JP2533585B2 - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JP2533585B2
JP2533585B2 JP62297502A JP29750287A JP2533585B2 JP 2533585 B2 JP2533585 B2 JP 2533585B2 JP 62297502 A JP62297502 A JP 62297502A JP 29750287 A JP29750287 A JP 29750287A JP 2533585 B2 JP2533585 B2 JP 2533585B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heating
solenoid valve
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62297502A
Other languages
Japanese (ja)
Other versions
JPH01139964A (en
Inventor
淳一 長谷川
希雄 須藤
和利 太田
博幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62297502A priority Critical patent/JP2533585B2/en
Publication of JPH01139964A publication Critical patent/JPH01139964A/en
Application granted granted Critical
Publication of JP2533585B2 publication Critical patent/JP2533585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多室形空気調和機に係り、特に、暖房運転始
動時の圧縮機摺動部への潤滑を適正にするのに好適な、
多室形空気調和機に関するものである。
Description: TECHNICAL FIELD The present invention relates to a multi-room air conditioner, and in particular, it is suitable for proper lubrication of a sliding part of a compressor at the start of heating operation.
The present invention relates to a multi-room air conditioner.

〔従来の技術〕[Conventional technology]

従来の装置は、例えば、特開昭61−83833号公報記載
のように、圧縮機の回転数が可変なインバータ式の冷凍
サイクルにおいて、潤滑油が不足するような低速回転が
続いたときは、圧縮機を高速回転させ、冷媒の流れを良
くするよう絞り機構を調節するような構成となってい
た。
The conventional device, for example, as described in JP-A-61-83833, in the inverter type refrigeration cycle in which the number of revolutions of the compressor is variable, when the low speed rotation such that the lubricating oil is insufficient continues, The compressor was rotated at a high speed, and the throttle mechanism was adjusted to improve the flow of the refrigerant.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、圧縮機の低速運転時の潤滑油不足に
ついての技術は示されているが、複数台の室内ユニット
を有する多室形空気調和機が少台数で運転開始するとき
についての配慮がなされておらず、この始動時における
余剰冷媒が圧縮機内へ戻ることによる圧縮機内潤滑油の
稀薄化と、吐出圧力上昇にともなう潤滑油の粘度低下と
による圧縮機摺動部の油膜厚さの低下の問題が残されて
いた。
Although the above-mentioned conventional technique shows a technique for a shortage of lubricating oil during low-speed operation of the compressor, consideration should be given to starting a small number of multi-room air conditioners having a plurality of indoor units. Not done, the excess refrigerant returned to the compressor at the time of start-up, the lubricating oil in the compressor was diluted, and the viscosity of the lubricating oil decreased with the increase of discharge pressure, and the oil film thickness of the sliding part of the compressor decreased. Problem was left.

本発明は、上記従来技術の問題点を解決するためにな
されたもので、吐出圧力が高圧になりやすい室内ユニッ
ト少台数運転開始時に、圧縮機への余剰冷媒戻りによる
潤滑油の稀薄化を迎え、圧縮機摺動部の油膜厚さを適正
に保ち、圧縮機の信頼性を向上しうる多室形空気調和機
を提供することを、その目的とするものである。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and at the time of starting the operation of a small number of indoor units where the discharge pressure tends to be high pressure, the lubricating oil is diluted by the excess refrigerant returning to the compressor. It is an object of the present invention to provide a multi-room air conditioner capable of maintaining an appropriate oil film thickness on a sliding portion of a compressor and improving the reliability of the compressor.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明に係る多室形空気
調和機の構成は、一台の室外ユニットに複数台の室内ユ
ニットを備え、冷、暖房運転切り換え可能に冷媒配管系
を接続してなる多室形空気調和機において、上記複数台
の各室内ユニットの出入口の冷媒配管に電磁弁を設ける
と共に、暖房運転であること、他の室内ユニットが停止
中であること、圧縮機の温度が低く冷始動であることの
各信号を受ける信号検出手段を設け、暖房運転で冷始動
するとき、停止中の室内ユニットの暖房時入口電磁弁を
閉としたまま、当該停止中の室内ユニットの冷房時入口
電磁弁を一定時間開き、前記停止中の室内ユニットに、
運転中の室内ユニットの熱交換器を経た冷媒を冷房用絞
り機構を介して流入させるようにした制御手段を設けた
ものである。
In order to achieve the above object, the configuration of the multi-room air conditioner according to the present invention is provided with a plurality of indoor units in one outdoor unit, and connecting a refrigerant piping system to enable switching between cooling and heating operations. In a multi-room air conditioner consisting of, a solenoid valve is provided in the refrigerant pipe at the entrance and exit of each of the plurality of indoor units, and it is in heating operation, other indoor units are stopped, and the temperature of the compressor is A signal detecting means for receiving each low cold start signal is provided, and when the cold start is performed in the heating operation, the indoor unit that is stopped is cooled while the inlet solenoid valve for heating the indoor unit that is stopped is closed. Open the time inlet solenoid valve for a certain period of time, and in the stopped indoor unit,
The control means is provided so that the refrigerant passing through the heat exchanger of the operating indoor unit is caused to flow in through the cooling throttle mechanism.

