JPS60598Y2 - Separate air conditioner/heater - Google Patents

Separate air conditioner/heater

Info

Publication number
JPS60598Y2
JPS60598Y2 JP1977122175U JP12217577U JPS60598Y2 JP S60598 Y2 JPS60598 Y2 JP S60598Y2 JP 1977122175 U JP1977122175 U JP 1977122175U JP 12217577 U JP12217577 U JP 12217577U JP S60598 Y2 JPS60598 Y2 JP S60598Y2
Authority
JP
Japan
Prior art keywords
pipe
indoor
refrigerant
indoor unit
side branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977122175U
Other languages
Japanese (ja)
Other versions
JPS5447948U (en
Inventor
信雄 鈴木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP1977122175U priority Critical patent/JPS60598Y2/en
Publication of JPS5447948U publication Critical patent/JPS5447948U/ja
Application granted granted Critical
Publication of JPS60598Y2 publication Critical patent/JPS60598Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は分離形冷暖房機、詳しくは1台の室外ユニット
に複数台の室内ユニットを連絡配管を介して接続して戒
る分離形冷暖房機に関する。
[Detailed Description of the Invention] The present invention relates to a separate type air-conditioner/heater, and more particularly, to a separate type air-conditioner/heater in which a plurality of indoor units are connected to one outdoor unit via connecting pipes.

従来此種冷暖房機は、室外ユニットに配管する液管とガ
ス管とからそれぞれ複数本の源側支管とガス側支管とを
分岐し、これら支管に連絡配管をそれぞれ接続して、こ
れら分岐回路を介して前記室外ユニットに複数台の室内
ユニットを連結すると共に前記各支管にそれぞれ電磁開
閉弁を介装して室内ユニットの運転時運転する室内ユニ
ットの分岐回路に介装する前記開閉弁を開くようにし、
更らに各室内ユニット毎に均圧管を設けて、これら均圧
管を暖房時低圧となる低圧配管に接続し、暖房時前記開
閉弁からの冷媒洩れにょる室内ユニット内への液溜りを
防止している。
Conventionally, this type of air-conditioning/heating machine has branched out multiple source-side branch pipes and gas-side branch pipes from the liquid pipes and gas pipes piping to the outdoor unit, respectively, and connected connection pipes to these branch pipes to form these branch circuits. A plurality of indoor units are connected to the outdoor unit through the via, and an electromagnetic on-off valve is interposed in each of the branch pipes so that the on-off valve installed in the branch circuit of the indoor unit that is operated when the indoor unit is operated is opened. west,
Furthermore, pressure equalizing pipes are provided for each indoor unit, and these pressure equalizing pipes are connected to low pressure pipes that have low pressure during heating to prevent liquid from pooling inside the indoor unit due to refrigerant leaking from the on-off valve during heating. ing.

(実開昭50−45755号公報)。(Utility Model Application No. 50-45755).

所が以上の構成によると、暖房時閉鎖している開閉弁か
ら高圧冷媒が洩れて、停止中の室内ユニットに浪人する
と、この浪人時の圧力降下により冷媒中の油が分離して
油溜りが生じ、圧縮機内の潤滑油が不足する問題と、高
圧冷媒を前記開閉弁で閉止するため、停止中の室内ユニ
ットを運転開始するとき前記開閉弁の開放時にショック
音が生ずる問題があったし、また源側及びガス側支管に
高価な電磁開閉弁を介装するため、全体のコストが高く
なる問題点もあった。
However, according to the above configuration, if high-pressure refrigerant leaks from the on-off valve that is closed during heating and enters the indoor unit that is stopped, the oil in the refrigerant will separate due to this drop in pressure and cause an oil pool. This caused problems such as a lack of lubricating oil in the compressor, and because the high-pressure refrigerant was closed by the on-off valve, a shock sound was generated when the on-off valve was opened when the indoor unit was started operating after it was stopped. Furthermore, since expensive electromagnetic on-off valves are installed in the source side and gas side branch pipes, there is also the problem that the overall cost increases.

又一方此種冷暖房機を、現場で据付けを行なう場合、室
外ユニットは、戸外の所定位置に設置し、この室外ユニ
ットに前記分岐回路を介して接続する複数台の室内ユニ
ットは、所定の各室に据付けるため、各室内ユニットの
室外ユニットの設置場所に対する距離や高さが異なり、
また各室内ユニットの室内負荷も異なるのである。
On the other hand, when this type of air conditioner is installed on site, the outdoor unit is installed at a predetermined location outdoors, and the multiple indoor units connected to this outdoor unit via the branch circuit are installed in each predetermined room. Because each indoor unit is installed in a
Furthermore, the indoor loads of each indoor unit are different.

