応じて循環量を増大させて、ヒートポンプ式加熱手段の運転状態を安定させながら、そのヒートポンプ式加熱手段の加熱能力を無理なく引き出すことができる。
【0006】
請求項3記載の発明の特徴構成は、前記循環制御手段が、前記貯湯運転において、前記加熱湯水の温度を前記貯湯用目標温度に維持するように、前記湯水の循環量を増減制御する貯湯運転用流量制御を実行するように構成されている点にある。
〔作用〕
循環制御手段は、貯湯運転において、加熱湯水の温度を貯湯用目標温度に維持するように、湯水の循環量を増減制御して、貯湯タンクの底部から取り出した湯水をヒートポンプ式加熱手段にて加熱したのち、その温水を貯湯タンクの上部に供給する形態で湯水を循環させる。
〔効果〕
加熱湯水の温度を貯湯用目標温度に的確に維持させて、貯湯タンク内に貯湯用目標温度の湯水を所望通り貯湯できる。
【0007】
請求項4記載の発明の特徴構成は、前記循環制御手段が、前記貯湯運転における前記貯湯運転用流量制御において、前記加熱湯水の温度が前記貯湯用目標温度よりも低いときであっても、前記冷媒圧力が現状維持判別用圧力以上であり、かつ、前記冷媒圧縮機の運転状態が最大出力運転状態でないときには、前記湯水の循環量を現在の循環量に維持するように構成されている点にある。
〔作用〕
貯湯運転において、加熱湯水の温度が貯湯用目標温度よりも低いときに、その温度が貯湯用目標温度になるように湯水の循環量を減らすと、冷媒圧力が上昇して、ヒートポンプ式加熱手段の加熱能力が低下するおそれがあるが、加熱湯水の温度が貯湯用目標温度よりも低いときであっても、冷媒圧力が現状維持判別用圧力以上であり、かつ、冷媒圧縮機の運転状態が最大出力運転状態でないときには、ヒートポンプ式加熱手段の加熱能力に余力が有るので、湯水の循環量を現在の循環量に維持することにより、ヒートポンプ式加熱手段の加熱能力を上げて、所望の貯湯量で早期に貯湯することができる。
〔効果〕
貯湯運転において、ヒートポンプ式加熱手段の加熱能力の低下を防止できる。
【0008】
請求項5記載の発明の特徴構成は、前記循環制御手段が、前記貯湯運転における前記貯湯運転用流量制御において、前記加熱湯水の温度が前記貯湯用目標温度であっても、前記冷媒圧力が現状維持判別用圧力以上であり、かつ、前記冷媒圧縮機の運転状態が最大出力運転状態でないときには、前記湯水の循環量を設定量増加させて設定時間待機する増加処理を行うように構成されている点にある。
〔作用〕
貯湯運転において、加熱湯水の温度が貯湯用目標温度のときは、ヒートポンプ式加熱手段の運転状態が安定しているが、加熱湯水の温度が貯湯用目標温度であっても、冷媒圧力が現状維持判別用圧力以上であり、かつ、冷媒圧縮機の運転状態が最大出力運転状態でないときには、ヒートポンプ式加熱手段の加熱能力に余力が有るので、湯水の循環量を設定量増加させて設定時間待機する増加処理を行って、ヒートポンプ式加熱手段の安定な運転状態を崩すことにより、ヒートポンプ式加熱手段の運転状態をより加熱能力が高い状態にすることができる。
〔効果〕
貯湯運転において、ヒートポンプ式加熱手段の高い加熱能力を引き出すことができる。
【0009】
【発明の実施の形態】
本発明にかかる貯湯式の給湯熱源装置の実施の形態をエンジンヒートポンプ式冷暖房給湯システムに適用した例を図面に基づいて説明する。
このエンジンヒートポンプ式冷暖房給湯システムは、図1,図2に示すように、貯湯タンク1内に温度成層を形成して貯湯された湯水を給湯したり、貯湯タンク内1の湯水を加熱して外部放熱部2にて放熱したりする貯湯ユニットAと、室内の冷暖房をするエンジンヒートポンプ式冷暖房装置Bとから構成されている。
【0010】
前記貯湯ユニットAは、この貯湯ユニットAの運転を制御する貯湯ユニット制御部C、貯湯タンク1、貯湯タンク1内の湯水を循環させる循環路3を備えた湯水循環手段E、循環路3を通流する湯水を加熱する加熱部4、循環路3を通流する湯水と熱交換して放熱する外部放熱部2などから構成され、循環ポンプP1の作動で貯湯タンク1内の湯水を循環路3にて循環させながら、加熱部4にて加熱したり、外部放熱部2にて放熱したりするようにしている。
【0011】
前記貯湯タンク1には、その底部から貯湯タンク1に水道水圧を用いて給水する給水路5が接続され、その上部から風呂場や台所などに給湯するための給湯路6が接続され、風呂場や台所などで使用された量だけの水を給水路5から貯湯タンク1に給水するように構成されている。
また、貯湯タンク1の内側には、貯湯タンク1内の湯水の温度を検出する4個の温度センサとしての貯湯温度サーミスタS1,S2,S3,S4が上下に分散配置して設けられている。
【0012】
前記給湯路6には、給水路5から分岐された混合用給水路7が接続され、その接続箇所に給湯路6からの湯水と混合用給水路7からの水との混合比を調整自在なミキシングバルブ8が設けられている。
前記給水路5と混合用給水路7との分岐箇所には、給水温度を検出する給水サーミスタ9が設けられ、給水路5および混合用給水路7の夫々には、逆止弁10が設けられている。
ちなみに、給湯路6には、オーバーフロー路11が接続され、そのオーバーフロー路11にエアー抜き弁12が設けられている。
【0013】
また、給湯路6におけるミキシングバルブ8よりも上流側には、貯湯タンク1の上部から給湯路6に給湯された湯水の温度を検出する貯湯出口サーミスタ13が設けられ、給湯路6におけるミキシングバルブ8よりも下流側には、ミキシングバルブ8にて混合された湯水の温度を検出するミキシングサーミスタ14、給湯路6の湯水の流量を調整する給湯用水比例バルブ15が設けられている。
【0014】
前記給湯用水比例バルブ15よりも下流側の給湯路6が、台所や洗面所などの給湯栓に給湯する一般給湯路16と、浴槽に湯水を供給するための湯張り路17とに分岐され、湯張り路17が浴槽からの風呂戻り路18に接続され、風呂戻り路18および風呂往き路19の両路を通して浴槽に湯水を供給するようにしている。
前記一般給湯路16には、一般給湯路16を通流する湯水の流量を検出する給湯流量センサ20が設けられ、湯張り路17には、湯張り路17を通流する湯水の流量を検出する湯張り流量センサ21、湯張り電磁弁22、バキュームブレーカ23、湯張り逆止弁24が上流側から順に設けられている。
【0015】
前記循環路3と貯湯タンク1とが、循環路3を通流する湯水を貯湯タンク1内に戻す、または、貯湯タンク1内の湯水を循環路3に取り出すために、貯湯タンク1の上部1箇所と底部2箇所の合計3箇所で連通接続されている。
具体的に説明すると、貯湯タンク1の上部には、循環路3と貯湯タンク1とを接続する上部接続路25が給湯路6の上流側を介して連通接続され、貯湯タンク1の底部には、循環路3を通流する湯水を給水路5の下流側を介して貯湯タンク1内の底部に戻す戻し路26と、貯湯タンク1内の底部の湯水を循環路3に取り出す取り出し路27とが連通接続されている。
【0016】
そして、上部接続路25には、電磁式の上部開閉弁28が設けられ、戻し路26には、戻し開閉弁29が設けられ、上部開閉弁28を開弁させることによって、循環路3を通流する湯水を貯湯タンク1内の上部に供給したり、貯湯タンク1内の上部の湯水を循環路3に取り出したりするようにし、戻し開閉弁29を開弁させることによって、循環路3を通流する湯水を貯湯タンク1内の底部に戻すことができるようにしている。
ちなみに、取り出し路27には、貯湯タンク1内の湯水を排水するための排水路30が接続され、その排水路30の途中部には、安全弁31と手動バルブ32とが並列に接続されている。
【0017】
前記加熱部4は、エンジンヒートポンプ式冷暖房装置Bによる冷媒を供給して湯水を加熱するヒートポンプ式熱交換部33と、エンジンヒートポンプ式冷暖房装置Bのエンジン排熱を回収した冷却水を供給して湯水を加熱するエンジン排熱利用式熱交換部34と、バーナ36の燃焼により湯水を加熱する補助熱交換部35とを設けて構成されている。
そして、循環路3の湯水の循環方向において上流側から順に、ヒートポンプ式熱交換部33、エンジン排熱利用式熱交換部34、補助熱交換部35が設けられている。
【0018】
前記補助熱交換部35は、ガス燃焼式のバーナ36に燃焼用空気を供給するファン37などが設けられ、バーナ36の燃焼により循環路3を通流する湯水を加熱するように構成されている。
前記バーナ36に燃料ガスを供給する燃料供給路38には、上流側から順にガスセフティ弁39、ガス比例弁40、ガスメイン弁41が設けられている。
【0019】
前記外部放熱部2は、循環路3を通流する湯水と暖房用の熱媒としての温水とを熱交換する暖房用熱交換部42と、循環路3を通流する湯水と浴槽内の湯水とを熱交換して追焚きする風呂用熱交換部43とを設けて構成されている。
そして、循環路3が、暖房用熱交換部42を備えた暖房用循環路3aと、風呂用熱交換部43を備えた風呂用循環路3bとに分岐され、暖房用熱交換部42と風呂用熱交換部43とが並列に接続されている。
また、暖房用循環路3aには、暖房用熱交換部42よりも湯水の循環方向の上流側に電磁式の暖房用開閉弁44が設けられ、風呂用循環路3bには、風呂用熱交換部43よりも湯水の循環方向の上流側に電磁式の風呂用開閉弁45が設けられている。
【0020】
前記暖房用熱交換部42には、暖房ポンプP2を作動させることにより、暖房戻り路46および暖房往き路47を通して循環する暖房用熱媒を、循環路3を通流する湯水にて加熱するように構成されている。
そして、暖房戻り路46には、上流側から順に、暖房戻り路46の暖房用熱媒の温度を検出する暖房戻りサーミスタ48、補給水タンク49、暖房ポンプP2が設けられ、暖房往き路47には、暖房往き路47の暖房用熱媒の温度を検出する暖房往きサーミスタ50が設けられている。
【0021】
前記補給水タンク49には、水位の上限を検出する上限センサ51と下限を検出する下限センサ52とが設けられ、補給水タンク49に給水するためのタンク給水路53が接続され、そのタンク給水路53には、補給水電磁弁54が設けられている。
また、暖房戻り路46の暖房用熱媒を暖房用熱交換部42を迂回して暖房往き路47に供給する暖房バイパス路55が設けられている。
【0022】
前記風呂用熱交換部43は、風呂ポンプP3を作動させることにより、風呂戻り路18および風呂往き路19を通して循環する浴槽内の湯水を循環路3を通流する湯水にて加熱するように構成されている。
そして、風呂戻り路18には、上流側から順に、浴槽内の湯水の水位を検出する水位センサ56、風呂戻り路18の湯水の温度を検出する風呂戻りサーミスタ57、二方弁58、風呂ポンプP3、風呂水流スイッチ59が設けられている。
【0023】
前記循環路3における戻り路26との接続箇所と取り出し路27との接続箇所との間には、外部放熱部2を通過した湯水のヒートポンプ式熱交換部33への通流を断続する電磁式のヒートポンプ用開閉弁60が設けられ、エンジン排熱利用式熱交換部34と補助熱交換部35との間の部分に、補助熱交換部35に通流する湯水の温度を検出する入り温度サーミスタ61、循環路3を通流する湯水の循環流量Qを検出する循環流量センサ62、循環ポンプP1、補助熱交換部35への湯水の通流を断続する電磁式の補助用断続開閉弁63が設けられている。
【0024】
前記循環路3における補助用断続開閉弁63と補助熱交換部35との間には、補助熱交換部35に通流する湯水の循環流量Qを検出する水量センサ64が設けられ、循環路3における補助熱交換部35と上部接続路25との接続箇所との間には、循環路3を通流する湯水の循環流量Qを調整する水比例バルブ65、加熱部4にて加熱された後の循環路3の湯水の沸き上げ温度Taを検出する貯湯サーミスタ66が設けられている。
【0025】
また、循環路3には、外部放熱部2を通過した湯水をヒートポンプ式熱交換部33を迂回してエンジン排熱利用式熱交換部34に流入させるためのヒートポンプ用バイパス路67と、エンジン排熱利用式熱交換部34を通過した湯水を補助熱交換部35を迂回して循環させるための補助用バイパス路68とが接続され、ヒートポンプ用バイパス路67には、電磁式のヒートポンプバイパス開閉弁69が設けられ、補助用バイパス路68には、電磁式の補助バイパス開閉弁70が設けられている。
【0026】
そして、湯水循環手段Eが、循環路3、上部接続路25、戻し路26、取り出し路27、循環ポンプP1、および、上部開閉弁28、暖房用開閉弁44、風呂用開閉弁45、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、補助用断続開閉弁63、補助バイパス開閉弁70などにより構成され、上部開閉弁28、暖房用開閉弁44、風呂用開閉弁45、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、補助用断続開閉弁63、補助バイパス開閉弁70の開閉操作により、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の底部に戻す形態の初期運転用循環状態で湯水を循環させる貯湯初期運転と、貯湯タンク1内に湯水が温度成層を形成して貯湯されるように、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態の貯湯運転用循環状態で湯水を循環させる貯湯運転と、加熱部4にて加熱した湯水を外部放熱部2に供給し、かつ、外部放熱部2を通過した湯水の全量を貯湯タンク1を迂回して加熱部4に直接戻す形態の放熱運転用循環状態で湯水を循環させる放熱運転とに切り換え自在に構成されている。
【0027】
また、循環調整手段Fが、給水サーミスタ9,入り温度サーミスタ61,循環流量センサ62,水比例バルブ65、貯湯サーミスタ66,貯湯温度サーミスタS1,S2,S3,S4などにより構成され、給湯操作手段Gが、貯湯出口サーミスタ13、ミキシングバルブ8、給湯用水比例バルブ15、給湯流量センサ20、湯張り流量センサ21、湯張り電磁弁22などにより構成され、風呂操作手段Hが、水位センサ56、風呂戻りサーミスタ57、二方弁58、風呂ポンプP3、風呂水流スイッチ59などで構成され、暖房操作手段Jが、暖房戻りサーミスタ48、暖房ポンプP2、暖房往きサーミスタ50などで構成されている。
【0028】
前記貯湯ユニット制御部Cは、上部開閉弁28、暖房用開閉弁44、風呂用開閉弁45、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、補助用断続開閉弁63、補助バイパス開閉弁70の夫々を開閉制御することにより、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の底部に戻したり、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の上部に戻したり、循環路3を加熱部4と外部放熱部2とに亘って循環させたりするように構成されている。
【0029】
前記エンジンヒートポンプ式冷暖房装置Bは、複数の室内機71と室外機72とを備えて、複数の空調対象空間を空調することができるように構成され、室内機71と室外機72と貯湯ユニットAにおけるヒートポンプ式熱交換部33とが冷媒配管73で接続され、エンジンヒートポンプ式冷暖房装置Bにおける冷媒をヒートポンプ式熱交換部33に供給できるように構成されている。
前記複数の室内機71の夫々には、室内熱交換器75、その室内熱交換器75で温調した空気を空調対象空間へ送出する室内空調用送風機76などが備えられている。
【0030】
前記室外機72には、電子膨張弁74,89、ガスエンジン77、ガスエンジン77にて駆動される冷媒圧縮機78、アキュムレータ79、四方弁80、室外熱交換器81、その室外熱交換器82に対し外気を通風する室外空調用送風機82、ラジエータ83、ラジエータ用送風機84、ヒートポンプ運転制御部Dなどが備えられている。
また、ガスエンジン77の冷却用の冷却水をラジエータ83との間で循環させる冷却水路85が設けられ、この冷却水路85にラジエター用ポンプP4とエンジン出口側での冷却水温度を検出する冷却水温度サーミスタ95が設けられ、ガスエンジン77の排熱を回収した冷却水を、加熱用冷却水路91を通してエンジン排熱利用式熱交換部34に供給する加熱状態と、ラジエータ83に供給して放熱される放熱状態とに切り換え自在な排熱切換機構86が設けられている。
【0031】
そして、ヒートポンプ運転手段Kが、ガスエンジン77、電子膨張弁74,89、室内空調用送風機76、冷媒圧縮機78、四方弁80、室外空調用送風機82、低圧側の冷媒圧力を検出する低圧検出手段87、高圧側の冷媒圧力を検出する高圧検出手段88などにより構成され、冷却水循環手段Lが、冷却水路85、加熱用冷却水路91、ラジエータ用ポンプP4、ラジエータ用送風機84、排熱切換機構86、冷却水温度サーミスタ95などにより構成されている。
【0032】
前記貯湯ユニット制御部Cとヒートポンプ運転制御部Dとは、エンジンヒートポンプ式冷暖房装置Bが空調運転中であることや、エンジンヒートポンプ式冷暖房装置Bへの駆動要求などの制御信号を送受信可能に構成にされ、図3に示すように、空調対象空間としての各部屋に設置されている空調リモコン93および貯湯リモコン92の指令に基づいて、空調対象空間への空調冷房運転や空調暖房運転などの空調運転、貯湯タンク1内に湯水を貯湯する貯湯運転、外部放熱部2にて放熱する放熱運転、貯湯タンク1内の貯湯量が最低確保量未満のときに給湯する給湯優先運転などの夫々の運転を実行するように構成されている。
【0033】
前記エンジンヒートポンプ式冷暖房装置Bの運転について説明すると、空調リモコン93から空調冷房要求や空調暖房要求などの空調要求があると、ヒートポンプ運転制御部Dがヒートポンプ運転手段Kおよび冷却水循環手段Lの運転を制御し、空調リモコン93による空調要求に基づいて、ガスエンジン77により圧縮機78を作動させて、四方弁80の切換え操作により空調冷房運転と空調暖房運転とを選択切換え、室内機71の電子膨張弁74の開閉制御により、各空調対象空間への空調を切り換えて、ヒートポンプ運転手段Kを制御するように構成されている。
すなわち、ヒートポンプ運転制御部Dは、空調リモコン93から空調冷房要求があると、空調冷房要求がある部屋に相当する電子膨張弁74を開状態にして、室内熱交換器75を蒸発器として機能させて、空調対象空間への供給空気を冷却温調し、室外熱交換器81を凝縮器として機能させて外気に対して放熱させるように、ヒートポンプ運転手段Kを制御して空調冷房運転を実行する。
また、ヒートポンプ運転制御部Dは、空調リモコン93から空調暖房要求があると、空調暖房要求がある部屋に相当する電子膨張弁74を開状態にして、室内熱交換器75を凝縮器として機能させて、空調対象空間への供給空気を加熱温調し、室外熱交換器81を蒸発器として機能させて外気から吸熱させるように、ヒートポンプ運転手段Kを制御して空調暖房運転を実行する。
【0034】
尚、ヒートポンプ運転制御部Dは、空調冷房運転においても、空調暖房運転においても、冷媒圧力が設定目標圧力になるように、冷媒圧縮機78の回転速度を、検出した冷媒圧力と設定目標圧力との偏差に基づいてフィードバック制御し、その制御における時定数は充分大きく設定されていて、回転速度の増減変更は緩やかな速度で行われる。
【0035】
そして、冷却水循環手段Lは、空調冷房運転において、ラジエータ用ポンプP4を作動させ、ラジエータ用送風機84を作動させラジエータ83にて放熱させるようにし、エンジン排熱利用式熱交換部34にて加熱可能なときには、冷却水路85を通流する冷却水が加熱用設定温度以上になると、排熱切換機構86を加熱状態に切り換えて、冷却水をエンジン排熱利用式熱交換部34に供給するようにしている。
また、空調暖房運転において、ラジエータ用ポンプP4を作動させ、ラジエータ用送風機84を作動させラジエータ83にて放熱させるようにし、エンジン排熱利用式熱交換部34にて加熱可能なときには、暖房負荷が小さくかつ冷却水路85を通流する冷却水が加熱用設定温度以上になると、排熱切換機構86を加熱状態に切り換えて、冷却水をエンジン排熱利用式熱交換部34に供給するようにしている。
【0036】
前記空調冷房運転においては、室内熱交換器75を蒸発器として機能させて空調対象空間への供給空気を冷却温調し、室外熱交換器81を凝縮器として機能させて外気に対して放熱するようにしている。
この空調冷房運転では、ヒートポンプ運転制御部Dは、低圧検出手段87の検出情報に基づいて、その検出圧力が冷房用の目標圧力になるようにガスエンジン77の回転速度を制御するようにしている。
また、空調冷房運転において、ヒートポンプ運転制御部Dは、排熱切換機構86を加熱状態に切り換えて冷却水をエンジン排熱利用式熱交換部34に供給し、循環路3を通流する湯水をエンジン排熱で加熱するようにしている。
【0037】
前記空調冷房運転における冷媒の流れについて説明を加えると、冷媒圧縮機78から吐出される高圧乾き蒸気冷媒を、四方弁80を介して室外熱交換器81に供給し、この室外熱交換器81において外気との熱交換により凝縮される。
そして、室外熱交換器81から送出される凝縮工程通過冷媒を、電子膨張弁74を介して室内熱交換器75に供給し、この室内熱交換器75において冷却対象空気との熱交換により蒸発される。
その後、室内熱交換器75から送出される低圧乾き蒸気冷媒を、四方弁80およびアキュムレータ79を介して冷媒圧縮機78の吸入口に戻す。
【0038】
前記空調暖房運転においては、室内熱交換器75を凝縮器として機能させて空調対象空間への供給空気を加熱温調し、室外熱交換器81を蒸発器として機能させて外気から吸熱するようにしている。
この空調暖房運転では、ヒートポンプ運転制御部Dは、高圧検出手段88の検出情報に基づいて、その検出圧力が暖房用の目標圧力になるようにガスエンジン77の回転速度を制御するようにしている。
また、この空調暖房運転において、加熱用冷媒配管90を通してヒートポンプ式熱交換部33に高圧冷媒を供給する加熱用運転により、循環路3を通流する湯水を加熱するようにしている。
【0039】
前記空調暖房運転における冷媒の流れについて説明を加えると、電子膨張弁74,89が所定開度になるように制御する初期制御を行い、高圧検出手段88の検出圧力が目標圧力になるように、ガスエンジン77の回転数を増減して、冷媒圧縮機78の回転速度を制御し、冷媒圧縮機78から吐出される高圧乾き蒸気冷媒を、四方弁80を介して室内熱交換器75およびヒートポンプ式熱交換部33に供給し、室内熱交換器75においては加熱対象空気との熱交換により凝縮され、ヒートポンプ式熱交換部33においては循環路3の湯水との熱交換により凝縮される。
【0040】
そして、室内熱交換器75から送出される凝縮工程通過冷媒を、電子膨張弁74を介して室外熱交換器81に供給するとともに、ヒートポンプ式熱交換部33から送出される凝縮工程通過冷媒を、電子膨張弁89を介して室外熱交換器81に供給して、この室外熱交換器81において外気との熱交換により蒸発される。その後、室外熱交換器81から送出される低圧乾き蒸気冷媒を四方弁80およびアキュムレータ79を介して冷媒圧縮機78の吸入口に戻す。
【0041】
尚、電子膨張弁74,89の初期制御が完了したあとは、室内熱交換器75やヒートポンプ式熱交換部33の下流側における冷媒温度を冷媒温度センサ96で検出して、この検出温度が飽和液温度から所定値を引いた目標温度になるように、電子膨張弁74,89の開度を調整するサブクール制御を実行する。
つまり、サブクール制御は、室内熱交換器75やヒートポンプ式熱交換部33で凝縮して放熱し、その結果、冷却された冷媒の温度を冷媒温度センサ96で検出して、その検出温度が、高圧検出手段88で検出した検出圧力を基にして予めメモリに記憶されているデータから求まる飽和液温度よりも、所定値( サブクール値) だけ低くなるように電子膨張弁74,89の開度を調整する。
【0042】
そして、飽和液温度から所定値を引いた目標温度に対して冷媒温度センサ96による検出温度が高いほど、電子膨張弁74,89の開度を小さくすることにより、冷媒の循環量が減少して、その分、所定冷媒量当たりの放熱量が増加して冷媒温度センサ96による検出温度が低下し、かつ、高圧検出手段88による検出圧力が増加して飽和液温度が上昇して、冷媒温度センサ96による検出温度を目標温度と略同等にすることができる。
また、目標温度に対して冷媒温度センサ96による検出温度が低いほど、電子膨張弁74,89の開度を大きくすることにより、冷媒の循環量が増加して、その分、所定冷媒量当たりの放熱量が減少して冷媒温度センサ96による検出温度が上昇し、かつ、高圧検出手段88による検出圧力が減少して飽和液温度が低下して、冷媒温度センサ96による検出温度を目標温度と略同等にすることができる。
【0043】
また、貯湯ユニット制御部Cには、貯湯タンク1内の貯湯量Rを検出する貯湯量検出手段Mや、貯湯タンク1に貯湯する目標貯湯量Raを設定する目標貯湯量設定手段Nなどが設けられている。
前記貯湯量検出手段Mと目標貯湯量設定手段Nはプログラム形式で設けられ、貯湯量検出手段Mは、貯湯温度サーミスタS1,S2,S3,S4のうちで貯湯設定温度Te以上の温度を検出する最下位の貯湯温度サーミスタがいずれの貯湯温度サーミスタS1,S2,S3,S4であるかにより、その貯湯温度サーミスタS1,S2,S3,S4の検出位置に対応する量として予め設定されている量の湯水を貯湯量Rとして検出するように構成され、目標貯湯量設定手段Nは、4個の貯湯温度サーミスタS1,S2,S3,S4のいずれかに対応する貯湯量Rを目標貯湯量Raとして設定するように構成されている。
【0044】
そして、最上部の貯湯温度サーミスタS1に対応する貯湯量Rが最低確保量Rmin として、上から2番目の貯湯温度サーミスタS2に対応する貯湯量Rが小貯湯量Rs として、上から3番目の貯湯温度サーミスタS3に対応する貯湯量Rが中貯湯量Rm として、また、最下部の貯湯温度サーミスタS4に対応する貯湯量Rが最大貯湯量Rmax として、夫々、予め設定されている。
ちなみに、本実施形態では、最低確保量Rmin が17リットル、小貯湯量Rs が30リットル、中貯湯量Rm が70リットル、最大貯湯量Rmax が113リットルとして設定されている。
【0045】
次に、貯湯ユニットAの運転について説明すると、貯湯リモコン92の要求指令やヒートポンプ運転手段Kの運転状態などに基づいて、貯湯ユニット制御部Cが、湯水循環手段E、循環調整手段F、給湯操作手段G、風呂操作手段H、暖房操作手段J、補助熱交換部34の夫々の運転を制御して、貯湯運転、放熱運転、および、給湯優先運転などの夫々の運転を実行するように構成されている。
【0046】
前記湯水循環手段Eについて具体的に説明すると、この湯水循環手段Eは、貯湯タンク1に湯水を貯湯するときに、貯湯運転用循環状態としてのヒートポンプ貯湯状態( 以下、HP貯湯状態という) および補助熱源貯湯状態、初期運転用循環状態としてのヒートポンプ貯湯初期状態( 以下、HP貯湯初期状態という) および補助熱源貯湯初期状態の4つの状態の夫々に切り換えられ、外部放熱部2にて放熱するときに、追焚き循環状態、暖房循環状態、追焚き・暖房同時循環状態の3つの状態の夫々に切り換えられるように構成されている。
【0047】
そして、貯湯タンク1に湯水を貯湯するときには、ヒートポンプ式熱交換部33または補助熱交換部35にて加熱された湯水の温度が貯湯許容温度に満たないときには、HP貯湯初期状態または補助熱源貯湯初期状態に切り換えて貯湯タンク1内の湯水を循環させ、ヒートポンプ式熱交換部33または補助熱交換部35にて加熱された湯水の温度が貯湯許容温度になると、HP貯湯状態または補助熱源貯湯状態に切り換えて貯湯タンク1に貯湯するようにしている。
また、外部放熱部2にて放熱するときには、追焚き要求のみの要求があると、追焚き循環状態に切り換え、暖房要求のみの要求があると、暖房循環状態に切り換え、追焚き要求および暖房要求の両要求があると、追焚き・暖房同時循環状態に切り換えるようにしている。
【0048】
以下、湯水循環手段Eの夫々の状態について説明を加える。
なお、この湯水循環手段Eの夫々の状態における説明において、上部開閉弁28、戻し開閉弁29、暖房用開閉弁44、風呂用開閉弁45、ヒートポンプ用開閉弁60、補助用断続開閉弁63、ヒートポンプバイパス開閉弁69,および、補助バイパス開閉弁70の開閉状態について、開弁させる開閉弁のみを記載し、記載していない開閉弁については閉弁させるものとする。
【0049】
前記HP貯湯状態においては、上部開閉弁28および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1内に湯水が温度成層を形成して貯湯させるように、貯湯タンク1の底部から取り出した湯水をヒートポンプ式熱交換部33にて加熱したのち、その温水を補助熱交換部35を迂回して貯湯タンク1の上部に戻すようにしている。
前記補助熱源貯湯状態においては、上部開閉弁28および補助用断続開閉弁63を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1内に湯水が温度成層を形成して貯湯させるように、貯湯タンク1の底部から取り出した湯水を補助熱交換部35にて加熱したのち、その温水を貯湯タンク1の上部に戻すようにしている。
【0050】
前記HP貯湯初期状態においては、戻し開閉弁29、暖房用開閉弁44および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1の底部から取り出した湯水をヒートポンプ式熱交換部33にて加熱したのち、その湯水を補助熱交換部35を迂回して貯湯タンク1の底部に戻すようにしている。
前記補助熱源貯湯初期状態においては、戻し開閉弁29、暖房用開閉弁44および補助用断続開閉弁63を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1の底部から取り出した湯水を補助熱交換部35にて加熱したのち、その湯水を貯湯タンク1の底部に戻すようにしている。
【0051】
前記追焚き循環状態においては、ヒートポンプ式熱交換部33にて加熱するときは、風呂用開閉弁45、ヒートポンプ用開閉弁60および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させて、ヒートポンプ式熱交換部33にて加熱された温水を風呂用熱交換部43にて放熱させたのち、その全量を貯湯タンク1を迂回してヒートポンプ式熱交換部33に戻し、補助熱交換部35にて加熱するときは、風呂用開閉弁45、補助用断続開閉弁63およびヒートポンプバイパス開閉弁69を開弁させるとともに、循環ポンプP1を作動させて、補助熱交換部35にて加熱された温水を風呂用熱交換部43にて放熱させたのち、その全量を貯湯タンク1とヒートポンプ式熱交換部33とを迂回して補助熱交換部35に戻すようにしている。
【0052】
前記暖房循環状態においては、暖房用開閉弁44、補助用断続開閉弁63およびヒートポンプバイパス開閉弁69を開弁させるとともに、循環ポンプP1を作動させ、補助熱交換部35にて加熱された温水を暖房用熱交換部42にて放熱させたのち、その全量を貯湯タンク1とヒートポンプ式熱交換部33とを迂回して補助熱交換部35に戻すようにしている。
前記追焚き・暖房同時循環状態においては、暖房用開閉弁44、風呂用開閉弁45、補助用断続開閉弁63およびヒートポンプバイパス開閉弁69を開弁させるとともに、循環ポンプP1を作動させ、補助熱交換部35にて加熱された温水を風呂用熱交換部43および暖房用熱交換部42にて放熱させたのち、その全量を貯湯タンク1とヒートポンプ式熱交換部33とを迂回して補助熱交換部35に戻すようにしている。
【0053】
前記貯湯ユニット制御部Cの運転として、貯湯運転、放熱運転、および、給湯優先運転について説明する。
前記貯湯運転は、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中であるか否かにより、ヒートポンプ貯湯運転( 以下、HP貯湯運転という) または補助熱源貯湯運転のいずれかを選択して実行され、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中に貯湯リモコン92から指令される加熱要求としての貯湯要求があると、補助熱交換部35を運転させて貯湯する補助熱源貯湯運転を実行させて補助熱源優先運転を実行し、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中ではないときに貯湯要求があると、エンジンヒートポンプ式冷暖房装置Bを空調暖房運転させて貯湯するHP貯湯運転を実行させてヒートポンプ優先運転を実行するように構成されている。
【0054】
そして、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中に空調リモコン93からの空調暖房要求が解除された状態において、貯湯要求があると、エンジンヒートポンプ式冷暖房装置Bの運転を継続したままHP貯湯運転を実行するように構成されている。
また、HP貯湯運転中に、エンジンヒートポンプ式冷暖房装置Bへの空調暖房要求があると、ガスエンジン77の回転速度や暖房要求されている部屋の暖房負荷などに基づいて、HP貯湯運転を継続している状態でのエンジンヒートポンプ式冷暖房装置Bの空調能力が空調負荷に対して余裕があるのか不足しているのかを判別し、空調能力に余裕があるときには、HP貯湯運転を継続するとともに、エンジンヒートポンプ式冷暖房装置Bにて空調暖房運転させる空調追加運転を実行し、空調能力が不足しているときには、HP貯湯運転から補助熱源貯湯運転に切り換えかつエンジンヒートポンプ式冷暖房装置Bにて空調暖房運転させるように構成されている。
【0055】
前記貯湯運転におけるHP貯湯運転について具体的に説明すると、まず、エンジンヒートポンプ式冷暖房装置Bを暖房運転させて高圧冷媒をヒートポンプ式熱交換部33に供給するととともに、湯水循環手段EをHP貯湯初期状態にて運転させ、貯湯タンク1内の湯水をヒートポンプ式熱交換部33にて加熱させる。
そして、貯湯サーミスタ66にて検出される温度が貯湯許容温度以上になると、湯水循環手段EをHP貯湯初期状態からHP貯湯状態に切り換えるとともに、貯湯タンク1の上部に貯湯される温水の温度が貯湯設定温度となるように、貯湯サーミスタ66の検出情報に基づいて循環用水比例バルブ65の開度を調整するようにしている。
【0056】
このようにして、貯湯タンク1内の湯水が温度成層を形成しながら貯湯され、貯湯タンク1の貯湯量が貯湯リモコン92などにより設定された目標貯湯量になると、設定時間貯湯タンク1への貯湯を継続したのち、エンジンヒートポンプ式冷暖房装置Bの運転を停止させるとともに、循環ポンプP1の作動を停止させかつ開弁している開閉弁を閉弁させて湯水循環手段Eの運転を停止させる。
ちなみに、目標貯湯量は、「少」、「中」、「満」のうちのひとつが選択でき、例えば、目標貯湯量として「中」が選択されているときには、中部サーミスタS3が貯湯設定温度よりも設定温度だけ低い温度を検出すると、貯湯タンク1の貯湯量が目標貯湯量になっていると検出するようにしている。
【0057】
前記貯湯運転における補助熱源貯湯運転について具体的に説明すると、まず、補助用断続開閉弁63、戻し開閉弁29、暖房用開閉弁44の夫々を開操作するとともに、補助バイパス開閉弁70、上部開閉弁28、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、風呂用開閉弁45の夫々を閉操作して、貯湯タンク1の底部から取り出した湯水を補助熱交換部35にて加熱したのち、その温水を貯湯タンク1の底部に戻す形態の補助熱源貯湯初期状態で湯水を循環させる貯湯初期運転と、補助用断続開閉弁63、上部開閉弁28の夫々を開操作するとともに、補助バイパス開閉弁70、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、暖房用開閉弁44、風呂用開閉弁45の夫々を閉操作して、貯湯タンク1の底部から取り出した湯水を補助熱交換部35にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態の補助熱源貯湯状態で湯水を循環させる貯湯運転とに切り換えて貯湯される。
【0058】
つまり、貯湯ユニット制御部Cは、貯湯用目標温度Tbよりも8℃高い温度を越える沸き上げ温度Ta、又は、貯湯用目標温度Tbよりも15℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により1秒間継続して検出されるまで、補助熱源貯湯初期状態にて湯水を1リットル/minの循環流量Qで循環させる貯湯初期運転を行い、貯湯用目標温度Tbよりも8℃高い温度を越える沸き上げ温度Ta、又は、貯湯用目標温度Tbよりも15℃低い温度を越える沸き上げ温度Taが1秒間継続して検出されると、補助熱源貯湯状態に切り換えて、沸き上げ温度Taが貯湯用目標温度Tbになるように循環流量Qを制御するように構成されている。
【0059】
このようにして、貯湯タンク1内の湯水が温度成層を形成しながら貯湯され、貯湯タンク1の貯湯量が貯湯リモコン92などにより設定された目標貯湯量になると、設定時間貯湯タンク1への貯湯を継続したのち、補助熱交換部35の運転を停止させるとともに、循環ポンプP1の作動を停止させかつ開弁している開閉弁を閉弁させて湯水循環手段Eの運転を停止させる。
【0060】
前記放熱運転は、追焚き要求のみの要求があると、追焚き運転を実行し、暖房要求のみの要求があると、暖房運転を実行し、追焚き要求および暖房要求の両要求があると、追焚き・暖房同時運転を実行するように構成されている。
【0061】
前記放熱運転における追焚き運転について具体的に説明すると、湯水循環手段Eを追焚き循環状態に切り換え、かつ、貯湯サーミスタ66による検出温度が追焚き用設定温度になるようにファン37の回転速度およびガス比例弁40の開度を調整するとともに、風呂ポンプP3を作動させて浴槽内の湯水を風呂戻り路18および風呂往き路19を通して循環させる。
そして、風呂用熱交換部43にて浴槽内の湯水を加熱して追焚きし、風呂戻りサーミスタ57の検出温度が追焚き用設定温度以上になると、風呂ポンプP3の作動を停止するとともに、補助熱交換部35の運転および湯水循環手段Eの運転を停止させる。
【0062】
前記放熱運転における暖房運転について具体的に説明すると、湯水循環手段Eを暖房循環状態に切り換え、かつ、貯湯サーミスタ66による検出温度が暖房用設定温度になるようにファン37の回転速度およびガス比例弁40の開度を調整するとともに、暖房ポンプP2を作動させて暖房端末からの熱媒を暖房戻り路46および暖房往き路47を通して循環させ、暖房用熱交換部42にて熱媒を加熱して暖房端末に供給するようにしている。
【0063】
前記放熱運転における追焚き・暖房同時運転について具体的に説明すると、湯水循環手段Eを追焚き・暖房同時循環状態に切り換え、かつ、貯湯サーミスタ66による検出温度が追焚き・暖房同時用設定温度になるようにファン37の回転速度およびガス比例弁40の開度を調整するとともに、風呂ポンプP3を作動させて浴槽内の湯水を風呂戻り路18および風呂往き路19を通して循環させ、かつ、暖房ポンプP2を作動させて暖房端末からの熱媒を暖房戻り路46および暖房往き路47を通して循環させる。
そして、浴槽の湯水を追焚きするとともに、暖房端末に暖房用熱交換部42にて加熱された熱媒を供給するようにしている。
【0064】
前記給湯優先運転は、貯湯タンク1の貯湯量が最低確保量未満のときに、給湯栓などに給湯するときに実行され、湯水循環手段Eを補助熱源貯湯状態に切り換え、補助熱交換部35にて加熱された湯水を上部接続路25から給湯路6に給湯しながら、給湯目標温度、貯湯出口サーミスタ13および給水サーミスタ9の検出情報に基づいて、給湯する湯水の温度が給湯目標温度になるようにミキシングバルブ8の開度を調整するとともに、ミキシングサーミスタ14の検出情報に基づいて、その検出温度と給湯目標温度との偏差に基づいてミキシングバルブ8の開度を微調整することにより、給湯目標温度の湯水を給湯するようにしている。
【0065】
ちなみに、浴槽に湯張りを行うときには、給湯優先運転と同様に、貯湯タンク1の貯湯量が最低確保量未満のときに、給湯栓などに給湯するときに実行され、給湯目標温度、貯湯出口サーミスタ13および給水サーミスタ9の検出情報に基づいて、給湯する湯水の温度が給湯目標温度になるようにミキシングバルブ8の開度を調整するとともに、ミキシングサーミスタ14の検出情報に基づいて、その検出温度と給湯目標温度との偏差に基づいてミキシングバルブ8の開度を微調整するとともに、湯張り電磁弁22を開弁させ、ミキシングバブル8にて給湯目標温度に調整された湯水を風呂戻り路18および風呂往き路19の両路から浴槽に供給し、浴槽内に湯張り設定量の湯水が供給されると、湯張り電磁弁22を閉弁させるようにしている。
【0066】
前記貯湯ユニットAの制御動作について、図4〜6のフローチャートに基づいて説明する。
前記貯湯ユニットAは、図4のフローチャートに示すように、貯湯タンク1の貯湯量が最低確保量未満であって、かつ、給湯栓が開操作されて給湯中であると、給湯優先運転を実行し、貯湯タンク1の貯湯量が最低確保量以上であるか、給湯中でなければ、給湯優先運転を実行していると、補助熱交換部35の運転および循環ポンプP1の作動を停止させて給湯優先運転停止処理を実行する。
そして、暖房要求や追焚き要求などの放熱要求があると、放熱運転を実行し、貯湯要求があると、貯湯運転を実行する。
【0067】
前記放熱運転の制御動作について、図5のフローチャートに基づいて説明を加えると、貯湯タンク1の貯湯量が最低確保量未満であって、かつ、給湯栓が開操作されて給湯中であると、給湯優先運転を実行する。
貯湯タンク1の貯湯量が最低確保量以上であるか、給湯中でなければ、給湯優先運転を実行していると、補助熱交換部35の運転および循環ポンプP1の作動を停止させて給湯優先運転停止処理を実行する。
【0068】
そして、追焚き要求がありかつ暖房要求がないときには、追焚き運転を実行し、追焚き要求および暖房要求の両要求があるときには、追焚き・暖房同時運転を実行し、追焚き要求がなくかつ暖房要求があるときには、暖房運転を実行する。このようにして、追焚き要求および暖房要求のいずれかまたは両方が要求されているかによって、その要求に応えるべく、追焚き運転、暖房運転、追焚き・暖房同時運転の夫々の運転を実行し、追焚き要求および暖房要求のいずれかまたは両方が満たされて要求が完了すると、湯水循環手段Eおよび補助熱交換部35の運転を停止させる放熱停止処理を実行する。
【0069】
前記貯湯運転の制御動作について、図6のフローチャートに基づいて説明を加えると、貯湯タンク1の貯湯量が最低確保量未満であって、かつ、給湯栓が開操作されて給湯中であると、給湯優先運転を実行する。
貯湯タンク1の貯湯量が最低確保量以上であるか、給湯中でなければ、給湯優先運転を実行していると、補助熱交換部35の運転および循環ポンプP1の作動を停止させて給湯優先運転停止処理を実行する。
そして、追焚き要求または暖房要求のいずれかの放熱要求があると、放熱運転を実行し、放熱要求がないときはHP貯湯運転を実行する。
【0070】
このようにして、HP貯湯運転または補助熱源貯湯運転のいずれかにて貯湯タンク1の貯湯量が目標貯湯量になると、設定時間貯湯タンク1への貯湯を継続したのち、エンジンヒートポンプ式冷暖房装置Bまたは補助熱交換部35の運転を停止させるとともに、循環ポンプP1の作動を停止させかつ開弁している開閉弁を閉弁させて湯水循環手段Eの運転を停止させる貯湯運転停止処理を実行する。
【0071】
前記HP貯湯運転について詳細に説明する。
HP貯湯運転は、貯湯リモコン92にて風呂予約設定を行った場合などに、貯湯用目標温度Tbで、かつ、目標貯湯量Raの湯水を貯湯タンク1に貯湯するために、現在の貯湯量Rが目標貯湯量Raに対してかなり少ないと判定したときに行われる。
【0072】
つまり、貯湯ユニット制御部Cが湯水循環手段Eの運転を制御する循環制御手段として機能し、HP貯湯運転が指令されるに伴って、図7に示すように、湯水循環手段Eを、貯湯タンク1の底部から取り出した湯水をヒートポンプ式熱交換部33にて加熱したのち、その温水を貯湯タンク1の底部に戻す形態の初期運転用循環状態( HP貯湯初期状態) で湯水を循環させる貯湯初期運転に切り換えて、その運転を制御したあと、貯湯タンク1内に湯水が温度成層を形成して貯湯されるように、貯湯タンク1の底部から取り出した湯水をヒートポンプ式熱交換部33にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態の貯湯運転用循環状態( HP貯湯状態) で湯水を循環させる貯湯運転に切り換えて、その運転を制御する。
【0073】
また、ヒートポンプ運転制御手段としてのヒートポンプ運転制御部Dは、HP貯湯運転が指令されるに伴って、ヒートポンプ式熱交換部33の冷媒圧縮機78を起動させて、ヒートポンプ式熱交換部33に供給される冷媒圧力が設定目標圧力になるように冷媒圧縮機78の回転速度を制御しながら、ヒートポンプ式熱交換部33の加熱用運転を制御する。
【0074】
前記貯湯初期運転としては、循環流量Qが初期目標流量( 3リットル/min) になるように水比例バルブ65の開度を制御する貯湯初期A運転( 貯湯予備運転) と、循環流量Qがヒートポンプ式熱交換部33の冷媒圧力に応じて増加するように水比例バルブ65の開度を制御する貯湯初期B運転とがあり、貯湯運転としては、循環流量Qがヒートポンプ式熱交換部33の冷媒圧力に応じて増加するように水比例バルブ65の開度を制御する貯湯A運転と、沸き上げ温度Taが貯湯用目標温度Tb( 本実施形態では、60℃又は67℃のいずれかに設定されている) になるように水比例バルブ65の開度を制御して循環流量Qを調整する貯湯A運転とがある。
【0075】
前記貯湯ユニット制御部Cによるヒートポンプ加熱貯湯処理について、図8〜図15のフローチャートを参照しながら詳述する。
前記貯湯初期A運転について説明する。
前記貯湯初期A運転による運転制御では、図8に示すように、タイマ94をリセットして、ヒートポンプ運転制御部Dにヒートポンプ運転要求信号を出力し、ヒートポンプ運転制御部Dから運転状態を示す信号としてのヒートポンプの加熱能力不足を示す能力不足信号が入力されている場合は、貯湯待機処理を実行し、能力不足信号が入力されていない場合は、補助バイパス開閉弁70、戻し開閉弁29、暖房用開閉弁44の夫々を開操作するとともに、補助用断続開閉弁63、上部開閉弁28、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、風呂用開閉弁45の夫々を閉操作して初期運転用循環状態に切り換えて循環ポンプP1を作動させ、循環流量Qが初期目標流量( 3リットル/min) になるように水比例バルブ65の開度を制御して、貯湯タンク1の底部から取り出した湯水を補助用バイパス路68と暖房用循環路3aとを通って貯湯タンク1の底部に戻す形態の初期運転用循環状態で、循環路3を循環させる( ステップ#1〜#4) 。
そして、ヒートポンプ運転制御部Dから運転状態を示す信号としてのエンジンヒートポンプ式冷暖房装置Bが運転されていることを示すヒートポンプ運転信号が、ヒートポンプ運転要求信号を出力してから5分が経過しても入力されない場合は、貯湯待機処理を実行し、ヒートポンプ運転信号が入力されると、貯湯初期B運転による運転制御を開始する( ステップ#5〜#7) 。
【0076】
前記貯湯待機処理は、図9に示すように、循環ポンプP1が作動しているときはその作動を停止するとともに、ヒートポンプ運転要求信号の出力を停止して、タイマ94をリセットし、タイマ94の積算時間が30分になると、貯湯初期A運転による運転制御に戻る( ステップ#11〜#15) 。
【0077】
前記貯湯初期B運転について説明する。
前記貯湯初期B運転による運転制御では、室外機72からヒートポンプ式熱交換部33に加熱用冷媒が供給されており、図10に示すように、タイマ94をリセットして、初期運転用循環状態で循環流量Qが運転開始用設定量としての初期目標流量( 1リットル/min) になるように水比例バルブ65の開度を制御する( ステップ#21,#22) 。
そして、ヒートポンプ運転制御部Dから運転状態を示す信号としての冷却水温度サーミスタ95による検出温度が60℃以上であることを示すエンジン60℃信号が入力されていないときは、貯湯初期A運転による運転制御に戻り、エンジン60℃信号が入力されていると、貯湯用目標温度Tbが60℃の場合は上限循環流量Qmax を3リットル/minに設定し、貯湯用目標温度Tbが67℃の場合は上限循環流量Qmax を2リットル/minに設定して、高圧検出手段88で検出した冷媒圧力が2段階に設定した循環量増大制御用圧力のいずれかになると、その2段階の循環量増大制御用圧力に対応させて設定してある2段階の設定増大量を循環量増大制御用圧力に応じて選択して、湯水の循環量Qを設定増大量分増加させて設定時間待機する循環量増大制御を、繰り返し実行する( ステップ#23〜#27) 。