〔作用〕[Action]

本発明の技術が必要とされるのは、暖房運転時に限っ
ているが、その理由は、冷房運転時には冷媒が必ず凝縮
器を通り、また通常、その容量は余分な冷媒を溜めるに
足りる容量を有しているからである。
The technique of the present invention is required only during the heating operation, because the refrigerant always passes through the condenser during the cooling operation, and the capacity is usually sufficient to store excess refrigerant. Because it has.

したがって、本発明では、室内ユニットからの暖房運
転指令の信号を受け、かつ、冷媒の多量吐出が行われる
のは、圧縮機が長時間停止していて冷媒が圧縮機に溜り
込んでいるような状態のときである。したがって、運転
停止後数分以内に運転するような、すなわち圧縮機の温
度が高いような通常温始動と呼ばれるときには本発明の
技術は不要である。
Therefore, in the present invention, the signal of the heating operation command from the indoor unit is received, and the large amount of refrigerant is discharged because the compressor is stopped for a long time and the refrigerant is accumulated in the compressor. It is in the state. Therefore, the technique of the present invention is not necessary when the operation is performed within a few minutes after the operation is stopped, that is, when the temperature of the compressor is high, which is called a normal warm start.

そこで、圧縮機が低温であるときのみを感知する手段
としては、圧縮機本体にサーミスタなどの検知手段を設
け、その信号が一定の温度以下であることを示す値のと
きだけ本発明の動作を行う。また、停止中の室内ユニッ
トがどのユニットかは、室内ユニットからの運転指示信
号のないユニットを停止ユニットと判別した上で、停止
ユニットの冷房入口側電磁弁のみを開くようになってい
る。したがって、本発明の制御手段は暖房運転であるこ
と、他の室内ユニットが停止中であること、圧縮機の温
度が低く冷始動であることの3つの信号が確認されたと
き以外は作動せず、誤動作することがない。
Therefore, as a means for detecting only when the compressor is at a low temperature, a detecting means such as a thermistor is provided in the compressor body, and the operation of the present invention is performed only when the signal has a value indicating that the temperature is below a certain temperature. To do. Further, which unit is the stopped indoor unit is determined such that a unit having no operation instruction signal from the indoor unit is the stopped unit, and only the cooling inlet side solenoid valve of the stopped unit is opened. Therefore, the control means of the present invention does not operate except when the three signals that the heating operation, the other indoor units are stopped, and the compressor temperature is low and cold start are confirmed. , Does not malfunction.

〔実施例〕 以下、本発明の一実施例を第1図ないし第3図を参照
して説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は本発明の一実施例に係る多室形空気調和機の
冷凍サイクル系統図、第2図は、第1図の多室形空気調
和機の制御系統図、第3図は、その制御動作の手順を示
すフローチャート図である。
FIG. 1 is a refrigeration cycle system diagram of a multi-room air conditioner according to an embodiment of the present invention, FIG. 2 is a control system diagram of the multi-room air conditioner of FIG. 1, and FIG. It is a flowchart figure which shows the procedure of control operation.

第1図において、1は圧縮機であり、一定回転数のも
のであっても、回転数が変化しうるインバータ方式のも
のであってもよい。2は四路切換弁であり、この四路切
換弁2は、圧縮機1から吐出される高温高圧のガス冷媒
を、冷房時は室外ユニット側の室外側熱交換機3へ、暖
房時は室内ユニット側の室内側熱交換機9,10へ選択して
流すための流路切換えを行う。
In FIG. 1, reference numeral 1 denotes a compressor, which may be of a constant rotation speed or an inverter type of which the rotation speed can be changed. Reference numeral 2 denotes a four-way switching valve. The four-way switching valve 2 transfers the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 to the outdoor heat exchanger 3 on the outdoor unit side during cooling, and the indoor unit during heating. The flow path is switched to selectively flow to the indoor heat exchangers 9 and 10 on the side.

4は暖房用絞り機構、5,6は冷房時入口電磁弁、7,8は
冷房用絞り機構、9,10は室内側熱交換器、11,12は暖房
時入口電磁弁である。冷房時入口電磁弁5,6および暖房
時入口電磁弁11,12は、室内側熱交換器9,10を有する各
室内ユニットの出入口の冷房配管に配設されている。
4 is a throttle mechanism for heating, 5 and 6 are solenoid valves for cooling, 7, 8 are throttle mechanisms for cooling, 9 and 10 are indoor heat exchangers, and 11 and 12 are solenoid valves for heating. The cooling inlet solenoid valves 5 and 6 and the heating inlet solenoid valves 11 and 12 are arranged in the cooling pipes at the entrance and exit of each indoor unit having the indoor heat exchangers 9 and 10.

18は暖房用絞り機構4と並列に設置された逆止弁、1
9,20は、冷房用絞り機構7,8に並列に設置され逆止弁
で、いずれも矢印の方向にのみ冷媒を流し、矢印方向に
冷媒が流れるとき前述の各絞り機構をバイパスする機能
を持つ。
18 is a check valve installed in parallel with the heating throttle mechanism 4, 1
Reference numerals 9 and 20 are check valves installed in parallel with the cooling throttle mechanisms 7 and 8, both of which allow the refrigerant to flow only in the direction of the arrow and have a function of bypassing each of the above throttle mechanisms when the refrigerant flows in the direction of the arrow. To have.

16,17は、暖房運転時、運転停止している室内ユニッ
トの出入口電磁弁が閉じられているとき、暖房時入口側
電磁弁5,6から洩れて流入し溜り込んだ冷媒を圧縮機吸
込側配管14に戻すためのキャピラリである。
Refrigerators 16 and 17 are the refrigerant suction side of the refrigerant that leaks and flows from the inlet side solenoid valves 5 and 6 during heating when the inlet and outlet solenoid valves of the indoor unit that is stopped during heating are closed. A capillary for returning to the pipe 14.

13は、暖房運転時吐出側となり高圧となる配管を示
す。21は、冷媒が液状で圧縮機へ戻ることを防止する気
液分離的機能を持つアキュムレータである。
Reference numeral 13 indicates a pipe that is on the discharge side during heating operation and has a high pressure. Reference numeral 21 is an accumulator having a gas-liquid separation function that prevents the refrigerant from returning to the compressor in a liquid state.

このような構成の冷凍サイクルにおける、一般的な冷
暖房運転の作用を説明する。
The operation of general cooling and heating operation in the refrigeration cycle having such a configuration will be described.

冷房運転時は、圧縮機1から吐出される高温高圧のガ
ス冷媒は、四路切換弁2を経て室外側熱交換器(凝縮器
として作用)へ流れ室外空気に放熱し凝縮されて高圧液
状冷媒となる。この液状冷媒は逆止弁18を経て、冷房時
入口電磁弁5または6を開弁することにより流路が選択
され、例えば冷房時入口電磁弁5を開弁したときは、冷
房用絞り機構7を経て減圧され室内側熱交換器9(蒸発
器として作用)を通り室内空気と熱交換してガス状冷媒
となり、選択開弁されている暖房時入口電磁弁(冷房時
出口電磁弁)11を経て配管13から四路切換弁2を通り、
圧縮機吸込側配管14、アキュムレータ21を経て圧縮機1
へ戻り、以下同じサイクルを繰返す周知の冷房運転を行
う。
During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the four-way switching valve 2 to the outdoor heat exchanger (acting as a condenser), radiates heat to the outdoor air and is condensed to be a high-pressure liquid refrigerant. Becomes This liquid refrigerant passes through the check valve 18 and the flow passage is selected by opening the cooling inlet solenoid valve 5 or 6, and for example, when the cooling inlet solenoid valve 5 is opened, the cooling throttle mechanism 7 is opened. After being decompressed, it passes through the indoor heat exchanger 9 (acting as an evaporator) and exchanges heat with the indoor air to become a gaseous refrigerant, and the heating inlet solenoid valve (cooling outlet solenoid valve) 11 that is selectively opened. Through the pipe 13 and the four-way selector valve 2,
Compressor 1 through the suction side pipe 14 and the accumulator 21
Then, the well-known cooling operation is repeated by repeating the same cycle.

冷房時入口電磁弁6および出口電磁弁12を選択開弁し
た場合は、冷媒は冷房用絞り機構8を経て室内側熱交換
機10を通り出口電磁弁(暖房時入口電磁弁)12を経る流
れとなる。
When the cooling inlet solenoid valve 6 and the outlet solenoid valve 12 are selectively opened, the refrigerant flows through the cooling throttle mechanism 8, the indoor heat exchanger 10 and the outlet solenoid valve (heating inlet solenoid valve) 12. Become.

なお、各電磁弁5,6,11,12の全てを開き、室内側熱交
換器9,10の両方に同時に冷媒を流すことも可能であるこ
とは言うまでもない。
Needless to say, it is possible to open all of the solenoid valves 5, 6, 11, 12 and allow the refrigerant to flow through both the indoor heat exchangers 9, 10 at the same time.

一般に冷房での室内ユニットを1台のみ運転するよう
な少台数運転時にも、冷媒は室内ユニット全台数を同時
に運転するに足りる冷媒量を封入してあるため、余剰冷
媒が発生するが、通常凝縮器は充分な容量を持っている
ため余剰冷媒を液冷媒としてその中に溜め込むことがで
き、なお不足する場合は、受液器であるレシーバタンク
22を設け、ここに液状冷媒を溜めることによってその量
を調節することができる。
Generally, even when operating only a small number of indoor units in a cooling system, the refrigerant is filled with a sufficient amount of refrigerant to operate all the indoor units at the same time. Since the container has a sufficient capacity, excess refrigerant can be stored in it as liquid refrigerant, and if there is still a shortage, receiver tank that is the receiver
22 is provided and the amount of the liquid refrigerant can be adjusted by storing the liquid refrigerant therein.

一方、暖房運転時には、圧縮機1から吐出された高温
高圧のガス状冷媒は、四路切換弁2を暖房側に切り換え
ることにより、配管13を経て暖房時入口電磁弁11,12に
至る。暖房時入口電磁弁11を選択開弁したときは、冷房
時入口電磁弁(暖房時出口電磁弁)5を開弁し、室内側
熱交換器(凝縮器として作用)9側に冷媒を流し、ここ
で室内空気に放熱凝縮して液状冷媒となる。液状冷媒は
逆止弁19、電磁弁5を通り暖房用絞り機構4を経て減圧
され、室外側熱交換器(蒸発器として作用)3にて外気
と熱交換して蒸発し、低温低圧のガス状冷媒となり、四
路切換弁2を経て圧縮機吸込側配管14、アキュムレータ
21を通って圧縮器1に戻り、以下同じサイクルを繰り返
す周知のヒートポンプ式暖房運転を行う。
On the other hand, during the heating operation, the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 reaches the heating inlet solenoid valves 11 and 12 via the pipe 13 by switching the four-way switching valve 2 to the heating side. When the heating inlet solenoid valve 11 is selectively opened, the cooling inlet solenoid valve (heating outlet solenoid valve) 5 is opened, and the refrigerant is allowed to flow to the indoor heat exchanger (acting as a condenser) 9 side. At this point, the heat is condensed into the room air to become a liquid refrigerant. The liquid refrigerant passes through the check valve 19 and the solenoid valve 5 and is decompressed through the heating throttling mechanism 4. The outdoor heat exchanger (acting as an evaporator) 3 exchanges heat with the outside air to evaporate, and the low temperature low pressure gas. Becomes refrigerant and passes through the four-way switching valve 2 and the compressor suction side pipe 14, accumulator
It returns to the compressor 1 through 21 and performs the well-known heat pump heating operation in which the same cycle is repeated thereafter.

暖房時入口電磁弁12を選択開弁したときは、その出口
側に当る冷房時入口電磁弁(暖房時出口電磁弁)6を開
弁させ、室内側熱交換器10、逆止弁20、電磁弁6を通る
同様の冷媒循環を行い暖房運転を行う。もちろん、全部
の室内側熱交換器に冷媒を流す全室同時運転も可能であ
る。
When the heating inlet solenoid valve 12 is selectively opened, the cooling inlet solenoid valve (heating outlet solenoid valve) 6 corresponding to the outlet side is opened, and the indoor heat exchanger 10, the check valve 20, the solenoid The same refrigerant circulation through the valve 6 is performed to perform the heating operation. Of course, it is also possible to perform simultaneous operation in all rooms, in which the refrigerant flows through all the indoor heat exchangers.

このような一般的な暖房運転で、室内ユニットを少台
数運転する場合、冷房運転と同様に余剰冷媒が生じる
が、圧縮機1から出た冷媒は室内側熱交換器に到るまで
は高温高圧のガス状冷媒であり、圧縮器−室内側熱交換
器間に例え容器を置いても、ガス状で比体積の大きい冷
媒であるから余剰冷媒を溜めることは不可能である。室
内側熱交換器の容量は全台数運転時の1/2から数分の1
になるため、充分な放熱が行われず吐出圧力が高くな
り、始動時に一挙に多量の冷媒とその中に溶解している
潤滑油が持出され、圧縮機内の油面が一時的に低下し、
機械的にロックするに到る。また、吐出圧力が高いとい
うことは同時に冷媒や潤滑油の温度も高くなり、潤滑油
の粘度が減少し、圧縮機摺動部の油膜厚さを保つことが
できなくなる。また、冷媒が余剰で運転されるため、冷
媒が冷凍サイクル内に循環して戻ってくる数分後には圧
縮機へ戻る冷媒が過多となり、潤滑油が冷媒で稀釈さ
れ、同時に潤滑上不都合を生ずる。
In such a general heating operation, when a small number of indoor units are operated, excess refrigerant is generated as in the cooling operation, but the refrigerant discharged from the compressor 1 reaches high temperature and high pressure until it reaches the indoor heat exchanger. Even if a container is placed between the compressor and the indoor-side heat exchanger, it is a gaseous refrigerant having a large specific volume, so that it is impossible to store excess refrigerant. The capacity of the indoor heat exchanger is 1/2 to a fraction of that when all units are in operation
Therefore, sufficient heat is not released and the discharge pressure becomes high, and at the time of start-up, a large amount of refrigerant and lubricating oil dissolved therein are taken out, and the oil level in the compressor temporarily drops,
It comes to mechanical locking. Further, the fact that the discharge pressure is high also causes the temperatures of the refrigerant and the lubricating oil to rise, the viscosity of the lubricating oil decreases, and the oil film thickness of the compressor sliding portion cannot be maintained. Further, since the refrigerant is operated in excess, the refrigerant returning to the compressor becomes excessive after a few minutes when the refrigerant circulates in the refrigeration cycle and returns, and the lubricating oil is diluted with the refrigerant, and at the same time causes inconvenience in lubrication. .

本発明は、このような問題を解決するために開発され
たもので、その一実施例を、第1図に合せて第2、3図
を参照して説明する。
The present invention was developed to solve such a problem, and one embodiment thereof will be described with reference to FIGS.

第2図において、23は圧縮機1の本体温度を検知する
サーミスタ、24は第1の室内ユニット9′、第2の室内
ユニット10′からの運転信号、冷、暖房信号、及び前記
サーミスタ23の信号を受け、四路切換弁4及び各電磁弁
のいずれを開閉するかを判断し制御する制御部、25は制
御部24の判断、指令に従って各電磁弁の開閉を行う電磁
弁制御部である。制御部24、電磁弁制御部25は、マイク
ロコンピューターなどの演算制御手段からなり、暖房運
転であること、少台数運転であること、圧縮機の温度が
低く冷始動であることの3つの信号を受ける信号検出手
段としての機能と、以下に説明する制御を行う制御手段
としての機能を有する。
In FIG. 2, reference numeral 23 denotes a thermistor for detecting the temperature of the main body of the compressor 1, 24 denotes operation signals from the first indoor unit 9'and the second indoor unit 10 ', cooling and heating signals, and the thermistor 23. A control unit that receives a signal and determines and controls which of the four-way switching valve 4 and each solenoid valve is to be opened and closed, and 25 is a solenoid valve control unit that opens and closes each solenoid valve according to the determination and commands of the control unit 24. . The control unit 24 and the solenoid valve control unit 25 are composed of arithmetic control means such as a microcomputer, and output three signals of heating operation, small number operation, and cold start of the compressor. It has a function as a signal detecting means for receiving and a function as a controlling means for performing the control described below.

その動作を第3図に示すフローチャートの手順(ステ
ップNO.)に従って説明する。
The operation will be described according to the procedure (step NO.) Of the flowchart shown in FIG.

運転が開始されると、制御部24は、第2図に示すよう
に第1、2の室内ユニット9′,10′、及びサーミスタ2
3の信号を取り込む。
When the operation is started, the control unit 24 controls the first and second indoor units 9'and 10 'and the thermistor 2 as shown in FIG.
Capture the signal of 3.

運転が暖房運転であるか否かを判断する(ステップ
)。暖房運転であれば四路切換弁2に通電し暖房側に
切り換える。
It is determined whether the operation is heating operation (step). During heating operation, the four-way switching valve 2 is energized to switch to the heating side.

圧縮機1の温度が所定温度(例えば50℃)以下か否か
を判断(ステップ)し、所定温度以下であれば冷始動
であるから本発明の動作が必要と判断し、電磁弁制御部
25に信号を送る。
It is judged whether or not the temperature of the compressor 1 is below a predetermined temperature (for example, 50 ° C.) (step).
Signal to 25.

今、本実施例では、室内側熱交換器9が運転する例を
説明する。
Now, in the present embodiment, an example in which the indoor heat exchanger 9 operates will be described.

そこで、運転している室内ユニットは室内側熱交換器
9を有する第1の室内ユニット9′であることを判断
(ステップ)し、運転開始から所定時間内(ステップ
)に、そこへ冷媒を流す暖房時入口電磁弁11と冷房時
入口電磁弁(暖房時出口電磁弁)5を同時に開弁させる
(ステップ)。さらに停止している室内ユニットは室
内側熱交換器10を有する第2の室内ユニット10′である
ことを判別(ステップ)して、その冷房時入口電磁弁
6を開弁させる。暖房時入口電磁弁12は閉じたままとす
る(ステップ)。
Therefore, it is judged that the operating indoor unit is the first indoor unit 9'having the indoor heat exchanger 9 (step), and the refrigerant is allowed to flow therethrough within a predetermined time (step) from the start of operation. The heating inlet solenoid valve 11 and the cooling inlet solenoid valve (heating outlet solenoid valve) 5 are simultaneously opened (step). Further, it is determined (step) that the stopped indoor unit is the second indoor unit 10 'having the indoor heat exchanger 10, and the cooling inlet solenoid valve 6 is opened. The inlet solenoid valve 12 is kept closed during heating (step).

この結果、冷媒は、暖房時入口電磁弁11→室内側熱交
換器9→逆止弁19→冷房時入口電磁弁(暖房時出口電磁
弁)5の順序で流れ、冷房時入口電磁弁6が開いている
ので、暖房用絞り機構4より抵抗の少ない室内側熱交換
器10側の冷房用絞り機構8を経て室内側熱交換器10に流
れる。室内側熱交換器10は停止しているので、一般に周
囲温度よりも低く、さらに、キャピラリ17によって圧縮
機低圧側に引かれているので、当該室内側熱交換機10内
部は低圧になっており、また冷房用絞り機構20から流入
される冷媒は、既に室内側熱交換器9で凝縮され液状と
なっているものであるから、前記室内側熱交換器10には
充分な量の余剰冷媒を溜めることができる。そこで、全
体の循環冷媒量が減少し、加えて室内側熱交換器10でも
若干放熱されるので吐出圧力も高くならない。
As a result, the refrigerant flows in the order of the heating inlet solenoid valve 11 → the indoor heat exchanger 9 → the check valve 19 → the cooling inlet solenoid valve (heating outlet solenoid valve) 5, and the cooling inlet solenoid valve 6 Since it is open, it flows to the indoor heat exchanger 10 through the cooling throttle mechanism 8 on the indoor heat exchanger 10 side, which has less resistance than the heating throttle mechanism 4. Since the indoor heat exchanger 10 is stopped, it is generally lower than the ambient temperature, and further, because it is pulled to the compressor low pressure side by the capillary 17, the inside of the indoor heat exchanger 10 is at a low pressure, Further, since the refrigerant flowing from the cooling throttle mechanism 20 is already condensed in the indoor heat exchanger 9 and is in a liquid state, a sufficient amount of excess refrigerant is stored in the indoor heat exchanger 10. be able to. Therefore, the total amount of circulating refrigerant decreases, and in addition, the indoor heat exchanger 10 also slightly radiates heat, so the discharge pressure does not increase.

運転開始後一定時間(数分)経過する(ステップ)
と、冷凍サイクルが安定するので、停止室内ユニットの
冷房時入口電磁弁6を閉じる(ステップ)。冷媒はキ
ャピラリ17から徐々に圧縮機低圧側へ戻る。
A certain time (several minutes) has passed since the start of operation (step)
Then, since the refrigeration cycle is stabilized, the cooling inlet solenoid valve 6 of the stopped indoor unit is closed (step). The refrigerant gradually returns from the capillary 17 to the low pressure side of the compressor.

なお、圧縮機温度が高いとき、サーモスタットによる
短時間のOFFの後の再始動のときは上記の動作は行われ
ず、運転している室内ユニットの出入口電磁弁のみを開
く通常の運転が行われる。
It should be noted that when the compressor temperature is high, the above operation is not performed when restarting after being turned off for a short time by the thermostat, and normal operation in which only the inlet / outlet solenoid valve of the operating indoor unit is opened is performed.

本実施例によれば、暖房運転であって、圧縮機が冷え
ており、冷媒が圧縮機に溜り込んでいる状態から少台数
運転を行い、吐出圧力が高くなるような運転開始時に吐
出圧力の上昇を押え、レシーバタンクなどの特別な容器
を設けずに循環冷媒量を少なくするように、停止してい
る室内ユニットの室内側熱交換器に余剰冷媒を一時的に
溜めることができる。したがって、運転開始時の潤滑油
の一挙持出しを防止し、圧縮機内摺動部の油膜厚さを保
つことができ、さらに冷媒一巡時の圧縮機への余剰冷媒
戻りによる油の稀薄化を抑えることもでき、圧縮器信頼
性向上に大きな効果をもたらす。
According to the present embodiment, in the heating operation, the compressor is cold, the small number of units operation is performed from the state where the refrigerant is accumulated in the compressor, and the discharge pressure of the discharge pressure becomes high at the start of the operation. The surplus refrigerant can be temporarily stored in the indoor heat exchanger of the stopped indoor unit so as to suppress the rise and reduce the circulating refrigerant amount without providing a special container such as a receiver tank. Therefore, it is possible to prevent all of the lubricating oil from being taken out at the start of operation, to maintain the oil film thickness of the sliding portion inside the compressor, and to suppress the oil dilution due to the excess refrigerant returning to the compressor during one cycle of the refrigerant. It also has a great effect on improving the reliability of the compressor.

また、コスト面でも、冷凍サイクル部品の追加がほと
んどないので、その効果も大きい。
Also, in terms of cost, there is almost no addition of refrigeration cycle parts, so that the effect is great.

なお、前述の実施例では、室内ユニットが2台で、そ
の1台が稼働する例を説明したが、室内ユニットが3台
以上あって少台数運転する場合にも同様に動作すればよ
いことは明らかである。
In addition, in the above-described embodiment, the example in which the number of indoor units is two and one of the indoor units is operated has been described, but the same operation may be performed when a small number of indoor units are operated. it is obvious.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、吐出圧力が高圧
になりやすい室内ユニット少台数運転開始時に、圧縮機
への余剰冷媒戻りによる潤滑油の稀薄化を抑え、圧縮機
摺動部の油膜厚さを適正に保ち、圧縮機の信頼性を向上
しうる多室形空気調和機を提供することができる。
As described above, according to the present invention, at the time of starting the operation of a small number of indoor units in which the discharge pressure is likely to be high, it is possible to suppress the dilution of the lubricating oil due to the return of the excess refrigerant to the compressor, and to reduce the oil film of the compressor sliding portion. It is possible to provide a multi-room air conditioner that can maintain the thickness appropriately and improve the reliability of the compressor.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る多室形空気調和機の
冷凍サイクル系統図、第2図は、第1図の多室形空気調
和機の制御系統図、第3図は、その制御動作の手順を示
すフローチャート図である。 1……圧縮機、2……四路切換弁、3……室外側熱交換
器、4……暖房用絞り機構、5,6……冷房時入口電磁
弁、7,8……冷房用絞り機構、9,10……室内側熱交換
器、9′……第1の室内ユニット、10′……第2の室内
ユニット、11,12……暖房時入口電磁弁、13……配管、1
4……圧縮機吸込側配管、16,17……キャピラリ、18,19,
20……逆止弁、23……サーミスタ、24……制御部、25…
…電磁弁制御部。
FIG. 1 is a refrigeration cycle system diagram of a multi-room air conditioner according to an embodiment of the present invention, FIG. 2 is a control system diagram of the multi-room air conditioner of FIG. 1, and FIG. It is a flowchart figure which shows the procedure of the control operation. 1 ... Compressor, 2 ... four-way switching valve, 3 ... outdoor heat exchanger, 4 ... heating throttle mechanism, 5,6 ... cooling inlet solenoid valve, 7,8 ... cooling throttle Mechanism, 9,10 ... Indoor heat exchanger, 9 '... First indoor unit, 10' ... Second indoor unit, 11,12 ... Heating inlet solenoid valve, 13 ... Piping, 1
4 …… Compressor suction side piping, 16,17 …… Capillary, 18,19,
20 …… Check valve, 23 …… Thermistor, 24 …… Control part, 25…
… Solenoid valve controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 博幸 栃木県下都賀郡大平町大字富田800 株 式会社日立製作所栃木工場内 (56)参考文献 特開 昭63−233259(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Nakamura Inventor Hiroyuki Nakamura 800 Oita, Ohira-cho, Shimotsuga-gun, Tochigi Ltd. Tochigi Plant, Hitachi, Ltd. (56) Reference JP-A-63-233259 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一台の室外ユニットに複数台の室内ユニッ
トを備え、冷、暖房運転切り換え可能に冷媒配管系を接
続してなる多室形空気調和機において、上記複数台の各
室内ユニットの出入口の冷媒配管に電磁弁を設けると共
に、暖房運転であること、他の室内ユニットが停止中で
あること、圧縮機の温度が低く冷始動であることの各信
号を受ける信号検出手段を設け、暖房運転で冷始動する
とき、停止中の室内ユニットの暖房時入口電磁弁を閉と
したまま、当該停止中の室内ユニットの冷房時入口電磁
弁を一定時間開き、前記停止中の室内ユニットに、運転
中の室内ユニットの熱交換器を経た冷媒を冷房用絞り機
構を介して流入させるようにした制御手段を設けたこと
を特徴とする多室形空気調和機。
1. A multi-room air conditioner comprising a plurality of indoor units in one outdoor unit, and a refrigerant piping system connected to enable switching between cooling and heating operations. An electromagnetic valve is provided in the refrigerant pipe at the entrance and exit, and signal detection means is provided for receiving signals that the heating operation is being performed, that the other indoor units are stopped, and that the temperature of the compressor is low and cold starting is performed. When the engine is cold-started in the heating operation, while keeping the heating inlet solenoid valve of the stopped indoor unit closed, the cooling inlet solenoid valve of the stopped indoor unit is opened for a certain period of time to the stopped indoor unit, A multi-room air conditioner comprising a control means for causing a refrigerant that has passed through a heat exchanger of an indoor unit that is operating to flow in through a cooling throttling mechanism.
JP62297502A 1987-11-27 1987-11-27 Multi-room air conditioner Expired - Lifetime JP2533585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62297502A JP2533585B2 (en) 1987-11-27 1987-11-27 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62297502A JP2533585B2 (en) 1987-11-27 1987-11-27 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH01139964A JPH01139964A (en) 1989-06-01
JP2533585B2 true JP2533585B2 (en) 1996-09-11

Family

ID=17847343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62297502A Expired - Lifetime JP2533585B2 (en) 1987-11-27 1987-11-27 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2533585B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172946A (en) 2016-03-25 2017-09-28 三菱重工サーマルシステムズ株式会社 Air conditioning operation control device, air conditioning system, and air conditioning operation control method and program

Also Published As

Publication number Publication date
JPH01139964A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
JPH0232546B2 (en)
US20100139312A1 (en) Refrigeration apparatus
US4516408A (en) Refrigeration system for refrigerant heating type air conditioning apparatus
EP3835686A1 (en) Air-conditioning system
JP3467837B2 (en) Air conditioner
JPH0796973B2 (en) Refrigerating apparatus with economizer and operation control method thereof
JP2533585B2 (en) Multi-room air conditioner
JPH04324069A (en) Refrigerating plant
CN112880228A (en) Air conditioner liquid return prevention device and method for preventing air conditioner liquid return
CN111578450A (en) Air conditioning system and defrosting method thereof
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JP2504416B2 (en) Refrigeration cycle
CN219037061U (en) Air conditioning system
JPH08219574A (en) Air conditioning apparatus
JP2006170457A (en) Air conditioner and its control method
JPH05240522A (en) Air conditioning apparatus
JPS6346350B2 (en)
JPS63286676A (en) Air conditioner
JPS592832B2 (en) Heat recovery air conditioner
CN114963415A (en) Air conditioning system and control method thereof
JPS60245967A (en) Air conditioner
JP2024043621A (en) Heat source unit and refrigeration device
JPS60598Y2 (en) Separate air conditioner/heater
CN117847706A (en) Air conditioner
JPH08320161A (en) Air conditioner