JPS63286676A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS63286676A
JPS63286676A JP12075987A JP12075987A JPS63286676A JP S63286676 A JPS63286676 A JP S63286676A JP 12075987 A JP12075987 A JP 12075987A JP 12075987 A JP12075987 A JP 12075987A JP S63286676 A JPS63286676 A JP S63286676A
Authority
JP
Japan
Prior art keywords
refrigerant
reducing device
pressure reducing
heat exchanger
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12075987A
Other languages
Japanese (ja)
Inventor
秀明 永友
和秀 勇内
清 佐久間
佳昭 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12075987A priority Critical patent/JPS63286676A/en
Publication of JPS63286676A publication Critical patent/JPS63286676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、空気調和装置の改良に係り、特に暖房運転
時に室外熱交換器に付着する霜を除去する除霜性能の改
善に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the improvement of air conditioners, and particularly to the improvement of defrosting performance for removing frost that adheres to an outdoor heat exchanger during heating operation. .

し従来の技術] 冬季には、ヒートポンプサイクルの運転によって暖房を
する空気調和装置においては、室外熱交換器で外気より
低温度の冷媒に外気がら熱が入るように運転される。そ
のため、低温度の室外熱交換器には霜が付着しやすい、
霜が付着すると熱交換が妨害されるので除霜をする必要
がある。
BACKGROUND ART In winter, an air conditioner that performs heating by operating a heat pump cycle is operated so that heat from the outside air enters the refrigerant at a lower temperature than the outside air in an outdoor heat exchanger. Therefore, frost easily adheres to low-temperature outdoor heat exchangers.
If frost builds up, it will interfere with heat exchange, so it is necessary to defrost it.

第5 [Aは、例えば特開昭57−169567号公報
に示されたUe来の空気調和機の冷媒回路図である。図
において、1は圧縮代、2は四方弁、3は室内熱交換器
、4は減圧装置、5は室外熱交換器、6はアキュムレー
タである。この冷暖房用の冷媒の主回路の池に、圧縮機
1の吐出し配管部から分岐してバイパス管7が設けられ
、減圧装置4と室外熱交換器5との間の管路に合流する
ように接続され、バイパス管7の途中にはバイパス管7
の管路を開閉する電磁弁8が設けられている。このバイ
パス管7の回路は除霜回路である。
5. [A] is a refrigerant circuit diagram of an air conditioner based on Ue, as shown in, for example, Japanese Patent Laid-Open No. 57-169567. In the figure, 1 is a compression allowance, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a pressure reducing device, 5 is an outdoor heat exchanger, and 6 is an accumulator. A bypass pipe 7 is provided in the main circuit of the refrigerant for cooling and heating, branching off from the discharge piping of the compressor 1 and joining the pipe between the pressure reducing device 4 and the outdoor heat exchanger 5. There is a bypass pipe 7 in the middle of the bypass pipe 7.
A solenoid valve 8 is provided to open and close the pipeline. This bypass pipe 7 circuit is a defrosting circuit.

第6図は、アキュムレータ6の断面図である。FIG. 6 is a sectional view of the accumulator 6.

図において11は四方弁2からアキュムレータ6に至る
管路、12は圧縮機1の冷媒吸入管、13は冷媒吸入管
12のアキュムレータ6内の底部に近い所に設けられた
小孔、14はアキュムレータ6内の冷媒の液溜め部であ
る。
In the figure, 11 is a pipe leading from the four-way valve 2 to the accumulator 6, 12 is a refrigerant suction pipe of the compressor 1, 13 is a small hole provided in the refrigerant suction pipe 12 near the bottom of the accumulator 6, and 14 is an accumulator This is a liquid reservoir for the refrigerant in 6.

次に、第5図、第6図に示す従来の空気調和装置の動作
について説明する。図は四方弁2が暖房運転の位置であ
り、暖房運転では、圧縮機1から吐出された高圧高温の
冷媒は、四方弁2を経て室内熱交換器3に流入し、熟を
室内に放出し室温近くまで温度が降下し液体となる。室
内熱交換器3を出た冷媒は、減圧装置4を通過して膨張
し低圧で非常に低温の気液二相の冷媒となって、室外熱
交換器5に流入する。室外熱交換器5に流入した冷媒は
外気より低温であるので、外気から吸熱し蒸発して気体
となる。室外熱交換器5を出た冷媒は四方弁2を通りア
キュムレータ6を経て圧縮器1に吸入されて圧縮され吐
出され、以上の順に回路を循環するという暖房運転のヒ
ートポンプサイクルを形成する。
Next, the operation of the conventional air conditioner shown in FIGS. 5 and 6 will be explained. The figure shows the four-way valve 2 in the heating operation position. In heating operation, the high-pressure, high-temperature refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 3 through the four-way valve 2, and releases the refrigerant into the room. The temperature drops to near room temperature and it becomes a liquid. The refrigerant that exits the indoor heat exchanger 3 passes through the pressure reducing device 4 and expands to become a low-pressure, very low-temperature, gas-liquid two-phase refrigerant, which flows into the outdoor heat exchanger 5. Since the refrigerant flowing into the outdoor heat exchanger 5 has a lower temperature than the outside air, it absorbs heat from the outside air and evaporates to become a gas. The refrigerant exiting the outdoor heat exchanger 5 passes through the four-way valve 2, passes through the accumulator 6, is sucked into the compressor 1, is compressed and discharged, and circulates through the circuit in the above order, forming a heat pump cycle for heating operation.

この暖房運転を行っているときは室外熱交換器5は外気
より低温となるので、霜が付着し蓄積して、熱交換を妨
害するようになる。この霜を溶融させて除去するときは
、電磁弁8を開く。すると圧縮機1から吐出された高圧
高温の冷媒はバイパス管7を通って室外熱交換器5に直
接流入する。
During this heating operation, the outdoor heat exchanger 5 is at a lower temperature than the outside air, so frost adheres and accumulates, interfering with heat exchange. When melting and removing this frost, the solenoid valve 8 is opened. Then, the high-pressure, high-temperature refrigerant discharged from the compressor 1 passes through the bypass pipe 7 and directly flows into the outdoor heat exchanger 5 .

室外熱交換器5に付着した霜は、この高温の冷媒によっ
て溶融され除去される。室外熱交換器5で熱交換して冷
却され気液二相となった冷媒は、四方弁2を経て管路]
1を通りアキュムレータ6内に流入する。アキュムレー
タ6内に流入した冷媒のうち気相のものは吸入管12の
頂部の吸入口から吸入され、液相のものの一部は小孔1
3から吸入管12を経て圧縮機1に吸入され循環する。
The frost adhering to the outdoor heat exchanger 5 is melted and removed by this high temperature refrigerant. The refrigerant, which has been cooled by heat exchange in the outdoor heat exchanger 5 and has become a gas-liquid two-phase, passes through the four-way valve 2 and enters the pipe]
1 and flows into the accumulator 6. Of the refrigerant that has flowed into the accumulator 6, the gas phase is sucked in through the suction port at the top of the suction pipe 12, and a portion of the liquid phase is sucked into the small hole 1.
3 through the suction pipe 12, and is sucked into the compressor 1 and circulated.

除霜運転時は液相冷媒が多いため、余分な液相冷媒はア
キュムレータ6内の吸入管12の外側の液溜め部14に
溜められる。これによって、圧縮機1が一度に多h)の
液相冷媒を吸入して液圧縮を行い破損することのないよ
う図られている。このようにして室外熱交換器5に付着
した霜が溶融除去されると、電磁弁8は閑じられてバイ
パス管7の回路は閑錯され、前述の暖房運転のサイクル
に復帰する。
Since there is a large amount of liquid phase refrigerant during the defrosting operation, the excess liquid phase refrigerant is stored in the liquid reservoir 14 outside the suction pipe 12 in the accumulator 6. This prevents the compressor 1 from taking in many hours of liquid phase refrigerant at once and compressing the liquid, thereby preventing damage. When the frost adhering to the outdoor heat exchanger 5 is melted and removed in this way, the solenoid valve 8 is turned off, the circuit of the bypass pipe 7 is turned off, and the heating operation cycle described above is resumed.

[発明が解決しようとする問題点] 従来の空気調和装置は以上のように構成されており、除
霜運転中は冷媒の温度が全体的に低く、液相の冷媒のJ
+)が気相の冷媒の星に対して割合が多くなるので、必
要以上の冷媒がアキュムレータ6内に溜り、第6図に破
線で示すレベルを冷媒の液面が越えてしまい、多、f、
j、の液相冷媒が冷媒吸入管12の上端開口部から大す
−圧縮機1に一度に戻って、圧縮機1が液圧縮を行い破
損するおそれがあった。これを防止するため、アキュム
レータ6の内容積を非常に大きくして液溜め能力を増加
するという対策がとられている。また、液圧縮を恐れて
、アキュムレータ6内にできるだけ液相冷媒を戻さない
よう、減圧装置4を閑じると、冷媒循環是が減少して除
霜所要時間が極端に長くなるなどの問題点があった。
[Problems to be Solved by the Invention] The conventional air conditioner is configured as described above, and the temperature of the refrigerant is generally low during defrosting operation, and the J of the liquid phase refrigerant is low.
+) increases in proportion to the gas phase refrigerant star, so more refrigerant than necessary accumulates in the accumulator 6, and the liquid level of the refrigerant exceeds the level shown by the broken line in Fig. 6. ,
There was a risk that the liquid phase refrigerant of the compressor 1 would return to the compressor 1 from the upper end opening of the refrigerant suction pipe 12 all at once, causing the compressor 1 to compress the liquid and be damaged. In order to prevent this, a measure has been taken to greatly increase the internal volume of the accumulator 6 to increase the liquid storage capacity. In addition, if the pressure reducing device 4 is left open in order to prevent liquid refrigerant from returning to the accumulator 6 as much as possible for fear of liquid compression, there are problems such as the refrigerant circulation decreases and the time required for defrosting becomes extremely long. was there.

この発明は、上記のような問題点を解消するためになさ
れたもので、アキュムレータ6の容積を小さくしても除
霜運転中に液相冷媒で満たされることなく、圧縮機の液
圧縮を発生させず、かつ、短時間で除霜を完了すること
ができる空気調和装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and even if the volume of the accumulator 6 is reduced, it will not be filled with liquid refrigerant during defrosting operation, and the compressor will still be able to compress the liquid. To provide an air conditioner capable of completing defrosting in a short time without causing defrosting.

[問題点を解決するための手段] この発明に係る空気調和装置は、室内熱交換器から室外
熱交換器に至る管路に順次に第1A圧装置、レシーバ及
び第2減圧′A置を介設し、除霜制御部からの除霜開始
信号によって除霜バイパス回路の電磁弁は開放となり第
1減圧装置は閉鎖となり、除霜終了信号によって電磁弁
は閉鎖となり第1減圧装置斤は開放となるように制御さ
せるものである9 [作用] この発明における空気調和装置は、室内熱交換器から室
外熱交換器に至る間に第1減圧装置、レシーバ及び第2
減圧装置を設け、第1減圧装置は除霜運転中に閉鎖され
るように制御されるので、暖房運転中にはレシーバ内に
液相冷媒があり、除霜運転に入ると第1減圧装置が閉鎖
されるので、レシーバ内の液相係媒は第2減圧装置を通
って除々に室外熱交換器を経てアキュムレータに入る。
[Means for Solving the Problems] The air conditioner according to the present invention sequentially connects the first A pressure device, the receiver, and the second pressure reducing device to the pipe line leading from the indoor heat exchanger to the outdoor heat exchanger. The solenoid valve of the defrost bypass circuit is opened and the first pressure reducing device is closed by the defrosting start signal from the defrosting control unit, and the solenoid valve is closed by the defrosting end signal and the first pressure reducing device is opened. 9 [Function] The air conditioner according to the present invention includes a first pressure reducing device, a receiver, and a second pressure reducing device between the indoor heat exchanger and the outdoor heat exchanger.
A pressure reducing device is provided, and the first pressure reducing device is controlled to be closed during defrosting operation, so there is liquid phase refrigerant in the receiver during heating operation, and when defrosting operation starts, the first pressure reducing device is closed. Since it is closed, the liquid phase medium in the receiver passes through the second pressure reducing device and gradually enters the accumulator via the outdoor heat exchanger.

これによって、除霜運転時にアキュムレータ内の冷媒の
液位が上昇して圧縮機が液圧縮を行うことを防止するこ
とができる。また、冷媒は除霜が進行すると共にレシー
バから除々に補充されるので冷媒の循環幇は不足するこ
とはなく、短時間で除霜を完了することができる。
This can prevent the liquid level of the refrigerant in the accumulator from rising during defrosting operation and causing the compressor to perform liquid compression. Moreover, since the refrigerant is gradually replenished from the receiver as defrosting progresses, there is no shortage of refrigerant circulation, and defrosting can be completed in a short time.

[発明の実施例] 以下、この発明の実施例を図について説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

第1図は第1実施例による空気調和装置の冷媒回路図で
ある。第1[4において、1は圧縮機、2は四方弁、3
は室内熱交換器、5は室外熱交換器、6はアキュムレー
タ、7はバイパス管、8は電磁弁、15は除霜回路のバ
イパス管7が冷暖房の主回路に合流する合流部、21は
管路全開機能を有する第1減圧装置、22はアキュムレ
ータ6の液溜め部14の容部より小さな容積をもつレシ
ーバ、23は第2減圧装置?7である。30は除霜制御
部であり、室外熱交換器5に付着する霜を直接または間
接に検知して除霜指令信号を発信する。31は除霜制御
部30からの信号によって電磁弁8を開田する電磁弁駆
動手段、32は除霜制御部30からの信号によって第1
減圧装置を開閉する第1減圧装置制御手段、33は除霜
制御部30がらの信号によって第2減圧装置を所定の絞
り度に設定する第2減圧装置制御手段である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to a first embodiment. In the first [4, 1 is a compressor, 2 is a four-way valve, 3
5 is an indoor heat exchanger, 5 is an outdoor heat exchanger, 6 is an accumulator, 7 is a bypass pipe, 8 is a solenoid valve, 15 is a junction where the bypass pipe 7 of the defrosting circuit joins the main circuit for air conditioning, and 21 is a pipe 22 is a receiver having a smaller volume than the volume of the liquid reservoir 14 of the accumulator 6, and 23 is a second pressure reducing device. It is 7. 30 is a defrosting control unit that directly or indirectly detects frost adhering to the outdoor heat exchanger 5 and issues a defrosting command signal. 31 is a solenoid valve driving means for opening the solenoid valve 8 in response to a signal from the defrosting control section 30;
The first pressure reducing device control means opens and closes the pressure reducing device, and the second pressure reducing device control means 33 sets the second pressure reducing device to a predetermined degree of aperture based on a signal from the defrosting control section 30.

次に、第1図に示す実施例の動作について説明する。図
では四方弁2は暖房運転の位置にある。
Next, the operation of the embodiment shown in FIG. 1 will be explained. In the figure, the four-way valve 2 is in the heating operation position.

暖房運転では、圧縮機1から吐出された高圧高温の冷媒
は、四方弁2を経て室内熱交換器3に流入し放熱して室
内暖房の機能を果し、冷媒は温度が室温近くまで降下し
て液体となる。室内熱交換器3を出た冷媒は、第1減圧
装置21により減圧されて気液二相の冷媒となってレシ
ーバ22に入る、レシーバ22内には液相の冷媒が溜め
られ、気相の冷媒が優先して出ていき、第2減圧装置2
3により再び減圧されて低圧低温の気液二相の冷媒とな
り室外熱交換器5に流入する。この冷媒は非常に低温で
あり、室外熱交換器5で外気から吸熱し気相となって室
外熱交換器5を出て四方弁2を経てアキュムレータ6に
入り、アキュムレータ6から圧縮機1に吸入されて高圧
高温の冷媒となって吐出され循環するというヒートポン
プサイクルを形成する。
During heating operation, the high-pressure, high-temperature refrigerant discharged from the compressor 1 flows into the indoor heat exchanger 3 through the four-way valve 2, radiates heat, and performs the indoor heating function, and the temperature of the refrigerant drops to near room temperature. It becomes a liquid. The refrigerant that has exited the indoor heat exchanger 3 is depressurized by the first pressure reducing device 21 and enters the receiver 22 as a gas-liquid two-phase refrigerant. The refrigerant leaves with priority, and the second pressure reducing device 2
3, the refrigerant is reduced in pressure again and becomes a low-pressure, low-temperature, gas-liquid two-phase refrigerant, which flows into the outdoor heat exchanger 5. This refrigerant has a very low temperature, absorbs heat from the outside air in the outdoor heat exchanger 5, becomes a gas phase, exits the outdoor heat exchanger 5, passes through the four-way valve 2, enters the accumulator 6, and is sucked into the compressor 1 from the accumulator 6. This creates a heat pump cycle in which the refrigerant is discharged and circulated as a high-pressure, high-temperature refrigerant.

第2減圧装置23は圧Ia機1の吸入冷媒のスーパーヒ
ート量を調整するように、また、第1減圧装置21は室
内熱交換器3の出口の冷媒のサブクールJ1;:を調整
するように設定されている9したがって、レシーバ22
内の圧力は、圧縮機の吐出圧力Pd+吸入圧力■)3及
び第1減圧装置21.第2減圧装置23の各々の絞り量
によって決定される中間圧力P−(Pd>P−>P−)
にコントロールされ、レシーバ22内は、冷媒のかわき
度に応じて液相冷媒と気相冷媒とが混在している。
The second pressure reducing device 23 adjusts the superheat amount of the refrigerant sucked into the pressure Ia machine 1, and the first pressure reducing device 21 adjusts the subcool J1 of the refrigerant at the outlet of the indoor heat exchanger 3. is set to 9, so the receiver 22
The pressure inside is the discharge pressure Pd of the compressor + the suction pressure (■) 3 and the first pressure reducing device 21. Intermediate pressure P- (Pd>P->P-) determined by the throttle amount of each second pressure reducing device 23
The liquid phase refrigerant and the gas phase refrigerant are mixed in the receiver 22 depending on the degree of freshness of the refrigerant.

室外熱交換器5に霜が付着し蓄積して、これを除霜制御
部30が検知すると、除霜制御部30は除霜開始指令信
号を発信し、ソレノイドのような電磁弁駆動手段31を
介して電磁弁8を開放する。
When frost adheres and accumulates on the outdoor heat exchanger 5 and the defrost control unit 30 detects this, the defrost control unit 30 transmits a defrost start command signal and activates an electromagnetic valve driving means 31 such as a solenoid. The solenoid valve 8 is opened via the solenoid valve 8.

また、同様の第1減圧装置制御手段32を介して第1減
圧装置21を閉鎖する。また、同様の第2減圧装置制御
手段33を介して第2減圧装r?、23を設定された絞
り度に設定する。
Further, the first pressure reducing device 21 is closed via the same first pressure reducing device control means 32. Further, the second pressure reducing device r? , 23 to the set aperture degree.

電磁弁8が開けられたので、圧縮機1で圧縮され高圧高
温となった冷媒は、バイパス管7.電磁弁89合流部1
5を経て室外熱交換器5に入り、放熱して室外熱交換器
5に付着した霜を溶融し除去する。一方、第1減圧装置
2】は[j1鎖されるので、室内熱交換器3からレシー
バ22への冷媒の流入は止まるが、暖房運転中のレシー
バ22内の圧力P、が、除霜運転中の自流部]5の圧力
P。
Since the solenoid valve 8 is opened, the refrigerant compressed by the compressor 1 and brought to a high pressure and high temperature is transferred to the bypass pipe 7. Solenoid valve 89 confluence part 1
5 and enters the outdoor heat exchanger 5, where the heat is radiated to melt and remove frost adhering to the outdoor heat exchanger 5. On the other hand, since the first pressure reducing device 2 is chained, the flow of refrigerant from the indoor heat exchanger 3 to the receiver 22 is stopped, but the pressure P in the receiver 22 during the heating operation is lowered during the defrosting operation. [self-flow part] 5 pressure P.

に吋して高い(Pe >Pe)ため、レシーバ22内の
冷媒は第2減圧装置a23を通して室外熱交換器5内へ
流入する。レシーバ22内の圧力P、は冷媒の流出によ
って除々に低下し、最終的には、p 、 = l)。ど
なる。このときのP−、Peの圧力差による冷媒比容積
を考慮した一Fでレシーバ22の有効内容積を適当な値
に設定してやることにより、アキュムレータ6内に溜ま
る液相冷媒の11鼾を制限することができる。
(Pe > Pe), the refrigerant in the receiver 22 flows into the outdoor heat exchanger 5 through the second pressure reducing device a23. The pressure inside the receiver 22, P, gradually decreases due to the outflow of the refrigerant, and finally, p, = l). bawl. At this time, by setting the effective internal volume of the receiver 22 to an appropriate value in consideration of the refrigerant specific volume due to the pressure difference between P- and Pe at this time, the amount of liquid phase refrigerant accumulated in the accumulator 6 is limited. be able to.

以上のようにして、除霜運転にあたり、過大な液相冷媒
がアキュムレータ6に溜って圧縮機1が液圧縮運転をし
て破損することを防止し、かつ、適当な量の冷媒が循環
して短時間に除霜をさせることができる7 第2図は第2実施例による空気調和装置の冷媒回路図で
ある。国において、24は毛細管またはオリフィスのよ
うな冷媒の通過に抵抗を生じる細孔部である、第2実施
例が第1実施例と5′(なるところは、第11mの第2
減圧装置23の代りに細孔部24を設け、第2減圧装置
制御手段33を不要として省略したことである。第2実
施例においては、暖房運転中は第1減圧装置21のみで
冷媒流量を=1!1整する。この点は第5目に示す従来
例と殆んど同様である。しかし、第1実施例と同様に、
第1減圧装置2]と細孔部23との間に中間圧力P、が
生じ、この部分にレシーバ22が設けであるので、除霜
運転となって電磁弁8が開けられ、第1減圧装;γ−2
1が閑じちれた場合、レシーバ22内に溜められていた
冷媒が除々に細孔部24を通って室外熱交換器5に入り
アキュムレータに補充される。これによって、圧縮機1
の液圧縮を防止し、かつ、短時間に除霜を完了すること
ができる。
As described above, during defrosting operation, it is possible to prevent excessive liquid phase refrigerant from accumulating in the accumulator 6 and causing damage to the compressor 1 due to liquid compression operation, and to ensure that an appropriate amount of refrigerant is circulated. 7. Figure 2 is a refrigerant circuit diagram of an air conditioner according to a second embodiment. In Japan, 24 is a pore part such as a capillary tube or an orifice that creates resistance to the passage of the refrigerant.
The pore portion 24 is provided in place of the pressure reducing device 23, and the second pressure reducing device control means 33 is omitted as unnecessary. In the second embodiment, during heating operation, only the first pressure reducing device 21 adjusts the refrigerant flow rate to 1!1. This point is almost the same as the conventional example shown in the fifth section. However, similar to the first embodiment,
An intermediate pressure P is generated between the first pressure reducing device 2] and the pore portion 23, and since the receiver 22 is provided in this portion, the solenoid valve 8 is opened for defrosting operation, and the first pressure reducing device ;γ-2
1 becomes idle, the refrigerant stored in the receiver 22 gradually enters the outdoor heat exchanger 5 through the pores 24 and is replenished into the accumulator. As a result, the compressor 1
It is possible to prevent liquid compression and complete defrosting in a short time.

第3図は第3実施例による空気調和装置の冷媒回路図で
ある。国において、25は四方弁2とアキュムレータ6
との間の回路に設けられた吸入熱交換器であり、吸入熱
交換器25はレシーバ22内に設けられ、レシーバ22
内の冷媒と熱交換する、その他は第1実施例と同様であ
る。
FIG. 3 is a refrigerant circuit diagram of an air conditioner according to a third embodiment. In Japan, 25 is four-way valve 2 and accumulator 6
The suction heat exchanger 25 is installed in the circuit between the receiver 22 and the receiver 22.
The rest is the same as the first embodiment except that heat is exchanged with the refrigerant inside.

第4UAは第3実施例における冷媒のモリエル線図であ
る。横軸は比エンタルピh、41軸は圧力Pである。冷
媒のし−1〜ポンプサイクルを示す。A点は圧縮代1で
圧縮された高圧高温の気相冷媒を示し、室内熱交換器3
で放熱し凝縮してB点に至る。次に第1減圧装置21で
減圧され6点においてレシーバ22に流入する。ここで
吸入熱交換器25によりアキュムレータ6に入る直前の
低温冷媒と熱交換(放熱)することによりレシーバ22
内の冷媒は完全に液化する(D点)。次に第2減圧装置
23によって減圧されE点に至る。次に室外熱交換器5
を通過して外気から吸熱しF点となる。次に吸入熱交換
器25を通過してレシーバ22内の冷媒から吸熱しG点
となる。これが圧wI機1で圧縮されてA点となりサイ
クルを形成する一吸入熱交換器25ではC−D問および
F−0間で熱vQが熱交換される。
The fourth UA is a Mollier diagram of the refrigerant in the third embodiment. The horizontal axis is specific enthalpy h, and the 41st axis is pressure P. Refrigerant pump cycle 1 is shown. Point A indicates high-pressure, high-temperature gas phase refrigerant compressed with a compression allowance of 1, and the indoor heat exchanger 3
It radiates heat and condenses to reach point B. Next, the pressure is reduced by the first pressure reducing device 21 and flows into the receiver 22 at six points. Here, the suction heat exchanger 25 exchanges (radiates) heat with the low-temperature refrigerant just before entering the accumulator 6, and the receiver 22
The refrigerant inside completely liquefies (point D). Next, the pressure is reduced by the second pressure reducing device 23 to reach point E. Next, outdoor heat exchanger 5
It passes through and absorbs heat from the outside air, reaching point F. Next, the refrigerant passes through the suction heat exchanger 25 and absorbs heat from the refrigerant in the receiver 22, reaching point G. This is compressed by the pressure wI machine 1 to reach point A, and in the one-intake heat exchanger 25 forming a cycle, heat vQ is exchanged between C-D and F-0.

第3実施例では、吸入熱交換器25によって、L”J 
 )< 22 内の冷媒の放、!8液化と、アキュノ、
レータ6に戻る冷媒の吸熱気化があるので、サイクルの
f’lE動係数と効率が向上し、圧縮機の液圧縮も防止
することができる。
In the third embodiment, L"J
) < 22 Release of refrigerant in,! 8 liquefaction and acuno,
Since there is endothermic vaporization of the refrigerant returning to the rotor 6, the f'lE dynamic coefficient and efficiency of the cycle are improved and liquid compression in the compressor can also be prevented.

なお、第3実施例で第2減圧装置23の代りに第2[′
IIの細孔部24とし、第2減圧装置制御手段33を省
略した構成としてもよい。
In addition, in the third embodiment, the second pressure reducing device 23 is replaced by the second ['
It is also possible to adopt a configuration in which the second pressure reducing device control means 33 is omitted, with the pore portion 24 of II.

また、以−1−の実hi!i例では第1減圧装置2]は
管路全閘機能を具備したものとしたが、従来の減圧装置
と開田弁とを直列に設けた組合せでもよく、開口1弁を
除霜制御部30がらの指令により開田するようにすれば
よい。
Also, the fruit hi of -1-! In example i, the first pressure reducing device 2 is equipped with the function of all the pipes, but it may also be a combination of a conventional pressure reducing device and an open field valve installed in series, and the first opening valve is provided with the defrost control section 30. The rice fields should be opened according to the instructions given by the government.

[発明の効果1 以上のように、この発明によれば、室内熱交換器と室外
熱交換器との間に順次に第1減圧装置。
[Effect 1 of the Invention As described above, according to the present invention, the first pressure reducing device is sequentially provided between the indoor heat exchanger and the outdoor heat exchanger.

レシーバ及び第2減圧装置を設けたので、除霜運転にお
いては第1減圧装置を閑鎖するだけでアキ、1ムレータ
内に適当是の冷媒を送りこむことが可能となり、除霜所
要時間を短縮し、圧縮機の液圧縮をμh止する効果が(
°)られる。
Since a receiver and a second pressure reducing device are installed, during defrosting operation, just by shutting down the first pressure reducing device, it is possible to feed the appropriate amount of refrigerant into one mulleter, reducing the time required for defrosting. , the effect of stopping the liquid compression in the compressor is (
°) be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第11A乃至第11図はこの発明の実施例を示し、第1
図は第1実施例による空気調和装置の冷媒回路図、第2
図は第2実施例による空気調和装置の冷媒囲路図、第3
1Aは第3実施例による空気調和装置の冷媒回路図、第
4図は第3図に示す冷媒回路のサイクル線図である。第
5図は従来例による空気調和装置の冷媒回路図、第6図
はアキュムレータの断面図である。 [mにおいて、1は圧縮機、2は四方弁、3は、室内熱
交換器、5は室外熱交換器、6はアキュムレータ、7は
バイパス管、8は電磁弁、21は第1減圧装置、22は
レシーバ、23は第2減圧装置、24は細孔部、25は
吸入熱交換器、30は除霜制御部である。 なお、図中、同一符号は同一または相当部分を示す。
11A to 11 show embodiments of the present invention, and the first
The figure shows a refrigerant circuit diagram of an air conditioner according to the first embodiment;
The figure is a refrigerant circuit diagram of an air conditioner according to the second embodiment;
1A is a refrigerant circuit diagram of an air conditioner according to a third embodiment, and FIG. 4 is a cycle diagram of the refrigerant circuit shown in FIG. 3. FIG. 5 is a refrigerant circuit diagram of a conventional air conditioner, and FIG. 6 is a sectional view of an accumulator. [In m, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 5 is an outdoor heat exchanger, 6 is an accumulator, 7 is a bypass pipe, 8 is a solenoid valve, 21 is a first pressure reducing device, 22 is a receiver, 23 is a second pressure reducing device, 24 is a pore section, 25 is an intake heat exchanger, and 30 is a defrosting control section. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)冷媒を圧縮機によつて室内熱交換器及び室外熱交
換器に四方弁を介して循環させる冷暖房回路と、前記圧
縮機から吐出された冷媒を電磁弁を有するバイパス管に
よって前記室外熱交換器に循環させて除霜をする除霜回
路とを有する空気調和装置において、前記冷暖房回路中
の前記室内熱交換器から前記室外熱交換器に至る管路に
順次に第1減圧装置、レシーバ及び第2減圧装置を介設
し、除霜制御部からの除霜開始信号によって前記電磁弁
は開放となり前記第1減圧装置は閉鎖となり、前記除霜
制御部からの除霜終了信号によって前記電磁弁は閉鎖と
なり前記第1減圧装置は所定の絞り度となるように制御
させることを特徴とする空気調和装置。
(1) An air conditioning circuit in which a compressor circulates refrigerant to an indoor heat exchanger and an outdoor heat exchanger via a four-way valve, and a bypass pipe having a solenoid valve transfers the refrigerant discharged from the compressor to the outdoor heat In an air conditioner having a defrosting circuit that defrosts the air by circulating the air through an exchanger, a first pressure reducing device and a receiver are sequentially connected to a pipe line from the indoor heat exchanger to the outdoor heat exchanger in the heating and cooling circuit. and a second pressure reducing device, the solenoid valve is opened in response to a defrosting start signal from the defrosting control section, the first pressure reducing device is closed, and the solenoid valve is closed in response to a defrosting end signal from the defrosting control section. An air conditioner characterized in that the valve is closed and the first pressure reducing device is controlled to have a predetermined degree of restriction.
(2)前記第2減圧装置は、前記除霜制御部からの除霜
開始信号及び除霜終了信号によつてそれぞれ設定された
絞り度に制御される減圧装置である特許請求の第1項記
載の空気調和装置。
(2) The second pressure reducing device is a pressure reducing device that is controlled to a degree of aperture set by a defrosting start signal and a defrosting end signal from the defrosting control section, respectively. air conditioner.
(3)前記第2減圧装置は細孔部である特許請求の範囲
第1項記載の空気調和装置。
(3) The air conditioner according to claim 1, wherein the second pressure reducing device is a pore portion.
(4)前記レシーバは前記四方弁から前記圧縮機の吸入
口に至る間の冷媒と熱交換する吸入熱交換器が設けられ
たレシーバである特許請求の範囲第1項乃至第3項の何
れかに記載の空気調和装置。
(4) Any one of claims 1 to 3, wherein the receiver is provided with a suction heat exchanger that exchanges heat with the refrigerant between the four-way valve and the suction port of the compressor. Air conditioner described in.
JP12075987A 1987-05-18 1987-05-18 Air conditioner Pending JPS63286676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12075987A JPS63286676A (en) 1987-05-18 1987-05-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12075987A JPS63286676A (en) 1987-05-18 1987-05-18 Air conditioner

Publications (1)

Publication Number Publication Date
JPS63286676A true JPS63286676A (en) 1988-11-24

Family

ID=14794289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12075987A Pending JPS63286676A (en) 1987-05-18 1987-05-18 Air conditioner

Country Status (1)

Country Link
JP (1) JPS63286676A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013382A1 (en) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation Refrigerating air conditioner
CN101806519A (en) * 2010-04-19 2010-08-18 广东吉荣空调有限公司 Wide-temperature high-efficiency air source heat pump unit with anti-frosting function and operating method thereof
WO2011092802A1 (en) 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method
JPWO2012043297A1 (en) * 2010-09-27 2014-02-06 東芝キヤリア株式会社 Hot water system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013382A1 (en) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation Refrigerating air conditioner
JPWO2007013382A1 (en) * 2005-07-26 2009-02-05 三菱電機株式会社 Refrigeration air conditioner
CN100465555C (en) * 2005-07-26 2009-03-04 三菱电机株式会社 Refrigerating air conditioner
US7856836B2 (en) 2005-07-26 2010-12-28 Mitsubishi Electric Corporation Refrigerating air conditioning system
JP5063347B2 (en) * 2005-07-26 2012-10-31 三菱電機株式会社 Refrigeration air conditioner
WO2011092802A1 (en) 2010-01-26 2011-08-04 三菱電機株式会社 Heat pump device and refrigerant bypass method
US9709308B2 (en) 2010-01-26 2017-07-18 Mitsubishi Electric Corporation Heat pump device and refrigerant bypass method
CN101806519A (en) * 2010-04-19 2010-08-18 广东吉荣空调有限公司 Wide-temperature high-efficiency air source heat pump unit with anti-frosting function and operating method thereof
JPWO2012043297A1 (en) * 2010-09-27 2014-02-06 東芝キヤリア株式会社 Hot water system

Similar Documents

Publication Publication Date Title
US4562700A (en) Refrigeration system
US7484374B2 (en) Flash tank design and control for heat pumps
EP2211127A1 (en) Heat pump type air conditioner
JP3352469B2 (en) Air conditioner
CN208765303U (en) air conditioning system
JP3731174B2 (en) Refrigeration cycle
CN209101597U (en) Multi-split air conditioner circulating system and multi-split air conditioner
JP4031560B2 (en) Air conditioner
JPS63286676A (en) Air conditioner
CN106482407A (en) Air conditioning system for preventing liquid impact of air conditioning compressor and control method thereof
CN220818148U (en) Refrigerant quantity adjusting device for refrigeration cycle system, gas-liquid separator and air conditioning system
JP2504416B2 (en) Refrigeration cycle
JPH0587426A (en) Air-conditioner
JPH0320571A (en) Air conditioner
JPS63156979A (en) Heat pump type air conditioner
JP2533585B2 (en) Multi-room air conditioner
JPS60245967A (en) Air conditioner
JPH0221731Y2 (en)
JPS5918349A (en) Heat pump system separation type air conditioner
JPH0429345Y2 (en)
CN117366778A (en) Air conditioning system and control method thereof
CN112665216A (en) Heat pump system and defrosting mode thereof
JPS5912529Y2 (en) Air conditioning equipment
JPS5981464A (en) Heat pump type refrigeration cycle
JPH0237261A (en) Heat pump type air conditioner