その結果各室内ユニットへの冷媒供給時、特に前記分岐
回路中で膨張機構を介さずに冷媒供給及び返戻される暖
房時において偏流が生じ、各室内ユニットへの冷媒循環
量に差が出て適切な能力分布が保持できなくなる問題が
あった。
As a result, uneven flow occurs when refrigerant is supplied to each indoor unit, especially during heating when the refrigerant is supplied and returned without going through the expansion mechanism in the branch circuit, resulting in differences in the amount of refrigerant circulating to each indoor unit, resulting in an inappropriate flow. There was a problem that a certain ability distribution could not be maintained.

しかして以上の如き問題点に対し、先に前記ガス側支管
に設ける電磁開閉弁をなくし、液側支管にのみ介装して
、この電磁開閉弁を冷暖房運転時ともに室内ユニットの
発停により開閉するごとく或すと共に、これら開閉弁の
暖房時における入口側と、前記膨張機構の出口側との間
に、減圧機構を備えたバイパス回路を設けて、暖房時停
止側室内ユニットに流れる冷媒を該バイパス回路を介し
て前記液管へ導入するごとく戒した分離形冷暖房機を提
案した。
However, in order to solve the above problems, we first eliminated the electromagnetic on-off valve provided on the gas side branch pipe and installed it only on the liquid side branch pipe, and this electromagnetic on-off valve was opened and closed by the start and stop of the indoor unit during both cooling and heating operations. In addition, a bypass circuit equipped with a pressure reducing mechanism is provided between the inlet side of these on-off valves during heating and the outlet side of the expansion mechanism to divert the refrigerant flowing to the indoor unit on the side that is stopped during heating. We proposed a separate type air-conditioner/heater in which the liquid is introduced into the pipe via a bypass circuit.

所がこの冷暖房機によると、前記した油溜りやショック
音の問題点は解決できるけれども、前記開閉弁を、冷暖
房運転時ともに室内ユニットの発停で開閉するため、開
閉による電力消費があり、しかも前記バイパス回路には
閉鎖弁を必要とし、従って前記コスト高の問題を根本的
に解決できないばかりか、前記した偏流の問題は全く解
決できないのである。
However, although this air conditioner can solve the above-mentioned problems of oil accumulation and shock noise, since the on-off valve is opened and closed by starting and stopping the indoor unit during both air conditioning and heating operation, power is consumed due to opening and closing. The bypass circuit requires a closing valve, and therefore not only cannot the problem of high cost be fundamentally solved, but also the problem of uneven flow cannot be solved at all.

そこで本考案は、先に提案した以上の冷暖房機の問題点
を根本的に解消し、暖房時停止中の室内ユニットへの液
溜りは勿論油溜りをなくし、しかもショック音の問題も
解消できながら、閉鎖弁を不要にでき、かつ暖房時には
源側支管に設ける開閉弁を、運転如何に拘わらず通電せ
ずに閉のま)にして節電が行なえ、その上室内ユニット
を同時運転する場合の偏流をなくし、各室内ユニットの
能力に応じた暖房を確実に行なえるようにしたのである
Therefore, this invention fundamentally solves the problems of air conditioners and heaters that were proposed earlier, eliminates not only liquid accumulation in the indoor unit when heating is stopped, but also oil accumulation, and also eliminates the problem of shock noise. , it is possible to eliminate the need for a shut-off valve, and to save power by keeping the shut-off valve installed in the source side branch pipe closed (regardless of the operation mode) during heating. This eliminates the need for heating, making it possible to reliably provide heating according to the capacity of each indoor unit.

その目的を遠戚するために本考案は室外ユニットの液管
から複数本の源側支管を、ガス管から複数本のガス側支
管をそれぞれ分岐すると共に、前記液管に暖房用膨張機
構を介装した一台の室外ユニットに、前記源側支管及び
ガス側支管を介して冷房用膨張機構と室内コイルとを備
えた複数台の室内ユニットを並列に接続して成る分離形
冷暖房機において、前記各源側支管に、冷房運転時に開
閉し暖房運転時には閉止したま)である開閉弁をそれぞ
れ介装する一方、該各間閉弁には、該開閉弁を側路する
バイパス管をそれぞれ設けると共に、該各バイパス管に
キャピラリーチューブと暖房時の冷媒の流れのみを許す
逆止弁とをそれぞれ介装し、暖房時前記分岐回路におけ
る偏流を防止し、かつ停止側室内ユニットに流入する冷
媒を前記バイパス管を介して前記液管側へ流出させるご
とくしたことを特徴とするものである。
In order to achieve this objective, the present invention branches out a plurality of source-side branch pipes from the liquid pipe of the outdoor unit and a plurality of gas-side branch pipes from the gas pipe, and connects the liquid pipe with a heating expansion mechanism. In a separate type air-conditioning/heating machine, a plurality of indoor units equipped with a cooling expansion mechanism and an indoor coil are connected in parallel to a single outdoor unit equipped with a cooling expansion mechanism and an indoor coil via the source side branch pipe and the gas side branch pipe. Each source-side branch pipe is equipped with an on-off valve that opens and closes during cooling operation and remains closed during heating operation, while a bypass pipe that bypasses the on-off valve is installed in each of the intermediate closing valves. , each bypass pipe is provided with a capillary tube and a check valve that allows only the flow of refrigerant during heating, to prevent uneven flow in the branch circuit during heating, and to prevent the refrigerant flowing into the indoor unit on the stop side. This is characterized in that the liquid flows out to the liquid pipe side via a bypass pipe.

以下本考案の実施例を図面に基づいて詳記する。Embodiments of the present invention will be described in detail below based on the drawings.

図面に示したものは、1台の室外ユニットAに2台の室
内ユニットB、 Cを接続したもので、前記室外ユニッ
トAは、圧縮機1の吸入口及び吐出口に、吸入管21及
び吐出管22を介して四路切換弁2を接続し、該四路切
換弁2の一つの切換ポートには、冷房時凝縮器となり暖
房時蒸発器となる室外コイル3をガス管23を介して接
続すると共に該室外コイル3に接続する液管24の中間
には暖房用膨張機構4を逆止弁5との並列回路を介装し
、その先端から2本の源側支管25,26を分岐してい
る。
In the drawing, two indoor units B and C are connected to one outdoor unit A, and the outdoor unit A has a suction pipe 21 and a discharge port connected to the suction port and discharge port of the compressor 1. A four-way switching valve 2 is connected via a pipe 22, and an outdoor coil 3, which becomes a condenser during cooling and an evaporator during heating, is connected to one switching port of the four-way switching valve 2 via a gas pipe 23. At the same time, a heating expansion mechanism 4 and a parallel circuit with a check valve 5 are interposed in the middle of the liquid pipe 24 connected to the outdoor coil 3, and two source side branch pipes 25 and 26 are branched from the tip thereof. ing.

また前記四路切換弁2の一つの切換ポートには、ガス管
27を接続すると共に、このガス管27の先端から2本
のガス側支管28,29を分岐している。
Further, a gas pipe 27 is connected to one switching port of the four-way switching valve 2, and two gas side branch pipes 28 and 29 are branched from the tip of the gas pipe 27.

また前記室内ユニットB、 Cは、何れも冷房時蒸発器
となり暖房時凝縮器となる室内コイル6を装備しており
、該コイル6に冷媒配管30を接続すると共にこの配管
30の内液管30aの途中には冷房用膨張機構7と逆止
弁40との並列回路を介装するのである。
In addition, both of the indoor units B and C are equipped with an indoor coil 6 that serves as an evaporator during cooling and a condenser during heating.A refrigerant pipe 30 is connected to the coil 6, and an internal liquid pipe 30a of this pipe 30 is connected to the coil 6. A parallel circuit consisting of the cooling expansion mechanism 7 and the check valve 40 is interposed in the middle.

そして前記室外ユニットAの源側支管25,26とガス
側支管28,29とに、連絡配管31゜32を接続して
分岐回路を構成し、これら分岐回路を、室内ユニツ)B
、Cの前記液管30aとガス管30bとに接続し、室内
ユニットB、 Cを室外ユニットAに連結するのである
Connecting pipes 31 and 32 are connected to the source side branch pipes 25 and 26 and the gas side branch pipes 28 and 29 of the outdoor unit A to form a branch circuit, and these branch circuits are connected to the indoor unit A).
, C are connected to the liquid pipe 30a and gas pipe 30b, and the indoor units B and C are connected to the outdoor unit A.

しかしで第1図に示したものは以上の如く構成する冷暖
房機において、前記源側支管25,26にのみ電磁開閉
弁8,9を介装すると共に、これら開閉弁8,9を側路
するバイパス管10,10を設けて、これらバイパス管
10.10に、暖房時の冷媒の流れのみ許るす逆止弁1
2.12と、キャピラリーチューブ11,11とを介装
したものである。
However, in the air conditioner and heater shown in FIG. Bypass pipes 10 and 10 are provided, and a check valve 1 is provided in these bypass pipes 10 and 10 to allow only the flow of refrigerant during heating.
2.12 and capillary tubes 11, 11 are interposed.

第1由に示した構成において、前記開閉弁8゜9は、何
れも暖房時運転側、停止側とも閉じたま)にし、冷房時
のみ運転スイッチを投入して室内ユニットB、 Cを運
転する場合、これら室内ユニットB、 Cに設けるサー
モスタットの発停により開閉するごとく或すのである。
In the configuration shown in the first example, when the on-off valves 8゜9 are closed on both the operation side and stop side during heating, and the operation switch is turned on only during cooling to operate indoor units B and C. , these indoor units B and C are opened and closed by turning on and off the thermostats installed in them.

又前記室外コイル3には室外ファン13を、また室内コ
イル6にはそれぞれ室内ファン14を附設するのであっ
て、この室内ファン14は、冷暖房時ともに運転スイッ
チの投入により駆動するごと<シ、運転スイッチにより
室内ユニットを停止する場合は、停止側室内ユニツ)B
、Cの室内ファン14は停止するごとく戊すのである。
Further, an outdoor fan 13 is attached to the outdoor coil 3, and an indoor fan 14 is attached to the indoor coil 6, respectively, and the indoor fan 14 is operated by turning on the operation switch during both cooling and heating. When stopping the indoor unit with a switch, the indoor unit on the stopping side)B
, C's indoor fans 14 are turned off as if they were to stop.

冷房時前記サーモスタットの働らきで前記開閉弁8,9
の開閉を行なう場合、このサーモスタットの発停により
駆動停止又は微速度に制御してもよいし、サーモスタッ
トの発停に関係なく運転スイッチの投入により一定速度
で駆動させてもよい。
During cooling, the on-off valves 8 and 9 are operated by the thermostat.
When opening and closing the thermostat, the drive may be stopped or controlled at a very low speed by turning on and off the thermostat, or it may be driven at a constant speed by turning on the operation switch regardless of whether the thermostat is turned on or off.

又暖房時サーモスタット作用しても、開閉弁8.9は通
電せずに常閉型の場合は閉じたま)の状態に保持される
が、室内ファン14は冷房時と同様停止又は微速度で運
転する。
In addition, even if the thermostat operates during heating, the on-off valve 8.9 is not energized and remains closed (if it is a normally closed type), but the indoor fan 14 is stopped or operated at a very low speed, as in the case of cooling. do.

但しム無駄な放熱をなくシ、また液溜りをより少なくす
るためには前記サーモスタットの発停で前記ファン14
の駆動を停止すればよい。
However, in order to eliminate wasteful heat radiation and to further reduce liquid accumulation, the fan 14 can be turned on and off by turning on and off the thermostat.
All you have to do is stop driving.

又前記キャピラリーチューブ12は、前記分岐回路の距
離や室内ユニットB、 Cの室外ユニットAに対する高
さ又は暖房時暖房負荷に基因する室内コイル6ての凝縮
能力の差などの外乱により生ずる偏流を吸収できる程度
の抵抗を与えるのであって、大体において5 kg/c
J程度にする。
In addition, the capillary tube 12 absorbs drifting current caused by disturbances such as the distance between the branch circuits, the height of the indoor units B and C relative to the outdoor unit A, or the difference in condensing capacity of the indoor coil 6 due to the heating load during heating. Provide as much resistance as possible, approximately 5 kg/c
Make it about J.

尚この抵抗を少さくし過ぎると、前記偏流を吸収できな
いばかりか、運転スイッチの操作又はサーモスタットの
作動により停止している室内ユニットB又はCへの冷媒
流通量が多くなり、ヒートロスが大きくなって好ましく
ないのてあり、また犬き過ぎると液冷媒の溜り量が増大
するのて好ましくないのであって、これら二つの条件を
満足できる適切な値とするのである。
If this resistance is made too small, not only will it not be possible to absorb the drifting flow, but also the amount of refrigerant flowing to the indoor unit B or C that is stopped due to the operation of the operation switch or the operation of the thermostat will increase, resulting in a large heat loss, which is not preferable. If the temperature is too high, the amount of liquid refrigerant that accumulates will increase, which is undesirable.The value should be set to an appropriate value that satisfies these two conditions.

しかして以上の構成において1室のみの冷房運転を行な
う場合冷房を必要とする室内ユニッ)−B又はCの運転
スイッチを投入して行なうのであって、この運転スイッ
チの投入により圧縮機1、室外ファン13及び運転側室
内ユニットB又はCの室内ファン14が駆動し、かつ運
転側室内ユニットB又はCに接続する源側支管25又は
26の開閉弁8又は9が開くのであって、圧縮機1から
吐出される冷媒ガスは実線矢印のごとく四路切換弁2か
ら室外ユニット3に入って凝縮し、前記源側支管25又
は26から室内ユニットB又はCの液管30aに至り、
冷房用膨張機構7を経て室内コイル6に入り、室内空気
を冷却して蒸発し、ガス管30bからガス側支管28又
は29及びガス管27を経て圧縮機1に戻るサイクルを
形成するのである。
However, when performing cooling operation for only one room in the above configuration, the operation switch for the indoor unit (B or C) that requires cooling is turned on. The fan 13 and the indoor fan 14 of the driving indoor unit B or C are driven, and the on-off valve 8 or 9 of the source branch pipe 25 or 26 connected to the driving indoor unit B or C is opened, and the compressor 1 The refrigerant gas discharged from the four-way switching valve 2 enters the outdoor unit 3 as shown by the solid line arrow, condenses, and reaches the liquid pipe 30a of the indoor unit B or C from the source side branch pipe 25 or 26,
The air enters the indoor coil 6 via the cooling expansion mechanism 7, cools and evaporates the indoor air, and returns to the compressor 1 from the gas pipe 30b via the gas side branch pipe 28 or 29 and the gas pipe 27, forming a cycle.

このとき運転停止側室内ユニットC又はBに接続の前記
源側支管26又は25の開閉弁9又は8は閉鎖しており
、液管24を流れる液冷媒が、前記源側支管26又は2
5に流れることはないし、たとえ前記開閉弁8又は9か
ら洩れても、室内ユニツ)B、Cのガス管30bは、低
圧側に接続されているため漏洩した液冷媒が停止中の室
内ユニットB又はCに溜ることはない。
At this time, the on-off valve 9 or 8 of the source branch pipe 26 or 25 connected to the stopped indoor unit C or B is closed, and the liquid refrigerant flowing through the liquid pipe 24 is
5, and even if it leaks from the on-off valve 8 or 9, the gas pipes 30b of indoor units B and C are connected to the low pressure side, so the leaked liquid refrigerant will flow to the stopped indoor unit B. Or it will not accumulate in C.

又2室を同時に冷房する場合、前記開閉弁8゜9が共に
開くのであって、前記した1室冷房の場合と同様である
Further, when cooling two rooms at the same time, both the on-off valves 8 and 9 open, which is the same as in the case of cooling one room described above.

この場合前記開閉弁8,9は、サーモの発停により開閉
されるので、一方の室内ユニットB又はCのサーモが作
動し一方の開閉弁8又は9が閉じれば、1室冷房と同様
閉鎖した源側支管25a又は26bから、冷媒が流れる
ことはない。
In this case, the on-off valves 8 and 9 are opened and closed by turning on and off the thermostat, so if the thermostat of one indoor unit B or C is activated and one on-off valve 8 or 9 is closed, the on-off valves 8 and 9 are closed in the same way as when cooling one room. Refrigerant does not flow from the source side branch pipe 25a or 26b.

次に1室のみの暖房運転を行なう場合前記同様暖房を必
要とする室内ユニットB又はCの運転スイッチを投入し
て行なうのであって、この運転スイッチの投入により四
路切換弁2が第1図において点線のごとく切り換わると
共に、前記冷房時と同様圧縮機1、室外ファン13及び
運転側室内ユニットB又はCの室内ファン14が駆動す
るのである。
Next, when performing heating operation for only one room, the operation switch of indoor unit B or C that requires heating is turned on as described above. At the same time, the compressor 1, the outdoor fan 13, and the indoor fan 14 of the driving-side indoor unit B or C are driven as in the case of cooling.

そしてこの暖房時前記開閉弁8,9は、前記運転スイッ
チの投入如何に拘わらず通電せず閉じたま)にするので
ある。
During heating, the opening/closing valves 8 and 9 remain closed and are not energized, regardless of whether the operation switch is turned on or not.

しかして圧縮機1から吐出される冷媒ガスは、第1図点
線矢印のごとく四路切換弁2、ガス管27を経てガス側
支管28.29に分流し、運転側室内ユニットB又はC
と、停止側室内ユニットC又はBとに流れる。
The refrigerant gas discharged from the compressor 1 passes through the four-way selector valve 2 and the gas pipe 27, as shown by the dotted line arrow in Figure 1, and is diverted to the gas side branch pipes 28 and 29, and is then diverted to the driving side indoor unit B or C.
and flows to the stop-side indoor unit C or B.

そして運転側室内ユニットB又はCに入った冷媒は室内
ファン14の駆動により室内コイル6で完全に凝縮して
源側支管25又は26からバイパス管10に入り、キャ
ピラリーチューブ11て減圧されて液管24に流れ、該
暖房用膨張機構4により適正に減圧されて室外コイル3
に入るのである。
The refrigerant that has entered the indoor unit B or C on the operating side is completely condensed in the indoor coil 6 by the drive of the indoor fan 14, enters the bypass pipe 10 from the source side branch pipe 25 or 26, is depressurized through the capillary tube 11, and is reduced in pressure to the liquid pipe. 24, and is appropriately depressurized by the heating expansion mechanism 4 and then connected to the outdoor coil 3.
It goes into.

之に対し停止側室内ユニットC又はBに入った冷媒は室
内ファン14を停止しているため室内コイル6で完全に
凝縮することなく液ガス混合状態で液管30aに流れ、
源側支管26又は25からバイパス管10に入るが、ガ
ス状冷媒を含むため流量は非常に少ない。
On the other hand, since the indoor fan 14 is stopped, the refrigerant that has entered the stopped indoor unit C or B does not completely condense in the indoor coil 6 and flows into the liquid pipe 30a in a liquid-gas mixed state.
It enters the bypass pipe 10 from the source side branch pipe 26 or 25, but the flow rate is very small because it contains gaseous refrigerant.

而して、この冷媒は前記キャピラリーチューブ11で高
圧と低圧との中間圧力に減圧されて液管24に至り前記
運転側室内ユニツ)B又はCから流れる液冷媒と合流す
るのである。
This refrigerant is then reduced in pressure to an intermediate pressure between the high pressure and the low pressure in the capillary tube 11, reaches the liquid pipe 24, and joins with the liquid refrigerant flowing from the operation-side indoor unit) B or C.

尚係止側室内ユニットC又はBから液管24に合流する
冷媒にはガス冷媒を含むことになるが、この合流する冷
媒量は前記キャピラリーチューブ11を適正に設定する
ことにより、冷凍機の運転に支障を来たさない程度に制
限される。
The refrigerant that flows from the locking indoor unit C or B into the liquid pipe 24 will contain gas refrigerant, and the amount of refrigerant that flows into the liquid pipe 24 can be adjusted by appropriately setting the capillary tube 11 to control the operation of the refrigerator. be limited to an extent that does not interfere with

しかして以上の如く暖房時停止側室内ユニットC又はB
に入った冷媒及び潤滑油は、前記したごとくバイパス管
10を経て圧縮機1に返戻されるので、この室内ユニッ
トC又はBに液溜り並びに油溜りが生ずることはないの
である。
However, as described above, indoor unit C or B on the side that stops during heating
Since the refrigerant and lubricating oil that have entered are returned to the compressor 1 via the bypass pipe 10 as described above, no liquid or oil pools will occur in this indoor unit C or B.

又2室を同時に暖房する場合前記室内ユニットB、 C
の室内ファン14をともに駆動するのであって、室内コ
イル6で完全に凝縮した液冷媒は、ともにバイパス管1
0に入り、キャピラリーチューブ11で減圧されて液管
24に流れ、暖房用膨張機構4で適正に減圧されて室外
コイル3を経て圧縮機1に戻るのであって、この同時暖
房の際、前記液冷媒が前記キャピラリーチューブ11を
それぞれ通り、該チューブ11で所定の抵抗が与えられ
ることになるのである。
In addition, when heating two rooms at the same time, use the indoor units B and C.
Both indoor fans 14 are driven, and the liquid refrigerant completely condensed in the indoor coil 6 is passed through the bypass pipe 1.
0, is depressurized by the capillary tube 11, flows into the liquid pipe 24, is appropriately depressurized by the heating expansion mechanism 4, and returns to the compressor 1 via the outdoor coil 3. During this simultaneous heating, the liquid The refrigerant passes through each of the capillary tubes 11, and each tube 11 provides a predetermined resistance.

従って前記分岐回路に長短があったり、室内ユニットB
、 Cに高低差があったりして、前記分岐回路の配管抵
抗に差があっても、また室内温度に差があって室内コイ
ル6での凝縮能力に差が生じ、圧力低下が異なっても、
前記抵抗の附与により前記抵抗差又は圧力差を吸収でき
、偏流を防止できるのであって、室内ユニットB、 C
ごとに適正な冷媒量を供給できるのである。
Therefore, the branch circuit may have lengths or shorts, or the indoor unit B
, even if there is a difference in the piping resistance of the branch circuit due to a difference in the height of ,
By providing the resistance, the resistance difference or pressure difference can be absorbed and drift can be prevented, and indoor units B and C
This allows the appropriate amount of refrigerant to be supplied for each type of refrigerant.

次にこの二室同時に暖房する場合において、−室の室内
ユニットB又はCの室内サーモスタットが作動した場合
は、この−室の室内ユニットの室内ファン14が停止又
は微速運転となり、前記−室運転の場合と同様の冷媒流
れとなり、停止した室内ユニットB又はCへの液溜りが
防止される。
Next, when heating these two rooms at the same time, if the indoor thermostat of the indoor unit B or C in the - room is activated, the indoor fan 14 of the indoor unit in the - room will stop or operate at a slow speed, and the indoor fan 14 of the indoor unit in the - room will stop or operate at a slow speed. The refrigerant flow is the same as in the case where the refrigerant flows, and liquid accumulation in the stopped indoor unit B or C is prevented.

尚以上説明した実施例は、減圧機構としてキャピラリー
チューブを用いたが、その他の抵抗体でもよい。
In the embodiments described above, a capillary tube was used as the pressure reducing mechanism, but other resistors may be used.

以上の如く本考案によれば、前記各源側支管に、冷房運
転時に開閉し暖房運転時には閉止したま)である開閉弁
をそれぞれ介装する一方、該各間閉弁には、該開閉弁を
側路するバイパス管をそれぞれ設けると共に、該各バイ
パス管にキャピラリーチューブと暖房時の冷媒の流れの
みを許す逆止弁とをそれぞれ介装するようにしたから、
暖房時室内ユニットには停止中でも高圧ガス冷媒が流れ
るので、この停止側室内ユニットを高圧に保持でき、従
って冷媒から油が分離することなく、又ガス側支管に開
閉弁を設けた場合のように運転スイッチの操作又は室内
サーモスタットの作動により停止した停止側室内ユニッ
トの運転開始時にショック音が発生することもないので
あり、しかもコストダウンが行なえるのである。
As described above, according to the present invention, each of the source side branch pipes is provided with an on-off valve that opens and closes during cooling operation and remains closed during heating operation, and each of the on-off valves Bypass pipes are provided to bypass the refrigerant, and each bypass pipe is equipped with a capillary tube and a check valve that only allows the flow of refrigerant during heating.
During heating, high-pressure gas refrigerant flows through the indoor unit even when it is stopped, so the indoor unit on the stopped side can be maintained at a high pressure, and therefore oil does not separate from the refrigerant. No shock noise is generated when the stopped indoor unit that has been stopped due to the operation of the operation switch or the operation of the indoor thermostat starts operating, and furthermore, costs can be reduced.

その上暖房時停止側室内ユニットに流入した冷媒を、キ
ャピラリーチューブを備えたバイパス管を介して減圧さ
せて、液管側へ流出させるようにしたから、源側支管に
設ける開閉弁は、暖房時、運転側、停止側とも閉止状態
に保持でき、従ってこの開閉弁に通電開形の電磁弁を用
いることにより、開閉操作による余分な電力消費をなく
し、節電が行なえると共に停止側室内ユニットに流入し
た冷媒及び油が該室内ユニットに溜り込むこともなくし
得るのである。
In addition, the refrigerant flowing into the indoor unit on the stop side during heating is depressurized via a bypass pipe equipped with a capillary tube and flows out to the liquid pipe side, so the on-off valve provided on the source side branch pipe is used during heating. , both the operation side and the stop side can be held in the closed state. Therefore, by using a energized open type solenoid valve for this on-off valve, it is possible to eliminate excess power consumption due to opening and closing operations, and save power, as well as to reduce the amount of electricity flowing into the indoor unit on the stop side. This prevents the refrigerant and oil from accumulating in the indoor unit.

しかも前記キャピラリーチューブは室内ユニットと室外
ユニットとを連結する前記分岐回路の偏流を吸収しうる
抵抗を保有させることにより、暖房時室内ユニットを同
時に運転する場合、これら室内ユニットの設置位置に高
低差があったり、室外ユニットからの距離が異なり、分
岐回路の長さに長短があったり、或いは曲り角度やその
数が相違するなど、分岐回路の配管抵抗に差があっても
、また暖房負荷により室内ユニットの凝縮能力が異なっ
て圧力低下に差があっても、これら差を吸収でき、冷媒
の偏流を確実に解消できるのである。
Moreover, since the capillary tube has a resistance capable of absorbing the drift of the branch circuit that connects the indoor unit and the outdoor unit, when the indoor units are operated at the same time during heating, there is no difference in height between the installation positions of these indoor units. Even if there are differences in the piping resistance of the branch circuits, such as differences in the distance from the outdoor unit, lengths of the branch circuits, or differences in the number and angle of bending, or the indoor Even if there are differences in pressure drop due to different condensing capacities of the units, these differences can be absorbed and uneven flow of refrigerant can be reliably eliminated.

以上のごとく前記バイパス管により均圧回路を形成でき
ながら、この均圧機能を損なうことなく同時運転時の偏
流防止も行なえるのであって、簡単な構成で、前記した
従来の問題点を悉々く解消できるのである。
As described above, while a pressure equalizing circuit can be formed using the bypass pipe, it is also possible to prevent drifting during simultaneous operation without impairing this pressure equalizing function, and with a simple configuration, all of the above-mentioned conventional problems can be solved. This can be easily resolved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す冷媒配管系統図、であ
る。 A・・・・・・室外ユニット、B、C・・・・・・室内
ユニット、4・・・・・・暖房用膨張機構、6・・・・
・・室内コイル、7・・・・・・冷房用膨張機構、8,
9・・・・・・開閉弁、10バイパス、11・・・・・
・キャピラリーチューブ、12・・・・・・逆止弁、2
4・・・・・・液管、27・・・・・・ガス管、25.
26・・・・・・源側支管、28,29・・曲ガス側支
管、31,32・・・・・・連絡配管。
FIG. 1 is a refrigerant piping system diagram showing an embodiment of the present invention. A...Outdoor unit, B, C...Indoor unit, 4...Heating expansion mechanism, 6...
... Indoor coil, 7... Cooling expansion mechanism, 8,
9...Open/close valve, 10 bypass, 11...
・Capillary tube, 12... Check valve, 2
4...Liquid pipe, 27...Gas pipe, 25.
26... Source side branch pipe, 28, 29... Curved gas side branch pipe, 31, 32... Connection piping.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 室外ユニットAの液管24から複数本の源側支管25,
26を、ガス管27から複数本のガス側支管28,29
をそれぞれ分岐すると共に、前記液管24に暖房用膨張
機構4を介装した一台の室外ユニットAに、前記源側支
管25,26及びガス側支管28,29を介して冷房用
膨張機構7と室内コイル6とを備えた複数台の室内ユニ
ットB、 Cを並列に接続して戒る分離形冷暖房機にお
いて、前記各源側支管25,26に、冷房運転時に開閉
し暖房運転時には閉止したま)である開閉弁8,9をそ
れぞれ介装する一方、該各間閉弁8.9には、該開閉弁
8,9を側路するバイパス管10をそれぞれ設けると共
に、該各バイパス管10にキャピラリーチューブ11と
暖房時の冷媒の流れのみを許す逆止弁12とをそれぞれ
介装したことを特徴とする分離形冷暖房機。
A plurality of source side branch pipes 25 are connected to the liquid pipe 24 of the outdoor unit A,
26 from the gas pipe 27 to a plurality of gas side branch pipes 28, 29.
The cooling expansion mechanism 7 is connected to one outdoor unit A in which the heating expansion mechanism 4 is interposed in the liquid pipe 24 via the source side branch pipes 25, 26 and the gas side branch pipes 28, 29. In a separate type air-conditioning/heating machine in which a plurality of indoor units B and C each having an indoor coil 6 and an indoor coil 6 are connected in parallel, each of the source side branch pipes 25 and 26 is provided with a pipe that opens and closes during cooling operation and closes during heating operation. On the other hand, each of the on-off valves 8 and 9 is provided with a bypass pipe 10 that bypasses the on-off valve 8 and 9, and each bypass pipe 10 A separate type air-conditioning/heating machine characterized in that a capillary tube 11 and a check valve 12 that only allows the flow of refrigerant during heating are interposed in the air conditioner.
JP1977122175U 1977-09-09 1977-09-09 Separate air conditioner/heater Expired JPS60598Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977122175U JPS60598Y2 (en) 1977-09-09 1977-09-09 Separate air conditioner/heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977122175U JPS60598Y2 (en) 1977-09-09 1977-09-09 Separate air conditioner/heater

Publications (2)

Publication Number Publication Date
JPS5447948U JPS5447948U (en) 1979-04-03
JPS60598Y2 true JPS60598Y2 (en) 1985-01-09

Family

ID=29080031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977122175U Expired JPS60598Y2 (en) 1977-09-09 1977-09-09 Separate air conditioner/heater

Country Status (1)

Country Link
JP (1) JPS60598Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148346B2 (en) * 1972-07-31 1976-12-20
JPS5222118U (en) * 1975-08-02 1977-02-16

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921246U (en) * 1972-05-25 1974-02-22
JPS5316997Y2 (en) * 1973-11-02 1978-05-06
JPS5529395Y2 (en) * 1975-09-19 1980-07-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148346B2 (en) * 1972-07-31 1976-12-20
JPS5222118U (en) * 1975-08-02 1977-02-16

Also Published As

Publication number Publication date
JPS5447948U (en) 1979-04-03

Similar Documents

Publication Publication Date Title
CN211739592U (en) Air conditioning system capable of continuously heating
CN111256290B (en) Heat pump air conditioner
CN111076446A (en) Heat pump air conditioning system and control method thereof
KR100186526B1 (en) Defrosting apparatus of heat pump
CN113108497B (en) Heat pump air conditioning system and control method thereof
CN102721149A (en) Air conditioner and control method thereof
CN114777214A (en) Heat pump air conditioning system and control method thereof
CN113108498B (en) Heat pump air conditioning system and control method thereof
JPS6155018B2 (en)
KR102491228B1 (en) Air Conditioning system
JPS60598Y2 (en) Separate air conditioner/heater
CN110595094B (en) Air conditioning system
CN111578450A (en) Air conditioning system and defrosting method thereof
CN112833480A (en) Air conditioning system
CN111219803A (en) Multi-split air conditioner and defrosting method thereof
CN214501455U (en) Air conditioner
CN112413947B (en) Defrosting assembly, air conditioning system and control method of air conditioning system
CN211372658U (en) Air conditioning system
JPS583015Y2 (en) Separate type air conditioner/heater
JP2001330347A (en) Air-conditioner
JPS592832B2 (en) Heat recovery air conditioner
JPS5922437Y2 (en) Air conditioning/heating water heater
JPH0510191Y2 (en)
JPH03113249A (en) Air-conditioning snow melting device
JPS5825233Y2 (en) air conditioner