【0078】
前記循環量増大制御について説明する。
前記循環量増大制御では、図11に示すように、循環流量センサ62で検出した循環流量Qが上限循環流量Qmax 以上のときは、循環流量Qを現状に維持し、循環流量Qが上限循環流量Qmax 未満で、ヒートポンプ運転制御部Dから運転状態を示す信号としての、高圧検出手段88で検出した冷媒圧力が循環量増大制御用圧力の一つである20kgf/cm2(約1.96MPa) であることを示す冷媒20kgf/cm2 信号のみが入力されると、その循環量増大制御用圧力に対応させて設定してある設定増大量である0.1リットル/minを選択して、循環流量Qをその設定増大量増加させ、高圧検出手段88で検出した冷媒圧力が循環量増大制御用圧力の一つである22kgf/cm2(約2.16MPa) であることを示す冷媒22kgf/cm2 信号が入力されると、その循環量増大制御用圧力に対応させて設定してある設定増大量である0.2リットル/minを選択して、循環流量Qをその設定増大量増加させる( ステップ#41〜#45) 。
そして、上記循環量増大制御を、ヒートポンプ運転制御部Dから能力不足信号が入力されていない状態で、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されるまで、15秒の演算周期で実行し、能力不足信号が入力されると貯湯待機処理を実行する( ステップ#28〜#34) 。
【0079】
また、上記の循環量増大制御を繰り返す都度、沸き上げ温度Taが貯湯用目標温度Tbよりも4℃低い温度未満か否かを判定し、貯湯用目標温度Tbよりも4℃低い温度未満であれば、貯湯用目標温度Tbが60℃の場合は、貯湯初期B運転の開始から10分が経過すると貯湯待機処理を実行し、貯湯用目標温度Tbが67℃の場合は、貯湯初期B運転の開始から15分が経過すると貯湯待機処理を実行する( ステップ#30〜#34) 。
そして、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されると、貯湯A運転による運転制御を開始する( ステップ#29) 。
【0080】
前記貯湯A運転について説明する。
前記貯湯A運転による運転制御では、図12に示すように、タイマ94をリセットし、貯湯タンク1下部の湯水の温度が上がり過ぎて、ヒートポンプの加熱能力が低下しないように、補助バイパス開閉弁70、上部開閉弁28の夫々を開操作するとともに、補助用断続開閉弁63、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、暖房用開閉弁44、風呂用開閉弁45の夫々を閉操作して、貯湯タンク1の底部から取り出した湯水をヒートポンプ式熱交換部33にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態の貯湯運転用循環状態で湯水を循環させ、貯湯用目標温度Tbよりも4.5℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されるまで、前述の循環量増大制御を繰り返し実行する( ステップ#51〜#56) 。
但し、この貯湯A運転中に貯湯用目標温度Tbよりも23℃低い温度以下の沸き上げ温度Taが検出されると、貯湯禁止運転による運転制御を開始し、例えば空調暖房負荷が大きくて、能力不足信号が入力されると貯湯待機処理を実行する。
そして、貯湯用目標温度Tbよりも4.5℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されると、貯湯B運転による運転制御を開始する。
【0081】
前記貯湯禁止運転について説明する。
前記貯湯禁止運転による運転制御では、図13に示すように、補助バイパス開閉弁70、戻し開閉弁29、暖房用開閉弁44の夫々を開操作するとともに、補助用断続開閉弁63、上部開閉弁28、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、風呂用開閉弁45の夫々を閉操作して初期運転用循環状態に切り換え、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが検出されるまで後述する貯湯運転用流量制御を繰り返し実行し、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが5秒間継続して検出されるとステップ#53に戻る( ステップ#61〜#63) 。
【0082】
前記貯湯B運転について説明する。
前記貯湯B運転による運転制御では、図14に示すように、タイマ94をリセットし、補助バイパス開閉弁70、上部開閉弁28の夫々を開操作するとともに、補助用断続開閉弁63、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、暖房用開閉弁44、風呂用開閉弁45の夫々を閉操作して貯湯運転用循環状態に切り換え、上限循環量Qmax を10リットル/minに設定し、貯湯タンク1の上部に供給する加熱湯水の温度を貯湯用目標温度Tbに維持するように、水比例バルブ65のフィードバック制御で、貯湯サーミスタ66により検出される沸き上げ温度Taが貯湯用目標温度Tbになるように、湯水の循環流量Qを設定量増減制御して設定時間待機する貯湯運転用流量制御を15秒の演算周期で繰り返し実行し、貯湯量検出手段Mにより、目標貯湯量が検出されると、貯湯B運転を終了する( ステップ#71〜#75) 。
【0083】
前記貯湯運転用流量制御について説明する。
前記貯湯運転用流量制御では、図15〜図17に示すように、貯湯用目標温度Tbよりも23℃低い温度以下の沸き上げ温度Taが検出されると、貯湯禁止運転による運転制御が開始され、貯湯用目標温度Tbよりも23℃低い温度以下の沸き上げ温度Taが検出されいない状態で、循環流量Qが上限循環量Qmax 以上のときや、循環流量Qが上限循環量Qmax 未満で、かつ、沸き上げ温度Taが貯湯用目標温度Tbよりも1℃低い温度以上で貯湯用目標温度Tbよりも1℃高い温度以下の貯湯用目標温度範囲の温度であり、しかも、冷媒22kgf/cm2 信号が入力されていないときは、循環流量Qを現状に維持し( ステップ#81〜#83,#104) 、沸き上げ温度Taが貯湯用目標温度範囲の温度を越えているときは、沸き上げ温度Taが貯湯用目標温度Tbよりも5℃高い温度以下であれば、循環流量Qを0.1リットル/min増加させ、沸き上げ温度Taが貯湯用目標温度Tbよりも5℃高い温度を越えていれば、循環流量Qを0.2リットル/min増加させる( ステップ#84,#90,#94,#95) 。
【0084】
また、沸き上げ温度Taが貯湯用目標温度範囲の温度を下回っているときは、冷媒20kgf/cm2 信号が入力されていなかったり、冷媒20kgf/cm2 信号が入力されていても、ヒートポンプ運転制御部Dから運転状態を示す信号としての、ガスエンジン77の現在の回転数が最大回転数であることを示す最大回転信号が入力されていれば、その沸き上げ温度Taに応じて、循環流量Qを減少させ( ステップ#85〜#89,#91〜#93) 、沸き上げ温度Taが加熱湯水の温度が貯湯用目標温度と見なす貯湯用目標温度範囲の温度よりも低いときであっても、冷媒20kgf/cm2 信号が入力されていていて、冷媒圧力が現状維持判別用圧力としての20kgf/cm2(1.96MP a) 以上であり、かつ、最大回転信号が入力されていなくて、冷媒圧縮機78の運転状態が最大出力運転状態でないときは、循環流量Qを現状に維持する( ステップ#84〜#86) 。
【0085】
つまり、沸き上げ温度Taが貯湯用目標温度Tbよりも2.5℃低い温度以上であれば、循環流量Qを0.1リットル/min減少させ( ステップ#87,#93) 、沸き上げ温度Taが貯湯用目標温度Tbよりも2.5℃低い温度を下回り、かつ、貯湯用目標温度Tbよりも5℃低い温度以上であれば、循環流量Qを0.2リットル/min減少させ( ステップ#88,#92) 、沸き上げ温度Taが貯湯用目標温度Tbよりも5℃低い温度を下回り、かつ、貯湯用目標温度Tbよりも6℃低い温度以上であれば、循環流量Qを0.3リットル/min減少させ( ステップ#89,#91) 、沸き上げ温度Taが貯湯用目標温度Tbよりも6℃低い温度を下回っていれば、貯湯禁止運転を行う。
【0086】
そして、循環流量Qを0.3リットル/min減少させたときは、沸き上げ温度Taが貯湯用目標温度Tbよりも4℃低い温度を下回っていると、貯湯用目標温度Tbが60℃の場合は、貯湯B運転の開始から10分が経過していると貯湯待機処理を実行し、貯湯用目標温度Tbが67℃の場合は、貯湯B運転の開始から15分が経過していると貯湯待機処理を実行し、貯湯待機処理を実行しないときは、循環流量Qが最低流量の1リットル/minであり、かつ、最大回転信号が入力されており、かつ、貯湯運転の開始から2分が経過しておれば、貯湯待機処理を実行する( ステップ#96〜#103) 。
【0087】
また、沸き上げ温度Taが貯湯用目標温度Tbと見なせる貯湯用目標温度範囲の温度であり、しかも、冷媒22kgf/cm2 信号が入力されていて、冷媒圧力が現状維持判別用圧力としての22kgf/cm2(( 約2.16MPa) 以上である場合は、最大回転信号が入力されていれば、循環流量Qを現状に維持し、最大回転信号が入力されていなくて冷媒圧縮機78の運転状態が最大出力運転状態でないとき、循環流量Qを0.1リットル/minの設定量を増大させてタイマ94をリセットし、沸き上げ温度Taが貯湯用目標温度Tbよりも2.5℃低い温度以上のときは、90秒間はその増大させた循環流量Qで循環させて待機する流量増加処理を行う( ステップ#83,#104〜#110) 。
【0088】
〔その他の実施形態〕
1.上記実施形態では、循環制御手段とヒートポンプ運転制御手段とが通信しながら、制御を行うように構成されているが、例えば、リモコンの情報が、両制御手段に並列的に伝えられたり、冷媒の圧力検出情報等、ヒートポンプ式加熱手段の各種センサの検出情報が、循環制御手段に直接伝えられる形態で制御しても良い。
2.上記実施形態では、設定時間( 15秒) 間隔おきに、冷媒圧力の判別が行なわれる形態で、循環量増大制御が行われるように構成されいるが、例えば、常に冷媒圧力を監視しておき、冷媒圧力が循環量増大制御用圧力になると、直ちに循環量増大制御を行い、その後、必ず設定時間( 15秒) の間は増大制御は行わない形態で実施しても良い。
3.上記実施形態では、水比例バルブの開度を制御して循環流量を調整するように構成したが、循環ポンプの駆動を制御して循環流量を調整しても良い。
【図面の簡単な説明】
【図1】貯湯式の給湯熱源装置( 貯湯ユニット) の概略構成図
【図2】貯湯式の給湯熱源装置( エンジンヒートポンプ式冷暖房装置) の概略構成図
【図3】制御ブロック図
【図4】制御動作を示すフローチャート
【図5】制御動作を示すフローチャート
【図6】制御動作を示すフローチャート
【図7】制御動作を示すフローチャート
【図8】制御動作を示すフローチャート
【図9】制御動作を示すフローチャート
【図10】制御動作を示すフローチャート
【図11】制御動作を示すフローチャート
【図12】制御動作を示すフローチャート
【図13】制御動作を示すフローチャート
【図14】制御動作を示すフローチャート
【図15】制御動作を示すフローチャート
【図16】制御動作を示すフローチャート
【図17】制御動作を示すフローチャート
【符号の説明】
1 貯湯タンク
6 給湯路
33 ヒートポンプ式加熱手段
78 冷媒圧縮機
D ヒートポンプ運転制御手段
E 湯水循環手段
Q 循環量
Tb 貯湯用目標温度
[0001]
BACKGROUND OF THE INVENTION
The present invention is a hot water storage tank having a hot water supply channel connected to the upper portion, and an initial operation in which hot water taken out from the bottom of the hot water storage tank is heated by a heat pump heating means and then the hot water is returned to the bottom of the hot water storage tank. Hot water initial operation in which hot water is circulated in a circulating state for hot water, and hot water taken out from the bottom of the hot water storage tank is heated by the heat pump heating means so that the hot water is stored in the hot water tank by forming a temperature stratification. After that, hot water circulation means that can be switched to hot water storage operation in which hot water is circulated in a circulation state for hot water storage operation in which the hot water is supplied to the upper part of the hot water storage tank, and when the hot water storage operation is commanded, The operation of the hot water circulation means is started during operation, and the temperature of the heated hot water heated by the heat pump heating means during the initial hot water storage operation becomes the target temperature for hot water storage. Accordingly, a circulation control means for controlling the operation of the hot water circulation means so as to switch to the hot water storage operation and operate the hot water circulation means, and the heat pump heating when the hot water storage operation is instructed. And a heat pump operation control means for controlling the operation of the heat pump heating means while controlling the rotational speed of the refrigerant compressor so that the refrigerant pressure becomes a set target pressure. The present invention relates to a hot water storage heat source device.
[0002]
[Prior art]
For example, as described in Japanese Patent Application Laid-Open No. 59-24137, the hot water storage type hot water supply heat source device starts the hot water circulation means in the initial hot water storage operation, and the heat pump heating means in the initial hot water storage operation. When the temperature of the heated hot water heated at the hot water reaches the target temperature for hot water storage, switch to hot water storage operation, heat the hot water taken out from the bottom of the hot water storage tank with the heat pump heating means, and put the hot water on the upper part of the hot water storage tank. By supplying the hot water, the hot water at the target temperature for hot water storage can be appropriately stored in the hot water storage tank in a temperature stratified state.
The heat pump operation control means controls the rotational speed of the refrigerant compressor so that the refrigerant pressure becomes the set target pressure, thereby heating power required for heating the hot water to be heated to the target temperature for hot water storage. Is adjusted so that the heat pump type heating means outputs.
Incidentally, this rotational speed control is feedback controlled based on the deviation between the detected refrigerant pressure and the set target pressure, the time constant in the control is set sufficiently large, and the increase / decrease change of the rotational speed is gradual. Will be done at speed.
[0003]
[Problems to be solved by the invention]
By the way, in the conventional hot water storage initial operation, from the start of the operation, a large amount of hot water equivalent to that in the hot water storage operation is circulated between the bottom of the hot water storage tank and the heat pump heating means. In this case, since a large amount of hot water having a low inflow temperature is supplied to the heat pump type heating means, in the initial operation of hot water storage, the operation is performed for a long time in a state where the condensation temperature of the refrigerant is difficult to rise. It takes time to reach the target temperature for hot water storage, and the switch from the initial hot water storage operation to the hot water storage operation is delayed. As a result, from the start of the initial hot water storage operation to the start of hot water storage at the top of the hot water storage tank There is a drawback that hot water cannot be supplied early because the time is long.
This invention is made | formed in view of the said situation, Comprising: It aims at shortening the time after the hot water storage initial operation is started until the hot water storage to the upper part of a hot water storage tank is started.
[0004]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a hot water storage tank having a hot water supply channel connected to an upper portion thereof, and hot water taken out from the bottom of the hot water storage tank is heated by a heat pump heating means, and then the hot water is supplied to the hot water storage tank. Initial operation of hot water storage in which hot water is circulated in a circulation state for initial operation in the form of returning to the bottom, and hot water taken out from the bottom of the hot water storage tank is stored in the hot water storage tank so that the hot water is stored in a temperature stratified state. Hot water circulation means that can be switched to hot water storage operation in which hot water is circulated in a circulation state for hot water storage operation in which hot water is supplied to the upper part of the hot water storage tank after being heated by the hot water heating means, and hot water storage operation is commanded Accordingly, the hot water circulating means is started to operate in the initial hot water storage operation, and the heated hot water heated by the heat pump heating means during the initial hot water storage operation. As the temperature reaches the hot water storage target temperature, the circulation control means for controlling the operation of the hot water circulation means and the hot water storage operation are instructed so as to switch to the hot water operation and operate the hot water circulation means. Along with this, a heat pump that controls the operation of the heat pump heating means while starting the refrigerant compressor of the heat pump heating means and controlling the rotational speed of the refrigerant compressor so that the refrigerant pressure becomes the set target pressure. A hot water storage type hot water supply heat source device provided with operation control means,
In the initial hot water storage operation, the circulation control means sets the circulation amount of the hot water to the operation start set amount at the start of operation, and then increases the circulation amount of the hot water when the refrigerant pressure reaches the circulation amount increase control pressure. The circulation amount increase control that increases by a large amount and waits for a set time is configured to be repeatedly executed.
[Action]
As the hot water storage operation is commanded, the circulation control means starts the operation of the hot water circulation means in the initial hot water storage operation, and the heat pump operation control means starts the refrigerant compressor of the heat pump type heating means so that the refrigerant pressure is increased. The rotational speed of the refrigerant compressor is controlled so as to reach the set target pressure. At the start of the hot water storage initial operation, the refrigerant pressure is more likely to increase and the condensation temperature of the refrigerant is likely to increase when the amount of circulating hot water is smaller.
For this reason, the circulation control means operates at the start of the hot water storage initial operation with the hot water circulation amount set to the operation start set amount, and when the refrigerant pressure becomes the circulation amount increase control pressure, the hot water circulation amount is increased. Repeatedly increasing the amount of circulation and waiting for a set time to repeatedly execute the circulation amount increase control so that the heat pump type heating means is raised, so the temperature of the hot water heated by the heat pump type heating means rises quickly to the target temperature for hot water storage Can be made.
That is, at the start of the hot water storage initial operation, the circulation control means heats the hot water taken out from the bottom of the hot water storage tank with the heat pump type heating means with a small circulation amount for starting operation, and then the hot water is stored in the hot water storage tank. Since the hot water is circulated in the form of returning to the bottom of the refrigerant, the refrigerant pressure rises, that is, the refrigerant condensing temperature rises quickly, and the hot water temperature rises accordingly.
When the condensation temperature of the refrigerant rises to a temperature corresponding to the circulation amount increase control pressure, the heat pump heating is performed by repeating the circulation amount increase control in which the circulation amount of the hot water is increased by the set increase amount and waiting for the set time. Since the means is lifted, it is possible to quickly reach a state in which the hot water is heated to the target temperature for hot water storage.
〔effect〕
Since the temperature of the heated hot water heated by the heat pump heating means can be quickly raised to the target temperature for hot water storage, the switch from the initial hot water storage operation to the hot water storage operation becomes faster, and the hot water storage tank The time until the hot water storage to the top is started can be shortened.
[0005]
The characteristic configuration of the invention of claim 2 is that a plurality of stages of circulation amount increase control pressure is set as the circulation amount increase control pressure, and the plurality of stages of circulation amount increase control pressure are set in correspondence with the plurality of stages of circulation amount increase control pressure. A set increase amount of a plurality of stages is set as the set increase amount of the circulating amount of the hot water, and the circulation control means performs a plurality of stages in accordance with the pressure for the increase control of the plurality of stages in the circulation amount increase control. The configuration is such that any one of the set increase amounts is selected.
[Action]
In the circulation amount increase control, the circulation control means increases the circulation amount of hot water when the refrigerant pressure rises to one of the circulation amount increase control pressures set in a plurality of stages according to the increase in the refrigerant pressure. While increasing the circulation amount by the set increase amount corresponding to the control pressure, the temperature of the heated hot water heated by the heat pump heating means can be raised to the target temperature for hot water storage.
That is, when the refrigerant pressure rises greatly, a large set increase amount corresponding to the large refrigerant pressure is selected and the circulation amount is increased by the set increase amount, and when the refrigerant pressure rise is small, the small refrigerant The temperature of the heated hot water can be raised to the target temperature for hot water storage while selecting a small set increase amount corresponding to the pressure and increasing the circulation amount by the set increase amount.
〔effect〕
To increase the circulation amount according to the size of the refrigerant pressure so that the refrigerant pressure does not increase excessively, and to stabilize the operation state of the heat pump heating means, and to draw out the heating capacity of the heat pump heating means without difficulty Can do.
[0006]
According to a third aspect of the present invention, there is provided a hot water storage operation in which the circulation control means controls to increase or decrease the circulation amount of the hot water so that the temperature of the heated hot water is maintained at the target temperature for hot water storage in the hot water storage operation. It is in the point comprised so that industrial flow control may be performed.
[Action]
The circulation control means heats the hot water taken out from the bottom of the hot water tank with the heat pump heating means by controlling the increase and decrease of the hot water circulation amount so that the temperature of the heated hot water is maintained at the target temperature for hot water storage during hot water storage operation. After that, hot water is circulated in such a form that the hot water is supplied to the upper part of the hot water storage tank.
〔effect〕
The temperature of the heated hot water can be accurately maintained at the target temperature for hot water storage, and hot water at the target temperature for hot water storage can be stored in the hot water storage tank as desired.
[0007]
The characteristic configuration of the invention according to claim 4 is that, even if the temperature of the heated hot water is lower than the target temperature for hot water storage in the hot water storage operation flow rate control in the hot water storage operation, When the refrigerant pressure is equal to or higher than the current maintenance determination pressure and the operation state of the refrigerant compressor is not the maximum output operation state, the circulation amount of the hot water is maintained at the current circulation amount. is there.
[Action]
In hot water storage operation, when the temperature of the heated hot water is lower than the target temperature for hot water storage, if the circulating amount of hot water is reduced so that the temperature becomes the target temperature for hot water storage, the refrigerant pressure rises and the heat pump heating means Although the heating capacity may be reduced, even when the temperature of the heated hot water is lower than the target temperature for hot water storage, the refrigerant pressure is equal to or higher than the current maintenance determination pressure, and the operating state of the refrigerant compressor is maximum. When not in the output operation state, the heating capacity of the heat pump type heating means has a surplus capacity. Therefore, by maintaining the circulating amount of hot water at the current circulation amount, the heating capacity of the heat pump type heating means is increased and the desired hot water storage amount is obtained. Hot water can be stored early.
〔effect〕
In hot water storage operation, it is possible to prevent a reduction in the heating capacity of the heat pump heating means.
[0008]
The characteristic configuration of the invention of claim 5 is that, in the hot water storage operation flow rate control in the hot water storage operation, the circulation control means is configured so that the refrigerant pressure is present even if the temperature of the heated hot water is the target temperature for hot water storage. When the pressure is not less than the maintenance determination pressure and the operation state of the refrigerant compressor is not the maximum output operation state, an increase process of increasing the circulation amount of the hot water and waiting for a set time is performed. In the point.
[Action]
In hot water storage operation, when the temperature of the heated hot water is the target temperature for hot water storage, the operating state of the heat pump heating means is stable, but the refrigerant pressure remains the same even if the temperature of the heated hot water is the target temperature for hot water storage When the pressure is equal to or higher than the determination pressure and the operation state of the refrigerant compressor is not the maximum output operation state, the heating capacity of the heat pump type heating means has a surplus capacity. By performing the increase process and destroying the stable operation state of the heat pump type heating means, the operation state of the heat pump type heating means can be made higher.
〔effect〕
In the hot water storage operation, the high heating capacity of the heat pump heating means can be extracted.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An example in which an embodiment of a hot water storage type hot water supply heat source apparatus according to the present invention is applied to an engine heat pump type air conditioning and hot water supply system will be described with reference to the drawings.
As shown in FIGS. 1 and 2, this engine heat pump type air conditioning and hot water supply system supplies hot water stored in a hot water storage tank 1 by forming a temperature stratification, or heats the hot water in the hot water storage tank 1 to the outside. It is comprised from the hot water storage unit A which radiates heat in the thermal radiation part 2, and the engine heat pump type | formula air conditioning apparatus B which cools and heats indoors.
[0010]
The hot water storage unit A includes a hot water storage unit controller C that controls the operation of the hot water storage unit A, a hot water storage tank 1, a hot water circulation means E having a circulation path 3 for circulating hot water in the hot water storage tank 1, and a circulation path 3. The heating unit 4 for heating the flowing hot water and the external heat radiating unit 2 for exchanging heat with the hot water flowing through the circulation path 3 to dissipate heat and the like. While being circulated, the heating unit 4 heats or the external heat radiating unit 2 radiates heat.
[0011]
The hot water storage tank 1 is connected to a hot water supply path 5 for supplying water to the hot water storage tank 1 from the bottom using tap water pressure, and is connected to a hot water supply path 6 for supplying hot water to a bathroom or kitchen from the upper part. It is configured to supply only the amount of water used in the kitchen or the like from the water supply channel 5 to the hot water storage tank 1.
Inside the hot water storage tank 1, hot water storage temperature thermistors S1, S2, S3, and S4 as four temperature sensors for detecting the temperature of the hot water in the hot water storage tank 1 are provided in a vertically distributed manner.
[0012]
The hot water supply path 6 is connected to a mixing water supply path 7 branched from the water supply path 5, and the mixing ratio of the hot water from the hot water supply path 6 and the water from the mixing water supply path 7 can be adjusted to the connection location. A mixing valve 8 is provided.
A water supply thermistor 9 for detecting the water supply temperature is provided at a branch point between the water supply passage 5 and the mixing water supply passage 7, and a check valve 10 is provided in each of the water supply passage 5 and the mixing water supply passage 7. ing.
Incidentally, an overflow passage 11 is connected to the hot water supply passage 6, and an air vent valve 12 is provided in the overflow passage 11.
[0013]
Further, on the upstream side of the mixing valve 8 in the hot water supply passage 6, a hot water storage outlet thermistor 13 for detecting the temperature of the hot water supplied to the hot water supply passage 6 from the upper part of the hot water storage tank 1 is provided, and the mixing valve 8 in the hot water supply passage 6 is provided. On the further downstream side, a mixing thermistor 14 for detecting the temperature of hot and cold water mixed by the mixing valve 8 and a hot water supply proportional valve 15 for adjusting the flow rate of hot water in the hot water supply path 6 are provided.
[0014]
The hot water supply passage 6 downstream of the hot water proportional valve 15 is branched into a general hot water supply passage 16 for supplying hot water to a hot water tap such as a kitchen or a washroom, and a hot water supply passage 17 for supplying hot water to the bathtub, A hot water supply path 17 is connected to a bath return path 18 from the bathtub, and hot water is supplied to the bathtub through both the bath return path 18 and the bath return path 19.
The general hot water supply path 16 is provided with a hot water flow rate sensor 20 that detects the flow rate of hot water flowing through the general hot water supply path 16, and the hot water supply path 17 detects the flow rate of hot water flowing through the hot water supply path 17. A hot water flow rate sensor 21, a hot water solenoid valve 22, a vacuum breaker 23, and a hot water check valve 24 are provided in this order from the upstream side.
[0015]
The circulation path 3 and the hot water storage tank 1 allow the hot water flowing through the circulation path 3 to be returned to the hot water storage tank 1, or the hot water in the hot water storage tank 1 is taken into the circulation path 3 so that the upper part 1 of the hot water storage tank 1. It is connected in communication at a total of three locations, two locations and two bottom portions.
Specifically, an upper connection path 25 that connects the circulation path 3 and the hot water storage tank 1 is connected to the upper part of the hot water storage tank 1 through the upstream side of the hot water supply path 6. A return path 26 for returning hot water flowing through the circulation path 3 to the bottom of the hot water storage tank 1 via the downstream side of the water supply path 5, and an extraction path 27 for taking out hot water at the bottom of the hot water storage tank 1 to the circulation path 3. Are connected.
[0016]
The upper connection path 25 is provided with an electromagnetic upper opening / closing valve 28, and the return path 26 is provided with a return opening / closing valve 29. By opening the upper opening / closing valve 28, the circulation path 3 is passed through. The circulating hot water is supplied to the upper part of the hot water storage tank 1, the hot water in the upper part of the hot water storage tank 1 is taken out to the circulation path 3, and the return on-off valve 29 is opened to pass through the circulation path 3. The flowing hot water can be returned to the bottom of the hot water storage tank 1.
Incidentally, a drainage passage 30 for draining hot water in the hot water storage tank 1 is connected to the extraction passage 27, and a safety valve 31 and a manual valve 32 are connected in parallel to the middle portion of the drainage passage 30. .
[0017]
The heating unit 4 supplies the coolant from the engine heat pump air conditioner B to heat the hot water and supplies the cooling water recovered from the exhaust heat of the engine heat pump air conditioner B to supply hot water. The engine exhaust heat utilization type heat exchanging part 34 for heating the gas and the auxiliary heat exchanging part 35 for heating hot water by the combustion of the burner 36 are provided.
A heat pump heat exchange unit 33, an engine exhaust heat utilization type heat exchange unit 34, and an auxiliary heat exchange unit 35 are provided in this order from the upstream side in the hot water circulation direction of the circulation path 3.
[0018]
The auxiliary heat exchanging unit 35 is provided with a fan 37 for supplying combustion air to a gas combustion type burner 36 and the like, and is configured to heat hot water flowing through the circulation path 3 by combustion of the burner 36. .
A gas supply valve 38 for supplying fuel gas to the burner 36 is provided with a gas safety valve 39, a gas proportional valve 40, and a gas main valve 41 in order from the upstream side.
[0019]
The external heat radiating unit 2 includes a heating heat exchanging unit 42 for exchanging heat between hot water flowing through the circulation path 3 and hot water as a heating medium, and hot water flowing through the circulation path 3 and hot water in the bathtub. And a bath heat exchanging portion 43 for exchanging and exchanging heat with each other.
Then, the circulation path 3 is branched into a heating circulation path 3a having a heating heat exchange section 42 and a bath circulation path 3b having a bath heat exchange section 43, and the heating heat exchange section 42 and the bath The heat exchanging unit 43 is connected in parallel.
The heating circulation path 3a is provided with an electromagnetic heating on / off valve 44 upstream of the heating heat exchange section 42 in the hot water circulation direction, and the bath circulation path 3b has a bath heat exchange. An electromagnetic bath opening / closing valve 45 is provided upstream of the portion 43 in the hot water circulation direction.
[0020]
In the heating heat exchanging unit 42, the heating heat medium circulating through the heating return path 46 and the heating outgoing path 47 is heated by hot water flowing through the circulation path 3 by operating the heating pump P2. It is configured.
The heating return path 46 is provided with a heating return thermistor 48 that detects the temperature of the heating heat medium in the heating return path 46, a makeup water tank 49, and a heating pump P 2 in order from the upstream side. Is provided with a heating thermistor 50 that detects the temperature of the heating medium in the heating path 47.
[0021]
The replenishing water tank 49 is provided with an upper limit sensor 51 for detecting the upper limit of the water level and a lower limit sensor 52 for detecting the lower limit, and a tank water supply path 53 for supplying water to the replenishing water tank 49 is connected. A supply water electromagnetic valve 54 is provided in the path 53.
In addition, a heating bypass path 55 is provided for supplying the heating medium of the heating return path 46 to the heating forward path 47 by bypassing the heating heat exchanging section 42.
[0022]
The bath heat exchanging unit 43 is configured to heat the hot water in the bathtub circulating through the bath return path 18 and the bath going-out path 19 with hot water flowing through the circulation path 3 by operating the bath pump P3. Has been.
The bath return path 18 includes, in order from the upstream side, a water level sensor 56 that detects the level of hot water in the bathtub, a bath return thermistor 57 that detects the temperature of hot water in the bath return path 18, a two-way valve 58, and a bath pump. P3 and a bath water flow switch 59 are provided.
[0023]
An electromagnetic type that intermittently flows the hot water that has passed through the external heat radiating unit 2 to the heat pump heat exchange unit 33 between the connection point with the return path 26 and the connection point with the extraction path 27 in the circulation path 3. An on-off temperature thermistor for detecting the temperature of hot water flowing through the auxiliary heat exchanging unit 35 at a portion between the engine exhaust heat utilization type heat exchanging unit 34 and the auxiliary heat exchanging unit 35. 61, a circulation flow rate sensor 62 for detecting a circulation flow rate Q of hot water flowing through the circulation path 3, a circulation pump P1, and an electromagnetic auxiliary on-off valve 63 for intermittently supplying hot water to the auxiliary heat exchanger 35. Is provided.
[0024]
Between the auxiliary intermittent opening / closing valve 63 and the auxiliary heat exchanging unit 35 in the circulation path 3, a water amount sensor 64 for detecting the circulation flow rate Q of hot water flowing through the auxiliary heat exchange unit 35 is provided. After being heated by the water proportional valve 65 for adjusting the circulation flow rate Q of hot water flowing through the circulation path 3 and the heating section 4 between the auxiliary heat exchange section 35 and the connection portion of the upper connection path 25 in A hot water storage thermistor 66 for detecting the boiling temperature Ta of hot water in the circulation path 3 is provided.
[0025]
Further, the circulation path 3 includes a heat pump bypass path 67 for allowing hot water that has passed through the external heat radiating section 2 to bypass the heat pump heat exchanging section 33 and flow into the engine exhaust heat utilizing heat exchanging section 34, and an engine exhaust path. An auxiliary bypass path 68 for circulating hot water passing through the heat-utilizing heat exchange section 34 bypassing the auxiliary heat exchange section 35 is connected, and an electromagnetic heat pump bypass on-off valve is connected to the heat pump bypass path 67. 69 is provided, and an electromagnetic auxiliary bypass opening / closing valve 70 is provided in the auxiliary bypass passage 68.
[0026]
Then, the hot water circulation means E includes the circulation path 3, the upper connection path 25, the return path 26, the take-out path 27, the circulation pump P1, the upper on-off valve 28, the heating on-off valve 44, the bath on-off valve 45, and the return on-off. The valve 29, the heat pump on-off valve 60, the heat pump bypass on-off valve 69, the auxiliary intermittent on-off valve 63, the auxiliary bypass on-off valve 70, and the like, and the upper on-off valve 28, the heating on-off valve 44, the bath on-off valve 45, the return The hot water extracted from the bottom of the hot water storage tank 1 is heated by the heating unit 4 by opening and closing the on-off valve 29, the heat pump on-off valve 60, the heat pump bypass on-off valve 69, the auxiliary intermittent on-off valve 63, and the auxiliary bypass on-off valve 70. After that, the hot water is circulated in the initial operation circulation state in which the hot water is returned to the bottom of the hot water storage tank 1, and the hot water is stored in the hot water storage tank 1. After the hot water extracted from the bottom of the hot water storage tank 1 is heated by the heating unit 4, the hot water is circulated for hot water storage operation in a form in which the hot water is supplied to the upper part of the hot water storage tank 1. Hot water storage operation to be circulated, hot water heated by the heating unit 4 is supplied to the external heat radiating unit 2, and the total amount of hot water that has passed through the external heat radiating unit 2 is directly returned to the heating unit 4 by bypassing the hot water storage tank 1 It can be switched to a heat radiation operation in which hot water is circulated in the circulation state for the heat radiation operation.
[0027]
The circulation adjusting means F includes a water supply thermistor 9, an inlet temperature thermistor 61, a circulation flow rate sensor 62, a water proportional valve 65, a hot water storage thermistor 66, a hot water storage temperature thermistor S1, S2, S3, S4, and the like. Is composed of a hot water storage outlet thermistor 13, a mixing valve 8, a hot water proportional valve 15, a hot water flow sensor 20, a hot water flow sensor 21, a hot water solenoid valve 22, and the like, and the bath operating means H is a water level sensor 56, a bath return. The thermistor 57, the two-way valve 58, the bath pump P3, the bath water flow switch 59, and the like are configured. The heating operation means J includes the heating return thermistor 48, the heating pump P2, the heating forward thermistor 50, and the like.
[0028]
The hot water storage unit controller C includes an upper on-off valve 28, a heating on-off valve 44, a bath on-off valve 45, a return on-off valve 29, a heat pump on-off valve 60, a heat pump bypass on-off valve 69, an auxiliary intermittent on-off valve 63, an auxiliary By controlling the opening and closing of each of the bypass on / off valves 70, hot water taken out from the bottom of the hot water storage tank 1 is heated by the heating unit 4, and then the hot water is returned to the bottom of the hot water storage tank 1 or from the bottom of the hot water storage tank 1. After the extracted hot water is heated by the heating unit 4, the hot water is returned to the upper part of the hot water storage tank 1, or the circulation path 3 is circulated between the heating unit 4 and the external heat radiating unit 2. Yes.
[0029]
The engine heat pump air conditioner B includes a plurality of indoor units 71 and an outdoor unit 72, and is configured to air-condition a plurality of air-conditioning target spaces. The indoor unit 71, the outdoor unit 72, and the hot water storage unit A The heat pump type heat exchanging unit 33 is connected by a refrigerant pipe 73 so that the refrigerant in the engine heat pump type air conditioner B can be supplied to the heat pump type heat exchanging unit 33.
Each of the plurality of indoor units 71 includes an indoor heat exchanger 75, an indoor air conditioner blower 76 that sends out the temperature-controlled air in the indoor heat exchanger 75 to the air-conditioning target space, and the like.
[0030]
The outdoor unit 72 includes electronic expansion valves 74 and 89, a gas engine 77, a refrigerant compressor 78 driven by the gas engine 77, an accumulator 79, a four-way valve 80, an outdoor heat exchanger 81, and an outdoor heat exchanger 82 thereof. Are provided with an outdoor air-conditioning blower 82, a radiator 83, a radiator blower 84, a heat pump operation control unit D, and the like.
A cooling water passage 85 for circulating cooling water for cooling the gas engine 77 to and from the radiator 83 is provided. The cooling water passage 85 detects the cooling water temperature at the radiator pump P4 and the engine outlet side. A temperature thermistor 95 is provided, and a cooling state in which the exhaust heat of the gas engine 77 is recovered is supplied to the engine exhaust heat utilization type heat exchanging portion 34 through the cooling water passage 91 for heating, and supplied to the radiator 83 to be radiated. An exhaust heat switching mechanism 86 that can be switched to a heat dissipation state is provided.
[0031]
Then, the heat pump operation means K detects the low-pressure side refrigerant pressure by the gas engine 77, the electronic expansion valves 74 and 89, the indoor air-conditioning blower 76, the refrigerant compressor 78, the four-way valve 80, the outdoor air-conditioning blower 82, and the low-pressure side refrigerant pressure. Means 87, high-pressure detection means 88 for detecting the refrigerant pressure on the high-pressure side, and the like, and the cooling water circulation means L are the cooling water passage 85, the heating cooling water passage 91, the radiator pump P4, the radiator blower 84, the exhaust heat switching mechanism. 86, a cooling water temperature thermistor 95, and the like.
[0032]
The hot water storage unit control unit C and the heat pump operation control unit D are configured to be able to transmit and receive control signals such as that the engine heat pump air conditioner B is in an air conditioning operation and a drive request to the engine heat pump air conditioner B. As shown in FIG. 3, the air conditioning operation such as the air conditioning cooling operation and the air conditioning heating operation to the air conditioning target space based on the commands of the air conditioning remote controller 93 and the hot water storage remote controller 92 installed in each room as the air conditioning target space. , Hot water storage operation to store hot water in the hot water storage tank 1, heat radiation operation to dissipate heat in the external heat radiating unit 2, hot water supply priority operation to supply hot water when the hot water storage amount in the hot water storage tank 1 is less than the minimum secured amount, etc. Is configured to run.
[0033]
The operation of the engine heat pump air conditioner B will be described. When there is an air conditioning request such as an air conditioning cooling request or an air conditioning heating request from the air conditioning remote controller 93, the heat pump operation control unit D operates the heat pump operating means K and the cooling water circulation means L. The compressor 78 is operated by the gas engine 77 based on the air-conditioning request by the air-conditioning remote controller 93, and the air-conditioning cooling operation and the air-conditioning heating operation are selectively switched by the switching operation of the four-way valve 80. The heat pump operation means K is controlled by switching the air conditioning to each air conditioning target space by opening / closing control of the valve 74.
That is, when there is an air conditioning cooling request from the air conditioning remote controller 93, the heat pump operation control unit D opens the electronic expansion valve 74 corresponding to the room with the air conditioning cooling request, and causes the indoor heat exchanger 75 to function as an evaporator. Then, the temperature of the air supplied to the air-conditioning target space is adjusted to a cooling temperature, and the heat pump operation means K is controlled to execute the air-conditioning cooling operation so that the outdoor heat exchanger 81 functions as a condenser and dissipates heat to the outside air. .
Further, when there is an air conditioning heating request from the air conditioning remote controller 93, the heat pump operation control unit D opens the electronic expansion valve 74 corresponding to the room with the air conditioning heating request, and causes the indoor heat exchanger 75 to function as a condenser. Then, the temperature of the air supplied to the air conditioning target space is adjusted by heating, and the heat pump operation means K is controlled to execute the air conditioning heating operation so that the outdoor heat exchanger 81 functions as an evaporator and absorbs heat from the outside air.
[0034]
The heat pump operation control unit D determines the rotational speed of the refrigerant compressor 78, the detected refrigerant pressure and the set target pressure so that the refrigerant pressure becomes the set target pressure in both the air conditioning cooling operation and the air conditioning heating operation. The time constant in the control is set to be sufficiently large, and the increase / decrease / change of the rotational speed is performed at a moderate speed.
[0035]
The cooling water circulation means L can be heated by the engine exhaust heat utilization type heat exchanging part 34 by operating the radiator pump P4, operating the radiator blower 84 and radiating heat by the radiator 83 in the air conditioning cooling operation. In this case, when the cooling water flowing through the cooling water channel 85 becomes equal to or higher than the heating set temperature, the exhaust heat switching mechanism 86 is switched to the heating state so that the cooling water is supplied to the engine exhaust heat utilizing heat exchange unit 34. ing.
In the air-conditioning / heating operation, the radiator pump P4 is operated, the radiator fan 84 is operated to dissipate heat by the radiator 83, and when the engine exhaust heat utilization type heat exchanging unit 34 can heat the heating load When the cooling water that is small and flows through the cooling water channel 85 becomes equal to or higher than the heating set temperature, the exhaust heat switching mechanism 86 is switched to a heating state so that the cooling water is supplied to the engine exhaust heat utilizing heat exchange unit 34. Yes.
[0036]
In the air-conditioning cooling operation, the indoor heat exchanger 75 functions as an evaporator to cool and adjust the temperature of air supplied to the air-conditioning target space, and the outdoor heat exchanger 81 functions as a condenser to radiate heat to the outside air. I am doing so.
In this air conditioning cooling operation, the heat pump operation control unit D controls the rotational speed of the gas engine 77 based on the detection information of the low pressure detection means 87 so that the detected pressure becomes the target pressure for cooling. .
Further, in the air conditioning cooling operation, the heat pump operation control unit D switches the exhaust heat switching mechanism 86 to a heating state, supplies the cooling water to the engine exhaust heat utilization type heat exchange unit 34, and supplies hot water flowing through the circulation path 3. It is heated by engine exhaust heat.
[0037]
The flow of the refrigerant in the air-conditioning cooling operation will be described. The high-pressure dry vapor refrigerant discharged from the refrigerant compressor 78 is supplied to the outdoor heat exchanger 81 via the four-way valve 80, and the outdoor heat exchanger 81 It is condensed by heat exchange with the outside air.
Then, the condensing process passing refrigerant sent from the outdoor heat exchanger 81 is supplied to the indoor heat exchanger 75 via the electronic expansion valve 74, and is evaporated by heat exchange with the air to be cooled in the indoor heat exchanger 75. The
Thereafter, the low-pressure dry vapor refrigerant delivered from the indoor heat exchanger 75 is returned to the suction port of the refrigerant compressor 78 via the four-way valve 80 and the accumulator 79.
[0038]
In the air-conditioning / heating operation, the indoor heat exchanger 75 functions as a condenser to heat and control the temperature of air supplied to the air-conditioning target space, and the outdoor heat exchanger 81 functions as an evaporator to absorb heat from the outside air. ing.
In this air conditioning heating operation, the heat pump operation control unit D controls the rotational speed of the gas engine 77 based on the detection information of the high pressure detection means 88 so that the detected pressure becomes the target pressure for heating. .
Further, in this air conditioning heating operation, the hot water flowing through the circulation path 3 is heated by the heating operation for supplying the high-pressure refrigerant to the heat pump heat exchanger 33 through the heating refrigerant pipe 90.
[0039]
When the flow of the refrigerant in the air conditioning heating operation is described, initial control is performed so that the electronic expansion valves 74 and 89 have a predetermined opening degree, and the detected pressure of the high pressure detecting means 88 becomes the target pressure. The rotational speed of the gas compressor 77 is increased or decreased to control the rotational speed of the refrigerant compressor 78, and the high-pressure dry vapor refrigerant discharged from the refrigerant compressor 78 is passed through the four-way valve 80 to the indoor heat exchanger 75 and the heat pump type. The heat is supplied to the heat exchanging unit 33 and condensed in the indoor heat exchanger 75 by heat exchange with the air to be heated, and in the heat pump heat exchanging unit 33 is condensed by heat exchange with hot water in the circulation path 3.
[0040]
And while supplying the condensation process passage refrigerant | coolant sent out from the indoor heat exchanger 75 to the outdoor heat exchanger 81 via the electronic expansion valve 74, the condensation process passage refrigerant | coolant sent out from the heat pump type heat exchange part 33, The refrigerant is supplied to the outdoor heat exchanger 81 through the electronic expansion valve 89 and is evaporated by heat exchange with the outside air in the outdoor heat exchanger 81. Thereafter, the low-pressure dry vapor refrigerant sent from the outdoor heat exchanger 81 is returned to the suction port of the refrigerant compressor 78 via the four-way valve 80 and the accumulator 79.
[0041]
After the initial control of the electronic expansion valves 74 and 89 is completed, the refrigerant temperature sensor 96 detects the refrigerant temperature on the downstream side of the indoor heat exchanger 75 and the heat pump heat exchanger 33, and the detected temperature is saturated. Subcool control is performed to adjust the opening degree of the electronic expansion valves 74 and 89 so that the target temperature is obtained by subtracting a predetermined value from the liquid temperature.
That is, in the subcool control, the indoor heat exchanger 75 and the heat pump heat exchange unit 33 condense and dissipate heat. As a result, the temperature of the cooled refrigerant is detected by the refrigerant temperature sensor 96, and the detected temperature is high. The opening degree of the electronic expansion valves 74 and 89 is adjusted so as to be lower by a predetermined value (subcool value) than the saturated liquid temperature obtained from the data stored in the memory in advance based on the detected pressure detected by the detecting means 88. To do.
[0042]
Then, the higher the temperature detected by the refrigerant temperature sensor 96 with respect to the target temperature obtained by subtracting a predetermined value from the saturated liquid temperature, the smaller the degree of opening of the electronic expansion valves 74 and 89, the lower the circulation amount of the refrigerant. Accordingly, the amount of heat released per predetermined amount of refrigerant increases, the temperature detected by the refrigerant temperature sensor 96 decreases, and the pressure detected by the high-pressure detection means 88 increases to increase the saturated liquid temperature, thereby increasing the refrigerant temperature sensor. The detected temperature by 96 can be made substantially equal to the target temperature.
Further, the lower the temperature detected by the refrigerant temperature sensor 96 with respect to the target temperature, the larger the degree of opening of the electronic expansion valves 74 and 89, thereby increasing the circulation amount of the refrigerant. The amount of heat release decreases, the temperature detected by the refrigerant temperature sensor 96 rises, the pressure detected by the high-pressure detection means 88 decreases, the saturated liquid temperature decreases, and the temperature detected by the refrigerant temperature sensor 96 is substantially the target temperature. Can be equivalent.
[0043]
The hot water storage unit controller C includes a hot water storage amount detection means M for detecting the hot water storage amount R in the hot water storage tank 1, a target hot water storage amount setting means N for setting the target hot water storage amount Ra to be stored in the hot water storage tank 1, and the like. It has been.
The hot water storage amount detection means M and the target hot water storage amount setting means N are provided in a program format, and the hot water storage amount detection means M detects a temperature of the hot water storage temperature thermistors S1, S2, S3, S4 that is equal to or higher than the hot water storage setting temperature Te. Depending on which hot water storage temperature thermistor S1, S2, S3, S4 is the lowest hot water storage temperature thermistor, an amount set in advance as an amount corresponding to the detection position of the hot water storage temperature thermistors S1, S2, S3, S4. Hot water is detected as the hot water storage amount R, and the target hot water storage amount setting means N sets the hot water storage amount R corresponding to any one of the four hot water storage temperature thermistors S1, S2, S3, S4 as the target hot water storage amount Ra. Is configured to do.
[0044]
The hot water storage amount R corresponding to the uppermost hot water storage temperature thermistor S1 is the minimum secured amount Rmin, the hot water storage amount R corresponding to the second hot water storage temperature thermistor S2 is the small hot water storage amount Rs, and the third hot water storage from the top. The hot water storage amount R corresponding to the temperature thermistor S3 is preset as the intermediate hot water storage amount Rm, and the hot water storage amount R corresponding to the lowest hot water storage temperature thermistor S4 is preset as the maximum hot water storage amount Rmax.
Incidentally, in this embodiment, the minimum secured amount Rmin is set to 17 liters, the small hot water storage amount Rs is set to 30 liters, the intermediate hot water storage amount Rm is set to 70 liters, and the maximum hot water storage amount Rmax is set to 113 liters.
[0045]
Next, the operation of the hot water storage unit A will be described. Based on the request command of the hot water remote controller 92, the operating state of the heat pump operation means K, etc., the hot water storage unit controller C performs hot water circulation means E, circulation adjustment means F, hot water supply operation. It is configured to control each operation of the means G, the bath operation means H, the heating operation means J, and the auxiliary heat exchanging section 34 to execute each operation such as a hot water storage operation, a heat radiation operation, and a hot water supply priority operation. ing.
[0046]
The hot water circulating means E will be described in detail. When the hot water circulating means E stores hot water in the hot water storage tank 1, the hot pump hot water storage state (hereinafter referred to as the HP hot water storage state) and the auxiliary hot water circulating state are stored. When the heat source hot water storage state, the heat pump hot water storage initial state (hereinafter referred to as the HP hot water storage initial state) as the initial operation circulation state, and the auxiliary heat source hot water storage initial state are switched to each of the four states, It is configured to be switched to each of three states, a recirculation circulation state, a heating recirculation state, and a reheating / heating simultaneous recirculation state.
[0047]
When hot water is stored in the hot water storage tank 1, when the temperature of the hot water heated by the heat pump heat exchanger 33 or the auxiliary heat exchanger 35 is less than the allowable hot water storage temperature, the HP hot water storage initial state or the auxiliary heat source hot water initial stage is stored. When the hot water in the hot water storage tank 1 is circulated and the temperature of the hot water heated by the heat pump heat exchanger 33 or the auxiliary heat exchanger 35 reaches the hot water storage allowable temperature, the hot water storage state or the auxiliary heat source hot water storage state is entered. The hot water storage tank 1 is switched to store hot water.
Further, when heat is radiated by the external heat radiating unit 2, if there is only a request for additional heating, it is switched to the additional circulation state, and if there is only a request for heating, it is switched to the heating circulation state. If there is a request for both of these, it is switched to the recirculation / heating simultaneous circulation state.
[0048]
Hereinafter, each state of the hot water circulating means E will be described.
In the description of each state of the hot water circulating means E, the upper on-off valve 28, the return on-off valve 29, the heating on-off valve 44, the bath on-off valve 45, the heat pump on-off valve 60, the auxiliary intermittent on-off valve 63, Regarding the open / closed states of the heat pump bypass open / close valve 69 and the auxiliary bypass open / close valve 70, only the open / close valve to be opened is described, and the open / close valves not described are closed.
[0049]
In the hot water storage state, the upper on-off valve 28 and the auxiliary bypass on-off valve 70 are opened and the circulation pump P1 is operated so that the hot water forms a temperature stratification in the hot water storage tank 1 and stores the hot water. After the hot water taken out from the bottom of 1 is heated by the heat pump heat exchanger 33, the hot water is bypassed the auxiliary heat exchanger 35 and returned to the upper part of the hot water tank 1.
In the auxiliary heat source hot water storage state, the upper on-off valve 28 and the auxiliary intermittent on-off valve 63 are opened, the circulation pump P1 is operated, and hot water forms a temperature stratification in the hot water storage tank 1 to store hot water. After the hot water taken out from the bottom of the hot water storage tank 1 is heated by the auxiliary heat exchanger 35, the hot water is returned to the upper part of the hot water storage tank 1.
[0050]
In the HP hot water storage initial state, the return on-off valve 29, the heating on-off valve 44, and the auxiliary bypass on-off valve 70 are opened, the circulation pump P1 is operated, and the hot water taken out from the bottom of the hot water storage tank 1 is heated by heat pump heat. After heating in the exchange unit 33, the hot water is bypassed the auxiliary heat exchange unit 35 and returned to the bottom of the hot water storage tank 1.
In the initial state of the auxiliary heat source hot water storage, the return on / off valve 29, the heating on / off valve 44, and the auxiliary on / off valve 63 are opened, and the circulation pump P1 is operated to assist the hot water taken out from the bottom of the hot water storage tank 1. After heating in the heat exchange unit 35, the hot water is returned to the bottom of the hot water storage tank 1.
[0051]
In the additional circulation state, when heating is performed by the heat pump heat exchanger 33, the on / off valve 45, the on / off valve 60 for the heat pump, and the auxiliary bypass on / off valve 70 are opened, and the circulation pump P1 is operated. After the hot water heated by the heat pump heat exchanger 33 is dissipated by the heat exchanger 43 for bath, the entire amount bypasses the hot water storage tank 1 and returns to the heat pump heat exchanger 33 for auxiliary heat exchange. When heating in the unit 35, the bath on-off valve 45, the auxiliary intermittent on-off valve 63 and the heat pump bypass on-off valve 69 are opened, and the circulation pump P1 is operated to heat the auxiliary heat exchange unit 35. After the hot water is dissipated in the heat exchanger 43 for bath, the entire amount is returned to the auxiliary heat exchanger 35, bypassing the hot water storage tank 1 and the heat pump heat exchanger 33. It has to.
[0052]
In the heating circulation state, the heating on-off valve 44, the auxiliary intermittent on-off valve 63, and the heat pump bypass on-off valve 69 are opened, the circulation pump P1 is operated, and the hot water heated by the auxiliary heat exchange unit 35 is supplied. After the heat is dissipated in the heating heat exchanging section 42, the entire amount is detoured between the hot water storage tank 1 and the heat pump heat exchanging section 33 and returned to the auxiliary heat exchanging section 35.
In the recirculation / heating simultaneous circulation state, the heating on-off valve 44, the bath on-off valve 45, the auxiliary intermittent on-off valve 63 and the heat pump bypass on-off valve 69 are opened, and the circulation pump P1 is operated to provide auxiliary heat. After the hot water heated by the exchange unit 35 is radiated by the heat exchange unit 43 for bath and the heat exchange unit 42 for heating, the entire amount bypasses the hot water storage tank 1 and the heat pump type heat exchange unit 33 to assist heat. It returns to the exchange part 35.
[0053]
As the operation of the hot water storage unit controller C, a hot water storage operation, a heat radiation operation, and a hot water supply priority operation will be described.
The hot water storage operation is executed by selecting either a heat pump hot water storage operation (hereinafter referred to as an HP hot water storage operation) or an auxiliary heat source hot water storage operation depending on whether the engine heat pump air conditioner B is in an air conditioning heating operation or not. When there is a hot water storage request as a heating request instructed from the hot water storage remote controller 92 during the air conditioning heating operation of the heat pump air conditioner B, the auxiliary heat source hot water storage operation is performed by operating the auxiliary heat exchanger 35 to store hot water, giving priority to the auxiliary heat source. If there is a hot water storage request when the engine heat pump air-conditioning apparatus B is not in the air conditioning heating operation, the HP heat storage operation is performed in which the engine heat pump air-conditioning apparatus B is stored in the air conditioning heating operation to store the hot water. Is configured to run.
[0054]
Then, when there is a hot water storage request in a state in which the air conditioning heating request from the air conditioning remote controller 93 is canceled during the air conditioning heating operation of the engine heat pump air conditioning apparatus B, the HP hot water storage operation is continued while the operation of the engine heat pump air conditioning apparatus B is continued. Is configured to run.
In addition, if there is an air conditioning heating request to the engine heat pump air conditioner B during the HP hot water storage operation, the HP hot water storage operation is continued based on the rotational speed of the gas engine 77 or the heating load of the room where the heating is requested. It is determined whether the air conditioning capacity of the engine heat pump type air conditioner B with the air conditioning load is sufficient or insufficient with respect to the air conditioning load. When the air conditioning capacity is sufficient, the HP hot water storage operation is continued and the engine When the air conditioning operation is performed by the heat pump type air conditioner B and the air conditioning capacity is insufficient, the HP hot water storage operation is switched to the auxiliary heat source hot water storage operation and the engine heat pump type air conditioner B is operated. It is configured as follows.
[0055]
The HP hot water storage operation in the hot water storage operation will be described in detail. First, the engine heat pump air conditioner B is heated to supply high-pressure refrigerant to the heat pump heat exchanging unit 33, and the hot water circulation means E is in the HP hot water initial state. The hot water in the hot water storage tank 1 is heated by the heat pump heat exchanger 33.
When the temperature detected by the hot water storage thermistor 66 exceeds the hot water storage allowable temperature, the hot water circulation means E is switched from the HP hot water storage initial state to the HP hot water storage state, and the temperature of the hot water stored in the upper part of the hot water storage tank 1 is stored. The opening degree of the circulation water proportional valve 65 is adjusted based on the detection information of the hot water storage thermistor 66 so that the set temperature is reached.
[0056]
In this way, when the hot water in the hot water storage tank 1 is stored while forming temperature stratification, and the hot water storage amount of the hot water storage tank 1 reaches the target hot water storage amount set by the hot water remote control 92 or the like, the hot water storage in the hot water storage tank 1 for a set time is performed. Then, the operation of the engine heat pump type air conditioner B is stopped, the operation of the circulation pump P1 is stopped, and the open / close valve is closed to stop the operation of the hot water circulation means E.
Incidentally, the target hot water storage amount can be selected from one of “small”, “medium”, and “full”. For example, when “medium” is selected as the target hot water storage amount, the central thermistor S3 is set at the hot water storage set temperature. If a temperature lower than the set temperature is detected, it is detected that the amount of hot water stored in the hot water storage tank 1 is equal to the target hot water storage amount.
[0057]
The auxiliary heat source hot water storage operation in the hot water storage operation will be specifically described. First, the auxiliary intermittent on-off valve 63, the return on-off valve 29, and the heating on-off valve 44 are opened, and the auxiliary bypass on-off valve 70, upper opening and closing are opened. After each of the valve 28, the heat pump opening / closing valve 60, the heat pump bypass opening / closing valve 69, and the bath opening / closing valve 45 is closed, the hot water taken out from the bottom of the hot water storage tank 1 is heated by the auxiliary heat exchange unit 35, The hot water initial operation for circulating hot water in the initial state of the auxiliary heat source hot water storage in which hot water is returned to the bottom of the hot water storage tank 1, the auxiliary on-off valve 63 and the upper on-off valve 28 are opened, and the auxiliary bypass on-off valve 70 is opened. The return on / off valve 29, the heat pump on / off valve 60, the heat pump bypass on / off valve 69, the heating on / off valve 44, and the bath on / off valve 45 are closed. Hot water taken out from the bottom of the hot water storage tank 1 is heated by the auxiliary heat exchanger 35, and then the hot water is switched to a hot water storage operation in which hot water is circulated in an auxiliary heat source hot water storage state in which the hot water is supplied to the upper portion of the hot water storage tank 1. Is done.
[0058]
That is, the hot water storage unit controller C determines that the boiling temperature Ta exceeding the temperature 8 ° C. higher than the hot water storage target temperature Tb or the boiling temperature Ta exceeding 15 ° C. lower than the hot water storage target temperature Tb is the hot water storage thermistor 66. Until the temperature is detected for 1 second continuously, the hot water storage is initially operated to circulate hot water at a circulation flow rate Q of 1 liter / min in the auxiliary heat source hot water storage initial state, and the temperature exceeds 8 ° C. higher than the target temperature Tb for hot water storage. When the boiling temperature Ta or the boiling temperature Ta exceeding 15 ° C. lower than the hot water storage target temperature Tb is continuously detected for 1 second, the auxiliary heat source hot water storage state is switched and the boiling temperature Ta is used for hot water storage. The circulation flow rate Q is controlled so as to reach the target temperature Tb.
[0059]
In this way, when the hot water in the hot water storage tank 1 is stored while forming temperature stratification, and the hot water storage amount of the hot water storage tank 1 reaches the target hot water storage amount set by the hot water remote control 92 or the like, the hot water storage in the hot water storage tank 1 for a set time is performed. Then, the operation of the auxiliary heat exchanger 35 is stopped, the operation of the circulation pump P1 is stopped, and the open / close valve is closed to stop the operation of the hot water circulation means E.
[0060]
When there is a request only for a reheating request, the heat dissipation operation performs a reheating operation, and when there is a request only for a heating request, a heating operation is performed, and when there are both a renewal request and a heating request, It is configured to execute the chasing and heating simultaneous operation.
[0061]
The reheating operation in the heat dissipation operation will be specifically described. The hot water circulation means E is switched to the recirculation circulation state, and the rotational speed of the fan 37 is set so that the temperature detected by the hot water storage thermistor 66 becomes the reheating set temperature. While adjusting the opening degree of the gas proportional valve 40, the bath pump P3 is operated to circulate hot water in the bathtub through the bath return path 18 and the bath outlet path 19.
Then, the hot water in the bathtub is heated and chased by the bath heat exchanging unit 43, and when the detected temperature of the bath return thermistor 57 becomes equal to or higher than the chasing temperature, the operation of the bath pump P3 is stopped. The operation of the heat exchanger 35 and the hot water circulation means E are stopped.
[0062]
The heating operation in the heat radiation operation will be specifically described. The hot water circulation means E is switched to the heating circulation state, and the rotational speed of the fan 37 and the gas proportional valve are set so that the temperature detected by the hot water storage thermistor 66 becomes the set temperature for heating. While adjusting the opening of 40, the heating pump P2 is operated to circulate the heat medium from the heating terminal through the heating return path 46 and the heating forward path 47, and the heating medium is heated by the heating heat exchanging section 42. Supply to heating terminals.
[0063]
The reheating / heating simultaneous operation in the heat radiation operation will be described in detail. The hot water circulation means E is switched to the reheating / heating simultaneous circulation state, and the temperature detected by the hot water storage thermistor 66 is set to the reheating / heating simultaneous setting temperature. The rotational speed of the fan 37 and the opening degree of the gas proportional valve 40 are adjusted so that the bath pump P3 is operated to circulate hot water in the bathtub through the bath return path 18 and the bath outlet path 19, and a heating pump. The heating medium from the heating terminal is circulated through the heating return path 46 and the heating outbound path 47 by operating P2.
And while chasing the hot water of a bathtub, the heating medium heated in the heat exchanging part 42 for heating is supplied to a heating terminal.
[0064]
The hot water supply priority operation is executed when hot water is supplied to a hot water tap or the like when the amount of hot water stored in the hot water storage tank 1 is less than the minimum ensured amount, and the hot water circulation means E is switched to the auxiliary heat source hot water storage state. While the hot water heated in this way is supplied from the upper connection path 25 to the hot water supply path 6, the temperature of the hot water to be supplied becomes the hot water supply target temperature based on the detection information of the hot water supply temperature, the hot water storage outlet thermistor 13 and the hot water supply thermistor 9. In addition, the opening degree of the mixing valve 8 is adjusted, and the opening degree of the mixing valve 8 is finely adjusted based on the deviation between the detected temperature and the hot water supply target temperature based on the detection information of the mixing thermistor 14. Hot water is supplied at a high temperature.
[0065]
By the way, when hot water is filled in the bathtub, similar to hot water supply priority operation, it is executed when hot water is stored in a hot water tap or the like when the amount of hot water stored in the hot water storage tank 1 is less than the minimum ensured amount. 13 and the detection information of the water supply thermistor 9, the opening of the mixing valve 8 is adjusted so that the temperature of the hot water to be supplied becomes the hot water supply target temperature, and the detection temperature and the detected temperature are determined based on the detection information of the mixing thermistor 14. While finely adjusting the opening of the mixing valve 8 based on the deviation from the hot water supply target temperature, the hot water solenoid valve 22 is opened, and the hot water adjusted to the hot water supply target temperature by the mixing bubble 8 is supplied to the bath return path 18 and Supplying to the bathtub from both sides of the bath going-out path 19 and when a set amount of hot water is supplied into the bathtub, the hot water solenoid valve 22 is closed. .
[0066]
The control operation of the hot water storage unit A will be described based on the flowcharts of FIGS.
As shown in the flowchart of FIG. 4, the hot water storage unit A executes hot water supply priority operation when the hot water storage amount of the hot water storage tank 1 is less than the minimum ensured amount and the hot water tap is opened and hot water is being supplied. However, if the amount of hot water stored in the hot water storage tank 1 is not less than the minimum ensured amount or not during hot water supply, if the hot water supply priority operation is executed, the operation of the auxiliary heat exchange unit 35 and the operation of the circulation pump P1 are stopped. The hot water supply priority operation stop process is executed.
And if there exists a heat dissipation request | requirement, such as a heating request | requirement and a follow-up request | requirement, a heat dissipation operation will be performed, and a hot water storage operation will be performed if there exists a hot water storage request | requirement.
[0067]
When the control operation of the heat radiation operation is described based on the flowchart of FIG. 5, the hot water storage amount of the hot water storage tank 1 is less than the minimum ensured amount, and the hot water tap is opened and hot water is being supplied. Execute hot water supply priority operation.
If the amount of hot water stored in the hot water storage tank 1 is not less than the minimum ensured amount or if hot water is not being supplied, if the hot water supply priority operation is executed, the operation of the auxiliary heat exchange unit 35 and the operation of the circulation pump P1 are stopped to give priority to hot water supply. Execute operation stop processing.
[0068]
When there is a renewal request and there is no heating request, a renewal operation is executed. When there are both a renewal request and a heating request, a renewal and heating simultaneous operation is executed, and there is no renewal request. When there is a heating request, the heating operation is executed. In this way, depending on whether one or both of the renewal request and the heating request is requested, each of the renewal operation, the heating operation, and the simultaneous reheating / heating operation is executed in order to meet the request, When either or both of the follow-up request and the heating request are satisfied and the request is completed, a heat radiation stop process for stopping the operation of the hot water circulating means E and the auxiliary heat exchange unit 35 is executed.
[0069]
When the control operation of the hot water storage operation is described based on the flowchart of FIG. 6, when the hot water storage amount of the hot water storage tank 1 is less than the minimum ensured amount and the hot water tap is opened and hot water is being supplied, Execute hot water supply priority operation.
If the amount of hot water stored in the hot water storage tank 1 is not less than the minimum ensured amount or if hot water is not being supplied, if the hot water supply priority operation is executed, the operation of the auxiliary heat exchange unit 35 and the operation of the circulation pump P1 are stopped to give priority to hot water supply. Execute operation stop processing.
And if there exists any heat dissipation request | requirement of a requisition request | requirement or a heating request | requirement, a heat dissipation operation will be performed, and when there is no heat dissipation request | requirement, HP hot water storage operation will be performed.
[0070]
In this way, when the hot water storage amount in the hot water storage tank 1 reaches the target hot water storage amount in either the HP hot water storage operation or the auxiliary heat source hot water storage operation, the hot water storage in the hot water storage tank 1 is continued for a set time, and then the engine heat pump type air conditioner B Alternatively, the operation of the auxiliary heat exchanging unit 35 is stopped, and the hot water storage operation stopping process is executed to stop the operation of the hot water circulation means E by stopping the operation of the circulation pump P1 and closing the open / close valve. .
[0071]
The HP hot water storage operation will be described in detail.
In the hot water storage operation, the hot water storage R is used to store hot water of the target hot water storage temperature Ra and the target hot water storage amount Ra in the hot water storage tank 1 when a hot water storage remote controller 92 is used to make a bath reservation. Is performed when it is determined that the amount of water is considerably smaller than the target hot water storage amount Ra.
[0072]
That is, the hot water storage unit control unit C functions as a circulation control means for controlling the operation of the hot water circulation means E, and as the HP hot water storage operation is commanded, the hot water circulation means E is connected to the hot water storage tank as shown in FIG. After the hot water taken out from the bottom of 1 is heated by the heat pump heat exchanging unit 33, the hot water is circulated in an initial operation circulation state (HP hot water storage initial state) in which the hot water is returned to the bottom of the hot water storage tank 1. After switching to the operation and controlling the operation, the hot water taken out from the bottom of the hot water storage tank 1 is heated by the heat pump heat exchanger 33 so that the hot water is stored in the hot water storage tank 1 by forming a temperature stratification. After that, the hot water is circulated in a hot water storage circulation state (HP hot water storage state) in which the hot water is supplied to the upper portion of the hot water storage tank 1, and the operation is controlled.
[0073]
Further, the heat pump operation control unit D as the heat pump operation control means starts the refrigerant compressor 78 of the heat pump heat exchange unit 33 and supplies it to the heat pump heat exchange unit 33 as the HP hot water storage operation is commanded. The heating operation of the heat pump heat exchanger 33 is controlled while controlling the rotation speed of the refrigerant compressor 78 so that the refrigerant pressure to be set becomes the set target pressure.
[0074]
The hot water storage initial operation includes an initial hot water storage operation A (hot water preparatory operation) in which the opening of the water proportional valve 65 is controlled so that the circulation flow rate Q becomes an initial target flow rate (3 liters / min), and the circulation flow rate Q is a heat pump. There is a hot water storage initial B operation in which the opening degree of the water proportional valve 65 is controlled so as to increase in accordance with the refrigerant pressure of the heat exchanger 33, and as the hot water storage operation, the circulating flow rate Q is the refrigerant of the heat pump heat exchanger 33. Hot water storage A operation for controlling the opening of the water proportional valve 65 so as to increase according to the pressure, and the boiling temperature Ta is set to either the hot water storage target temperature Tb (in this embodiment, 60 ° C. or 67 ° C. There is a hot water storage A operation in which the opening of the water proportional valve 65 is controlled so as to adjust the circulating flow rate Q.
[0075]
The heat pump heating hot water storage process by the hot water storage unit controller C will be described in detail with reference to the flowcharts of FIGS.
The hot water storage initial A operation will be described.
In the operation control by the hot water storage initial A operation, as shown in FIG. 8, the timer 94 is reset, a heat pump operation request signal is output to the heat pump operation control unit D, and a signal indicating the operation state is output from the heat pump operation control unit D. When an insufficient capacity signal indicating insufficient heating capacity of the heat pump is input, hot water storage standby processing is executed. When an insufficient capacity signal is not input, the auxiliary bypass opening / closing valve 70, the return opening / closing valve 29, and heating Each of the on-off valves 44 is opened, and the auxiliary on-off on-off valve 63, the upper on-off valve 28, the heat pump on-off valve 60, the heat pump bypass on-off valve 69, and the bath on-off valve 45 are closed for initial operation. Switch to the circulation state and operate the circulation pump P1, and open the water proportional valve 65 so that the circulation flow rate Q becomes the initial target flow rate (3 liters / min). In the initial operation circulation state in which the hot water taken out from the bottom of the hot water storage tank 1 is returned to the bottom of the hot water storage tank 1 through the auxiliary bypass passage 68 and the heating circulation passage 3a. Circulate (steps # 1 to # 4).
And even if 5 minutes have passed since the heat pump operation signal indicating that the engine heat pump type air conditioner B is operated as a signal indicating the operation state from the heat pump operation control unit D, the heat pump operation request signal is output. If not input, hot water storage standby processing is executed, and when a heat pump operation signal is input, operation control by hot water storage initial B operation is started (steps # 5 to # 7).
[0076]
As shown in FIG. 9, when the circulating pump P1 is operating, the hot water storage standby processing stops its operation, stops the output of the heat pump operation request signal, resets the timer 94, When the accumulated time reaches 30 minutes, the operation control returns to the hot water storage initial A operation (steps # 11 to # 15).
[0077]
The hot water storage initial B operation will be described.
In the operation control by the hot water storage initial B operation, the heating refrigerant is supplied from the outdoor unit 72 to the heat pump heat exchanging unit 33, and the timer 94 is reset as shown in FIG. The opening degree of the water proportional valve 65 is controlled so that the circulating flow rate Q becomes the initial target flow rate (1 liter / min) as the set amount for starting operation (steps # 21 and # 22).
And when the engine 60 degreeC signal which shows that the detection temperature by the cooling water temperature thermistor 95 as a signal which shows an operation state from the heat pump operation control part D is 60 degreeC or more is not input, the driving | operation by hot water storage initial stage A driving | operation Returning to the control, if the engine 60 ° C signal is input, the upper limit circulation flow rate Qmax is set to 3 liters / min when the hot water storage target temperature Tb is 60 ° C, and the hot water storage target temperature Tb is 67 ° C. When the upper limit circulation flow rate Qmax is set to 2 liters / min and the refrigerant pressure detected by the high pressure detecting means 88 becomes one of the circulation amount increase control pressures set in two steps, the circulation amount increase control for the two steps is performed. Select the two-stage setting increase amount corresponding to the pressure according to the circulation amount increase control pressure, increase the circulation amount Q of hot water by the set increase amount, and increase the circulation amount waiting for the set time Large control is repeatedly executed (steps # 23 to # 27).
[0078]
The circulation amount increase control will be described.
In the circulation amount increasing control, as shown in FIG. 11, when the circulation flow rate Q detected by the circulation flow rate sensor 62 is equal to or higher than the upper limit circulation flow rate Qmax, the circulation flow rate Q is maintained as it is and the circulation flow rate Q is set to the upper limit circulation flow rate. The refrigerant pressure detected by the high pressure detecting means 88 as a signal indicating the operation state from the heat pump operation control unit D is less than Qmax, and is 20 kgf / cm, which is one of the circulation amount increase control pressures. 2 Refrigerant 20kgf / cm indicating (approx. 1.96MPa) 2 When only a signal is input, a set increase amount of 0.1 liter / min, which is set corresponding to the circulation amount increase control pressure, is selected, and the circulation flow rate Q is increased by the set increase amount, The refrigerant pressure detected by the high pressure detecting means 88 is one of the pressures for controlling the circulation amount increase, 22 kgf / cm 2 Refrigerant 22kgf / cm indicating (approx. 2.16MPa) 2 When the signal is input, a set increase amount of 0.2 liter / min, which is set in accordance with the circulation amount increase control pressure, is selected, and the circulation flow rate Q is increased by the set increase amount (step # 41- # 45).
Then, in the circulation amount increase control, the boiling temperature Ta exceeding 20 ° C. lower than the hot water storage target temperature Tb is generated by the hot water storage thermistor 66 for 5 seconds in the state where the capacity shortage signal is not input from the heat pump operation control unit D. Until it is continuously detected, it is executed at a calculation cycle of 15 seconds. When an insufficient capacity signal is input, hot water storage standby processing is executed (steps # 28 to # 34).
[0079]
Further, each time the above circulation amount increase control is repeated, it is determined whether or not the boiling temperature Ta is less than 4 ° C. lower than the hot water storage target temperature Tb, and if it is less than 4 ° C. lower than the hot water storage target temperature Tb. For example, when the target temperature Tb for hot water storage is 60 ° C., the hot water storage standby process is executed when 10 minutes have elapsed from the start of the initial hot water storage B operation, and when the target temperature Tb for hot water storage is 67 ° C. When 15 minutes have elapsed from the start, hot water storage standby processing is executed (steps # 30 to # 34).
When the boiling temperature Ta exceeding the temperature 20 ° C. lower than the hot water storage target temperature Tb is continuously detected by the hot water storage thermistor 5 for 5 seconds, the operation control by the hot water storage A operation is started (step # 29).
[0080]
The hot water storage A operation will be described.
In the operation control by the hot water storage A operation, as shown in FIG. 12, the auxiliary bypass on-off valve 70 is set so that the timer 94 is reset so Each of the upper on-off valve 28 is opened, and the auxiliary on-off on-off valve 63, the return on-off valve 29, the heat pump on-off valve 60, the heat pump bypass on-off valve 69, the heating on-off valve 44, and the bath on-off valve 45, respectively. The hot water extracted from the bottom of the hot water storage tank 1 is heated by the heat pump heat exchanging unit 33 and then the hot water is circulated in a circulating state for hot water storage operation in which the hot water is supplied to the upper part of the hot water storage tank 1. Until the boiling temperature Ta exceeding 4.5 ° C. lower than the hot water storage target temperature Tb is continuously detected by the hot water storage thermistor 66 for 5 seconds. The circulating amount increase control is repeatedly executed (step # 51 to # 56).
However, if a boiling temperature Ta below 23 ° C. lower than the hot water storage target temperature Tb is detected during the hot water storage A operation, operation control by hot water storage prohibition operation is started. When a shortage signal is input, hot water storage standby processing is executed.
Then, when the boiling temperature Ta exceeding 4.5 ° C. lower than the hot water storage target temperature Tb is detected continuously for 5 seconds by the hot water storage thermistor 66, operation control by the hot water storage B operation is started.
[0081]
The hot water storage prohibition operation will be described.
In the operation control by the hot water storage prohibition operation, as shown in FIG. 13, the auxiliary bypass on-off valve 70, the return on-off valve 29, and the heating on-off valve 44 are opened, and the auxiliary on-off on-off valve 63, the upper on-off valve 28, the heat pump opening / closing valve 60, the heat pump bypass opening / closing valve 69, and the bath opening / closing valve 45 are closed to switch to the initial operation circulation state, and the boiling temperature exceeds the temperature 20 ° C. lower than the hot water storage target temperature Tb. The flow control for hot water storage operation to be described later is repeatedly executed until Ta is detected, and when the boiling temperature Ta exceeding 20 ° C. lower than the hot water target temperature Tb is continuously detected for 5 seconds, the process returns to step # 53. (Steps # 61 to # 63).
[0082]
The hot water storage B operation will be described.
In the operation control by the hot water storage B operation, as shown in FIG. 14, the timer 94 is reset, and the auxiliary bypass on-off valve 70 and the upper on-off valve 28 are opened, and the auxiliary intermittent on-off valve 63 and the return on-off valve are opened. 29, the heat pump on / off valve 60, the heat pump bypass on / off valve 69, the heating on / off valve 44, and the bath on / off valve 45 are closed to switch to the circulating state for hot water storage operation, and the upper limit circulation amount Qmax is set to 10 liters / min. The boiling temperature Ta detected by the hot water storage thermistor 66 by the feedback control of the water proportional valve 65 is set so that the temperature of the heated hot water supplied to the upper part of the hot water storage tank 1 is maintained at the hot water storage target temperature Tb. Repeated hot water storage flow control for a set time by controlling the hot water circulation flow Q to increase to the target temperature Tb with a calculation period of 15 seconds. And rows, the hot water storage amount detection means M, the target amount of hot water storage is detected, terminates the hot water storage B operation (step # 71 to # 75).
[0083]
The hot water storage operation flow control will be described.
In the hot water storage operation flow control, as shown in FIGS. 15 to 17, when a boiling temperature Ta that is 23 ° C. lower than the hot water storage target temperature Tb is detected, the operation control by the hot water storage prohibition operation is started. When the circulating flow rate Q is not less than the upper limit circulation rate Qmax in the state where the boiling temperature Ta below 23 ° C. below the target temperature Tb for hot water storage is not detected, or the circulation flow rate Q is less than the upper limit circulation rate Qmax, and The boiling temperature Ta is a temperature within the target temperature range for hot water storage that is not less than 1 ° C. lower than the target temperature Tb for hot water storage and 1 ° C. higher than the target temperature Tb for hot water storage, and is 22 kgf / cm of refrigerant. 2 When no signal is input, the circulation flow rate Q is maintained at the current state (steps # 81 to # 83, # 104), and when the boiling temperature Ta exceeds the temperature in the target temperature range for hot water storage, boiling is performed. If the temperature Ta is 5 ° C. or higher than the hot water storage target temperature Tb, the circulating flow rate Q is increased by 0.1 liter / min, and the boiling temperature Ta exceeds 5 ° C. higher than the hot water storage target temperature Tb. If so, the circulation flow rate Q is increased by 0.2 liter / min (steps # 84, # 90, # 94, # 95).
[0084]
When the boiling temperature Ta is lower than the temperature in the hot water storage target temperature range, the refrigerant is 20 kgf / cm. 2 No signal is input or refrigerant is 20kgf / cm 2 Even if the signal is input, if the maximum rotation signal indicating that the current rotation speed of the gas engine 77 is the maximum rotation speed is input from the heat pump operation control unit D as the signal indicating the operation state, The circulation flow rate Q is decreased in accordance with the boiling temperature Ta (steps # 85 to # 89, # 91 to # 93), and the boiling temperature Ta is the target temperature range for hot water storage where the temperature of the heated hot water is regarded as the target temperature for hot water storage. Even when the temperature is lower than the temperature of 20 kgf / cm of refrigerant 2 The signal is input and the refrigerant pressure is 20kgf / cm 2 (1.96 MPa) When the maximum rotation signal is not input and the operation state of the refrigerant compressor 78 is not the maximum output operation state, the circulating flow rate Q is maintained at the current state (step # 84). ~ # 86).
[0085]
That is, if the boiling temperature Ta is equal to or higher than the hot water storage target temperature Tb by 2.5 ° C. or less, the circulation flow rate Q is decreased by 0.1 liter / min (steps # 87 and # 93), and the boiling temperature Ta Is less than 2.5 ° C. lower than the hot water storage target temperature Tb and 5 ° C. lower than the hot water storage target temperature Tb, the circulating flow rate Q is reduced by 0.2 liter / min (step #). 88, # 92) If the boiling temperature Ta is lower than the temperature 5 ° C. lower than the hot water storage target temperature Tb and 6 ° C. lower than the hot water storage target temperature Tb, the circulating flow rate Q is set to 0.3. When the boiling temperature Ta is less than 6 ° C. lower than the hot water storage target temperature Tb, the hot water storage prohibition operation is performed.
[0086]
When the circulating flow rate Q is reduced by 0.3 liter / min, the boiling temperature Ta is below 4 ° C. lower than the hot water storage target temperature Tb, and the hot water storage target temperature Tb is 60 ° C. The hot water storage standby process is executed when 10 minutes have passed since the start of the hot water storage B operation. When the target temperature Tb for hot water storage is 67 ° C., the hot water storage operation is started when 15 minutes have elapsed since the start of the hot water storage B operation. When the standby process is executed and the hot water storage standby process is not executed, the circulation flow rate Q is 1 liter / min, which is the minimum flow rate, the maximum rotation signal is input, and 2 minutes from the start of the hot water storage operation. If it has elapsed, hot water storage standby processing is executed (steps # 96 to # 103).
[0087]
The boiling temperature Ta is a temperature in the target temperature range for hot water storage that can be regarded as the target temperature Tb for hot water storage, and the refrigerant is 22 kgf / cm. 2 The signal is input and the refrigerant pressure is 22kgf / cm 2 ((Approx. 2.16 MPa) If the maximum rotation signal is input, the circulation flow rate Q is maintained at the current level, and the maximum rotation signal is not input and the operating state of the refrigerant compressor 78 is maximum. When not in the output operation state, the circulating flow rate Q is increased by a set amount of 0.1 liter / min, the timer 94 is reset, and the boiling temperature Ta is equal to or higher than a temperature lower than the target temperature Tb for hot water storage by 2.5 ° C. Performs a flow rate increase process for 90 seconds to circulate at the increased circulating flow rate Q and wait (Steps # 83, # 104 to # 110).
[0088]
[Other Embodiments]
1. In the above embodiment, the circulation control means and the heat pump operation control means are configured to perform control while communicating. For example, information on the remote controller is transmitted to both control means in parallel, The detection information of various sensors of the heat pump heating means such as pressure detection information may be controlled in a form that is directly transmitted to the circulation control means.
2. In the above embodiment, the refrigerant pressure is determined at intervals of the set time (15 seconds), and the circulation amount increase control is performed. For example, the refrigerant pressure is constantly monitored, When the refrigerant pressure reaches the circulation amount increase control pressure, the circulation amount increase control is immediately performed, and thereafter, the increase control is not necessarily performed during the set time (15 seconds).
3. In the above embodiment, the circulation flow rate is adjusted by controlling the opening of the water proportional valve. However, the circulation flow rate may be adjusted by controlling the driving of the circulation pump.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hot water storage type hot water supply heat source device (hot water storage unit).
FIG. 2 is a schematic configuration diagram of a hot water storage type hot water supply heat source device (engine heat pump type air conditioning unit)
FIG. 3 is a control block diagram.
FIG. 4 is a flowchart showing a control operation.
FIG. 5 is a flowchart showing a control operation.
FIG. 6 is a flowchart showing a control operation.
FIG. 7 is a flowchart showing a control operation.
FIG. 8 is a flowchart showing a control operation.
FIG. 9 is a flowchart showing a control operation.
FIG. 10 is a flowchart showing a control operation.
FIG. 11 is a flowchart showing a control operation.
FIG. 12 is a flowchart showing a control operation.
FIG. 13 is a flowchart showing a control operation.
FIG. 14 is a flowchart showing a control operation.
FIG. 15 is a flowchart showing a control operation.
FIG. 16 is a flowchart showing a control operation.
FIG. 17 is a flowchart showing a control operation.
[Explanation of symbols]
1 Hot water storage tank
6 Hot water supply path
33 Heat pump heating means
78 Refrigerant compressor
D Heat pump operation control means
E Hot water circulation means
Q Circulation amount
Tb Hot water target temperature

Claims (5)

給湯路が上部に接続された貯湯タンクと、
前記貯湯タンクの底部から取り出した湯水をヒートポンプ式加熱手段にて加熱したのち、その温水を前記貯湯タンクの底部に戻す形態の初期運転用循環状態で湯水を循環させる貯湯初期運転と、前記貯湯タンク内に湯水が温度成層を形成して貯湯されるように、貯湯タンクの底部から取り出した湯水を前記ヒートポンプ式加熱手段にて加熱したのち、その温水を前記貯湯タンクの上部に供給する形態の貯湯運転用循環状態で湯水を循環させる貯湯運転とに切り換え自在な湯水循環手段と、
貯湯運転が指令されるに伴って、前記貯湯初期運転にて前記湯水循環手段の運転を開始させ、その貯湯初期運転中において前記ヒートポンプ式加熱手段にて加熱した加熱湯水の温度が貯湯用目標温度に達するに伴って、前記貯湯運転に切り換えて前記湯水循環手段を運転するように、前記湯水循環手段の運転を制御する循環制御手段と、
前記貯湯運転が指令されるに伴って、前記ヒートポンプ式加熱手段の冷媒圧縮機を起動させて、冷媒圧力が設定目標圧力になるように前記冷媒圧縮機の回転速度を制御しながら、前記ヒートポンプ式加熱手段の運転を制御するヒートポンプ運転制御手段とが設けられた貯湯式の給湯熱源装置であって、
前記循環制御手段が、前記貯湯初期運転において、運転開始時には湯水の循環量を運転開始用設定量にし、その後、前記冷媒圧力が循環量増大制御用圧力になると、前記湯水の循環量を設定増大量分増加させて設定時間待機する循環量増大制御を、繰り返し実行するように構成されている貯湯式の給湯熱源装置。
A hot water storage tank with a hot water supply channel connected to the top;
An initial hot water storage operation in which hot water is circulated in an initial operation circulation state in which hot water taken out from the bottom of the hot water storage tank is heated by a heat pump heating means and then returned to the bottom of the hot water storage tank, and the hot water storage tank Hot water storage in a form in which hot water taken out from the bottom of the hot water storage tank is heated by the heat pump heating means, and then the hot water is supplied to the upper part of the hot water storage tank so that the hot water is stored with hot water forming a temperature stratification. Hot water circulation means that can be switched to hot water storage operation in which hot water is circulated in a circulating state for operation;
As the hot water storage operation is commanded, the hot water circulating means is started in the hot water initial operation, and the temperature of the heated hot water heated by the heat pump heating means during the initial hot water storage operation is the target temperature for hot water storage. The circulation control means for controlling the operation of the hot water circulation means so as to switch to the hot water storage operation and operate the hot water circulation means,
As the hot water storage operation is commanded, the heat pump type heating unit is activated to start the refrigerant compressor and control the rotational speed of the refrigerant compressor so that the refrigerant pressure becomes a set target pressure. A hot water storage type hot water supply heat source device provided with a heat pump operation control means for controlling the operation of the heating means,
In the initial hot water storage operation, the circulation control means sets the circulation amount of the hot water to the operation start set amount at the start of operation, and then increases the circulation amount of the hot water when the refrigerant pressure reaches the circulation amount increase control pressure. A hot water storage type hot water supply heat source device configured to repeatedly execute a circulation amount increase control that is increased by a large amount and waits for a set time.
前記循環量増大制御用圧力として、複数段階の循環量増大制御用圧力が設定されると共に、その複数段階の循環量増大制御用圧力に対応させて、前記湯水の循環量の設定増大量として、複数段階の設定増大量が設定され、前記循環制御手段が、循環量増大制御において、前記複数段階の循環量増大制御用圧力に応じて、複数段階の設定増大量のいずれかを選択するように構成されている請求項1記載の貯湯式の給湯熱源装置。As the circulation amount increase control pressure, a plurality of stages of circulation amount increase control pressure are set, and in correspondence with the plurality of stages of circulation amount increase control pressure, as the set increase amount of the hot water circulation amount, A plurality of stages of set increase amounts are set, and the circulation control means selects one of the plurality of stages of set increase amounts according to the plurality of stages of circulation amount increase control pressure in the circulation amount increase control. The hot water storage type hot water supply heat source device according to claim 1, which is configured. 前記循環制御手段が、前記貯湯運転において、前記加熱湯水の温度を前記貯湯用目標温度に維持するように、前記湯水の循環量を増減制御する貯湯運転用流量制御を実行するように構成されている請求項1または2記載の貯湯式の給湯熱源装置。In the hot water storage operation, the circulation control means is configured to execute a hot water storage operation flow rate control for increasing / decreasing the circulation amount of the hot water so as to maintain the temperature of the heated hot water at the target temperature for hot water storage. The hot water storage type hot water supply heat source device according to claim 1 or 2. 前記循環制御手段が、前記貯湯運転における前記貯湯運転用流量制御において、前記加熱湯水の温度が前記貯湯用目標温度よりも低いときであっても、前記冷媒圧力が現状維持判別用圧力以上であり、かつ、前記冷媒圧縮機の運転状態が最大出力運転状態でないときには、前記湯水の循環量を現在の循環量に維持するように構成されている請求項3記載の貯湯式の給湯熱源装置。In the hot water storage operation flow rate control in the hot water storage operation, the circulation control means has the refrigerant pressure equal to or higher than the current maintenance determination pressure even when the temperature of the heated hot water is lower than the target temperature for hot water storage. And the hot water storage type hot water supply heat source device according to claim 3, wherein when the operation state of the refrigerant compressor is not the maximum output operation state, the circulation amount of the hot water is maintained at the current circulation amount. 前記循環制御手段が、前記貯湯運転における前記貯湯運転用流量制御において、前記加熱湯水の温度が前記貯湯用目標温度であっても、前記冷媒圧力が現状維持判別用圧力以上であり、かつ、前記冷媒圧縮機の運転状態が最大出力運転状態でないときには、前記湯水の循環量を設定量増加させて設定時間待機する増加処理を行うように構成されている請求項3または4記載の貯湯式の給湯熱源装置。In the hot water storage operation flow rate control in the hot water storage operation, the circulation control means is configured so that the refrigerant pressure is equal to or higher than the current maintenance determination pressure even when the temperature of the heated hot water is the target temperature for hot water storage, and 5. The hot water storage type hot water supply system according to claim 3, wherein when the operation state of the refrigerant compressor is not the maximum output operation state, an increase process of waiting for a set time by increasing the circulation amount of the hot water is performed. Heat source device.
JP2000110167A 2000-04-12 2000-04-12 Hot water storage hot water source Expired - Fee Related JP4144996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110167A JP4144996B2 (en) 2000-04-12 2000-04-12 Hot water storage hot water source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110167A JP4144996B2 (en) 2000-04-12 2000-04-12 Hot water storage hot water source

Publications (2)

Publication Number Publication Date
JP2001296054A JP2001296054A (en) 2001-10-26
JP4144996B2 true JP4144996B2 (en) 2008-09-03

Family

ID=18622729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110167A Expired - Fee Related JP4144996B2 (en) 2000-04-12 2000-04-12 Hot water storage hot water source

Country Status (1)

Country Link
JP (1) JP4144996B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388213B2 (en) * 2013-03-06 2018-09-12 パナソニックIpマネジメント株式会社 Air conditioner for vehicles
JP2016090174A (en) * 2014-11-07 2016-05-23 ダイキン工業株式会社 Hot water supply air-conditioning system

Also Published As

Publication number Publication date
JP2001296054A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP3986180B2 (en) Hot water storage hot water source
JP4194220B2 (en) Bath equipment
JP4169454B2 (en) Hot water storage hot water source
JP4208388B2 (en) Hot water storage hot water source
JP4144996B2 (en) Hot water storage hot water source
JP4194213B2 (en) Hot water storage hot water source
JP4174574B2 (en) Hot water storage hot water source
JP4169452B2 (en) Water heater
JP4194212B2 (en) Hot water storage hot water source
JP4194225B2 (en) Hot water storage hot water source
JP4390401B2 (en) Hot water storage hot water source
JP3976999B2 (en) Hot water supply and heating system using heat pump
JP4222714B2 (en) Hot water storage hot water source
JP4169453B2 (en) Hot water storage hot water source
JP4493231B2 (en) Heating medium circulation type heating device
JP3888790B2 (en) Water heater
JP2001296051A (en) Hot water storage type hot water heater source device
JP3851847B2 (en) Hot water storage hot water source
JP3979909B2 (en) Hot water storage water heater
JP4194215B2 (en) Hot water storage hot water source
JP3960912B2 (en) Hot water storage hot water source
JP4148630B2 (en) Hot water storage hot water source
JP4390403B2 (en) Heating medium circulation type heating device
JP4208387B2 (en) Hot water storage hot water source
JP3851868B2 (en) Hot water storage hot water source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees