JP4148630B2 - Hot water storage hot water source - Google Patents

Hot water storage hot water source Download PDF

Info

Publication number
JP4148630B2
JP4148630B2 JP2000135599A JP2000135599A JP4148630B2 JP 4148630 B2 JP4148630 B2 JP 4148630B2 JP 2000135599 A JP2000135599 A JP 2000135599A JP 2000135599 A JP2000135599 A JP 2000135599A JP 4148630 B2 JP4148630 B2 JP 4148630B2
Authority
JP
Japan
Prior art keywords
hot water
water storage
amount
temperature
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000135599A
Other languages
Japanese (ja)
Other versions
JP2001317815A (en
Inventor
徹 福知
寿成 酒井
康人 橋詰
敏弘 河内
泰 藤川
善夫 藤本
謙治 談議所
智也 崎石
健一 田之頭
和也 山口
直司 肆矢
実希夫 伊藤
道憲 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2000135599A priority Critical patent/JP4148630B2/en
Publication of JP2001317815A publication Critical patent/JP2001317815A/en
Application granted granted Critical
Publication of JP4148630B2 publication Critical patent/JP4148630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Description

【0001】
【発明の属する技術分野】
本発明は、給湯路が上部に接続された貯湯タンクと、その貯湯タンク内に湯水が温度成層を形成して貯湯されるように、貯湯タンクの底部から取り出した湯水を加熱手段にて加熱したのち、その温水を前記貯湯タンクの上部に供給する形態の貯湯運転状態で湯水を循環させる湯水循環手段と、前記貯湯タンクに貯湯する目標貯湯量を設定する目標貯湯量設定手段と、前記貯湯タンク内の貯湯量を検出する貯湯量検出手段と、前記貯湯タンクに貯湯してある湯水を前記給湯路を通して給湯する給湯手段と、前記貯湯量が前記目標貯湯量になるように、前記貯湯量検出手段の検出結果に基づいて、前記湯水循環手段の運転を制御する貯湯運転制御を実行する制御手段とが設けられた貯湯式の給湯熱源装置に関する。
【0002】
【従来の技術】
上記貯湯式の給湯熱源装置では、従来、例えば特開平5−81811号公報に記載されているように、給湯において湯切れを生じさせないために必要な貯湯量が目標貯湯量として設定され、制御手段は、貯湯量を目標貯湯量に維持するように湯水循環手段の運転を制御している。
【0003】
【発明が解決しようとする課題】
この為、貯湯運転制御の実行中に、給湯手段による給湯が行われて、その給湯以降に行われる給湯に必要な貯湯量が減少することになっても、制御手段は、貯湯量が当初の目標貯湯量になるように湯水循環手段の運転を制御するので、その結果、不必要な貯湯が行われる欠点がある。
本発明は上記実情に鑑みてなされたものであって、貯湯運転制御の実行中に給湯手段による給湯が行われた場合に、不必要な貯湯が行われることを防止できるようにすることを目的とする。
【0004】
【課題を解決するための手段】
請求項1記載の発明の特徴構成は、給湯路が上部に接続された貯湯タンクと、その貯湯タンク内に湯水が温度成層を形成して貯湯されるように、貯湯タンクの底部から取り出した湯水を加熱手段にて加熱したのち、その温水を前記貯湯タンクの上部に供給する形態の貯湯運転状態で湯水を循環させる湯水循環手段と、前記貯湯タンクに貯湯する目標貯湯量を設定する目標貯湯量設定手段と、前記貯湯タンク内の貯湯量を検出する貯湯量検出手段と、前記貯湯タンクに貯湯してある湯水を前記給湯路を通して給湯する給湯手段と、前記貯湯量が前記目標貯湯量になるように、前記貯湯量検出手段の検出結果に基づいて、前記湯水循環手段の運転を制御する貯湯運転制御を実行する制御手段とが設けられた貯湯式の給湯熱源装置であって、
前記給湯路における給湯流量を検出する給湯流量検出手段が設けられ、前記制御手段が、前記貯湯運転制御の実行中において、前記給湯手段による給湯が行われたときには、その給湯量を前記給湯流量の検出結果に基づいて演算し、その演算した給湯量に応じて前記目標貯湯量を減少側に補正する目標貯湯量補正処理を実行するように構成されている点にある。
〔作用〕
貯湯運転制御の実行中において、給湯手段による給湯が行われたときには、その給湯量を給湯流量の検出結果に基づいて演算し、その演算した給湯量に応じて目標貯湯量を減少側に補正する目標貯湯量補正処理を実行して、補正したあとの目標貯湯量になるように、貯湯量検出手段の検出結果に基づいて、湯水循環手段の運転を制御することができる。
〔効果〕
貯湯運転制御の実行中に、給湯手段による給湯が行われて、その給湯以降に行われる給湯に必要な貯湯量が減少することになると、制御手段は、その給湯量に応じて目標貯湯量を減少側に補正して、その補正したあとの目標貯湯量になるように湯水循環手段の運転を制御するので、貯湯運転制御の実行中に給湯手段による給湯が行われた場合に、不必要な貯湯が行われることを防止できる。
【0005】
請求項2記載の発明の特徴構成は、前記貯湯量検出手段が、前記貯湯タンク内の湯水の温度を検出する複数の温度センサを、上下方向に分散して配置して、それら温度センサのうちで貯湯設定温度以上の温度を検出する最下位のセンサがいずれであるかにより、貯湯量を検出するように構成され、前記目標貯湯量設定手段が、前記複数の温度センサのいずれかに対応する貯湯量を目標貯湯量として設定するように構成され、前記制御手段が、前記貯湯運転制御の実行中における前記目標貯湯量補正処理として、前記目標貯湯量から前記演算される給湯量に応じた湯水量を減算した減算貯湯量を求めて、前記複数の温度センサの夫々に対応する複数段階の貯湯量のうちで、前記減算貯湯量よりも多くて最も前記減算貯湯量に近い貯湯量に、前記目標貯湯量を補正するように構成されている点にある。
〔作用〕
貯湯量検出手段は、貯湯タンク内の湯水の温度を検出する複数の温度センサのうちで、貯湯設定温度以上の温度を検出する最下位のセンサがいずれであるかにより、その温度センサの位置に対応して定められている湯水の量を貯湯量として検出し、目標貯湯量設定手段は、複数の温度センサのいずれかに対応する貯湯量、つまり、温度センサ毎にその位置に対応して定められている湯水の量を目標貯湯量として設定する。
そして、制御手段は、貯湯運転制御の実行中における目標貯湯量補正処理として、給湯流量の検出結果に基づいて演算した給湯量に応じた湯水量を目標貯湯量から減算した減算貯湯量を求めて、複数の温度センサの夫々に対応する複数段階の貯湯量のうちで、減算貯湯量よりも多くて最も減算貯湯量に近い貯湯量に、目標貯湯量を補正する。
〔効果〕
複数の温度センサの夫々に対応する複数段階の貯湯量のうちのいずれかが目標貯湯量となるように補正して、その補正したあとの目標貯湯量に対応する温度センサが貯湯設定温度以上の温度を検出するように、湯水循環手段の運転を制御すれば良いので、実際の貯湯量と目標貯湯量とを比較するような演算処理が不要で、制御構成を簡略化することができる。
【0006】
請求項3記載の発明の特徴構成は、前記貯湯量検出手段が、前記貯湯タンク内の湯水の温度を特定高さ位置にて検出する温度センサと、前記湯水循環手段にて前記貯湯タンクに供給される湯水の供給流量を検出する供給量流量検出手段とを備えて、前記温度センサが貯湯設定温度を検出したときから、前記供給流量検出手段の検出流量を積算した積算量を求めて、前記温度センサに対応する基準貯湯量と前記積算量との合計量を、前記貯湯量として検出するように構成され、前記制御手段が、前記貯湯運転制御の実行中における前記目標貯湯量補正処理として、前記目標貯湯量から前記演算される給湯量に応じた湯水量を減算した減算貯湯量を求めて、その求めた減算貯湯量に前記目標貯湯量を補正するように構成されている点にある。
〔作用〕
貯湯量検出手段は、貯湯タンク内の湯水の温度を特定高さ位置にて検出する温度センサが貯湯設定温度を検出したときから、湯水循環手段にて貯湯タンクに供給される湯水の供給流量を積算した積算量を求めて、貯湯設定温度を検出した温度センサに対応する基準貯湯量と積算量との合計量を、貯湯量として検出する。そして、制御手段は、貯湯運転制御の実行中における目標貯湯量補正処理として、給湯流量の検出結果に基づいて演算した給湯量に応じた湯水量を目標貯湯量から減算した減算貯湯量を求めて、目標貯湯量をその求めた減算貯湯量に補正する。
〔効果〕
貯湯設定温度を検出した温度センサに対応する基準貯湯量と、その温度センサが貯湯設定温度を検出したときから、貯湯タンクに供給される湯水の供給流量を積算した積算量との合計量を貯湯量として検出するので、貯湯タンクに供給される湯水の供給流量を貯湯開始時から積算して貯湯量として検出する場合に比べて、実際の貯湯量を簡便に検出でき、しかも、貯湯設定温度を検出した温度センサに対応する基準貯湯量と積算量との合計量を貯湯量として検出するので検出誤差が少なく、実際の貯湯量を精度良く検出できる。
また、実際の貯湯量が、実際の給湯量に応じて補正した目標貯湯量になるように、湯水循環手段の運転を制御できるので、貯湯運転制御の実行中に給湯手段による給湯が行われた場合に、不必要な貯湯が行われることを精度良く防止できる。
【0007】
請求項4記載の発明の特徴構成は、前記温度センサの複数が、上下方向に分散して配置され、前記貯湯量検出手段が、それら複数の温度センサのうちで貯湯設定温度以上の温度を検出する最下位のセンサに対応する基準貯湯量と、その最下位の温度センサが貯湯設定温度を検出したときから、前記供給流量検出手段の検出流量を積算した積算量との合計量を、貯湯量として検出するように構成されている点にある。
〔作用〕
貯湯量検出手段は、複数の温度センサのうちで貯湯設定温度以上の温度を検出する最下位のセンサが、その貯湯設定温度を検出したときから、湯水循環手段にて貯湯タンクに供給される湯水の供給流量を積算した積算量を求めて、その最下位の温度センサに対応する基準貯湯量と積算量との合計量を、貯湯量として検出する。
〔効果〕
貯湯量の増大に伴って、貯湯設定温度以上の温度を検出する最下位のセンサが、順次下方のセンサに移行し、貯湯設定温度以上の温度を検出する最下位のセンサがその下方のセンサに移行する都度、そのセンサに対応する基準貯湯量と、そのセンサが貯湯設定温度を検出したときからの湯水の供給流量を積算した積算量との合計量を、貯湯量として検出できるので、貯湯設定温度以上の温度を検出する最下位のセンサがその下方のセンサに移行する都度、検出誤差を補正する状態で貯湯量を精度良く検出できる。
【0008】
【発明の実施の形態】
本発明にかかる貯湯式の給湯熱源装置の実施の形態をエンジンヒートポンプ式冷暖房給湯システムに適用した例を図面に基づいて説明する。
〔第1実施形態〕
このエンジンヒートポンプ式冷暖房給湯システムは、図1,図2に示すように、貯湯タンク1内に温度成層を形成して貯湯された湯水を給湯したり、貯湯タンク内1の湯水を加熱して外部放熱部2にて放熱したりする貯湯ユニットAと、室内の冷暖房をするエンジンヒートポンプ式冷暖房装置Bとから構成されている。
【0009】
前記貯湯ユニットAは、この貯湯ユニットAの運転を制御する貯湯ユニット制御部C、貯湯タンク1、貯湯タンク1内の湯水を循環させる循環路3を備えた湯水循環手段E、循環路3を通流する湯水を加熱する加熱手段としての加熱部4、循環路3を通流する湯水と熱交換して放熱する外部放熱部2などから構成され、循環ポンプP1の作動で貯湯タンク1内の湯水を循環路3にて循環させながら、加熱部4にて加熱したり、外部放熱部2にて放熱したりするようにしている。
【0010】
前記貯湯タンク1には、その底部から貯湯タンク1に水道水圧を用いて給水する給水路5が接続され、その上部から風呂場や台所などに給湯するための給湯路6が接続され、風呂場や台所などで使用された量だけの水を給水路5から貯湯タンク1に給水するように構成されている。
また、貯湯タンク1の内側には、貯湯タンク1内の湯水の温度を特定高さ位置にて検出する複数の温度センサとしての4個の貯湯温度サーミスタS1,S2,S3,S4が上下方向に分散配置して設けられている。
【0011】
前記給湯路6には、給水路5から分岐された混合用給水路7が接続され、その接続箇所に給湯路6からの湯水と混合用給水路7からの水との混合比を調整自在なミキシングバルブ8が設けられている。
前記給水路5と混合用給水路7との分岐箇所には、給水温度を検出する給水サーミスタ9が設けられ、給水路5および混合用給水路7の夫々には、逆止弁10が設けられている。
ちなみに、給湯路6には、オーバーフロー路11が接続され、そのオーバーフロー路11にエアー抜き弁12が設けられている。
【0012】
また、給湯路6におけるミキシングバルブ8よりも上流側には、貯湯タンク1の上部から給湯路6に給湯された湯水の温度を検出する貯湯出口サーミスタ13が設けられ、給湯路6におけるミキシングバルブ8よりも下流側には、ミキシングバルブ8にて混合された湯水の温度を検出するミキシングサーミスタ14、給湯路6の湯水の流量を調整する給湯用水比例バルブ15が設けられている。
【0013】
前記給湯用水比例バルブ15よりも下流側の給湯路6が、台所や洗面所などの給湯栓に給湯する一般給湯路16と、浴槽に湯水を供給するための湯張り路17とに分岐され、湯張り路17が浴槽からの風呂戻り路18に接続され、風呂戻り路18および風呂往き路19の両路を通して浴槽に湯水を供給するようにしている。
前記一般給湯路16には、一般給湯路16を通流する湯水の流量を検出する給湯流量センサ20が設けられ、湯張り路17には、湯張り路17を通流する湯水の流量を検出する湯張り流量センサ21、湯張り電磁弁22、バキュームブレーカ23、湯張り逆止弁24が上流側から順に設けられ、給湯流量センサ20が一般給湯路16における給湯流量を検出する給湯流量検出手段として設けられている。
【0014】
前記循環路3と貯湯タンク1とが、循環路3を通流する湯水を貯湯タンク1内に戻す、または、貯湯タンク1内の湯水を循環路3に取り出すために、貯湯タンク1の上部1箇所と底部2箇所の合計3箇所で連通接続されている。
具体的に説明すると、貯湯タンク1の上部には、循環路3と貯湯タンク1とを接続する上部接続路25が給湯路6の上流側を介して連通接続され、貯湯タンク1の底部には、循環路3を通流する湯水を給水路5の下流側を介して貯湯タンク1内の底部に戻す戻し路26と、貯湯タンク1内の底部の湯水を循環路3に取り出す取り出し路27とが連通接続されている。
【0015】
そして、上部接続路25には、電磁式の上部開閉弁28が設けられ、戻し路26には、戻し開閉弁29が設けられ、上部開閉弁28を開弁させることによって、循環路3を通流する湯水を貯湯タンク1内の上部に供給したり、貯湯タンク1内の上部の湯水を循環路3に取り出したりするようにし、戻し開閉弁29を開弁させることによって、循環路3を通流する湯水を貯湯タンク1内の底部に戻すことができるようにしている。
ちなみに、取り出し路27には、貯湯タンク1内の湯水を排水するための排水路30が接続され、その排水路30の途中部には、安全弁31と手動バルブ32とが並列に接続されている。
【0016】
前記加熱部4は、エンジンヒートポンプ式冷暖房装置Bによる冷媒を供給して湯水を加熱するヒートポンプ式加熱器33と、エンジンヒートポンプ式冷暖房装置Bのエンジン排熱を回収した冷却水を供給して湯水を加熱するエンジン排熱利用式加熱器34と、バーナ36の燃焼により湯水を加熱する補助加熱器35とを設けて構成されている。
そして、循環路3の湯水の循環方向において上流側から順に、ヒートポンプ式加熱器33、エンジン排熱利用式加熱器34、補助加熱器35が設けられている。
【0017】
前記補助加熱器35は、ガス燃焼式のバーナ36に燃焼用空気を供給するファン37などが設けられ、バーナ36の燃焼により循環路3を通流する湯水を加熱するように構成されている。
前記バーナ36に燃料ガスを供給する燃料供給路38には、上流側から順にガスセフティ弁39、ガス比例弁40、ガスメイン弁41が設けられている。
【0018】
前記外部放熱部2は、循環路3を通流する湯水と暖房用の熱媒としての温水とを熱交換する暖房用熱交換部42と、循環路3を通流する湯水と浴槽内の湯水とを熱交換して追焚きする風呂用熱交換部43とを設けて構成されている。
そして、循環路3が、暖房用熱交換部42を備えた暖房用循環路3aと、風呂用熱交換部43を備えた風呂用循環路3bとに分岐され、暖房用熱交換部42と風呂用熱交換部43とが並列に接続されている。
また、暖房用循環路3aには、暖房用熱交換部42よりも湯水の循環方向の上流側に電磁式の暖房用開閉弁44が設けられ、風呂用循環路3bには、風呂用熱交換部43よりも湯水の循環方向の上流側に電磁式の風呂用開閉弁45が設けられている。
【0019】
前記暖房用熱交換部42には、暖房ポンプP2を作動させることにより、暖房戻り路46および暖房往き路47を通して循環する暖房用熱媒を、循環路3を通流する湯水にて加熱するように構成されている。
そして、暖房戻り路46には、上流側から順に、暖房戻り路46の暖房用熱媒の温度を検出する暖房戻りサーミスタ48、補給水タンク49、暖房ポンプP2が設けられ、暖房往き路47には、暖房往き路47の暖房用熱媒の温度を検出する暖房往きサーミスタ50が設けられている。
【0020】
前記補給水タンク49には、水位の上限を検出する上限センサ51と下限を検出する下限センサ52とが設けられ、補給水タンク49に給水するためのタンク給水路53が接続され、そのタンク給水路53には、補給水電磁弁54が設けられている。
また、暖房戻り路46の暖房用熱媒を暖房用熱交換部42を迂回して暖房往き路47に供給する暖房バイパス路55が設けられている。
【0021】
前記風呂用熱交換部43は、風呂ポンプP3を作動させることにより、風呂戻り路18および風呂往き路19を通して循環する浴槽内の湯水を循環路3を通流する湯水にて加熱するように構成されている。
そして、風呂戻り路18には、上流側から順に、浴槽内の湯水の水位を検出する水位センサ56、風呂戻り路18の湯水の温度を検出する風呂戻りサーミスタ57、二方弁58、風呂ポンプP3、風呂水流スイッチ59が設けられている。
【0022】
前記循環路3における戻り路26との接続箇所と取り出し路27との接続箇所との間には、外部放熱部2を通過した湯水のヒートポンプ式加熱器33への通流を断続する電磁式のヒートポンプ用開閉弁60が設けられ、エンジン排熱利用式加熱器34と補助加熱器35との間の部分に、補助加熱器35に通流する湯水の温度を検出する入り温度サーミスタ61、循環路3を通流する湯水の循環量Qを検出する循環量センサ62、循環ポンプP1、補助加熱器35への湯水の通流を断続する電磁式の補助用断続開閉弁63が設けられている。
【0023】
前記循環路3における補助用断続開閉弁63と補助加熱器35との間には、補助加熱器35に通流する湯水の循環量Qを検出する水量センサ64が設けられ、循環路3における補助加熱器35と上部接続路25との接続箇所との間には、循環路3を通流する湯水の循環量Qを調整する水比例バルブ65、加熱部4にて加熱された後の循環路3の湯水の沸き上げ温度Taを検出する貯湯サーミスタ66が設けられている。
【0024】
また、循環路3には、外部放熱部2を通過した湯水をヒートポンプ式加熱器33を迂回してエンジン排熱利用式加熱器34に流入させるためのヒートポンプ用バイパス路67と、エンジン排熱利用式加熱器34を通過した湯水を補助加熱器35を迂回して循環させるための補助用バイパス路68とが接続され、ヒートポンプ用バイパス路67には、電磁式のヒートポンプバイパス開閉弁69が設けられ、補助用バイパス路68には、電磁式の補助バイパス開閉弁70が設けられている。
【0025】
そして、湯水循環手段Eが、循環路3、上部接続路25、戻し路26、取り出し路27、循環ポンプP1、および、上部開閉弁28、暖房用開閉弁44、風呂用開閉弁45、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、補助用断続開閉弁63、補助バイパス開閉弁70などにより構成され、上部開閉弁28、暖房用開閉弁44、風呂用開閉弁45、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、補助用断続開閉弁63、補助バイパス開閉弁70の開閉操作により、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の底部に戻す形態の貯湯初期運転状態で湯水を循環させる貯湯初期運転と、貯湯タンク1内に湯水が温度成層を形成して貯湯されるように、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態の貯湯運転状態で湯水を循環させる貯湯運転と、加熱部4にて加熱した湯水を外部放熱部2に供給し、かつ、外部放熱部2を通過した湯水の全量を貯湯タンク1を迂回して加熱部4に直接戻す形態の放熱運転状態で湯水を循環させる放熱運転とに切り換え自在に構成されている。
【0026】
また、循環調整手段Fが、給水サーミスタ9,入り温度サーミスタ61,循環量センサ62,水比例バルブ65、貯湯サーミスタ66,貯湯温度サーミスタS1,S2,S3,S4などにより構成され、貯湯タンク1に貯湯してある湯水を給湯路6を通して給湯する給湯手段Gが、貯湯出口サーミスタ13、ミキシングバルブ8、給湯用水比例バルブ15、給湯流量センサ20、湯張り流量センサ21、湯張り電磁弁22などにより構成され、風呂操作手段Hが、水位センサ56、風呂戻りサーミスタ57、二方弁58、風呂ポンプP3、風呂水流スイッチ59などで構成され、暖房操作手段Jが、暖房戻りサーミスタ48、暖房ポンプP2、暖房往きサーミスタ50などで構成され、湯水循環手段Eにて貯湯タンク1の上部に供給される湯水の供給流量を検出する供給流量検出手段が、循環量センサ62で構成されている。
【0027】
前記貯湯ユニット制御部Cは、上部開閉弁28、暖房用開閉弁44、風呂用開閉弁45、戻し開閉弁29、ヒートポンプ用開閉弁60、ヒートポンプバイパス開閉弁69、補助用断続開閉弁63、補助バイパス開閉弁70の夫々を開閉制御することにより、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の底部に戻したり、貯湯タンク1の底部から取り出した湯水を加熱部4にて加熱したのち、その温水を貯湯タンク1の上部に戻したり、循環路3を加熱部4と外部放熱部2とに亘って循環させたりするように構成されている。
【0028】
前記エンジンヒートポンプ式冷暖房装置Bは、複数の室内機71と室外機72とを備えて、複数の空調対象空間を空調することができるように構成され、室内機71と室外機72と貯湯ユニットAにおけるヒートポンプ式加熱器33とが冷媒配管73で接続され、エンジンヒートポンプ式冷暖房装置Bにおける冷媒をヒートポンプ式加熱器33に供給できるように構成されている。
前記複数の室内機71の夫々には、室内熱交換器75、その室内熱交換器75で温調した空気を空調対象空間へ送出する室内空調用送風機76などが備えられている。
【0029】
前記室外機72には、電子膨張弁74,89、ガスエンジン77、ガスエンジン77にて駆動される冷媒圧縮機78、アキュムレータ79、四方弁80、室外熱交換器81、その室外熱交換器82に対し外気を通風する室外空調用送風機82、ラジエータ83、ラジエータ用送風機84、ヒートポンプ運転制御部Dなどが備えられている。
また、ガスエンジン77の冷却用の冷却水をラジエータ83との間で循環させる冷却水路85が設けられ、この冷却水路85にラジエター用ポンプP4とエンジン出口側での冷却水温度を検出する冷却水温度サーミスタ95が設けられ、ガスエンジン77の排熱を回収した冷却水を、加熱用冷却水路91を通してエンジン排熱利用式加熱器34に供給する加熱状態と、ラジエータ83に供給して放熱される放熱状態とに切り換え自在な排熱切換機構86が設けられている。
【0030】
そして、ヒートポンプ運転手段Kが、ガスエンジン77、電子膨張弁74,89、室内空調用送風機76、冷媒圧縮機78、四方弁80、室外空調用送風機82、低圧側の冷媒圧力を検出する低圧検出手段87、高圧側の冷媒圧力を検出する高圧検出手段88などにより構成され、冷却水循環手段Lが、冷却水路85、加熱用冷却水路91、ラジエータ用ポンプP4、ラジエータ用送風機84、排熱切換機構86、冷却水温度サーミスタ95などにより構成されている。
【0031】
前記貯湯ユニット制御部Cとヒートポンプ運転制御部Dとは、エンジンヒートポンプ式冷暖房装置Bが空調運転中であることや、エンジンヒートポンプ式冷暖房装置Bへの駆動要求などの制御信号を送受信可能に構成にされ、図3に示すように、空調対象空間としての各部屋に設置されている空調リモコン93および貯湯リモコン92の指令に基づいて、空調対象空間への空調冷房運転や空調暖房運転などの空調運転、貯湯タンク1内に湯水を貯湯する貯湯運転、外部放熱部2にて放熱する放熱運転、貯湯タンク1内の貯湯量Rが最低確保量未満のときに給湯する給湯優先運転などの運転制御を実行するように構成されている。
【0032】
前記エンジンヒートポンプ式冷暖房装置Bの運転について説明すると、空調リモコン93から空調冷房要求や空調暖房要求などの空調要求があると、ヒートポンプ運転制御部Dがヒートポンプ運転手段Kおよび冷却水循環手段Lの運転を制御し、空調リモコン93による空調要求に基づいて、ガスエンジン77により圧縮機78を作動させて、四方弁80の切換え操作により空調冷房運転と空調暖房運転とを選択切換え、室内機71の電子膨張弁74の開閉制御により、各空調対象空間への空調を切り換えて、ヒートポンプ運転手段Kを制御するように構成されている。
【0033】
すなわち、ヒートポンプ運転制御部Dは、空調リモコン93から空調冷房要求があると、空調冷房要求がある部屋に相当する電子膨張弁74を開状態にして、室内熱交換器75を蒸発器として機能させて、空調対象空間への供給空気を冷却温調し、室外熱交換器81を凝縮器として機能させて外気に対して放熱させるように、ヒートポンプ運転手段Kを制御して空調冷房運転を実行する。
また、ヒートポンプ運転制御部Dは、空調リモコン93から空調暖房要求があると、空調暖房要求がある部屋に相当する電子膨張弁74を開状態にして、室内熱交換器75を凝縮器として機能させて、空調対象空間への供給空気を加熱温調し、室外熱交換器81を蒸発器として機能させて外気から吸熱させるように、ヒートポンプ運転手段Kを制御して空調暖房運転を実行する。
【0034】
尚、ヒートポンプ運転制御部Dは、空調冷房運転においても、空調暖房運転においても、冷媒圧力が設定目標圧力になるように、冷媒圧縮機78の回転速度を、検出した冷媒圧力と設定目標圧力との偏差に基づいてフィードバック制御し、その制御における時定数は充分大きく設定されていて、回転速度の増減変更は緩やかな速度で行われる。
【0035】
そして、冷却水循環手段Lは、空調冷房運転において、ラジエータ用ポンプP4を作動させ、ラジエータ用送風機84を作動させラジエータ83にて放熱させるようにし、エンジン排熱利用式加熱器34にて加熱可能なときには、冷却水路85を通流する冷却水が加熱用設定温度以上になると、排熱切換機構86を加熱状態に切り換えて、冷却水をエンジン排熱利用式加熱器34に供給するようにしている。
また、空調暖房運転において、ラジエータ用ポンプP4を作動させ、ラジエータ用送風機84を作動させラジエータ83にて放熱させるようにし、エンジン排熱利用式加熱器34にて加熱可能なときには、暖房負荷が小さくかつ冷却水路85を通流する冷却水が加熱用設定温度以上になると、排熱切換機構86を加熱状態に切り換えて、冷却水をエンジン排熱利用式加熱器34に供給するようにしている。
【0036】
前記空調冷房運転においては、室内熱交換器75を蒸発器として機能させて空調対象空間への供給空気を冷却温調し、室外熱交換器81を凝縮器として機能させて外気に対して放熱するようにしている。
この空調冷房運転では、ヒートポンプ運転制御部Dは、低圧検出手段87の検出情報に基づいて、その検出圧力が冷房用の目標圧力になるようにガスエンジン77の回転速度を制御するようにしている。
また、空調冷房運転において、ヒートポンプ運転制御部Dは、排熱切換機構86を加熱状態に切り換えて冷却水をエンジン排熱利用式加熱器34に供給し、循環路3を通流する湯水をエンジン排熱で加熱するようにしている。
【0037】
前記空調冷房運転における冷媒の流れについて説明を加えると、冷媒圧縮機78から吐出される高圧乾き蒸気冷媒を、四方弁80を介して室外熱交換器81に供給し、この室外熱交換器81において外気との熱交換により凝縮される。
そして、室外熱交換器81から送出される凝縮工程通過冷媒を、電子膨張弁74を介して室内熱交換器75に供給し、この室内熱交換器75において冷却対象空気との熱交換により蒸発される。
その後、室内熱交換器75から送出される低圧乾き蒸気冷媒を、四方弁80およびアキュムレータ79を介して冷媒圧縮機78の吸入口に戻す。
【0038】
前記空調暖房運転においては、室内熱交換器75を凝縮器として機能させて空調対象空間への供給空気を加熱温調し、室外熱交換器81を蒸発器として機能させて外気から吸熱するようにしている。
この空調暖房運転では、ヒートポンプ運転制御部Dは、高圧検出手段88の検出情報に基づいて、その検出圧力が暖房用の目標圧力になるようにガスエンジン77の回転速度を制御するようにしている。
また、この空調暖房運転において、加熱用冷媒配管90を通してヒートポンプ式加熱器33に高圧冷媒を供給する加熱用運転により、循環路3を通流する湯水を加熱するようにしている。
【0039】
前記空調暖房運転における冷媒の流れについて説明を加えると、電子膨張弁74,89が所定開度になるように制御する初期制御を行い、高圧検出手段88の検出圧力が目標圧力になるように、ガスエンジン77の回転数を増減して、冷媒圧縮機78の回転速度を制御し、冷媒圧縮機78から吐出される高圧乾き蒸気冷媒を、四方弁80を介して室内熱交換器75およびヒートポンプ式加熱器33に供給し、室内熱交換器75においては加熱対象空気との熱交換により凝縮され、ヒートポンプ式加熱器33においては循環路3の湯水との熱交換により凝縮される。
【0040】
そして、室内熱交換器75から送出される凝縮工程通過冷媒を、電子膨張弁74を介して室外熱交換器81に供給するとともに、ヒートポンプ式加熱器33から送出される凝縮工程通過冷媒を、電子膨張弁89を介して室外熱交換器81に供給して、この室外熱交換器81において外気との熱交換により蒸発される。
その後、室外熱交換器81から送出される低圧乾き蒸気冷媒を四方弁80およびアキュムレータ79を介して冷媒圧縮機78の吸入口に戻す。
【0041】
尚、電子膨張弁74,89の初期制御が完了したあとは、室内熱交換器75やヒートポンプ式加熱器33の下流側における冷媒温度を冷媒温度センサ96で検出して、この検出温度が飽和液温度から所定値を引いた目標温度になるように、電子膨張弁74,89の開度を調整するサブクール制御を実行する。
つまり、サブクール制御は、室内熱交換器75やヒートポンプ式加熱器33で凝縮して放熱し、その結果、冷却された冷媒の温度を冷媒温度センサ96で検出して、その検出温度が、高圧検出手段88で検出した検出圧力を基にして予めメモリに記憶されているデータから求まる飽和液温度よりも、所定値( サブクール値) だけ低くなるように電子膨張弁74,89の開度を調整する。
【0042】
そして、飽和液温度から所定値を引いた目標温度に対して冷媒温度センサ96による検出温度が高いほど、電子膨張弁74,89の開度を小さくすることにより、冷媒の循環量が減少して、その分、所定冷媒量当たりの放熱量が増加して冷媒温度センサ96による検出温度が低下し、かつ、高圧検出手段88による検出圧力が増加して飽和液温度が上昇して、冷媒温度センサ96による検出温度を目標温度と略同等にすることができる。
また、目標温度に対して冷媒温度センサ96による検出温度が低いほど、電子膨張弁74,89の開度を大きくすることにより、冷媒の循環量が増加して、その分、所定冷媒量当たりの放熱量が減少して冷媒温度センサ96による検出温度が上昇し、かつ、高圧検出手段88による検出圧力が減少して飽和液温度が低下して、冷媒温度センサ96による検出温度を目標温度と略同等にすることができる。
【0043】
また、貯湯ユニット制御部Cには、貯湯タンク1内の貯湯量Rを検出する貯湯量検出手段Mや、貯湯タンク1に貯湯する目標貯湯量Raを設定する目標貯湯量設定手段Nなどが設けられている。
前記貯湯量検出手段Mと目標貯湯量設定手段Nはプログラム形式で設けられ、貯湯量検出手段Mは、貯湯温度サーミスタS1,S2,S3,S4のうちで貯湯設定温度Te以上の温度を検出する最下位の貯湯温度サーミスタがいずれの貯湯温度サーミスタS1,S2,S3,S4であるかにより、その貯湯温度サーミスタS1,S2,S3,S4の検出位置に対応する量として予め設定されている量の湯水を貯湯量Rとして検出するように構成され、目標貯湯量設定手段Nは、4個の貯湯温度サーミスタS1,S2,S3,S4のいずれかに対応する貯湯量Rを目標貯湯量Raとして設定するように構成されている。
【0044】
そして、最上部の貯湯温度サーミスタS1に対応する貯湯量Rが最低確保量Rmin として、上から2番目の貯湯温度サーミスタS2に対応する貯湯量Rが小貯湯量Rs として、上から3番目の貯湯温度サーミスタS3に対応する貯湯量Rが中貯湯量Rm として、また、最下部の貯湯温度サーミスタS4に対応する貯湯量Rが最大貯湯量Rmax として、夫々、予め設定されている。
尚、本実施形態では、最低確保量Rmin が17リットル、小貯湯量Rs が30リットル、中貯湯量Rm が70リットル、最大貯湯量Rmax が113リットルとして設定されている。
【0045】
次に、貯湯ユニットAの運転について説明すると、貯湯リモコン92の要求指令やヒートポンプ運転手段Kの運転状態などに基づいて、貯湯ユニット制御部Cが、湯水循環手段E、循環調整手段F、給湯手段G、風呂操作手段H、暖房操作手段J、補助加熱器34の夫々の運転を制御して、貯湯運転、放熱運転、および、給湯優先運転などの運転を実行するように構成されている。
【0046】
前記湯水循環手段Eについて具体的に説明すると、この湯水循環手段Eは、貯湯タンク1に湯水を貯湯するときに、貯湯運転状態としてのヒートポンプ貯湯運転状態( 以下、HP貯湯運転状態という) 、排熱貯湯運転状態および補助加熱貯湯運転状態、貯湯初期運転状態としてのヒートポンプ貯湯初期運転状態( 以下、HP貯湯初期運転状態という) 、排熱貯湯初期運転状態および補助加熱貯湯初期運転状態の夫々に切り換えられ、外部放熱部2にて放熱するときに、追焚き運転状態、暖房運転状態、追焚き・暖房同時運転状態の夫々に切り換えられるように構成されている。
【0047】
そして、貯湯タンク1に湯水を貯湯するときには、ヒートポンプ式加熱器33、エンジン排熱利用式加熱器34または補助加熱器35にて加熱された湯水の温度が貯湯許容温度に満たないときには、HP貯湯初期運転状態、排熱貯湯初期運転状態または補助加熱貯湯初期運転状態に切り換えて貯湯タンク1内の湯水を循環させ、ヒートポンプ式加熱器33、エンジン排熱利用式加熱器34または補助加熱器35にて加熱された湯水の温度が貯湯許容温度になると、HP貯湯運転状態、排熱貯湯運転状態または補助加熱貯湯運転状態に切り換えて貯湯タンク1に貯湯するようにしている。
また、外部放熱部2にて放熱するときには、追焚き要求のみの要求があると、追焚き運転状態に切り換え、暖房要求のみの要求があると、暖房運転状態に切り換え、追焚き要求および暖房要求の両要求があると、追焚き・暖房同時運転状態に切り換えるようにしている。
【0048】
以下、湯水循環手段Eの夫々の状態について説明を加える。
なお、この湯水循環手段Eの夫々の状態における説明において、上部開閉弁28、戻し開閉弁29、暖房用開閉弁44、風呂用開閉弁45、ヒートポンプ用開閉弁60、補助用断続開閉弁63、ヒートポンプバイパス開閉弁69,および、補助バイパス開閉弁70の開閉状態について、開弁させる開閉弁のみを記載し、記載していない開閉弁については閉弁させるものとする。
【0049】
前記HP貯湯運転状態においては、上部開閉弁28および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1内に湯水が温度成層を形成して貯湯させるように、貯湯タンク1の底部から取り出した湯水をヒートポンプ式加熱器33にて加熱したのち、その温水を補助加熱器35を迂回して貯湯タンク1の上部に戻すようにしている。
【0050】
前記排熱貯湯運転状態においては、上部開閉弁28および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1内に湯水が温度成層を形成して貯湯させるように、貯湯タンク1の底部から取り出した湯水をエンジン排熱利用式加熱器34にて加熱したのち、その温水を補助加熱器35を迂回して貯湯タンク1の上部に戻すようにしている。
【0051】
前記補助加熱貯湯運転状態においては、上部開閉弁28および補助用断続開閉弁63を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1内に湯水が温度成層を形成して貯湯させるように、貯湯タンク1の底部から取り出した湯水を補助加熱器35にて加熱したのち、その温水を貯湯タンク1の上部に戻すようにしている。
【0052】
前記HP貯湯初期運転状態においては、戻し開閉弁29、暖房用開閉弁44および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1の底部から取り出した湯水をヒートポンプ式加熱器33にて加熱したのち、その湯水を補助加熱器35を迂回して貯湯タンク1の底部に戻すようにしている。
【0053】
前記排熱貯湯初期運転状態においては、戻し開閉弁29、暖房用開閉弁44および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1の底部から取り出した湯水をエンジン排熱利用式加熱器34にて加熱したのち、その湯水を補助加熱器35を迂回して貯湯タンク1の底部に戻すようにしている。
【0054】
前記補助加熱貯湯初期運転状態においては、戻し開閉弁29、暖房用開閉弁44および補助用断続開閉弁63を開弁させるとともに、循環ポンプP1を作動させ、貯湯タンク1の底部から取り出した湯水を補助加熱器35にて加熱したのち、その湯水を貯湯タンク1の底部に戻すようにしている。
【0055】
前記追焚き運転状態においては、ヒートポンプ式加熱器33にて加熱するときは、風呂用開閉弁45、ヒートポンプ用開閉弁60および補助バイパス開閉弁70を開弁させるとともに、循環ポンプP1を作動させて、ヒートポンプ式加熱器33にて加熱された温水を風呂用熱交換部43にて放熱させたのち、その全量を貯湯タンク1を迂回してヒートポンプ式加熱器33に戻し、補助加熱器35にて加熱するときは、風呂用開閉弁45、補助用断続開閉弁63およびヒートポンプバイパス開閉弁69を開弁させるとともに、循環ポンプP1を作動させて、補助加熱器35にて加熱された温水を風呂用熱交換部43にて放熱させたのち、その全量を貯湯タンク1とヒートポンプ式加熱器33とを迂回して補助加熱器35に戻すようにしている。
【0056】
前記暖房運転状態においては、暖房用開閉弁44、補助用断続開閉弁63およびヒートポンプバイパス開閉弁69を開弁させるとともに、循環ポンプP1を作動させ、補助加熱器35にて加熱された温水を暖房用熱交換部42にて放熱させたのち、その全量を貯湯タンク1とヒートポンプ式加熱器33とを迂回して補助加熱器35に戻すようにしている。
前記追焚き・暖房同時運転状態においては、暖房用開閉弁44、風呂用開閉弁45、補助用断続開閉弁63およびヒートポンプバイパス開閉弁69を開弁させるとともに、循環ポンプP1を作動させ、補助加熱器35にて加熱された温水を風呂用熱交換部43および暖房用熱交換部42にて放熱させたのち、その全量を貯湯タンク1とヒートポンプ式加熱器33とを迂回して補助加熱器35に戻すようにしている。
【0057】
前記貯湯ユニット制御部Cの運転として、貯湯運転、排熱貯湯運転、放熱運転、および、給湯優先運転について説明する。
前記貯湯運転は、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中であるか否かにより、ヒートポンプ貯湯運転( 以下、HP貯湯運転という) または補助加熱貯湯運転のいずれかを選択して実行され、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中に貯湯リモコン92から指令される加熱要求としての貯湯要求があると、補助加熱器35を運転させて貯湯する補助加熱貯湯運転を実行させて補助加熱優先運転を実行し、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中ではないときに貯湯要求があると、エンジンヒートポンプ式冷暖房装置Bを空調暖房運転させて貯湯するHP貯湯運転を実行させてヒートポンプ優先運転を実行するように構成されている。
【0058】
そして、エンジンヒートポンプ式冷暖房装置Bが空調暖房運転中に空調リモコン93からの空調暖房要求が解除された状態において、貯湯要求があると、エンジンヒートポンプ式冷暖房装置Bの運転を継続したままHP貯湯運転を実行するように構成されている。
また、HP貯湯運転中に、エンジンヒートポンプ式冷暖房装置Bへの空調暖房要求があると、ガスエンジン77の回転速度や暖房要求されている部屋の暖房負荷などに基づいて、HP貯湯運転を継続している状態でのエンジンヒートポンプ式冷暖房装置Bの空調能力が空調負荷に対して余裕があるのか不足しているのかを判別し、空調能力に余裕があるときには、HP貯湯運転を継続するとともに、エンジンヒートポンプ式冷暖房装置Bにて空調暖房運転させる空調追加運転を実行し、空調能力が不足しているときには、HP貯湯運転から補助加熱貯湯運転に切り換えかつエンジンヒートポンプ式冷暖房装置Bにて空調暖房運転させるように構成されている。
【0059】
前記貯湯運転におけるHP貯湯運転について具体的に説明すると、まず、エンジンヒートポンプ式冷暖房装置Bを暖房運転させて高圧冷媒をヒートポンプ式加熱器33に供給するとともに、湯水循環手段EをHP貯湯初期運転状態にて運転させ、貯湯タンク1内の湯水をヒートポンプ式加熱器33にて加熱させる。
そして、貯湯サーミスタ66にて検出される温度が貯湯許容温度以上になると、湯水循環手段EをHP貯湯初期運転状態からHP貯湯運転状態に切り換えるとともに、貯湯タンク1の上部に貯湯される温水の温度が貯湯設定温度となるように、貯湯サーミスタ66の検出情報に基づいて循環用水比例バルブ65の開度を調整するようにしている。
【0060】
このようにして、貯湯タンク1内の湯水が温度成層を形成しながら貯湯され、貯湯タンク1の貯湯量Rが貯湯リモコン92などにより設定された目標貯湯量Raになると、設定時間貯湯タンク1への貯湯を継続したのち、エンジンヒートポンプ式冷暖房装置Bの運転を停止させるとともに、循環ポンプP1の作動を停止させかつ開弁している開閉弁を閉弁させて湯水循環手段Eの運転を停止させる。ちなみに、目標貯湯量Raは、「少」、「中」、「満」のうちのひとつが選択でき、例えば、目標貯湯量Raとして「中」が選択されているときには、中部サーミスタS3が貯湯設定温度よりも設定温度だけ低い温度を検出すると、貯湯タンク1の貯湯量Rが目標貯湯量Raになっていると検出するようにしている。
【0061】
前記貯湯運転における補助加熱貯湯運転について具体的に説明すると、まず、湯水循環手段Eを補助加熱貯湯初期運転状態に切り換えて、貯湯タンク1の底部から取り出した湯水を補助加熱器35にて加熱したのち、その温水を貯湯タンク1の底部に戻す補助加熱貯湯初期運転と、湯水循環手段Eを補助加熱貯湯運転状態に切り換えて、貯湯タンク1の底部から取り出した湯水を補助加熱器35にて加熱したのち、その温水を貯湯タンク1の上部に供給する補助加熱貯湯運転とに切り換えて貯湯される。
【0062】
つまり、貯湯ユニット制御部Cは、貯湯用目標温度Tbよりも8℃高い温度を越える沸き上げ温度Ta、又は、貯湯用目標温度Tbよりも15℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により1秒間継続して検出されるまで、補助加熱貯湯初期運転状態にて湯水を1リットル/minの循環量Qで循環させる補助加熱貯湯初期運転を行い、貯湯用目標温度Tbよりも8℃高い温度を越える沸き上げ温度Ta、又は、貯湯用目標温度Tbよりも15℃低い温度を越える沸き上げ温度Taが1秒間継続して検出されると、補助加熱貯湯運転状態に切り換えて、沸き上げ温度Taが貯湯用目標温度Tbになるように循環量Qを制御するように構成されている。
【0063】
このようにして、貯湯タンク1内の湯水が温度成層を形成しながら貯湯され、貯湯タンク1の貯湯量Rが貯湯リモコン92などにより設定された目標貯湯量Raになると、設定時間貯湯タンク1への貯湯を継続したのち、補助加熱器35の運転を停止させるとともに、循環ポンプP1の作動を停止させかつ開弁している開閉弁を閉弁させて湯水循環手段Eの運転を停止させる。
【0064】
前記排熱貯湯運転は、エンジンヒートポンプ式冷暖房装置Bの運転中においてそのエンジン排熱を利用して貯湯するもので、排熱貯湯初期運転状態に切り換えて、貯湯タンク1の底部から取り出した湯水をエンジン排熱利用式加熱器34にて加熱したのち、その温水を貯湯タンク1の底部に戻す形態で湯水を循環させる排熱貯湯初期運転と、排熱貯湯運転状態に切り換えて、貯湯タンク1の底部から取り出した湯水をエンジン排熱利用式加熱器34にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態で湯水を循環させる排熱貯湯運転とに切り換えて貯湯される。
【0065】
前記放熱運転は、追焚き要求のみの要求があると、追焚き運転を実行し、暖房要求のみの要求があると、暖房運転を実行し、追焚き要求および暖房要求の両要求があると、追焚き・暖房同時運転を実行するように構成されている。
【0066】
前記放熱運転における追焚き運転について具体的に説明すると、湯水循環手段Eを追焚き運転状態に切り換え、かつ、貯湯サーミスタ66による検出温度が追焚き用設定温度になるようにファン37の回転速度およびガス比例弁40の開度を調整するとともに、風呂ポンプP3を作動させて浴槽内の湯水を風呂戻り路18および風呂往き路19を通して循環させる。
そして、風呂用熱交換部43にて浴槽内の湯水を加熱して追焚きし、風呂戻りサーミスタ57の検出温度が追焚き用設定温度以上になると、風呂ポンプP3の作動を停止するとともに、補助加熱器35の運転および湯水循環手段Eの運転を停止させる。
【0067】
前記放熱運転における暖房運転について具体的に説明すると、湯水循環手段Eを暖房運転状態に切り換え、かつ、貯湯サーミスタ66による検出温度が暖房用設定温度になるようにファン37の回転速度およびガス比例弁40の開度を調整するとともに、暖房ポンプP2を作動させて暖房端末からの熱媒を暖房戻り路46および暖房往き路47を通して循環させ、暖房用熱交換部42にて熱媒を加熱して暖房端末に供給するようにしている。
【0068】
前記放熱運転における追焚き・暖房同時運転について具体的に説明すると、湯水循環手段Eを追焚き・暖房同時運転状態に切り換え、かつ、貯湯サーミスタ66による検出温度が追焚き・暖房同時用設定温度になるようにファン37の回転速度およびガス比例弁40の開度を調整するとともに、風呂ポンプP3を作動させて浴槽内の湯水を風呂戻り路18および風呂往き路19を通して循環させ、かつ、暖房ポンプP2を作動させて暖房端末からの熱媒を暖房戻り路46および暖房往き路47を通して循環させる。
そして、浴槽の湯水を追焚きするとともに、暖房端末に暖房用熱交換部42にて加熱された熱媒を供給するようにしている。
【0069】
前記給湯優先運転は、貯湯タンク1の貯湯量Rが最低確保量未満のときに、給湯栓などに給湯するときに実行され、湯水循環手段Eを補助加熱貯湯運転状態に切り換え、補助加熱器35にて加熱された湯水を上部接続路25から給湯路6に給湯しながら、給湯目標温度、貯湯出口サーミスタ13および給水サーミスタ9の検出情報に基づいて、給湯する湯水の温度が給湯目標温度になるようにミキシングバルブ8の開度を調整するとともに、ミキシングサーミスタ14の検出情報に基づいて、その検出温度と給湯目標温度との偏差に基づいてミキシングバルブ8の開度を微調整することにより、給湯目標温度の湯水を給湯するようにしている。
【0070】
ちなみに、浴槽に湯張りを行うときには、給湯優先運転と同様に、貯湯タンク1の貯湯量Rが最低確保量未満のときに、給湯栓などに給湯するときに実行され、給湯目標温度、貯湯出口サーミスタ13および給水サーミスタ9の検出情報に基づいて、給湯する湯水の温度が給湯目標温度になるようにミキシングバルブ8の開度を調整するとともに、ミキシングサーミスタ14の検出情報に基づいて、その検出温度と給湯目標温度との偏差に基づいてミキシングバルブ8の開度を微調整するとともに、湯張り電磁弁22を開弁させ、ミキシングバブル8にて給湯目標温度に調整された湯水を風呂戻り路18および風呂往き路19の両路から浴槽に供給し、浴槽内に湯張り設定量の湯水が供給されると、湯張り電磁弁22を閉弁させるようにしている。
【0071】
前記貯湯ユニットAの制御動作について、図4〜6のフローチャートに基づいて説明する。
前記貯湯ユニットAは、図4のフローチャートに示すように、貯湯タンク1の貯湯量Rが最低確保量未満であって、かつ、給湯栓が開操作されて給湯中であると、給湯優先運転を実行し、貯湯タンク1の貯湯量Rが最低確保量以上であるか、給湯中でなければ、給湯優先運転を実行していると、補助加熱器35の運転および循環ポンプP1の作動を停止させて給湯優先運転停止処理を実行する。
そして、暖房要求や追焚き要求などの放熱要求があると、放熱運転を実行し、貯湯要求があると、貯湯運転を実行し、エンジンヒートポンプ式冷暖房装置Bが運転中で、エンジン排熱を回収した冷却水の温度が所定温度以上であれば、排熱貯湯運転を実行する。
【0072】
前記放熱運転の制御動作について、図5のフローチャートに基づいて説明を加えると、貯湯タンク1の貯湯量Rが最低確保量未満であって、かつ、給湯栓が開操作されて給湯中であると、給湯優先運転を実行する。
貯湯タンク1の貯湯量Rが最低確保量以上であるか、給湯中でなければ、給湯優先運転を実行していると、補助加熱器35の運転および循環ポンプP1の作動を停止させて給湯優先運転停止処理を実行する。
【0073】
そして、追焚き要求がありかつ暖房要求がないときには、追焚き運転を実行し、追焚き要求および暖房要求の両要求があるときには、追焚き・暖房同時運転を実行し、追焚き要求がなくかつ暖房要求があるときには、暖房運転を実行する。このようにして、追焚き要求および暖房要求のいずれかまたは両方が要求されているかによって、その要求に応えるべく、追焚き運転、暖房運転、追焚き・暖房同時運転の夫々の運転を実行し、追焚き要求および暖房要求のいずれかまたは両方が満たされて要求が完了すると、湯水循環手段Eおよび補助加熱器35の運転を停止させる放熱停止処理を実行する。
【0074】
前記貯湯運転の制御動作について、図6のフローチャートに基づいて説明を加えると、貯湯タンク1の貯湯量Rが最低確保量未満であって、かつ、給湯栓が開操作されて給湯中であると、給湯優先運転を実行する。
貯湯タンク1の貯湯量Rが最低確保量以上であるか、給湯中でなければ、給湯優先運転を実行していると、補助加熱器35の運転および循環ポンプP1の作動を停止させて給湯優先運転停止処理を実行する。
そして、追焚き要求または暖房要求のいずれかの放熱要求があると、放熱運転を実行し、放熱要求がないときは貯湯運転制御を実行して、貯湯タンク1の貯湯量Rが目標貯湯量Raになると、設定時間貯湯タンク1への貯湯を継続したのち、エンジンヒートポンプ式冷暖房装置Bまたは加熱部4の運転を停止させるとともに、循環ポンプP1の作動を停止させかつ開弁している開閉弁を閉弁させて湯水循環手段Eの運転を停止させる貯湯運転停止処理を実行する。
【0075】
前記貯湯運転制御について詳細に説明する。
前記貯湯運転制御は、貯湯リモコン92にて風呂予約設定を行った場合などに、貯湯用目標温度Tbで、かつ、目標貯湯量Raの湯水を貯湯タンク1に貯湯するために、現在の貯湯量Rが目標貯湯量Raに対してかなり少ないと判定したときに、ヒートポンプ式加熱器33や補助加熱器35を使用して行われる。
【0076】
つまり、貯湯ユニット制御部Cが、ヒートポンプ式加熱器33による湯水の沸き上げ温度Taを貯湯目標温度範囲の温度に維持すべく、湯水循環手段Eによる湯水の循環量Qを増減制御する循環制御手段として機能し、貯湯運転が指令されるに伴って、図7に示すように、湯水循環手段Eを、貯湯タンク1の底部から取り出した湯水をヒートポンプ式加熱器33にて加熱したのち、その温水を貯湯タンク1の底部に戻す形態のHP貯湯初期運転状態で湯水を循環させるHP貯湯初期A運転モードとHP貯湯初期B運転モードとに切り換えて、その運転を制御したあと、貯湯タンク1内に目標貯湯量Raの湯水が温度成層を形成して貯湯されるように、貯湯タンク1の底部から取り出した湯水をヒートポンプ式加熱器33にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態のHP貯湯運転状態で湯水を循環させるHP貯湯A運転モードとHP貯湯B運転モードとに切り換えてその運転を制御し、HP貯湯B運転モードにおいて、貯湯タンク1内の貯湯量Rが目標貯湯量Raになるように、貯湯量検出手段Mの検出結果に基づいて、湯水循環手段Eの運転を制御する。
【0077】
また、ヒートポンプ運転制御手段としてのヒートポンプ運転制御部Dは、貯湯運転が指令されるに伴って、ヒートポンプ式加熱器33の冷媒圧縮機78を起動させて、ヒートポンプ式加熱器33に供給される冷媒圧力が設定目標圧力になるように冷媒圧縮機78の回転速度を制御しながら、ヒートポンプ式加熱器33の加熱用運転を制御する。
【0078】
前記HP貯湯初期A運転モードでは、循環量Qが初期目標流量( 3リットル/min) になるように水比例バルブ65の開度を制御し、HP貯湯初期B運転モードでは、循環量Qがヒートポンプ式加熱器33の冷媒圧力に応じて増加するように水比例バルブ65の開度を制御する。
また、HP貯湯A運転モードでは、循環量Qがヒートポンプ式加熱器33の冷媒圧力に応じて増加するように水比例バルブ65の開度を制御し、HP貯湯B運転モードでは、沸き上げ温度Taが貯湯用目標温度Tb( 本実施形態では、60℃又は67℃のいずれかに設定されている) になるように水比例バルブ65の開度を制御して循環量Qを調整し、必要に応じて、補助加熱器35にて加熱した湯水を貯湯タンク1の上部に供給する補助加熱貯湯運転モードに切り換えて貯湯する。
【0079】
以下、貯湯ユニット制御部Cによる貯湯運転制御について、図8〜図20のフローチャートを参照しながら詳述する。
前記HP貯湯初期A運転モードについて説明する。
前記HP貯湯初期A運転モードによる運転制御では、図8に示すように、タイマ94をリセットして、ヒートポンプ運転制御部Dにヒートポンプ運転要求信号を出力し、ヒートポンプ運転制御部Dからエンジンヒートポンプ式冷暖房装置Bの運転状態を示す信号としてのヒートポンプの加熱能力不足を示す能力不足信号が入力されている場合は、貯湯待機処理を実行し、能力不足信号が入力されていない場合は、湯水循環手段EをHP貯湯初期運転状態に切り換えて循環ポンプP1を作動させ、循環量Qが初期目標流量( 3リットル/min) になるように水比例バルブ65の開度を制御して、貯湯タンク1の底部から取り出した湯水を補助用バイパス路68と暖房用循環路3aとを通って貯湯タンク1の底部に戻す形態で湯水を循環させる( ステップ#1〜#4) 。
そして、ヒートポンプ運転制御部Dから運転状態を示す信号としてのエンジンヒートポンプ式冷暖房装置Bが運転されていることを示すヒートポンプ運転信号が、ヒートポンプ運転要求信号を出力してから5分が経過しても入力されない場合は、貯湯待機処理を実行し、ヒートポンプ運転信号が入力されると、HP貯湯初期B運転モードによる運転制御を開始する( ステップ#5〜#7) 。
【0080】
前記貯湯待機処理は、図9に示すように、循環ポンプP1が作動しているときはその作動を停止するとともに、ヒートポンプ運転要求信号の出力を停止して、タイマ94をリセットし、タイマ94の積算時間が30分になると、HP貯湯初期A運転モードによる運転制御に戻る( ステップ#11〜#15) 。
【0081】
前記HP貯湯初期B運転モードについて説明する。
前記HP貯湯初期B運転モードによる運転制御では、室外機72からヒートポンプ式加熱器33に加熱用冷媒が供給されており、図10に示すように、タイマ94をリセットして、HP貯湯初期運転状態で循環量Qが運転開始用設定量としての初期目標流量( 1リットル/min) になるように水比例バルブ65の開度を制御する( ステップ#21,#22) 。
【0082】
そして、ヒートポンプ運転制御部Dから運転状態を示す信号としての冷却水温度サーミスタ95による検出温度が60℃以上であることを示すエンジン60℃信号が入力されていないときは、HP貯湯初期A運転モードによる運転制御に戻り、エンジン60℃信号が入力されていると、貯湯用目標温度Tbが60℃の場合は上限循環量Qmax を3リットル/minに設定し、貯湯用目標温度Tbが67℃の場合は上限循環量Qmax を2リットル/minに設定して、高圧検出手段88で検出した冷媒圧力が2段階に設定した循環量増大制御用圧力のいずれかになると、その2段階の循環量増大制御用圧力に対応させて設定してある2段階の設定増大量を循環量増大制御用圧力に応じて選択して、湯水の循環量Qを設定増大量分増加させて設定時間待機する循環量増大制御を繰り返し実行する( ステップ#23〜#27) 。
【0083】
前記循環量増大制御について説明する。
前記循環量増大制御では、図11に示すように、循環量センサ62で検出した循環量Qが上限循環量Qmax 以上のときは、循環量Qを現状に維持し、循環量Qが上限循環量Qmax 未満で、ヒートポンプ運転制御部Dから運転状態を示す信号としての、高圧検出手段88で検出した冷媒圧力が循環量増大制御用圧力の一つである20kgf/cm2(約1.96MPa) であることを示す冷媒20kgf/cm2 信号のみが入力されていると、その循環量増大制御用圧力に対応させて設定してある設定増大量である0.1リットル/minを選択して、循環量Qをその設定増大量増加させ、高圧検出手段88で検出した冷媒圧力が循環量増大制御用圧力の一つである22kgf/cm2(約2.16MPa) であることを示す冷媒22kgf/cm2 信号が入力されていると、その循環量増大制御用圧力に対応させて設定してある設定増大量である0.2リットル/minを選択して、循環量Qをその設定増大量増加させる( ステップ#41〜#45) 。
そして、上記循環量増大制御を、ヒートポンプ運転制御部Dから能力不足信号が入力されていない状態で、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されるまで、15秒の演算周期で実行し、能力不足信号が入力されると貯湯待機処理を実行する( ステップ#28〜#34) 。
【0084】
また、上記の循環量増大制御を繰り返す都度、沸き上げ温度Taが貯湯用目標温度Tbよりも4℃低い温度未満か否かを判定し、貯湯用目標温度Tbよりも4℃低い温度未満であれば、貯湯用目標温度Tbが60℃の場合は、HP貯湯初期B運転モードの開始から10分が経過すると貯湯待機処理を実行し、貯湯用目標温度Tbが67℃の場合は、HP貯湯初期B運転モードの開始から15分が経過すると貯湯待機処理を実行する( ステップ#30〜#34) 。
そして、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されると、HP貯湯A運転モードによる運転制御を開始する( ステップ#29) 。
【0085】
前記HP貯湯A運転モードについて説明する。
前記HP貯湯A運転モードによる運転制御では、図12に示すように、タイマ94をリセットし、貯湯タンク1下部の湯水の温度が上がり過ぎて、ヒートポンプの加熱能力が低下しないように、湯水循環手段EをHP貯湯運転状態に切り換えて、貯湯タンク1の底部から取り出した湯水をヒートポンプ式加熱器33にて加熱したのち、その温水を貯湯タンク1の上部に供給する形態で湯水を循環させ、貯湯用目標温度Tbよりも4.5℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されるまで、前述の循環量増大制御を繰り返し実行する( ステップ#51〜#56) 。
但し、このHP貯湯A運転モードでの運転中に貯湯用目標温度Tbよりも23℃低い温度以下の沸き上げ温度Taが検出されると、貯湯禁止運転モードによる運転制御を開始し、例えば空調暖房負荷が大きくて、能力不足信号が入力されると貯湯待機処理を実行する。
そして、貯湯用目標温度Tbよりも4.5℃低い温度を越える沸き上げ温度Taが貯湯サーミスタ66により5秒間継続して検出されると、HP貯湯B運転モードによる運転制御を開始する。
【0086】
前記貯湯禁止運転モードについて説明する。
前記貯湯禁止運転モードによる運転制御では、図13に示すように、湯水循環手段EをHP貯湯初期運転状態に切り換え、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが検出されるまで後述する貯湯運転用流量制御を繰り返し実行し、貯湯用目標温度Tbよりも20℃低い温度を越える沸き上げ温度Taが5秒間継続して検出されるとステップ#53に戻る( ステップ#61〜#63) 。
【0087】
前記HP貯湯B運転モードについて説明する。
前記HP貯湯B運転モードによる運転制御では、図14に示すように、タイマ94をリセットし、湯水循環手段EをHP貯湯運転状態に切り換え、上限循環量Qmax を10リットル/minに設定して、給湯手段Gにより一般給湯路16を介して給湯が行われていることが給湯流量センサ20で検出されると、その給湯量Wrを給湯流量センサ20の検出結果に基づいて演算し、その演算した給湯量Wrに応じて目標貯湯量Raを減少側に補正する目標貯湯量補正処理を実行し、貯湯タンク1の上部に供給する加熱湯水の温度を貯湯用目標温度Tbに維持するように、水比例バルブ65のフィードバック制御で、貯湯サーミスタ66により検出される沸き上げ温度Taが貯湯用目標温度Tbになるように、湯水の循環量Qを設定量増減制御して設定時間待機する貯湯運転用流量制御を15秒の演算周期で繰り返し実行して、貯湯量検出手段Mにより、目標貯湯量Raに対応する貯湯温度サーミスタS2,S3,S4が貯湯設定温度Teを検出すると、HP貯湯B運転モードによる制御を終了する( ステップ#71〜#77) 。
【0088】
前記目標貯湯量補正処理は、目標貯湯量Raから演算される給湯量Wrに応じて使用される湯水量Wqを減算した減算貯湯量Rbを求めて、貯湯温度サーミスタS2,S3,S4の夫々に対応する複数段階の貯湯量Rmin ,Rs ,Rm ,Rmax のうちで、減算貯湯量Rbよりも多くて最も減算貯湯量Rbに近い貯湯量に、目標貯湯量Raを補正するもので、図15を参照しながら説明する。
【0089】
前記目標貯湯量補正処理は、給湯流量センサ20の検出給湯流量に基づいて給湯量Wrを演算して、その給湯量Wrと、貯湯出口サーミスタ13により検出した貯湯出口温度Tpと、給水サーミスタ9により検出した給水温度Tqと、ミキシングサーミスタ14により検出した給湯温度とに基づいて、貯湯タンク1から流出した給湯用湯水量Wpを演算する( ステップ#141,#142) 。
ちなみに、この給湯用湯水量Wpは、Wp=Tr・Wr/( Tp+Tq) により演算することができる。
そして、演算した給湯用湯水量Wpから、貯湯運転用流量制御の演算周期である15秒間に流出した単位周期当たり給湯用湯水量Wqを求め、その求めた単位周期当たり給湯用湯水量Wqを現在設定されている目標貯湯量Raから減算した減算貯湯量Rbを求め( ステップ#143,#144) 、3個の貯湯温度サーミスタS2〜S4の夫々に対応する3段階の貯湯量Rs,Rm,Rmax のうちで、減算貯湯量Rbよりも多くて最も減算貯湯量Rbに近い貯湯量に、目標貯湯量Raを補正する( ステップ#145〜#150) 。
【0090】
つまり、減算貯湯量Rbが中貯湯量Rm( 70リットル) 以上のときは、目標貯湯量Raを最大貯湯量Rmax(113リットル) に補正し( ステップ#145,#146) 、減算貯湯量Rbが小貯湯量Rs( 30リットル) 以上のときは、目標貯湯量Raを中貯湯量Rm( 70リットル) に補正し( ステップ#147,#148) 、減算貯湯量Rbが最低確保量Rmin(17リットル) 以上のときは、目標貯湯量Raを小貯湯量Rs( 30リットル) に補正し( ステップ#149,#150) に補正する。
また、減算貯湯量Rbが最低確保量Rmin 未満のときは、補助加熱貯湯運転モードによる運転制御を実行する。
【0091】
前記貯湯運転用流量制御について説明する。
前記貯湯運転用流量制御では、図16〜図18に示すように、貯湯用目標温度Tbよりも23℃低い温度以下の沸き上げ温度Taが検出されると、貯湯禁止運転モードによる運転制御が開始され、貯湯用目標温度Tbよりも23℃低い温度以下の沸き上げ温度Taが検出されいない状態で、循環量Qが上限循環量Qmax を越えているときや、循環量Qが上限循環量Qmax 未満で、かつ、沸き上げ温度Taが貯湯用目標温度Tbよりも1℃低い温度以上で貯湯用目標温度Tbよりも1℃高い温度以下の貯湯目標温度範囲の温度であり、しかも、冷媒22kgf/cm2 信号が入力されていなかったり、冷媒22kgf/cm2 信号が入力されていて、冷媒圧力が現状維持判別用圧力としての22kgf/cm2(( 約2.16MPa) 以上であっても、最大回転信号が入力されていてヒートポンプ式加熱器33に運転余力が無いときには、循環量Qを現状に維持し、最大回転信号が入力されていなくて冷媒圧縮機78の運転状態が最大出力運転状態でないとき、つまり、ヒートポンプ式加熱器33に運転余力が有るときには、循環量Qを0.1リットル/minの設定量増大させてタイマ94をリセットし、沸き上げ温度Taが貯湯用目標温度Tbよりも2.5℃低い温度以上のときは、設定時間としての90秒間はその増大させた循環量Qで循環させて待機する循環量増大制御を実行する( ステップ#81〜#90) 。
【0092】
そして、循環量増大制御を実行した後、沸き上げ温度Taが貯湯目標温度範囲の温度よりも低く、冷媒20kgf/cm2 信号が入力されていなかったり、冷媒20kgf/cm2 信号が入力されていても、ヒートポンプ運転制御部Dから運転状態を示す信号としての、ガスエンジン77の現在の回転数が最大回転数であることを示す最大回転信号が入力されていれば、つまり、ヒートポンプ式加熱器33に運転余力が無いときには、沸き上げ温度Taが貯湯目標温度範囲の温度になるように、その沸き上げ温度Taに応じて、循環量Qを設定量減少させて設定時間待機する循環量減少制御を実行する( ステップ#91〜#99) 。
【0093】
つまり、沸き上げ温度Taが貯湯用目標温度Tbよりも2.5℃低い温度以上であれば、循環量Qを0.1リットル/min減少させ( ステップ#94,#95) 、沸き上げ温度Taが貯湯用目標温度Tbよりも2.5℃低い温度を下回り、かつ、貯湯用目標温度Tbよりも5℃低い温度以上であれば、循環量Qを0.2リットル/min減少させ( ステップ#96,#97) 、沸き上げ温度Taが貯湯用目標温度Tbよりも5℃低い温度を下回り、かつ、貯湯用目標温度Tbよりも6℃低い温度以上であれば、循環量Qを0.3リットル/min減少させ( ステップ#98,#99) 、沸き上げ温度Taが貯湯用目標温度Tbよりも6℃低い温度を下回っていれば、貯湯禁止運転モードによる運転制御を実行する。
【0094】
また、沸き上げ温度Taが加熱湯水の温度が貯湯用目標温度と見なす貯湯用目標温度範囲の温度よりも低いときであっても、冷媒20kgf/cm2 信号が入力されていていて、冷媒圧力が現状維持判別用圧力としての20kgf/cm2(1.96MP a) 以上であり、かつ、最大回転信号が入力されていなくて、冷媒圧縮機78の運転状態が最大出力運転状態でないときは、循環量Qを現状に維持し( ステップ#91〜#93) 、沸き上げ温度Taが貯湯目標温度範囲の温度を越えているときは、沸き上げ温度Taが貯湯用目標温度Tbよりも5℃高い温度以下であれば、循環量Qを0.1リットル/min増加させ、沸き上げ温度Taが貯湯用目標温度Tbよりも5℃高い温度を越えていれば、循環量Qを0.2リットル/min増加させ( ステップ#91,#100〜#102) 。
【0095】
そして、循環量Qを0.3リットル/min減少させたときは、沸き上げ温度Taが貯湯用目標温度Tbよりも4℃低い温度を下回っていると、貯湯用目標温度Tbが60℃の場合は、HP貯湯B運転モードによる運転制御の開始から10分が経過していると貯湯待機処理を実行し、貯湯用目標温度Tbが67℃の場合は、HP貯湯B運転モードによる運転制御の開始から15分が経過していると貯湯待機処理を実行し、貯湯待機処理を実行しないときは、循環量QがHP貯湯運転状態で循環させる湯水の最低流量として設定した設定最低流量である1リットル/minよりも少なく、かつ、最大回転信号が入力されていてヒートポンプ式加熱器33に運転余力が無く、かつ、HP貯湯B運転モードによる運転制御の開始から2分が経過しておれば、貯湯待機処理を実行する( ステップ#103〜#110) 。
【0096】
前記補助加熱貯湯運転モードによる運転制御について、図19〜図21を参照しながら説明する。
前記補助加熱貯湯運転モードによる運転制御では、図19に示すように、HP貯湯運転モードによる運転制御を停止するHP貯湯運転モード停止処理を実行し、補助加熱貯湯初期運転モードによる運転制御を実行した後、補助加熱貯湯許可運転モードによる運転制御を実行する。
【0097】
前記補助加熱貯湯初期運転モードは、図20に示すように、タイマ94をリセットし、湯水循環手段Eを補助加熱貯湯初期運転状態に切り換えて、循環ポンプP1を、湯水の循環量Qが、入り温度サーミスタ61にて検出した入り温度と、貯湯用目標温度Tbと、補助加熱器35の定格運転状態における所定の加熱能力とに基づいて演算した、沸き上げ温度Taが貯湯用目標温度Tbとなる循環量になるように制御し、給湯用目標温度Tcよりも8℃高い温度を越える沸き上げ温度Taを1秒間継続して検出したり、貯湯用目標温度Tbよりも15℃低い温度を超える沸き上げ温度Taを1秒間継続して検出すると、補助加熱貯湯許可運転モードによる運転制御を実行する( ステップ#111〜#115) 。
【0098】
前記補助加熱貯湯許可運転モードは、図21に示すように、目標貯湯量Raを小貯湯量Rsに設定し、湯水循環手段Eを補助加熱貯湯運転状態に切り換えて、貯湯量Rが目標貯湯量Raになるまで、つまり、小貯湯量Rsに対応する貯湯温度サーミスタS2が貯湯設定温度Te以上の検出貯湯温度T2を検出するまで、循環ポンプP1を、湯水の循環量Qが、入り温度サーミスタ61にて検出した入り温度と、貯湯用目標温度Tbと、補助加熱器35の定格運転状態における所定の加熱能力とに基づいて演算した、沸き上げ温度Taが貯湯用目標温度Tbとなる循環量Qになるように制御し、給湯用目標温度Tcよりも3℃高い温度以下の沸き上げ温度Taを検出したり、貯湯用目標温度Tbよりも20℃低い温度未満の沸き上げ温度Taを検出すると、湯水循環手段Eを補助加熱貯湯初期運転状態に切り換え、補助加熱器35による加熱温度として設定した補助加熱器目標温度Tdよりも5℃低い温度未満の沸き上げ温度Taを2分継続して検出すると循環量を設定量減少させるとともにフラグを立て、更に1分継続すると、補助加熱器35の異常と判断して運転を停止する( ステップ#120〜#133) 。
【0099】
〔第2実施形態〕
前記第1実施形態では、最低確保量Rmin ,小貯湯量Rs ,中貯湯量Rm ,最大貯湯量Rmax のいずれかを貯湯量Rとして検出する貯湯量検出手段Mを備えたエンジンヒートポンプ式冷暖房給湯システムを示したが、以下に、実際の貯湯量に近い貯湯量Rを検出するように構成した貯湯量検出手段Mを備えたエンジンヒートポンプ式冷暖房給湯システムを、図22〜図24を参照しながら示す。
尚、第1実施形態と同じ構成部分の説明は省略する。
【0100】
本実施形態では、貯湯量検出手段Mが、貯湯タンク1内の湯水の温度を特定高さ位置にて検出する複数の温度センサとしての上下方向に分散配置されている4個の貯湯温度サーミスタS1〜S4と、湯水循環手段Eにて貯湯タンク1に供給される湯水の供給流量を検出する供給量流量検出手段としての循環流量センサ62とを設けて構成されている。
【0101】
第2実施形態におけるHP貯湯B運転モードによる運転制御では、図22に示すように、タイマ94をリセットし、湯水循環手段EをHP貯湯運転状態に切り換え、上限循環量Qmax を10リットル/minに設定して、給湯手段Gにより一般給湯路16を介して給湯が行われていることが給湯流量センサ20で検出されると、その給湯量Wrを給湯流量センサ20の検出結果に基づいて演算して、その演算した給湯量Wrに応じて目標貯湯量Raを減少側に補正する目標貯湯量補正処理を実行し、また、貯湯量検出手段Mにより、貯湯温度サーミスタS1〜S4による検出貯湯温度T1〜T4と循環流量センサ62にて検出した循環量Qとに基づいて貯湯量Rを演算する貯湯量演算処理を実行し、貯湯タンク1の上部に供給する加熱湯水の温度を貯湯用目標温度Tbに維持するように、水比例バルブ65のフィードバック制御で、貯湯サーミスタ66により検出される沸き上げ温度Taが貯湯用目標温度Tbになるように、湯水の循環量Qを設定量増減制御して設定時間待機する貯湯運転用流量制御を15秒の演算周期で繰り返し実行して、貯湯量Rが目標貯湯量Ra以上になると、HP貯湯B運転モードによる制御を終了する( ステップ#151〜#156) 。
【0102】
前記目標貯湯量補正処理は、図23に示すように、給湯流量センサ20の検出給湯流量に基づいて給湯量Wrを演算して、その給湯量Wrと、貯湯出口サーミスタ13により検出した貯湯出口温度Tpと、給水サーミスタ9により検出した給水温度Tqと、ミキシングサーミスタ14により検出した給湯温度とに基づいて、第1実施形態で示したと同様に、貯湯タンク1から流出した給湯用湯水量Wpを演算する( ステップ#161,#162) 。
そして、演算した給湯用湯水量Wpから、貯湯運転用流量制御の演算周期である15秒間に流出した単位周期当たり給湯用湯水量Wqを求め、その求めた単位周期当たり給湯用湯水量Wqを現在設定されている目標貯湯量Raから減算した減算貯湯量に目標貯湯量Raを補正し( ステップ#163,#164) 、その補正した目標貯湯量Raが最低確保量Rmin 未満の時は、補助加熱貯湯運転モードによる運転制御を実行する。
【0103】
前記貯湯量演算処理は、複数の貯湯温度サーミスタS1〜S4のうちで貯湯設定温度Te以上の温度を検出する最下位の貯湯温度サーミスタセンサS1〜S4に対応する基準貯湯量Rmin ,Rs ,Rm ,Rmax と、その最下位の貯湯温度サーミスタセンサS1〜S4が貯湯設定温度Teを検出したときから、循環流量センサ62にて検出した検出流量である演算周期当たりの循環量Qrを積算した積算量との合計量を、貯湯量Rとして検出するように構成してある。
【0104】
前記貯湯量演算処理について詳細に説明すると、図24に示すように、循環流量センサ62にて検出した循環量Qから、貯湯運転用流量制御の演算周期である15秒間の循環量である単位周期当たり循環量Qrを求め、前回の演算周期で演算した貯湯量Rに単位周期当たり循環量Qrを加算した貯湯量を現在の貯湯量Rとする( ステップ#171,#172) 。
【0105】
そして、貯湯温度サーミスタS4による検出貯湯温度T4が貯湯設定温度Te以上で、現在の貯湯量Rが113リットル未満のときは、その貯湯量Rを基準貯湯量の一つである最大貯湯量Rmax の113リットルに補正し( ステップ#173〜#175) 、貯湯温度サーミスタS3による検出貯湯温度T3が貯湯設定温度Te以上で、現在の貯湯量Rが70リットル未満のときは、その貯湯量Rを基準貯湯量の一つである中貯湯量Rm の70リットルに補正し( ステップ#176〜 #178) 、貯湯温度サーミスタS2による検出貯湯温度T2が貯湯設定温度Te以上で、現在の貯湯量Rが30リットル未満のときは、その貯湯量Rを基準貯湯量の一つである小貯湯量Rsの30リットルに補正し( ステップ#179〜#181) 、貯湯温度サーミスタS1による検出貯湯温度T1が貯湯設定温度Te以上で、現在の貯湯量Rが17リットル未満のときは、その貯湯量Rを基準貯湯量の一つである最低確保量Rmin の17リットルに補正する( ステップ#182〜#184) 。
従って、貯湯温度サーミスタS1〜S4が貯湯設定温度Teを検出する都度、検出した貯湯温度サーミスタS1〜S4に対応する基準貯湯量Rmin ,Rs ,Rm ,Rmax を貯湯量Rに補正しながら、その貯湯設定温度Teを検出した後の単位周期当たり循環量Qrを積算した積算量を加算した合計量を現在の貯湯量Rとするので、実際の貯湯量Rを精度良く検出できる。
【0106】
〔その他の実施形態〕
1.上記実施形態では、HP貯湯運転制御の実行中に給湯があった場合に目標貯湯量補正処理を実行する構成を示したが、エンジン排熱利用式加熱器34にて湯水を加熱して貯湯する排熱貯湯運転制御や補助加熱器35にて湯水を加熱して貯湯する補助加熱貯湯運転制御の実行中に給湯があった場合に、目標貯湯量補正処理を実行しても良い。
2.上記実施形態では、貯湯運転制御の実行中に一般給湯があった場合に目標貯湯量補正処理を実行する構成を示したが、貯湯運転制御の実行中に、浴槽への湯張り給湯があった場合に目標貯湯量補正処理を実行しても良い。
3.上記実施形態では、給湯時に使用した給湯用湯水量の全量を目標貯湯量から減算して補正する目標貯湯量補正処理を示したが、給湯用湯水量の一定割合を目標貯湯量から減算して補正する目標貯湯量補正処理を実行しても良い。
【図面の簡単な説明】
【図1】貯湯式の給湯熱源装置( 貯湯ユニット) の概略構成図
【図2】貯湯式の給湯熱源装置( エンジンヒートポンプ式冷暖房装置) の概略構成図
【図3】制御ブロック図
【図4】第1実施形態の制御動作を示すフローチャート
【図5】第1実施形態の制御動作を示すフローチャート
【図6】第1実施形態の制御動作を示すフローチャート
【図7】第1実施形態の制御動作を示すフローチャート
【図8】第1実施形態の制御動作を示すフローチャート
【図9】第1実施形態の制御動作を示すフローチャート
【図10】第1実施形態の制御動作を示すフローチャート
【図11】第1実施形態の制御動作を示すフローチャート
【図12】第1実施形態の制御動作を示すフローチャート
【図13】第1実施形態の制御動作を示すフローチャート
【図14】第1実施形態の制御動作を示すフローチャート
【図15】第1実施形態の制御動作を示すフローチャート
【図16】第1実施形態の制御動作を示すフローチャート
【図17】第1実施形態の制御動作を示すフローチャート
【図18】第1実施形態の制御動作を示すフローチャート
【図19】第1実施形態の制御動作を示すフローチャート
【図20】第1実施形態の制御動作を示すフローチャート
【図21】第1実施形態の制御動作を示すフローチャート
【図22】第2実施形態の制御動作を示すフローチャート
【図23】第2実施形態の制御動作を示すフローチャート
【図24】第2実施形態の制御動作を示すフローチャート
【符号の説明】
1 貯湯タンク
4 加熱手段
6 給湯路
20 給湯流量検出手段
62 供給量流量検出手段
C 制御手段
E 湯水循環手段
G 給湯手段
M 貯湯量検出手段
N 目標貯湯量設定手段
Qr 検出流量
R 貯湯量
Ra 目標貯湯量
Rb 減算貯湯量
Rmin (基準) 貯湯量
Rs (基準) 貯湯量
Rm (基準) 貯湯量
Rmax (基準) 貯湯量
S1 温度センサ
S2 温度センサ
S3 温度センサ
S4 温度センサ
Te 貯湯設定温度
Wq 湯水量
Wr 給湯量
[0001]
BACKGROUND OF THE INVENTION
The present invention heats hot water taken out from the bottom of the hot water storage tank with heating means so that the hot water storage tank is connected to the upper part of the hot water supply passage, and hot water is stored in the hot water storage tank by forming a temperature stratification. Then, hot water circulating means for circulating hot water in a hot water storage state in which the hot water is supplied to the upper part of the hot water storage tank, target hot water amount setting means for setting a target hot water amount to be stored in the hot water storage tank, and the hot water storage tank Hot water storage amount detecting means for detecting the amount of hot water stored in the hot water storage means, hot water supply means for supplying hot water stored in the hot water storage tank through the hot water supply passage, and the hot water storage amount detection so that the hot water storage amount becomes the target hot water storage amount. The present invention relates to a hot water storage type hot water supply heat source device provided with control means for executing hot water storage operation control for controlling the operation of the hot water circulation means based on the detection result of the means.
[0002]
[Prior art]
Conventionally, in the hot water storage type hot water supply heat source device, as described in, for example, Japanese Patent Laid-Open No. 5-81811, a hot water storage amount necessary to prevent hot water from running out in hot water supply is set as a target hot water storage amount, and control means Controls the operation of the hot water circulation means so as to maintain the hot water storage amount at the target hot water storage amount.
[0003]
[Problems to be solved by the invention]
For this reason, even if hot water is supplied by the hot water supply means during execution of the hot water storage operation control, the amount of hot water stored in the hot water performed after the hot water supply will be reduced. Since the operation of the hot water circulation means is controlled so as to reach the target hot water storage amount, there is a disadvantage that unnecessary hot water storage is performed as a result.
The present invention has been made in view of the above circumstances, and an object thereof is to prevent unnecessary hot water storage from being performed when hot water is supplied by hot water supply means during execution of hot water storage operation control. And
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a hot water storage tank having a hot water supply channel connected to an upper portion thereof, and hot water taken out from the bottom of the hot water storage tank so that the hot water is stored in the hot water storage tank by forming a temperature stratification. Hot water circulating means for circulating hot water in a hot water storage state in which hot water is supplied to the upper part of the hot water storage tank after being heated by the heating means, and a target hot water storage amount for setting a target hot water storage amount to be stored in the hot water storage tank Setting means, hot water storage amount detection means for detecting the amount of hot water stored in the hot water storage tank, hot water supply means for supplying hot water stored in the hot water storage tank through the hot water supply path, and the hot water storage amount becomes the target hot water storage amount Thus, based on the detection result of the hot water storage amount detection means, a hot water storage hot water supply heat source device provided with control means for executing hot water storage operation control for controlling the operation of the hot water circulation means,
Hot water flow rate detecting means for detecting a hot water flow rate in the hot water supply path is provided, and when the hot water supply means performs hot water supply control while the control means performs the hot water storage operation control, the hot water supply amount is set to the hot water flow rate. The calculation is based on the detection result, and a target hot water storage amount correction process for correcting the target hot water storage amount to the decrease side according to the calculated hot water supply amount is performed.
[Action]
When hot water is supplied by the hot water supply means during the hot water storage operation control, the hot water supply amount is calculated based on the detection result of the hot water flow rate, and the target hot water storage amount is corrected to the decreasing side according to the calculated hot water supply amount. It is possible to control the operation of the hot water circulation means based on the detection result of the hot water storage amount detection means so that the target hot water storage amount correction processing is executed and the corrected target hot water storage amount is obtained.
〔effect〕
If hot water is supplied by the hot water supply means during execution of hot water storage operation control, and the amount of hot water required for hot water performed after the hot water supply is reduced, the control means sets the target hot water storage amount according to the hot water supply amount. Since the hot water circulation means is controlled so that the target hot water storage amount after the correction is made after the correction, it is unnecessary when hot water is supplied by the hot water supply means during the hot water storage operation control. It is possible to prevent hot water from being stored.
[0005]
According to a second aspect of the present invention, the hot water storage amount detecting means includes a plurality of temperature sensors that detect the temperature of the hot water in the hot water storage tank, distributed in the vertical direction. The hot water storage amount is detected depending on which is the lowest sensor that detects a temperature equal to or higher than the hot water storage set temperature, and the target hot water storage amount setting means corresponds to one of the plurality of temperature sensors. The hot water storage amount is set as a target hot water storage amount, and the control means performs hot water in accordance with the hot water supply amount calculated from the target hot water storage amount as the target hot water storage amount correction processing during execution of the hot water storage operation control. A subtracted hot water amount obtained by subtracting the water amount, and a hot water storage amount that is greater than the subtracted hot water amount and closest to the subtracted hot water amount among a plurality of hot water storage amounts corresponding to each of the plurality of temperature sensors, In that it is configured to correct the target amount of hot water storage.
[Action]
The hot water storage amount detection means is located at the position of the temperature sensor depending on which of the plurality of temperature sensors for detecting the temperature of the hot water in the hot water tank is the lowest sensor that detects the temperature higher than the hot water storage temperature. The amount of hot water determined correspondingly is detected as the amount of hot water stored, and the target hot water storage amount setting means determines the amount of hot water stored corresponding to one of a plurality of temperature sensors, that is, for each temperature sensor corresponding to the position. The amount of hot water is set as the target hot water storage amount.
Then, the control means obtains a subtracted hot water amount obtained by subtracting the hot water amount according to the hot water amount calculated based on the detection result of the hot water flow rate from the target hot water amount as the target hot water amount correction process during the hot water storage operation control. The target hot water storage amount is corrected to a hot water storage amount that is greater than the subtracted hot water storage amount and closest to the subtracted hot water storage amount among a plurality of stages of hot water storage amounts corresponding to the plurality of temperature sensors.
〔effect〕
Correct one of the multiple stages of hot water storage amount corresponding to each of the plurality of temperature sensors to be the target hot water storage amount, and the temperature sensor corresponding to the target hot water storage amount after correction is equal to or higher than the hot water storage set temperature. Since the operation of the hot water circulating means may be controlled so as to detect the temperature, an arithmetic process for comparing the actual hot water storage amount with the target hot water storage amount is unnecessary, and the control configuration can be simplified.
[0006]
According to a third aspect of the present invention, the hot water storage amount detection means supplies the hot water in the hot water storage tank to the hot water storage tank with a temperature sensor that detects the temperature of the hot water at a specific height position and the hot water circulation means. Supply amount flow detection means for detecting the supply flow rate of hot water to be performed, and when the temperature sensor detects the hot water storage set temperature, the integrated amount obtained by integrating the detected flow rate of the supply flow rate detection means is obtained, A total amount of a reference hot water storage amount corresponding to a temperature sensor and the integrated amount is detected as the hot water storage amount, and the control means performs the target hot water storage amount correction processing during execution of the hot water storage operation control, A subtracted hot water amount obtained by subtracting a hot water amount corresponding to the calculated hot water supply amount from the target hot water amount is obtained, and the target hot water amount is corrected to the obtained subtracted hot water amount.
[Action]
The hot water storage amount detection means detects the supply flow rate of hot water supplied to the hot water storage tank by the hot water circulation means after the temperature sensor that detects the temperature of the hot water in the hot water storage tank at a specific height position detects the hot water storage set temperature. The integrated amount obtained is obtained, and the total amount of the reference hot water amount and the integrated amount corresponding to the temperature sensor that has detected the hot water storage set temperature is detected as the hot water storage amount. Then, the control means obtains a subtracted hot water amount obtained by subtracting the hot water amount according to the hot water amount calculated based on the detection result of the hot water flow rate from the target hot water amount as the target hot water amount correction process during the hot water storage operation control. Then, the target hot water storage amount is corrected to the obtained subtracted hot water storage amount.
〔effect〕
The sum of the reference hot water volume corresponding to the temperature sensor that has detected the hot water set temperature and the integrated amount that is the sum of the supply flow rates of hot water supplied to the hot water tank from when the temperature sensor detects the hot water set temperature is stored. The amount of hot water supplied to the hot water storage tank is integrated from the beginning of hot water storage and detected as the amount of hot water stored, and the actual hot water storage amount can be detected more easily. Since the total amount of the reference hot water storage amount and the integrated amount corresponding to the detected temperature sensor is detected as the hot water storage amount, there is little detection error, and the actual hot water storage amount can be detected accurately.
Moreover, since the operation of the hot water circulation means can be controlled so that the actual hot water storage amount becomes the target hot water storage amount corrected according to the actual hot water supply amount, hot water supply by the hot water supply means was performed during the hot water storage operation control. In this case, unnecessary hot water storage can be accurately prevented.
[0007]
According to a fourth aspect of the present invention, a plurality of the temperature sensors are arranged in a vertically distributed manner, and the hot water storage amount detecting means detects a temperature not lower than the hot water storage set temperature among the plurality of temperature sensors. The total amount of the reference hot water storage amount corresponding to the lowest sensor to be measured and the integrated amount obtained by integrating the detected flow rate of the supply flow rate detecting means from when the lowest temperature sensor detects the hot water storage set temperature, It is in the point comprised so that it may detect as.
[Action]
The hot water storage amount detection means is a hot water supplied to the hot water storage tank by the hot water circulation means from the time when the lowest temperature sensor that detects a temperature not lower than the hot water storage set temperature among the plurality of temperature sensors detects the hot water storage set temperature. An integrated amount obtained by integrating the supply flow rates is obtained, and the total amount of the reference hot water storage amount and the integrated amount corresponding to the lowest temperature sensor is detected as the hot water storage amount.
〔effect〕
As the amount of hot water storage increases, the lowest sensor that detects the temperature above the hot water set temperature sequentially moves to the lower sensor, and the lowest sensor that detects the temperature above the hot water set temperature changes to the sensor below it. Each time a transition is made, the hot water storage setting can be detected as the total amount of the reference hot water storage amount corresponding to the sensor and the integrated amount obtained by integrating the hot water supply flow rate from when the sensor detects the hot water storage set temperature can be detected. Each time the lowest sensor that detects a temperature equal to or higher than the temperature shifts to a sensor below it, the amount of stored hot water can be detected accurately with the detection error corrected.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An example in which an embodiment of a hot water storage type hot water supply heat source apparatus according to the present invention is applied to an engine heat pump type air conditioning and hot water supply system will be described with reference to the drawings.
[First Embodiment]
As shown in FIGS. 1 and 2, this engine heat pump type air conditioning and hot water supply system supplies hot water stored in a hot water storage tank 1 by forming a temperature stratification, or heats the hot water in the hot water storage tank 1 to the outside. It is comprised from the hot water storage unit A which radiates heat in the thermal radiation part 2, and the engine heat pump type | formula air conditioning apparatus B which cools and heats indoors.
[0009]
The hot water storage unit A includes a hot water storage unit controller C that controls the operation of the hot water storage unit A, a hot water storage tank 1, a hot water circulation means E having a circulation path 3 for circulating hot water in the hot water storage tank 1, and a circulation path 3. It comprises a heating unit 4 as a heating means for heating flowing hot water, an external heat radiating unit 2 for exchanging heat with hot water flowing through the circulation path 3 and radiating heat, and the hot water in the hot water storage tank 1 by the operation of the circulation pump P1. Is circulated in the circulation path 3 and heated by the heating unit 4 or radiated by the external heat radiating unit 2.
[0010]
The hot water storage tank 1 is connected to a hot water supply path 5 for supplying water to the hot water storage tank 1 from the bottom using tap water pressure, and is connected to a hot water supply path 6 for supplying hot water to a bathroom or kitchen from the upper part. It is configured to supply only the amount of water used in the kitchen or the like from the water supply channel 5 to the hot water storage tank 1.
Further, inside the hot water storage tank 1, four hot water storage temperature thermistors S1, S2, S3, S4 as a plurality of temperature sensors for detecting the temperature of the hot water in the hot water storage tank 1 at a specific height position are vertically arranged. It is provided in a distributed manner.
[0011]
The hot water supply path 6 is connected to a mixing water supply path 7 branched from the water supply path 5, and the mixing ratio of the hot water from the hot water supply path 6 and the water from the mixing water supply path 7 can be adjusted to the connection location. A mixing valve 8 is provided.
A water supply thermistor 9 for detecting the water supply temperature is provided at a branch point between the water supply passage 5 and the mixing water supply passage 7, and a check valve 10 is provided in each of the water supply passage 5 and the mixing water supply passage 7. ing.
Incidentally, an overflow passage 11 is connected to the hot water supply passage 6, and an air vent valve 12 is provided in the overflow passage 11.
[0012]
Further, on the upstream side of the mixing valve 8 in the hot water supply passage 6, a hot water storage outlet thermistor 13 for detecting the temperature of the hot water supplied to the hot water supply passage 6 from the upper part of the hot water storage tank 1 is provided, and the mixing valve 8 in the hot water supply passage 6 is provided. On the further downstream side, a mixing thermistor 14 for detecting the temperature of hot and cold water mixed by the mixing valve 8 and a hot water supply proportional valve 15 for adjusting the flow rate of hot water in the hot water supply path 6 are provided.
[0013]
The hot water supply passage 6 downstream of the hot water proportional valve 15 is branched into a general hot water supply passage 16 for supplying hot water to a hot water tap such as a kitchen or a washroom, and a hot water supply passage 17 for supplying hot water to the bathtub, A hot water supply path 17 is connected to a bath return path 18 from the bathtub, and hot water is supplied to the bathtub through both the bath return path 18 and the bath return path 19.
The general hot water supply path 16 is provided with a hot water flow rate sensor 20 that detects the flow rate of hot water flowing through the general hot water supply path 16, and the hot water supply path 17 detects the flow rate of hot water flowing through the hot water supply path 17. A hot water flow rate sensor 21, a hot water solenoid valve 22, a vacuum breaker 23, and a hot water check valve 24 are provided in order from the upstream side, and the hot water flow rate sensor 20 detects the hot water flow rate detection means for detecting the hot water flow rate in the general hot water supply path 16. It is provided as.
[0014]
The circulation path 3 and the hot water storage tank 1 allow the hot water flowing through the circulation path 3 to be returned to the hot water storage tank 1, or the hot water in the hot water storage tank 1 is taken into the circulation path 3 so that the upper part 1 of the hot water storage tank 1. It is connected in communication at a total of three locations, two locations and two bottom portions.
Specifically, an upper connection path 25 that connects the circulation path 3 and the hot water storage tank 1 is connected to the upper part of the hot water storage tank 1 through the upstream side of the hot water supply path 6. A return path 26 for returning hot water flowing through the circulation path 3 to the bottom of the hot water storage tank 1 via the downstream side of the water supply path 5, and an extraction path 27 for taking out hot water at the bottom of the hot water storage tank 1 to the circulation path 3. Are connected.
[0015]
The upper connection path 25 is provided with an electromagnetic upper opening / closing valve 28, and the return path 26 is provided with a return opening / closing valve 29. By opening the upper opening / closing valve 28, the circulation path 3 is passed through. The circulating hot water is supplied to the upper part of the hot water storage tank 1, the hot water in the upper part of the hot water storage tank 1 is taken out to the circulation path 3, and the return on-off valve 29 is opened to pass through the circulation path 3. The flowing hot water can be returned to the bottom of the hot water storage tank 1.
Incidentally, a drainage passage 30 for draining hot water in the hot water storage tank 1 is connected to the extraction passage 27, and a safety valve 31 and a manual valve 32 are connected in parallel to the middle portion of the drainage passage 30. .
[0016]
The heating unit 4 supplies the coolant from the engine heat pump air conditioner B to heat the hot water and supplies the cooling water recovered from the exhaust heat of the engine heat pump air conditioner B to supply the hot water. An engine exhaust heat utilization type heater 34 for heating and an auxiliary heater 35 for heating hot water by combustion of a burner 36 are provided.
A heat pump heater 33, an engine exhaust heat utilization heater 34, and an auxiliary heater 35 are provided in this order from the upstream side in the hot water circulation direction of the circulation path 3.
[0017]
The auxiliary heater 35 is provided with a fan 37 for supplying combustion air to the gas combustion type burner 36 and the like, and is configured to heat hot water flowing through the circulation path 3 by combustion of the burner 36.
A gas supply valve 38 for supplying fuel gas to the burner 36 is provided with a gas safety valve 39, a gas proportional valve 40, and a gas main valve 41 in order from the upstream side.
[0018]
The external heat radiating unit 2 includes a heating heat exchanging unit 42 for exchanging heat between hot water flowing through the circulation path 3 and hot water as a heating medium, and hot water flowing through the circulation path 3 and hot water in the bathtub. And a bath heat exchanging portion 43 for exchanging and exchanging heat with each other.
Then, the circulation path 3 is branched into a heating circulation path 3a having a heating heat exchange section 42 and a bath circulation path 3b having a bath heat exchange section 43, and the heating heat exchange section 42 and the bath The heat exchanging unit 43 is connected in parallel.
The heating circulation path 3a is provided with an electromagnetic heating on / off valve 44 upstream of the heating heat exchange section 42 in the hot water circulation direction, and the bath circulation path 3b has a bath heat exchange. An electromagnetic bath opening / closing valve 45 is provided upstream of the portion 43 in the hot water circulation direction.
[0019]
In the heating heat exchanging unit 42, the heating heat medium circulating through the heating return path 46 and the heating outgoing path 47 is heated by hot water flowing through the circulation path 3 by operating the heating pump P2. It is configured.
The heating return path 46 is provided with a heating return thermistor 48 that detects the temperature of the heating heat medium in the heating return path 46, a makeup water tank 49, and a heating pump P 2 in order from the upstream side. Is provided with a heating thermistor 50 that detects the temperature of the heating medium in the heating path 47.
[0020]
The replenishing water tank 49 is provided with an upper limit sensor 51 for detecting the upper limit of the water level and a lower limit sensor 52 for detecting the lower limit, and a tank water supply path 53 for supplying water to the replenishing water tank 49 is connected. A supply water electromagnetic valve 54 is provided in the path 53.
In addition, a heating bypass path 55 is provided for supplying the heating medium of the heating return path 46 to the heating forward path 47 by bypassing the heating heat exchanging section 42.
[0021]
The bath heat exchanging unit 43 is configured to heat the hot water in the bathtub circulating through the bath return path 18 and the bath going-out path 19 with hot water flowing through the circulation path 3 by operating the bath pump P3. Has been.
The bath return path 18 includes, in order from the upstream side, a water level sensor 56 that detects the level of hot water in the bathtub, a bath return thermistor 57 that detects the temperature of hot water in the bath return path 18, a two-way valve 58, and a bath pump. P3 and a bath water flow switch 59 are provided.
[0022]
Between the connection point of the return path 26 and the connection point of the extraction path 27 in the circulation path 3, an electromagnetic type that intermittently flows the hot water that has passed through the external heat radiating unit 2 to the heat pump heater 33. A heat pump opening / closing valve 60 is provided, and an inlet temperature thermistor 61 for detecting the temperature of hot water flowing through the auxiliary heater 35, a circulation path between the engine exhaust heat utilization type heater 34 and the auxiliary heater 35. 3 is provided with a circulation amount sensor 62 for detecting the circulation amount Q of hot water flowing through 3, an circulation pump P1, and an electromagnetic auxiliary on / off valve 63 for intermittently supplying hot water to the auxiliary heater 35.
[0023]
Between the auxiliary intermittent opening / closing valve 63 and the auxiliary heater 35 in the circulation path 3, a water amount sensor 64 for detecting a circulation amount Q of hot water flowing through the auxiliary heater 35 is provided. Between the connection part of the heater 35 and the upper connection path 25, the water proportional valve 65 which adjusts the circulation amount Q of the hot water flowing through the circulation path 3, and the circulation path after being heated by the heating unit 4 A hot water storage thermistor 66 for detecting the boiling temperature Ta of the hot water 3 is provided.
[0024]
The circulation path 3 includes a heat pump bypass path 67 for allowing hot water that has passed through the external heat radiating section 2 to bypass the heat pump heater 33 and flow into the engine exhaust heat utilization heater 34, and engine exhaust heat utilization. An auxiliary bypass path 68 for circulating hot water passing through the heater 34 bypassing the auxiliary heater 35 is connected, and an electromagnetic heat pump bypass opening / closing valve 69 is provided in the heat pump bypass path 67. The auxiliary bypass path 68 is provided with an electromagnetic auxiliary bypass opening / closing valve 70.
[0025]
Then, the hot water circulation means E includes the circulation path 3, the upper connection path 25, the return path 26, the take-out path 27, the circulation pump P1, the upper on-off valve 28, the heating on-off valve 44, the bath on-off valve 45, and the return on-off. The valve 29, the heat pump on-off valve 60, the heat pump bypass on-off valve 69, the auxiliary intermittent on-off valve 63, the auxiliary bypass on-off valve 70, and the like, and the upper on-off valve 28, the heating on-off valve 44, the bath on-off valve 45, the return The hot water extracted from the bottom of the hot water storage tank 1 is heated by the heating unit 4 by opening and closing the on-off valve 29, the heat pump on-off valve 60, the heat pump bypass on-off valve 69, the auxiliary intermittent on-off valve 63, and the auxiliary bypass on-off valve 70. The hot water is then circulated in the hot water storage tank 1 and the hot water initial operation in which the hot water is circulated in the hot water initial operation state in which the hot water is returned to the bottom of the hot water tank 1. Hot water extracted from the bottom of the hot water storage tank 1 is heated by the heating unit 4 so that the hot water is formed and stored, and the hot water is circulated in a hot water storage operation state in which the hot water is supplied to the upper part of the hot water storage tank 1. Operation and heat radiation operation in which hot water heated by the heating unit 4 is supplied to the external heat radiating unit 2 and all the hot water that has passed through the external heat radiating unit 2 is directly returned to the heating unit 4 by bypassing the hot water storage tank 1 It is configured to be switchable to a heat radiation operation for circulating hot water in a state.
[0026]
The circulation adjusting means F includes a water supply thermistor 9, an incoming temperature thermistor 61, a circulation amount sensor 62, a water proportional valve 65, a hot water storage thermistor 66, a hot water storage temperature thermistor S 1, S 2, S 3, S 4, etc. A hot water supply means G for supplying hot water stored in the hot water through the hot water supply path 6 is constituted by a hot water outlet thermistor 13, a mixing valve 8, a hot water proportional valve 15, a hot water flow sensor 20, a hot water flow sensor 21, a hot water solenoid valve 22, and the like. The bath operation means H is composed of a water level sensor 56, a bath return thermistor 57, a two-way valve 58, a bath pump P3, a bath water flow switch 59, and the like. The heating operation means J is a heating return thermistor 48, a heating pump P2. Hot water supplied to the upper portion of the hot water storage tank 1 by the hot water circulation means E. Supply flow rate detection means for detecting a supply flow rate of, and a circulation rate sensor 62.
[0027]
The hot water storage unit controller C includes an upper on-off valve 28, a heating on-off valve 44, a bath on-off valve 45, a return on-off valve 29, a heat pump on-off valve 60, a heat pump bypass on-off valve 69, an auxiliary intermittent on-off valve 63, an auxiliary By controlling the opening and closing of each of the bypass on / off valves 70, hot water taken out from the bottom of the hot water storage tank 1 is heated by the heating unit 4, and then the hot water is returned to the bottom of the hot water storage tank 1 or from the bottom of the hot water storage tank 1. After the extracted hot water is heated by the heating unit 4, the hot water is returned to the upper part of the hot water storage tank 1, or the circulation path 3 is circulated between the heating unit 4 and the external heat radiating unit 2. Yes.
[0028]
The engine heat pump air conditioner B includes a plurality of indoor units 71 and an outdoor unit 72, and is configured to air-condition a plurality of air-conditioning target spaces. The indoor unit 71, the outdoor unit 72, and the hot water storage unit A The heat pump type heater 33 is connected by a refrigerant pipe 73 so that the refrigerant in the engine heat pump type air conditioner B can be supplied to the heat pump type heater 33.
Each of the plurality of indoor units 71 includes an indoor heat exchanger 75, an indoor air conditioner blower 76 that sends out the temperature-controlled air in the indoor heat exchanger 75 to the air-conditioning target space, and the like.
[0029]
The outdoor unit 72 includes electronic expansion valves 74 and 89, a gas engine 77, a refrigerant compressor 78 driven by the gas engine 77, an accumulator 79, a four-way valve 80, an outdoor heat exchanger 81, and an outdoor heat exchanger 82 thereof. Are provided with an outdoor air-conditioning blower 82, a radiator 83, a radiator blower 84, a heat pump operation control unit D, and the like.
A cooling water passage 85 for circulating cooling water for cooling the gas engine 77 to and from the radiator 83 is provided. The cooling water passage 85 detects the cooling water temperature at the radiator pump P4 and the engine outlet side. A temperature thermistor 95 is provided, and the cooling water in which the exhaust heat of the gas engine 77 is recovered is supplied to the engine exhaust heat utilization type heater 34 through the heating cooling water passage 91 and is supplied to the radiator 83 to be radiated. An exhaust heat switching mechanism 86 that can be switched to a heat radiation state is provided.
[0030]
Then, the heat pump operation means K detects the low-pressure side refrigerant pressure by the gas engine 77, the electronic expansion valves 74 and 89, the indoor air-conditioning blower 76, the refrigerant compressor 78, the four-way valve 80, the outdoor air-conditioning blower 82, and the low-pressure side refrigerant pressure. Means 87, high-pressure detection means 88 for detecting the refrigerant pressure on the high-pressure side, and the like, and the cooling water circulation means L are the cooling water passage 85, the heating cooling water passage 91, the radiator pump P4, the radiator blower 84, the exhaust heat switching mechanism. 86, a cooling water temperature thermistor 95, and the like.
[0031]
The hot water storage unit control unit C and the heat pump operation control unit D are configured to be able to transmit and receive control signals such as that the engine heat pump air conditioner B is in an air conditioning operation and a drive request to the engine heat pump air conditioner B. As shown in FIG. 3, the air conditioning operation such as the air conditioning cooling operation and the air conditioning heating operation to the air conditioning target space based on the commands of the air conditioning remote controller 93 and the hot water storage remote controller 92 installed in each room as the air conditioning target space. Operation control such as hot water storage operation in which hot water is stored in the hot water storage tank 1, heat radiation operation in which heat is radiated by the external heat radiating unit 2, hot water supply priority operation in which hot water is supplied when the hot water storage amount R in the hot water storage tank 1 is less than the minimum secured amount Is configured to run.
[0032]
The operation of the engine heat pump air conditioner B will be described. When there is an air conditioning request such as an air conditioning cooling request or an air conditioning heating request from the air conditioning remote controller 93, the heat pump operation control unit D operates the heat pump operating means K and the cooling water circulation means L. The compressor 78 is operated by the gas engine 77 based on the air-conditioning request by the air-conditioning remote controller 93, and the air-conditioning cooling operation and the air-conditioning heating operation are selectively switched by the switching operation of the four-way valve 80. The heat pump operation means K is controlled by switching the air conditioning to each air conditioning target space by opening / closing control of the valve 74.
[0033]
That is, when there is an air conditioning cooling request from the air conditioning remote controller 93, the heat pump operation control unit D opens the electronic expansion valve 74 corresponding to the room with the air conditioning cooling request, and causes the indoor heat exchanger 75 to function as an evaporator. Then, the temperature of the air supplied to the air-conditioning target space is adjusted to a cooling temperature, and the heat pump operation means K is controlled to execute the air-conditioning cooling operation so that the outdoor heat exchanger 81 functions as a condenser and dissipates heat to the outside air. .
Further, when there is an air conditioning heating request from the air conditioning remote controller 93, the heat pump operation control unit D opens the electronic expansion valve 74 corresponding to the room with the air conditioning heating request, and causes the indoor heat exchanger 75 to function as a condenser. Then, the temperature of the air supplied to the air conditioning target space is adjusted by heating, and the heat pump operation means K is controlled to execute the air conditioning heating operation so that the outdoor heat exchanger 81 functions as an evaporator and absorbs heat from the outside air.
[0034]
The heat pump operation control unit D determines the rotational speed of the refrigerant compressor 78, the detected refrigerant pressure and the set target pressure so that the refrigerant pressure becomes the set target pressure in both the air conditioning cooling operation and the air conditioning heating operation. The time constant in the control is set to be sufficiently large, and the increase / decrease / change of the rotational speed is performed at a moderate speed.
[0035]
The cooling water circulation means L can be heated by the engine exhaust heat utilization type heater 34 by operating the radiator pump P4, operating the radiator blower 84 and radiating heat by the radiator 83 in the air conditioning cooling operation. Sometimes, when the cooling water flowing through the cooling water passage 85 becomes equal to or higher than the set temperature for heating, the exhaust heat switching mechanism 86 is switched to a heating state so that the cooling water is supplied to the engine exhaust heat utilization type heater 34. .
In the air-conditioning / heating operation, the radiator pump P4 is operated, the radiator blower 84 is operated and the radiator 83 dissipates heat, and when the engine exhaust heat utilizing heater 34 can be heated, the heating load is small. When the cooling water flowing through the cooling water passage 85 reaches the heating set temperature or higher, the exhaust heat switching mechanism 86 is switched to the heating state, and the cooling water is supplied to the engine exhaust heat utilization type heater 34.
[0036]
In the air-conditioning cooling operation, the indoor heat exchanger 75 functions as an evaporator to cool and adjust the temperature of air supplied to the air-conditioning target space, and the outdoor heat exchanger 81 functions as a condenser to radiate heat to the outside air. I am doing so.
In this air conditioning cooling operation, the heat pump operation control unit D controls the rotational speed of the gas engine 77 based on the detection information of the low pressure detection means 87 so that the detected pressure becomes the target pressure for cooling. .
Further, in the air conditioning and cooling operation, the heat pump operation control unit D switches the exhaust heat switching mechanism 86 to a heating state, supplies cooling water to the engine exhaust heat utilization type heater 34, and supplies hot water flowing through the circulation path 3 to the engine. Heat is exhausted.
[0037]
The flow of the refrigerant in the air-conditioning cooling operation will be described. The high-pressure dry vapor refrigerant discharged from the refrigerant compressor 78 is supplied to the outdoor heat exchanger 81 via the four-way valve 80, and the outdoor heat exchanger 81 It is condensed by heat exchange with the outside air.
Then, the condensing process passing refrigerant sent from the outdoor heat exchanger 81 is supplied to the indoor heat exchanger 75 via the electronic expansion valve 74, and is evaporated by heat exchange with the air to be cooled in the indoor heat exchanger 75. The
Thereafter, the low-pressure dry vapor refrigerant delivered from the indoor heat exchanger 75 is returned to the suction port of the refrigerant compressor 78 via the four-way valve 80 and the accumulator 79.
[0038]
In the air-conditioning / heating operation, the indoor heat exchanger 75 functions as a condenser to heat and control the temperature of air supplied to the air-conditioning target space, and the outdoor heat exchanger 81 functions as an evaporator to absorb heat from the outside air. ing.
In this air conditioning heating operation, the heat pump operation control unit D controls the rotational speed of the gas engine 77 based on the detection information of the high pressure detection means 88 so that the detected pressure becomes the target pressure for heating. .
In this air conditioning heating operation, the hot water flowing through the circulation path 3 is heated by the heating operation for supplying the high-pressure refrigerant to the heat pump heater 33 through the heating refrigerant pipe 90.
[0039]
When the flow of the refrigerant in the air conditioning heating operation is described, initial control is performed so that the electronic expansion valves 74 and 89 have a predetermined opening degree, and the detected pressure of the high pressure detecting means 88 becomes the target pressure. The rotational speed of the gas compressor 77 is increased or decreased to control the rotational speed of the refrigerant compressor 78, and the high-pressure dry vapor refrigerant discharged from the refrigerant compressor 78 is passed through the four-way valve 80 to the indoor heat exchanger 75 and the heat pump type. The heat is supplied to the heater 33 and condensed in the indoor heat exchanger 75 by heat exchange with the air to be heated, and in the heat pump heater 33, it is condensed by heat exchange with hot water in the circulation path 3.
[0040]
The condensation process passing refrigerant sent from the indoor heat exchanger 75 is supplied to the outdoor heat exchanger 81 via the electronic expansion valve 74, and the condensation process passing refrigerant sent from the heat pump heater 33 is The refrigerant is supplied to the outdoor heat exchanger 81 through the expansion valve 89 and is evaporated by heat exchange with the outside air in the outdoor heat exchanger 81.
Thereafter, the low-pressure dry vapor refrigerant sent from the outdoor heat exchanger 81 is returned to the suction port of the refrigerant compressor 78 via the four-way valve 80 and the accumulator 79.
[0041]
After the initial control of the electronic expansion valves 74 and 89 is completed, the refrigerant temperature on the downstream side of the indoor heat exchanger 75 and the heat pump heater 33 is detected by the refrigerant temperature sensor 96, and this detected temperature is the saturated liquid. Subcool control is performed to adjust the opening degree of the electronic expansion valves 74 and 89 so that the target temperature is obtained by subtracting a predetermined value from the temperature.
That is, in the subcool control, the indoor heat exchanger 75 or the heat pump heater 33 condenses and dissipates heat, and as a result, the temperature of the cooled refrigerant is detected by the refrigerant temperature sensor 96, and the detected temperature is detected as a high pressure. The opening degree of the electronic expansion valves 74 and 89 is adjusted to be lower by a predetermined value (subcool value) than the saturated liquid temperature obtained from data stored in advance in the memory based on the detected pressure detected by the means 88. .
[0042]
Then, the higher the temperature detected by the refrigerant temperature sensor 96 with respect to the target temperature obtained by subtracting a predetermined value from the saturated liquid temperature, the smaller the degree of opening of the electronic expansion valves 74 and 89, the lower the circulation amount of the refrigerant. Accordingly, the amount of heat released per predetermined amount of refrigerant increases, the temperature detected by the refrigerant temperature sensor 96 decreases, and the pressure detected by the high-pressure detection means 88 increases to increase the saturated liquid temperature, thereby increasing the refrigerant temperature sensor. The detected temperature by 96 can be made substantially equal to the target temperature.
Further, the lower the temperature detected by the refrigerant temperature sensor 96 with respect to the target temperature, the larger the degree of opening of the electronic expansion valves 74 and 89, thereby increasing the circulation amount of the refrigerant. The amount of heat release decreases, the temperature detected by the refrigerant temperature sensor 96 rises, the pressure detected by the high-pressure detection means 88 decreases, the saturated liquid temperature decreases, and the temperature detected by the refrigerant temperature sensor 96 is substantially the target temperature. Can be equivalent.
[0043]
The hot water storage unit controller C includes a hot water storage amount detection means M for detecting the hot water storage amount R in the hot water storage tank 1, a target hot water storage amount setting means N for setting the target hot water storage amount Ra to be stored in the hot water storage tank 1, and the like. It has been.
The hot water storage amount detection means M and the target hot water storage amount setting means N are provided in a program format, and the hot water storage amount detection means M detects a temperature of the hot water storage temperature thermistors S1, S2, S3, S4 that is equal to or higher than the hot water storage setting temperature Te. Depending on which hot water storage temperature thermistor S1, S2, S3, S4 is the lowest hot water storage temperature thermistor, an amount set in advance as an amount corresponding to the detection position of the hot water storage temperature thermistors S1, S2, S3, S4. Hot water is detected as the hot water storage amount R, and the target hot water storage amount setting means N sets the hot water storage amount R corresponding to any one of the four hot water storage temperature thermistors S1, S2, S3, S4 as the target hot water storage amount Ra. Is configured to do.
[0044]
The hot water storage amount R corresponding to the uppermost hot water storage temperature thermistor S1 is the minimum secured amount Rmin, the hot water storage amount R corresponding to the second hot water storage temperature thermistor S2 is the small hot water storage amount Rs, and the third hot water storage from the top. The hot water storage amount R corresponding to the temperature thermistor S3 is preset as the intermediate hot water storage amount Rm, and the hot water storage amount R corresponding to the lowest hot water storage temperature thermistor S4 is preset as the maximum hot water storage amount Rmax.
In this embodiment, the minimum reserved amount Rmin is set to 17 liters, the small hot water storage amount Rs is set to 30 liters, the intermediate hot water storage amount Rm is set to 70 liters, and the maximum hot water storage amount Rmax is set to 113 liters.
[0045]
Next, the operation of the hot water storage unit A will be described. Based on the request command of the hot water remote controller 92, the operating state of the heat pump operation means K, etc., the hot water storage unit control unit C performs hot water circulation means E, circulation adjustment means F, hot water supply means. G, bath operation means H, heating operation means J, and auxiliary heater 34 are controlled to perform operations such as a hot water storage operation, a heat radiation operation, and a hot water supply priority operation.
[0046]
The hot water circulating means E will be described in detail. When the hot water circulating means E stores hot water in the hot water storage tank 1, the hot water hot water storage operation state (hereinafter referred to as HP hot water storage operation state), Switched between heat storage hot water operation state, auxiliary heating hot water storage operation state, heat pump hot water initial operation state as hot water initial operation state (hereinafter referred to as HP hot water initial operation state), exhaust heat hot water initial operation state, and auxiliary heating hot water initial operation state When the heat is radiated by the external heat radiating unit 2, the operation mode is switched to a follow-up operation state, a heating operation state, and a simultaneous reheating / heating operation state.
[0047]
When hot water is stored in the hot water storage tank 1, when the temperature of the hot water heated by the heat pump heater 33, the engine exhaust heat utilization heater 34 or the auxiliary heater 35 is less than the allowable hot water storage temperature, Switch to the initial operation state, the waste heat storage hot water initial operation state or the auxiliary heating hot water storage initial operation state to circulate the hot water in the hot water storage tank 1 to the heat pump heater 33, the engine exhaust heat utilization heater 34 or the auxiliary heater 35. When the temperature of the heated hot water reaches the hot water storage allowable temperature, the hot water storage operation is switched to the HP hot water storage operation state, the exhaust heat hot water storage operation state, or the auxiliary heating hot water storage operation state, and hot water is stored in the hot water storage tank 1.
Further, when heat is radiated by the external heat radiating unit 2, if there is only a request for additional heating, the operation mode is switched to the additional operation state, and if there is only a request for heating operation, the operation mode is switched to the heating operation state. When both of these requests are made, the operation mode is switched to the reheating / heating simultaneous operation state.
[0048]
Hereinafter, each state of the hot water circulating means E will be described.
In the description of each state of the hot water circulating means E, the upper on-off valve 28, the return on-off valve 29, the heating on-off valve 44, the bath on-off valve 45, the heat pump on-off valve 60, the auxiliary intermittent on-off valve 63, Regarding the open / closed states of the heat pump bypass open / close valve 69 and the auxiliary bypass open / close valve 70, only the open / close valve to be opened is described, and the open / close valves not described are closed.
[0049]
In the HP hot water storage operation state, the upper on-off valve 28 and the auxiliary bypass on-off valve 70 are opened and the circulation pump P1 is operated so that the hot water forms a temperature stratification in the hot water storage tank 1 and stores the hot water. After the hot water taken out from the bottom of the tank 1 is heated by the heat pump heater 33, the hot water bypasses the auxiliary heater 35 and is returned to the upper part of the hot water storage tank 1.
[0050]
In the exhaust heat storage operation state, the upper on-off valve 28 and the auxiliary bypass on-off valve 70 are opened, and the circulation pump P1 is operated so that hot water forms a temperature stratification in the hot water storage tank 1 and stores hot water. After the hot water taken out from the bottom of the hot water storage tank 1 is heated by the engine exhaust heat utilization type heater 34, the hot water bypasses the auxiliary heater 35 and is returned to the upper part of the hot water storage tank 1.
[0051]
In the auxiliary heating hot water storage operation state, the upper on-off valve 28 and the auxiliary intermittent on-off valve 63 are opened, and the circulation pump P1 is operated so that hot water forms a temperature stratification in the hot water storage tank 1 to store hot water. After the hot water taken out from the bottom of the hot water storage tank 1 is heated by the auxiliary heater 35, the hot water is returned to the upper part of the hot water storage tank 1.
[0052]
In the HP hot water storage initial operation state, the return on / off valve 29, the heating on / off valve 44, and the auxiliary bypass on / off valve 70 are opened, the circulation pump P1 is operated, and the hot water taken out from the bottom of the hot water storage tank 1 is heat pump type. After heating by the heater 33, the hot water bypasses the auxiliary heater 35 and is returned to the bottom of the hot water storage tank 1.
[0053]
In the exhaust heat hot water storage initial operation state, the return on / off valve 29, the heating on / off valve 44, and the auxiliary bypass on / off valve 70 are opened, and the circulation pump P1 is operated to supply hot water taken out from the bottom of the hot water storage tank 1 to the engine. After being heated by the waste heat utilization type heater 34, the hot water is bypassed the auxiliary heater 35 and returned to the bottom of the hot water storage tank 1.
[0054]
In the auxiliary heating hot water storage initial operation state, the return on / off valve 29, the heating on / off valve 44, and the auxiliary on / off valve 63 are opened, and the circulation pump P1 is operated so that hot water taken out from the bottom of the hot water storage tank 1 is discharged. After heating with the auxiliary heater 35, the hot water is returned to the bottom of the hot water storage tank 1.
[0055]
In the reheating operation state, when the heat pump heater 33 heats, the bath on-off valve 45, the heat pump on-off valve 60, and the auxiliary bypass on-off valve 70 are opened, and the circulation pump P1 is operated. After the hot water heated by the heat pump heater 33 is dissipated by the heat exchanger 43 for bath, the entire amount bypasses the hot water storage tank 1 and returns to the heat pump heater 33, and the auxiliary heater 35 When heating, the on-off valve 45 for bath, the intermittent on-off valve 63 for auxiliary, and the heat pump bypass on-off valve 69 are opened, and the circulating pump P1 is operated to use hot water heated by the auxiliary heater 35 for bath. After heat is dissipated in the heat exchanging unit 43, the entire amount is returned to the auxiliary heater 35 by bypassing the hot water storage tank 1 and the heat pump heater 33.
[0056]
In the heating operation state, the heating on-off valve 44, the auxiliary intermittent on-off valve 63, and the heat pump bypass on-off valve 69 are opened, the circulation pump P1 is operated, and the hot water heated by the auxiliary heater 35 is heated. After heat is dissipated in the heat exchanger 42, the entire amount is returned to the auxiliary heater 35, bypassing the hot water storage tank 1 and the heat pump heater 33.
In the reheating / heating simultaneous operation state, the heating on / off valve 44, the bath on / off valve 45, the auxiliary intermittent on / off valve 63 and the heat pump bypass on / off valve 69 are opened, and the circulation pump P1 is operated to perform auxiliary heating. After the hot water heated by the vessel 35 is radiated by the heat exchanger 43 for bath and the heat exchanger 42 for heating, the entire amount bypasses the hot water storage tank 1 and the heat pump heater 33, and the auxiliary heater 35 I'm trying to get it back.
[0057]
As the operation of the hot water storage unit controller C, a hot water storage operation, an exhaust heat hot water storage operation, a heat radiation operation, and a hot water supply priority operation will be described.
The hot water storage operation is executed by selecting either a heat pump hot water storage operation (hereinafter referred to as an HP hot water storage operation) or an auxiliary heating hot water storage operation depending on whether or not the engine heat pump air conditioner B is in an air conditioning heating operation. If there is a hot water storage request as a heating request commanded from the hot water storage remote controller 92 during the air conditioning heating operation of the heat pump type air conditioner B, the auxiliary heating priority operation is performed by operating the auxiliary heater 35 to store the hot water. If there is a hot water storage request when the engine heat pump air conditioner B is not in the air conditioning heating operation, the HP heat storage operation is performed to store the hot water by causing the engine heat pump air conditioner B to perform the air conditioning heating operation, and the heat pump priority operation is performed. Is configured to run.
[0058]
Then, when there is a hot water storage request in a state in which the air conditioning heating request from the air conditioning remote controller 93 is canceled during the air conditioning heating operation of the engine heat pump air conditioning apparatus B, the HP hot water storage operation is continued while the operation of the engine heat pump air conditioning apparatus B is continued. Is configured to run.
In addition, if there is an air conditioning heating request to the engine heat pump air conditioner B during the HP hot water storage operation, the HP hot water storage operation is continued based on the rotational speed of the gas engine 77 or the heating load of the room where the heating is requested. It is determined whether the air conditioning capacity of the engine heat pump type air conditioner B with the air conditioning load is sufficient or insufficient with respect to the air conditioning load. When the air conditioning capacity is sufficient, the HP hot water storage operation is continued and the engine When the air conditioning operation is performed by the heat pump type air conditioner B and the air conditioning capacity is insufficient, the HP hot water storage operation is switched to the auxiliary heating hot water storage operation and the engine heat pump type air conditioner B is operated. It is configured as follows.
[0059]
The HP hot water storage operation in the hot water storage operation will be described in detail. First, the engine heat pump air conditioner B is heated to supply high-pressure refrigerant to the heat pump heater 33, and the hot water circulating means E is in the HP hot water storage initial operation state. The hot water in the hot water storage tank 1 is heated by the heat pump heater 33.
When the temperature detected by the hot water storage thermistor 66 exceeds the hot water storage allowable temperature, the hot water circulating means E is switched from the HP hot water storage initial operation state to the HP hot water storage operation state, and the temperature of hot water stored in the upper part of the hot water storage tank 1 is increased. Is adjusted based on detection information of the hot water storage thermistor 66 so that the opening degree of the water proportional valve for circulation 65 is adjusted.
[0060]
In this way, hot water in the hot water storage tank 1 is stored while forming temperature stratification, and when the hot water storage amount R of the hot water storage tank 1 reaches the target hot water storage amount Ra set by the hot water storage remote control 92 or the like, the hot water storage tank 1 is set for a set time. After the hot water storage is continued, the operation of the engine heat pump air conditioner B is stopped, the operation of the circulation pump P1 is stopped, and the open / close valve is closed to stop the operation of the hot water circulation means E. . Incidentally, the target hot water storage amount Ra can be selected from one of “small”, “medium”, and “full”. For example, when “medium” is selected as the target hot water storage amount Ra, the central thermistor S3 is set to store hot water. When a temperature lower than the temperature by a set temperature is detected, it is detected that the hot water storage amount R of the hot water storage tank 1 is equal to the target hot water storage amount Ra.
[0061]
The auxiliary heating hot water storage operation in the hot water storage operation will be specifically described. First, the hot water circulating means E is switched to the auxiliary heating hot water storage initial operation state, and the hot water taken out from the bottom of the hot water storage tank 1 is heated by the auxiliary heater 35. After that, the auxiliary heating hot water initial operation for returning the hot water to the bottom of the hot water storage tank 1 and the hot water circulation means E are switched to the auxiliary heating hot water storage operation state, and the hot water taken out from the bottom of the hot water storage tank 1 is heated by the auxiliary heater 35. After that, the hot water is switched to the auxiliary heating hot water storage operation in which the hot water is supplied to the upper part of the hot water storage tank 1 and stored.
[0062]
That is, the hot water storage unit controller C determines that the boiling temperature Ta exceeding the temperature 8 ° C. higher than the hot water storage target temperature Tb or the boiling temperature Ta exceeding 15 ° C. lower than the hot water storage target temperature Tb is the hot water storage thermistor 66. Until the temperature is detected continuously for 1 second, the auxiliary heating hot water storage initial operation is performed in which the hot water is circulated at the circulation amount Q of 1 liter / min in the auxiliary heating hot water storage initial operation state, which is 8 ° C. higher than the hot water storage target temperature Tb When the boiling temperature Ta exceeding the temperature or the boiling temperature Ta exceeding 15 ° C. lower than the hot water storage target temperature Tb is continuously detected for 1 second, the heating temperature is switched to the auxiliary heating hot water storage operation state. The circulation amount Q is controlled so that Ta becomes the hot water storage target temperature Tb.
[0063]
In this way, hot water in the hot water storage tank 1 is stored while forming temperature stratification, and when the hot water storage amount R of the hot water storage tank 1 reaches the target hot water storage amount Ra set by the hot water storage remote control 92 or the like, the hot water storage tank 1 is set for a set time. After the hot water storage is continued, the operation of the auxiliary heater 35 is stopped, the operation of the circulation pump P1 is stopped, and the open / close valve is closed to stop the operation of the hot water circulation means E.
[0064]
The exhaust heat hot water storage operation is to store hot water using the engine exhaust heat during operation of the engine heat pump type air conditioner B, and the hot water taken out from the bottom of the hot water storage tank 1 is switched to the exhaust heat hot water storage initial operation state. After heating with the engine exhaust heat utilization type heater 34, the hot water is circulated in a form in which the hot water is returned to the bottom of the hot water storage tank 1, and the operation is switched between the exhaust heat hot water initial operation and the exhaust heat hot water operation state. Hot water taken out from the bottom is heated by the engine exhaust heat utilization type heater 34, and then the hot water is switched to the exhaust heat hot water storage operation in which hot water is circulated in a form in which the hot water is supplied to the upper part of the hot water storage tank 1.
[0065]
When there is a request only for a reheating request, the heat dissipation operation performs a reheating operation, and when there is a request only for a heating request, a heating operation is performed, and when there are both a renewal request and a heating request, It is configured to execute the chasing and heating simultaneous operation.
[0066]
The reheating operation in the heat radiation operation will be specifically described. The hot water circulation means E is switched to the reheating operation state, and the rotation speed of the fan 37 is set so that the temperature detected by the hot water storage thermistor 66 becomes the reheating set temperature. While adjusting the opening degree of the gas proportional valve 40, the bath pump P3 is operated to circulate hot water in the bathtub through the bath return path 18 and the bath outlet path 19.
Then, the hot water in the bathtub is heated and chased by the bath heat exchanging unit 43, and when the detected temperature of the bath return thermistor 57 becomes equal to or higher than the chasing temperature, the operation of the bath pump P3 is stopped. The operation of the heater 35 and the hot water circulation means E are stopped.
[0067]
The heating operation in the heat radiation operation will be specifically described. The hot water circulation means E is switched to the heating operation state, and the rotation speed of the fan 37 and the gas proportional valve are set so that the temperature detected by the hot water storage thermistor 66 becomes the set temperature for heating. While adjusting the opening of 40, the heating pump P2 is operated to circulate the heat medium from the heating terminal through the heating return path 46 and the heating forward path 47, and the heating medium is heated by the heating heat exchanging section 42. Supply to heating terminals.
[0068]
The reheating and heating simultaneous operation in the heat radiation operation will be described in detail. The hot water circulation means E is switched to the reheating and heating simultaneous operation state, and the temperature detected by the hot water storage thermistor 66 becomes the reheating / heating simultaneous set temperature. The rotational speed of the fan 37 and the opening degree of the gas proportional valve 40 are adjusted so that the bath pump P3 is operated to circulate hot water in the bathtub through the bath return path 18 and the bath outlet path 19, and a heating pump. The heating medium from the heating terminal is circulated through the heating return path 46 and the heating outbound path 47 by operating P2.
And while chasing the hot water of a bathtub, the heating medium heated in the heat exchanging part 42 for heating is supplied to a heating terminal.
[0069]
The hot water supply priority operation is executed when hot water is supplied to a hot water tap or the like when the hot water storage amount R of the hot water storage tank 1 is less than the minimum ensured amount, and the hot water circulation means E is switched to the auxiliary heating hot water storage operation state. While the hot water heated in the hot water supply is supplied from the upper connection path 25 to the hot water supply path 6, the temperature of the hot water to be supplied becomes the hot water supply target temperature based on the detection information of the hot water supply target temperature, the hot water storage outlet thermistor 13 and the hot water supply thermistor 9. In this way, the opening degree of the mixing valve 8 is adjusted, and the opening degree of the mixing valve 8 is finely adjusted based on the deviation between the detected temperature and the hot water supply target temperature based on the detection information of the mixing thermistor 14. Hot water at the target temperature is supplied.
[0070]
By the way, when hot water is filled in the bathtub, similar to the hot water supply priority operation, when the hot water storage amount R of the hot water storage tank 1 is less than the minimum ensured amount, it is executed when hot water is supplied to a hot water tap or the like. Based on the detection information of the thermistor 13 and the water supply thermistor 9, the opening of the mixing valve 8 is adjusted so that the temperature of the hot water to be supplied reaches the hot water supply target temperature, and the detected temperature based on the detection information of the mixing thermistor 14. The opening of the mixing valve 8 is finely adjusted on the basis of the deviation between the hot water supply target temperature and the hot water solenoid valve 22 is opened, and the hot water adjusted to the hot water supply target temperature by the mixing bubble 8 is supplied to the bath return path 18. When a hot water set amount is supplied to the bathtub from both sides of the bath outlet 19 and the hot water set amount is supplied to the bathtub, the hot water solenoid valve 22 is closed. That.
[0071]
The control operation of the hot water storage unit A will be described based on the flowcharts of FIGS.
As shown in the flowchart of FIG. 4, the hot water storage unit A performs hot water supply priority operation when the hot water storage amount R of the hot water storage tank 1 is less than the minimum ensured amount and the hot water tap is opened and hot water is being supplied. If the hot water storage amount R of the hot water storage tank 1 is equal to or greater than the minimum ensured amount or not hot water is being supplied and the hot water supply priority operation is being executed, the operation of the auxiliary heater 35 and the operation of the circulation pump P1 are stopped. The hot water supply priority operation stop process is executed.
When there is a heat release request such as a heating request or a renewal request, a heat release operation is executed. When there is a hot water storage request, a hot water storage operation is executed, and the engine heat pump air conditioner B is in operation and recovers engine exhaust heat. If the temperature of the cooled water is equal to or higher than the predetermined temperature, the exhaust heat hot water storage operation is executed.
[0072]
When the control operation of the heat radiation operation is described based on the flowchart of FIG. 5, the hot water storage amount R of the hot water storage tank 1 is less than the minimum secured amount, and the hot water tap is opened and hot water is being supplied. Execute hot water supply priority operation.
If the hot water storage amount R of the hot water storage tank 1 is equal to or greater than the minimum ensured amount or not hot water is being supplied, if the hot water supply priority operation is executed, the operation of the auxiliary heater 35 and the operation of the circulation pump P1 are stopped and the hot water supply priority Execute operation stop processing.
[0073]
When there is a renewal request and there is no heating request, a renewal operation is executed. When there are both a renewal request and a heating request, a renewal and heating simultaneous operation is executed, and there is no renewal request. When there is a heating request, the heating operation is executed. In this way, depending on whether one or both of the renewal request and the heating request is requested, each of the renewal operation, the heating operation, and the simultaneous reheating / heating operation is executed in order to meet the request, When either or both of the follow-up request and the heating request are satisfied and the request is completed, a heat radiation stop process for stopping the operation of the hot water circulating means E and the auxiliary heater 35 is executed.
[0074]
When the control operation of the hot water storage operation is described based on the flowchart of FIG. 6, the hot water storage amount R of the hot water storage tank 1 is less than the minimum secured amount, and the hot water tap is opened to supply hot water. Execute hot water supply priority operation.
If the hot water storage amount R of the hot water storage tank 1 is equal to or greater than the minimum ensured amount or not hot water is being supplied, if the hot water supply priority operation is executed, the operation of the auxiliary heater 35 and the operation of the circulation pump P1 are stopped and the hot water supply priority Execute operation stop processing.
When there is a heat release request, either a renewal request or a heating request, a heat release operation is executed. When there is no heat release request, hot water storage operation control is executed, and the hot water storage amount R of the hot water storage tank 1 is the target hot water storage amount Ra. Then, after the hot water storage in the hot water storage tank 1 is continued for a set time, the operation of the engine heat pump type air conditioner B or the heating unit 4 is stopped and the operation of the circulation pump P1 is stopped and the open / close valve is opened. The hot water storage operation stop process is executed to close the valve and stop the operation of the hot water circulation means E.
[0075]
The hot water storage operation control will be described in detail.
In the hot water storage operation control, when the hot water remote controller 92 is used to make a bath reservation, the hot water storage temperature is set in order to store hot water at the target hot water storage temperature Tb and the target hot water storage amount Ra in the hot water storage tank 1. When it is determined that R is considerably smaller than the target hot water storage amount Ra, the heat pump heater 33 and the auxiliary heater 35 are used.
[0076]
That is, the circulation control means for the hot water storage unit controller C to increase or decrease the hot water circulation amount Q by the hot water circulation means E so as to maintain the boiling temperature Ta of the hot water by the heat pump heater 33 at a temperature within the hot water storage target temperature range. As the hot water storage operation is commanded, as shown in FIG. 7, the hot water circulating means E is heated by the heat pump heater 33 after the hot water taken out from the bottom of the hot water storage tank 1 is heated. Is switched to the HP hot water storage initial A operation mode and the HP hot water storage initial B operation mode in which hot water is circulated in the HP hot water storage initial operation state in which the water is returned to the bottom of the hot water storage tank 1, and the operation is controlled. The hot water taken out from the bottom of the hot water storage tank 1 is heated by the heat pump heater 33 so that the hot water of the target hot water storage amount Ra forms a temperature stratification and is stored. In the HP hot water storage operation state in which hot water is supplied to the upper part of the hot water storage tank 1, the hot water is circulated in the hot water storage A operation mode and the hot water storage B operation mode to control the operation. Based on the detection result of the hot water storage amount detection means M, the operation of the hot water circulation means E is controlled so that the hot water storage amount R in the tank 1 becomes the target hot water storage amount Ra.
[0077]
Moreover, the heat pump operation control part D as a heat pump operation control means starts the refrigerant | coolant compressor 78 of the heat pump type heater 33, and the refrigerant | coolant supplied to the heat pump type heater 33 as a hot water storage operation is commanded. While controlling the rotation speed of the refrigerant compressor 78 so that the pressure becomes the set target pressure, the heating operation of the heat pump heater 33 is controlled.
[0078]
In the HP hot water storage initial A operation mode, the opening of the water proportional valve 65 is controlled so that the circulation amount Q becomes the initial target flow rate (3 liters / min). In the HP hot water storage initial B operation mode, the circulation amount Q is a heat pump. The opening degree of the water proportional valve 65 is controlled so as to increase according to the refrigerant pressure of the heater 33.
In the HP hot water storage A operation mode, the opening degree of the water proportional valve 65 is controlled so that the circulation amount Q increases in accordance with the refrigerant pressure of the heat pump heater 33. In the HP hot water storage B operation mode, the boiling temperature Ta Is adjusted to the circulation amount Q by controlling the opening of the water proportional valve 65 so that the temperature becomes the target temperature Tb for hot water storage (in this embodiment, set to either 60 ° C. or 67 ° C.). Accordingly, the hot water heated by the auxiliary heater 35 is switched to the auxiliary heating hot water storage operation mode in which hot water is supplied to the upper part of the hot water storage tank 1 to store hot water.
[0079]
Hereinafter, hot water storage operation control by the hot water storage unit controller C will be described in detail with reference to the flowcharts of FIGS.
The HP hot water storage initial A operation mode will be described.
In the operation control in the HP hot water storage initial A operation mode, as shown in FIG. 8, the timer 94 is reset, a heat pump operation request signal is output to the heat pump operation control unit D, and the engine heat pump type air conditioning is performed from the heat pump operation control unit D. When an insufficient capacity signal indicating that the heat pump has insufficient heating capacity as a signal indicating the operation state of the apparatus B is input, hot water storage standby processing is executed, and when an insufficient capacity signal is not input, hot water circulation means E Is switched to the HP hot water storage initial operation state, the circulation pump P1 is operated, the opening of the water proportional valve 65 is controlled so that the circulation amount Q becomes the initial target flow rate (3 liters / min), and the bottom of the hot water storage tank 1 The hot water taken out from the hot water is circulated in such a form that it returns to the bottom of the hot water storage tank 1 through the auxiliary bypass passage 68 and the heating circulation passage 3a (step # 1 to # 4).
And even if 5 minutes have passed since the heat pump operation signal indicating that the engine heat pump type air conditioner B is operated as a signal indicating the operation state from the heat pump operation control unit D, the heat pump operation request signal is output. If not input, hot water storage standby processing is executed, and when a heat pump operation signal is input, operation control in the HP hot water storage initial B operation mode is started (steps # 5 to # 7).
[0080]
As shown in FIG. 9, when the circulating pump P1 is operating, the hot water storage standby processing stops its operation, stops the output of the heat pump operation request signal, resets the timer 94, When the accumulated time reaches 30 minutes, the operation control returns to the HP hot water storage initial A operation mode (steps # 11 to # 15).
[0081]
The HP hot water storage initial B operation mode will be described.
In the operation control in the HP hot water storage initial B operation mode, the heating refrigerant is supplied from the outdoor unit 72 to the heat pump heater 33, and the timer 94 is reset as shown in FIG. Then, the opening degree of the water proportional valve 65 is controlled so that the circulation amount Q becomes the initial target flow rate (1 liter / min) as the operation start set amount (steps # 21 and # 22).
[0082]
And when the engine 60 degreeC signal which shows that the temperature detected by the cooling water temperature thermistor 95 as a signal which shows an operation state from the heat pump operation control part D is 60 degreeC or more is not input, HP hot water storage initial stage A operation mode When the engine 60 ° C. signal is input, if the hot water storage target temperature Tb is 60 ° C., the upper limit circulation rate Qmax is set to 3 liters / min, and the hot water storage target temperature Tb is 67 ° C. In this case, when the upper limit circulation amount Qmax is set to 2 liters / min and the refrigerant pressure detected by the high pressure detecting means 88 becomes one of the circulation amount increase control pressures set in two steps, the circulation amount increases in two steps. A two-stage set increase amount set in accordance with the control pressure is selected according to the circulation amount increase control pressure, and the circulation amount Q of the hot water is increased by the set increase amount to wait for the set time. The ring amount increase control is repeatedly executed (steps # 23 to # 27).
[0083]
The circulation amount increase control will be described.
In the circulation amount increasing control, as shown in FIG. 11, when the circulation amount Q detected by the circulation amount sensor 62 is equal to or greater than the upper limit circulation amount Qmax, the circulation amount Q is maintained as it is, and the circulation amount Q is the upper limit circulation amount. The refrigerant pressure detected by the high pressure detecting means 88 as a signal indicating the operation state from the heat pump operation control unit D is less than Qmax, and is 20 kgf / cm, which is one of the circulation amount increase control pressures. 2 Refrigerant 20kgf / cm indicating (approx. 1.96MPa) 2 If only the signal is input, select the set increase amount of 0.1 liter / min corresponding to the pressure for controlling the increase in circulation amount, and increase the circulation amount Q by increasing the set increase amount. The refrigerant pressure detected by the high pressure detecting means 88 is one of the circulation amount increase control pressures, 22 kgf / cm. 2 Refrigerant 22kgf / cm indicating (approx. 2.16MPa) 2 When a signal is input, a set increase amount of 0.2 liter / min, which is set in correspondence with the circulation amount increase control pressure, is selected, and the circulation amount Q is increased by the set increase amount ( Steps # 41 to # 45).
Then, in the circulation amount increase control, the boiling temperature Ta exceeding 20 ° C. lower than the hot water storage target temperature Tb is generated by the hot water storage thermistor 66 for 5 seconds in the state where the capacity shortage signal is not input from the heat pump operation control unit D. Until it is continuously detected, it is executed at a calculation cycle of 15 seconds. When an insufficient capacity signal is input, hot water storage standby processing is executed (steps # 28 to # 34).
[0084]
Further, each time the above circulation amount increase control is repeated, it is determined whether or not the boiling temperature Ta is less than 4 ° C. lower than the hot water storage target temperature Tb, and if it is less than 4 ° C. lower than the hot water storage target temperature Tb. For example, when the target temperature Tb for hot water storage is 60 ° C., hot water storage standby processing is executed when 10 minutes have elapsed from the start of the HP hot water storage initial B operation mode, and when the target temperature Tb for hot water storage is 67 ° C. When 15 minutes have elapsed from the start of the B operation mode, hot water storage standby processing is executed (steps # 30 to # 34).
When the boiling temperature Ta exceeding 20 ° C. lower than the hot water storage target temperature Tb is continuously detected for 5 seconds by the hot water storage thermistor 66, operation control in the HP hot water storage A operation mode is started (step # 29). .
[0085]
The HP hot water storage A operation mode will be described.
In the operation control in the HP hot water storage A operation mode, as shown in FIG. 12, the hot water circulating means is set so that the timer 94 is reset and the temperature of the hot water in the lower part of the hot water storage tank 1 rises so that the heating capacity of the heat pump does not decrease. E is switched to the HP hot water storage operation state, the hot water taken out from the bottom of the hot water storage tank 1 is heated by the heat pump heater 33, and the hot water is circulated in such a form that the hot water is supplied to the upper portion of the hot water storage tank 1. The above-described circulation amount increase control is repeatedly executed until the boiling temperature Ta exceeding 4.5 ° C. lower than the target temperature Tb is continuously detected for 5 seconds by the hot water storage thermistor 66 (steps # 51 to # 56). )
However, if a boiling temperature Ta below 23 ° C. lower than the hot water storage target temperature Tb is detected during operation in the HP hot water storage A operation mode, operation control in the hot water storage prohibition operation mode is started. When the load is large and a capacity shortage signal is input, hot water storage standby processing is executed.
When the boiling temperature Ta exceeding 4.5 ° C. lower than the hot water storage target temperature Tb is continuously detected for 5 seconds by the hot water storage thermistor 66, the operation control in the HP hot water storage B operation mode is started.
[0086]
The hot water storage prohibition operation mode will be described.
In the operation control in the hot water storage prohibition operation mode, as shown in FIG. 13, the hot water circulation means E is switched to the HP hot water storage initial operation state, and the boiling temperature Ta exceeding 20 ° C. lower than the hot water storage target temperature Tb is detected. The flow control for hot water storage operation, which will be described later, is repeatedly executed until a boiling temperature Ta exceeding 20 ° C. lower than the hot water storage target temperature Tb is continuously detected for 5 seconds until the flow returns to step # 53 (step # 61). ~ # 63).
[0087]
The HP hot water storage B operation mode will be described.
In the operation control in the HP hot water storage B operation mode, as shown in FIG. 14, the timer 94 is reset, the hot water circulation means E is switched to the HP hot water storage operation state, and the upper limit circulation amount Qmax is set to 10 liters / min. When the hot water supply flow rate sensor 20 detects that hot water is being supplied by the hot water supply means G via the general hot water supply passage 16, the hot water supply amount Wr is calculated based on the detection result of the hot water supply flow rate sensor 20, and the calculation is performed. The target hot water storage amount correction process for correcting the target hot water storage amount Ra to the decreasing side according to the hot water supply amount Wr is executed, and the temperature of the heated hot water supplied to the upper part of the hot water storage tank 1 is maintained at the hot water storage target temperature Tb. By feedback control of the proportional valve 65, the hot water circulation amount Q is set by increasing / decreasing the set amount so that the boiling temperature Ta detected by the hot water storage thermistor 66 becomes the hot water storage target temperature Tb. When the hot water storage operation flow control for standby is repeatedly executed at a calculation period of 15 seconds, the hot water storage temperature thermistors S2, S3, S4 corresponding to the target hot water storage amount Ra detect the hot water storage set temperature Te by the hot water storage amount detection means M. Then, the control in the HP hot water storage B operation mode is finished (steps # 71 to # 77).
[0088]
In the target hot water storage amount correction process, a subtracted hot water storage amount Rb obtained by subtracting the hot water amount Wq used in accordance with the hot water supply amount Wr calculated from the target hot water storage amount Ra is obtained, and each of the hot water storage temperature thermistors S2, S3, S4 is obtained. The target hot water storage amount Ra is corrected to a hot water storage amount that is larger than the subtracted hot water storage amount Rb and closest to the subtracted hot water storage amount Rb among the corresponding multiple stages of hot water storage amounts Rmin, Rs, Rm, Rmax. The description will be given with reference.
[0089]
In the target hot water storage amount correction process, the hot water supply amount Wr is calculated based on the hot water supply flow rate detected by the hot water supply flow rate sensor 20, the hot water supply amount Wr, the hot water storage outlet temperature Tp detected by the hot water storage outlet thermistor 13, and the hot water supply thermistor 9. Based on the detected hot water temperature Tq and the hot water temperature detected by the mixing thermistor 14, the hot water amount Wp flowing out of the hot water storage tank 1 is calculated (steps # 141 and # 142).
Incidentally, the hot water amount Wp for hot water supply can be calculated by Wp = Tr · Wr / (Tp + Tq).
Then, from the calculated hot water amount Wp for hot water supply, the hot water amount Wq for hot water supply per unit cycle that has flowed out for 15 seconds, which is the calculation cycle of the hot water storage operation flow rate control, is obtained. A subtracted hot water storage amount Rb subtracted from the set target hot water storage amount Ra is obtained (steps # 143 and # 144), and three stages of hot water storage amounts Rs, Rm, Rmax corresponding to the three hot water storage temperature thermistors S2 to S4, respectively. Of these, the target hot water storage amount Ra is corrected to a hot water storage amount that is larger than the subtracted hot water storage amount Rb and closest to the subtracted hot water storage amount Rb (steps # 145 to # 150).
[0090]
That is, when the subtracted hot water storage amount Rb is equal to or greater than the intermediate hot water storage amount Rm (70 liters), the target hot water storage amount Ra is corrected to the maximum hot water storage amount Rmax (113 liters) (steps # 145 and # 146). When the amount of stored hot water Rs (30 liters) or more, the target amount of stored hot water Ra is corrected to the amount of intermediate hot water stored Rm (70 liters) (steps # 147, # 148), and the subtracted hot water storage amount Rb is the minimum secured amount Rmin (17 liters). In the above case, the target hot water storage amount Ra is corrected to a small hot water storage amount Rs (30 liters) (steps # 149, # 150).
Further, when the subtracted hot water storage amount Rb is less than the minimum ensured amount Rmin, operation control in the auxiliary heating hot water storage operation mode is executed.
[0091]
The hot water storage operation flow control will be described.
In the hot water storage operation flow control, as shown in FIGS. 16 to 18, when a boiling temperature Ta that is 23 ° C. lower than the hot water storage target temperature Tb is detected, the operation control in the hot water storage prohibition operation mode is started. When the circulating amount Q exceeds the upper limit circulating amount Qmax in the state where the boiling temperature Ta below 23 ° C. below the target temperature Tb for hot water storage is not detected, or when the circulating amount Q is less than the upper limit circulating amount Qmax In addition, the boiling temperature Ta is a temperature in a hot water storage target temperature range that is 1 ° C. lower than the hot water storage target temperature Tb and 1 ° C. higher than the hot water storage target temperature Tb, and the refrigerant is 22 kgf / cm. 2 No signal input or refrigerant 22kgf / cm 2 The signal is input and the refrigerant pressure is 22kgf / cm 2 ((Approximately 2.16 MPa) Even when the maximum rotation signal is input and the heat pump heater 33 has no operating capacity, the circulation rate Q is maintained at the current level, and the maximum rotation signal is not input. When the operation state of the refrigerant compressor 78 is not the maximum output operation state, that is, when the heat pump heater 33 has an operating capacity, the circulation rate Q is increased by a set amount of 0.1 liter / min and the timer 94 is reset. When the boiling temperature Ta is not less than 2.5 ° C. lower than the hot water storage target temperature Tb, the circulation amount increase control is performed in which the set circulation time is circulated with the increased circulation amount Q for 90 seconds. Execute (Steps # 81 to # 90).
[0092]
Then, after the circulation amount increase control is executed, the boiling temperature Ta is lower than the temperature of the hot water storage target temperature range, and the refrigerant is 20 kgf / cm. 2 No signal is input or refrigerant is 20kgf / cm 2 Even if the signal is input, if the maximum rotation signal indicating that the current rotation speed of the gas engine 77 is the maximum rotation speed as a signal indicating the operation state is input from the heat pump operation control unit D, that is, When the heat pump heater 33 has no operating capacity, the circulating amount Q is decreased by a set amount according to the boiling temperature Ta so that the boiling temperature Ta becomes a temperature in the hot water storage target temperature range, and waits for a set time. The circulation amount reduction control is executed (steps # 91 to # 99).
[0093]
That is, if the boiling temperature Ta is not less than 2.5 ° C. lower than the hot water storage target temperature Tb, the circulation rate Q is decreased by 0.1 liter / min (steps # 94, # 95), and the boiling temperature Ta Is less than 2.5 ° C. lower than the hot water storage target temperature Tb and is 5 ° C. lower than the hot water storage target temperature Tb, the circulation rate Q is reduced by 0.2 liter / min (step #). 96, # 97) If the boiling temperature Ta is lower than the temperature 5 ° C. lower than the target temperature Tb for hot water storage and 6 ° C. lower than the target temperature Tb for hot water storage 6 ° C., the circulation amount Q is 0.3. When the boiling temperature Ta falls below 6 ° C. lower than the hot water storage target temperature Tb, operation control in the hot water storage prohibition operation mode is executed.
[0094]
Further, even when the boiling temperature Ta is lower than the temperature of the hot water storage target temperature range in which the temperature of the heated hot water is regarded as the hot water storage target temperature, the refrigerant is 20 kgf / cm. 2 The signal is input and the refrigerant pressure is 20kgf / cm 2 (1.96 MPa) When the maximum rotation signal is not input and the operation state of the refrigerant compressor 78 is not the maximum output operation state, the circulation amount Q is maintained at the current state (step # 91). ~ # 93) When the boiling temperature Ta exceeds the temperature of the hot water storage target temperature range, if the boiling temperature Ta is equal to or lower than the temperature 5 ° C. higher than the hot water storage target temperature Tb, the circulation amount Q is set to 0. If the boiling temperature Ta exceeds the temperature 5 ° C. higher than the hot water storage target temperature Tb, the circulation rate Q is increased by 0.2 liter / min (steps # 91, # 100 to ##). 102).
[0095]
When the circulation rate Q is reduced by 0.3 liter / min, when the boiling temperature Ta is lower than the hot water storage target temperature Tb by 4 ° C., the hot water storage target temperature Tb is 60 ° C. Performs hot water storage standby processing when 10 minutes have elapsed from the start of operation control in the HP hot water storage B operation mode, and when hot water storage target temperature Tb is 67 ° C., starts operation control in the HP hot water storage B operation mode. When 15 minutes have passed, hot water storage standby processing is executed, and when hot water storage standby processing is not executed, the circulation amount Q is 1 liter which is the set minimum flow rate set as the minimum flow rate of hot water to be circulated in the HP hot water storage operation state If it is less than / min, the maximum rotation signal is input, the heat pump heater 33 has no operating capacity, and 2 minutes have passed since the start of operation control in the HP hot water storage B operation mode, Executing the standby process (step # 103 to # 110).
[0096]
Operation control in the auxiliary heating hot water storage operation mode will be described with reference to FIGS.
In the operation control by the auxiliary heating hot water storage operation mode, as shown in FIG. 19, the HP hot water storage operation mode stop process for stopping the operation control by the HP hot water storage operation mode is executed, and the operation control by the auxiliary heating hot water storage initial operation mode is executed. Then, operation control by the auxiliary heating hot water storage permission operation mode is executed.
[0097]
In the auxiliary heating hot water storage initial operation mode, as shown in FIG. 20, the timer 94 is reset, the hot water circulation means E is switched to the auxiliary heating hot water storage initial operation state, and the circulation amount Q of the hot water is turned on. The boiling temperature Ta calculated based on the entering temperature detected by the temperature thermistor 61, the hot water storage target temperature Tb, and the predetermined heating capacity in the rated operation state of the auxiliary heater 35 becomes the hot water storage target temperature Tb. Boiling temperature Ta, which is controlled so as to be circulated, is continuously detected for 1 second exceeding the temperature 8 ° C. higher than the target temperature Tc for hot water supply, or boiling exceeding 15 ° C. lower than the target temperature Tb for hot water storage When the raised temperature Ta is detected continuously for 1 second, operation control in the auxiliary heating hot water storage permission operation mode is executed (steps # 111 to # 115).
[0098]
In the auxiliary heating hot water storage permission operation mode, as shown in FIG. 21, the target hot water storage amount Ra is set to the small hot water storage amount Rs, the hot water circulation means E is switched to the auxiliary heating hot water storage operation state, and the hot water storage amount R becomes the target hot water storage amount. Until the hot water storage temperature thermistor S2 corresponding to the small hot water storage amount Rs detects the detected hot water storage temperature T2 that is equal to or higher than the hot water storage set temperature Te, the circulating pump P1, the hot water circulation amount Q is the input temperature thermistor 61 until Ra is reached. The circulation amount Q at which the boiling temperature Ta becomes the hot water storage target temperature Tb, calculated based on the inlet temperature detected in step S1, the hot water storage target temperature Tb, and the predetermined heating capacity of the auxiliary heater 35 in the rated operation state. The boiling temperature Ta below the temperature 3 ° C higher than the target temperature Tc for hot water supply is detected, or the boiling temperature Ta below 20 ° C lower than the target temperature Tb for hot water storage is detected. Then, the hot water circulation means E is switched to the auxiliary heating hot water storage initial operation state, and the boiling temperature Ta lower than the auxiliary heater target temperature Td set as the heating temperature by the auxiliary heater 35 is continued for 2 minutes. If detected, the circulating amount is decreased by a set amount and a flag is set. If the flag is further continued for 1 minute, it is determined that the auxiliary heater 35 is abnormal and the operation is stopped (steps # 120 to # 133).
[0099]
[Second Embodiment]
In the first embodiment, an engine heat pump type heating / cooling hot / cold hot water system provided with hot water storage amount detecting means M for detecting any one of the minimum reserved amount Rmin, the small hot water storage amount Rs, the intermediate hot water storage amount Rm, and the maximum hot water storage amount Rmax as the hot water storage amount R. In the following, an engine heat pump type heating / cooling hot water supply system provided with a hot water storage amount detection means M configured to detect a hot water storage amount R close to the actual hot water storage amount will be described with reference to FIGS. .
In addition, description of the same component as 1st Embodiment is abbreviate | omitted.
[0100]
In the present embodiment, the four hot water storage temperature thermistors S1 that are distributed in the vertical direction as a plurality of temperature sensors in which the hot water storage amount detection means M detects the temperature of the hot water in the hot water storage tank 1 at a specific height position. To S4 and a circulating flow rate sensor 62 as a supply amount flow rate detecting means for detecting the supply flow rate of hot water supplied to the hot water storage tank 1 by the hot water circulating means E is provided.
[0101]
In the operation control in the HP hot water storage B operation mode in the second embodiment, as shown in FIG. 22, the timer 94 is reset, the hot water circulation means E is switched to the HP hot water storage operation state, and the upper limit circulation rate Qmax is set to 10 liters / min. When the hot water supply flow rate sensor 20 detects that hot water is being supplied by the hot water supply means G through the general hot water supply path 16, the hot water supply amount Wr is calculated based on the detection result of the hot water supply flow rate sensor 20. Then, target hot water storage amount correction processing for correcting the target hot water storage amount Ra to the decreasing side is executed according to the calculated hot water supply amount Wr, and the hot water storage amount detection means M detects the hot water storage temperature T1 detected by the hot water storage temperature thermistors S1 to S4. The hot water storage amount calculation process for calculating the hot water storage amount R is executed based on T4 and the circulation amount Q detected by the circulation flow sensor 62, and the temperature of the heated hot water supplied to the upper portion of the hot water storage tank 1 is determined. In order to maintain the hot water target temperature Tb, the water circulation valve Q is set by a feedback control of the water proportional valve 65 so that the boiling temperature Ta detected by the hot water storage thermistor 66 becomes the hot water storage target temperature Tb. The hot water storage operation flow control for increasing / decreasing control and waiting for a set time is repeatedly executed at a calculation cycle of 15 seconds, and when the hot water storage amount R exceeds the target hot water storage amount Ra, the control in the HP hot water storage B operation mode is terminated (step #). 151- # 156).
[0102]
In the target hot water storage amount correction process, as shown in FIG. 23, the hot water supply amount Wr is calculated based on the hot water supply flow rate detected by the hot water supply flow rate sensor 20, and the hot water supply amount Wr and the hot water storage outlet temperature detected by the hot water storage outlet thermistor 13. Based on Tp, the feed water temperature Tq detected by the feed water thermistor 9, and the hot water temperature detected by the mixing thermistor 14, the hot water amount Wp flowing out of the hot water storage tank 1 is calculated in the same manner as in the first embodiment. (Steps # 161 and # 162).
Then, from the calculated hot water amount Wp for hot water supply, the hot water amount Wq for hot water supply per unit cycle that has flowed out for 15 seconds, which is the calculation cycle of the hot water storage operation flow rate control, is obtained. The target hot water storage amount Ra is corrected to the subtracted hot water storage amount subtracted from the set target hot water storage amount Ra (steps # 163 and # 164). When the corrected target hot water storage amount Ra is less than the minimum secured amount Rmin, auxiliary heating is performed. The operation control by the hot water storage operation mode is executed.
[0103]
In the hot water storage amount calculation processing, the reference hot water storage amounts Rmin, Rs, Rm, corresponding to the lowest hot water storage temperature thermistor sensors S1 to S4 that detect the temperature of the hot water storage temperature thermistors S1 to S4 that are equal to or higher than the hot water storage set temperature Te. Rmax and the integrated amount obtained by integrating the circulation amount Qr per calculation cycle, which is the detected flow rate detected by the circulation flow rate sensor 62, when the lowest hot water storage temperature thermistor sensors S1 to S4 detect the hot water storage set temperature Te. Is detected as the hot water storage amount R.
[0104]
The hot water storage amount calculation processing will be described in detail. As shown in FIG. 24, a unit cycle that is a circulation amount for 15 seconds, which is a calculation cycle of hot water storage flow control, from the circulation amount Q detected by the circulation flow rate sensor 62. The hot water storage amount R is obtained, and the hot water storage amount obtained by adding the circulation amount Qr per unit cycle to the hot water storage amount R calculated in the previous calculation cycle is set as the current hot water storage amount R (steps # 171 and # 172).
[0105]
When the hot water storage temperature T4 detected by the hot water storage temperature thermistor S4 is equal to or higher than the hot water storage set temperature Te and the current hot water storage amount R is less than 113 liters, the hot water storage amount R is the maximum hot water storage amount Rmax, which is one of the reference hot water storage amounts. When the hot water storage temperature T3 detected by the hot water storage temperature thermistor S3 is equal to or higher than the hot water storage set temperature Te and the current hot water storage amount R is less than 70 liters, the hot water storage amount R is used as a reference. The hot water storage amount Rm, which is one of the hot water storage amounts, is corrected to 70 liters (steps # 176 to # 178), the hot water storage temperature T2 detected by the hot water temperature thermistor S2 is equal to or higher than the hot water storage set temperature Te, and the current hot water storage amount R is 30. If it is less than 1 liter, the hot water storage amount R is corrected to 30 liters of the small hot water storage amount Rs, which is one of the standard hot water storage amounts (steps # 179 to # 181), and the hot water storage temperature thermist When the hot water storage temperature T1 detected by the star S1 is equal to or higher than the hot water storage temperature Te and the current hot water storage amount R is less than 17 liters, the hot water storage amount R is corrected to 17 liters, which is one of the reference hot water storage amounts Rmin. (Steps # 182 to # 184).
Accordingly, each time the hot water storage temperature thermistors S1 to S4 detect the hot water storage set temperature Te, the hot water storage is performed while correcting the reference hot water storage amounts Rmin, Rs, Rm and Rmax corresponding to the detected hot water storage temperature thermistors S1 to S4 to the hot water storage amount R. Since the total amount obtained by adding the integrated amount obtained by integrating the circulation amount Qr per unit cycle after detecting the set temperature Te is the current hot water storage amount R, the actual hot water storage amount R can be detected with high accuracy.
[0106]
[Other Embodiments]
1. In the above embodiment, the configuration in which the target hot water storage amount correction process is executed when hot water is supplied during the execution of the HP hot water storage operation control is shown. However, the hot water is heated by the engine exhaust heat utilization type heater 34 to store hot water. The target hot water storage amount correction process may be executed when hot water is supplied during the exhaust heat hot water storage operation control or the auxiliary heating hot water storage operation control in which hot water is heated and stored by the auxiliary heater 35.
2. In the above-described embodiment, the configuration in which the target hot water storage amount correction process is executed when there is general hot water supply during the hot water storage operation control is shown, but there was hot water filling to the bathtub during the hot water storage operation control. In this case, the target hot water storage amount correction process may be executed.
3. In the above embodiment, the target hot water amount correction process for subtracting and correcting the total amount of hot water used for hot water supply from the target hot water amount has been shown, but a certain percentage of the hot water amount for hot water is subtracted from the target hot water amount. A target hot water storage amount correction process to be corrected may be executed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hot water storage type hot water supply heat source device (hot water storage unit).
FIG. 2 is a schematic configuration diagram of a hot water storage type hot water supply heat source device (engine heat pump type air conditioning unit)
FIG. 3 is a control block diagram.
FIG. 4 is a flowchart showing a control operation of the first embodiment.
FIG. 5 is a flowchart showing a control operation of the first embodiment.
FIG. 6 is a flowchart showing a control operation of the first embodiment.
FIG. 7 is a flowchart showing a control operation of the first embodiment.
FIG. 8 is a flowchart showing a control operation of the first embodiment.
FIG. 9 is a flowchart showing a control operation of the first embodiment.
FIG. 10 is a flowchart showing a control operation of the first embodiment.
FIG. 11 is a flowchart showing the control operation of the first embodiment.
FIG. 12 is a flowchart showing the control operation of the first embodiment.
FIG. 13 is a flowchart showing the control operation of the first embodiment.
FIG. 14 is a flowchart showing a control operation of the first embodiment.
FIG. 15 is a flowchart showing a control operation of the first embodiment.
FIG. 16 is a flowchart showing the control operation of the first embodiment.
FIG. 17 is a flowchart showing the control operation of the first embodiment.
FIG. 18 is a flowchart showing a control operation of the first embodiment.
FIG. 19 is a flowchart showing a control operation of the first embodiment.
FIG. 20 is a flowchart showing the control operation of the first embodiment.
FIG. 21 is a flowchart showing the control operation of the first embodiment.
FIG. 22 is a flowchart showing the control operation of the second embodiment.
FIG. 23 is a flowchart showing the control operation of the second embodiment.
FIG. 24 is a flowchart showing the control operation of the second embodiment.
[Explanation of symbols]
1 Hot water storage tank
4 Heating means
6 Hot water supply path
20 Hot water supply flow rate detection means
62 Supply flow rate detection means
C Control means
E Hot water circulation means
G Hot water supply means
M Hot water storage amount detection means
N target hot water storage amount setting means
Qr detection flow rate
R Hot water storage
Ra target hot water storage
Rb Subtraction hot water storage
Rmin (standard) Hot water storage volume
Rs (standard) Hot water storage
Rm (Standard) Hot water storage volume
Rmax (standard) Hot water storage volume
S1 Temperature sensor
S2 Temperature sensor
S3 Temperature sensor
S4 Temperature sensor
Te hot water set temperature
Wq amount of hot water
Wr Hot water supply

Claims (4)

給湯路が上部に接続された貯湯タンクと、
その貯湯タンク内に湯水が温度成層を形成して貯湯されるように、貯湯タンクの底部から取り出した湯水を加熱手段にて加熱したのち、その温水を前記貯湯タンクの上部に供給する形態の貯湯運転状態で湯水を循環させる湯水循環手段と、
前記貯湯タンクに貯湯する目標貯湯量を設定する目標貯湯量設定手段と、
前記貯湯タンク内の貯湯量を検出する貯湯量検出手段と、
前記貯湯タンクに貯湯してある湯水を前記給湯路を通して給湯する給湯手段と、
前記貯湯量が前記目標貯湯量になるように、前記貯湯量検出手段の検出結果に基づいて、前記湯水循環手段の運転を制御する貯湯運転制御を実行する制御手段とが設けられた貯湯式の給湯熱源装置であって、
前記給湯路における給湯流量を検出する給湯流量検出手段が設けられ、
前記制御手段が、前記貯湯運転制御の実行中において、前記給湯手段による給湯が行われたときには、その給湯量を前記給湯流量の検出結果に基づいて演算し、その演算した給湯量に応じて前記目標貯湯量を減少側に補正する目標貯湯量補正処理を実行するように構成されている貯湯式の給湯熱源装置。
A hot water storage tank with a hot water supply channel connected to the top;
A hot water storage system in which hot water taken out from the bottom of the hot water storage tank is heated by heating means so that the hot water is stored in the hot water storage tank by forming a temperature stratification, and then the hot water is supplied to the upper part of the hot water storage tank. Hot water circulation means for circulating hot water in an operating state;
Target hot water storage amount setting means for setting a target hot water storage amount to be stored in the hot water storage tank;
Hot water storage amount detecting means for detecting the amount of hot water storage in the hot water storage tank;
Hot water supply means for supplying hot water stored in the hot water storage tank through the hot water supply path,
A hot water storage type provided with control means for executing hot water storage operation control for controlling the operation of the hot water circulation means based on the detection result of the hot water quantity detection means so that the hot water storage amount becomes the target hot water storage amount. A hot water supply heat source device,
Hot water flow rate detection means for detecting the hot water flow rate in the hot water supply path is provided,
When the control means performs hot water storage operation control and hot water is supplied by the hot water supply means, the hot water supply amount is calculated based on the detection result of the hot water flow rate, and the hot water supply amount is calculated according to the calculated hot water supply amount. A hot water storage type hot water supply heat source device configured to execute a target hot water storage amount correction process for correcting the target hot water storage amount to a decreasing side.
前記貯湯量検出手段が、
前記貯湯タンク内の湯水の温度を検出する複数の温度センサを、上下方向に分散して配置して、それら温度センサのうちで貯湯設定温度以上の温度を検出する最下位のセンサがいずれであるかにより、貯湯量を検出するように構成され、
前記目標貯湯量設定手段が、前記複数の温度センサのいずれかに対応する貯湯量を目標貯湯量として設定するように構成され、
前記制御手段が、前記貯湯運転制御の実行中における前記目標貯湯量補正処理として、前記目標貯湯量から前記演算される給湯量に応じた湯水量を減算した減算貯湯量を求めて、前記複数の温度センサの夫々に対応する複数段階の貯湯量のうちで、前記減算貯湯量よりも多くて最も前記減算貯湯量に近い貯湯量に、前記目標貯湯量を補正するように構成されている請求項1記載の貯湯式の給湯熱源装置。
The hot water storage amount detection means,
A plurality of temperature sensors that detect the temperature of hot water in the hot water storage tank are arranged in a vertically distributed manner, and any of the temperature sensors that detect a temperature that is equal to or higher than the hot water storage temperature is any of these temperature sensors. Is configured to detect the amount of hot water stored,
The target hot water storage amount setting means is configured to set a hot water storage amount corresponding to any of the plurality of temperature sensors as a target hot water storage amount,
The control means obtains a subtracted hot water amount obtained by subtracting a hot water amount corresponding to the calculated hot water supply amount from the target hot water amount as the target hot water amount correction process during execution of the hot water storage operation control, The hot water storage amount of a plurality of stages corresponding to each of the temperature sensors is configured to correct the target hot water storage amount to a hot water storage amount that is greater than the subtracted hot water storage amount and closest to the subtracted hot water storage amount. 1. A hot water storage heat source device according to 1.
前記貯湯量検出手段が、
前記貯湯タンク内の湯水の温度を特定高さ位置にて検出する温度センサと、前記湯水循環手段にて前記貯湯タンクに供給される湯水の供給流量を検出する供給量流量検出手段とを備えて、
前記温度センサが貯湯設定温度を検出したときから、前記供給流量検出手段の検出流量を積算した積算量を求めて、前記温度センサに対応する基準貯湯量と前記積算量との合計量を、前記貯湯量として検出するように構成され、
前記制御手段が、前記貯湯運転制御の実行中における前記目標貯湯量補正処理として、前記目標貯湯量から前記演算される給湯量に応じた湯水量を減算した減算貯湯量を求めて、その求めた減算貯湯量に前記目標貯湯量を補正するように構成されている請求項1記載の貯湯式の給湯熱源装置。
The hot water storage amount detection means,
A temperature sensor for detecting the temperature of the hot water in the hot water storage tank at a specific height position, and a supply flow rate detecting means for detecting the supply flow rate of the hot water supplied to the hot water storage tank by the hot water circulating means. ,
When the temperature sensor detects the hot water storage set temperature, the integrated amount obtained by integrating the detected flow rate of the supply flow rate detecting means is obtained, and the total amount of the reference hot water amount corresponding to the temperature sensor and the integrated amount is Configured to detect as hot water storage amount,
The control means obtains a subtracted hot water storage amount obtained by subtracting a hot water amount corresponding to the calculated hot water supply amount from the target hot water amount as the target hot water storage amount correction process during execution of the hot water storage operation control. The hot water storage type hot water supply heat source device according to claim 1, wherein the target hot water storage amount is corrected to a subtracted hot water storage amount.
前記温度センサの複数が、上下方向に分散して配置され、
前記貯湯量検出手段が、それら複数の温度センサのうちで貯湯設定温度以上の温度を検出する最下位のセンサに対応する基準貯湯量と、その最下位の温度センサが貯湯設定温度を検出したときから、前記供給流量検出手段の検出流量を積算した積算量との合計量を、貯湯量として検出するように構成されている請求項3記載の貯湯式給湯熱源装置。
A plurality of the temperature sensors are distributed in the vertical direction,
When the hot water storage amount detection means detects a reference hot water storage amount corresponding to the lowest sensor that detects a temperature equal to or higher than the hot water storage set temperature among the plurality of temperature sensors, and the lowest temperature sensor detects the hot water storage set temperature. The hot water storage type hot water supply heat source device according to claim 3, wherein a total amount with an integrated amount obtained by integrating the detected flow rate of the supply flow rate detecting means is detected as a hot water storage amount.
JP2000135599A 2000-05-09 2000-05-09 Hot water storage hot water source Expired - Fee Related JP4148630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135599A JP4148630B2 (en) 2000-05-09 2000-05-09 Hot water storage hot water source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135599A JP4148630B2 (en) 2000-05-09 2000-05-09 Hot water storage hot water source

Publications (2)

Publication Number Publication Date
JP2001317815A JP2001317815A (en) 2001-11-16
JP4148630B2 true JP4148630B2 (en) 2008-09-10

Family

ID=18643652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135599A Expired - Fee Related JP4148630B2 (en) 2000-05-09 2000-05-09 Hot water storage hot water source

Country Status (1)

Country Link
JP (1) JP4148630B2 (en)

Also Published As

Publication number Publication date
JP2001317815A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
JP3986180B2 (en) Hot water storage hot water source
US20110011943A1 (en) Heating installation and method for controlling the heating installation
JP4194220B2 (en) Bath equipment
JP4169454B2 (en) Hot water storage hot water source
JP4208388B2 (en) Hot water storage hot water source
JP4169452B2 (en) Water heater
JP4148630B2 (en) Hot water storage hot water source
JP4194213B2 (en) Hot water storage hot water source
JP4174574B2 (en) Hot water storage hot water source
JP4222714B2 (en) Hot water storage hot water source
JP4194225B2 (en) Hot water storage hot water source
JP4194212B2 (en) Hot water storage hot water source
JP4144996B2 (en) Hot water storage hot water source
JP4390401B2 (en) Hot water storage hot water source
JP3976999B2 (en) Hot water supply and heating system using heat pump
JP4169453B2 (en) Hot water storage hot water source
JP3888790B2 (en) Water heater
JP2001296051A (en) Hot water storage type hot water heater source device
JP4493231B2 (en) Heating medium circulation type heating device
JP3960912B2 (en) Hot water storage hot water source
JP3979909B2 (en) Hot water storage water heater
JP4127948B2 (en) Hot water storage hot water source
JP3851847B2 (en) Hot water storage hot water source
JP4194215B2 (en) Hot water storage hot water source
JP4390403B2 (en) Heating medium circulation type heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4148630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees