JPS5918349A - Heat pump system separation type air conditioner - Google Patents
Heat pump system separation type air conditionerInfo
- Publication number
- JPS5918349A JPS5918349A JP12697182A JP12697182A JPS5918349A JP S5918349 A JPS5918349 A JP S5918349A JP 12697182 A JP12697182 A JP 12697182A JP 12697182 A JP12697182 A JP 12697182A JP S5918349 A JPS5918349 A JP S5918349A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- capillary tube
- heat exchanger
- air conditioner
- indoor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は1台の室外ユニットに対し、複数台の室内ユニ
ットを接続したヒートポンプ成分離形空気調和機におけ
る冷媒制御装置に係わり、冷房時は減圧量の調整を行な
い、暖房時はインジェクション量の調整を行なうことK
より、それぞれ最大能力を引き出し、更k、暖房時減圧
機構であるキャピラリチー−プを分割することなく、減
圧量を調整出来るような低コストの冷暖房2台同時運転
可能のヒートポンプ式空気調和機を得ることを目的とす
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerant control device in a heat pump component air conditioner in which a plurality of indoor units are connected to one outdoor unit, and adjusts the amount of pressure reduction during cooling. Adjust the injection amount when heating.
We have created a low-cost heat pump air conditioner that can operate two heating and cooling units simultaneously, drawing out the maximum capacity of each, and adjusting the amount of pressure reduction without dividing the capillary cheep, which is the pressure reduction mechanism during heating. The purpose is to obtain.
従来、例えば1台の室外ユニットに対し、2台の室内ユ
ニットを接続したヒートポンプ成分離形空気調和機は、
第1図に示すような回路となっている。1は圧縮機、2
は四方弁、3は室外熱交換器、4は源側三方弁、6,6
は冷房時通過する逆止弁、7,8はこの逆止弁6,6と
並列に設けられた暖房用キャピラリチューブ、9,1Q
は冷房用キャピラリチューブ、11.12は源側電磁弁
、13.14は逆流防止用の逆上弁、15.16は均圧
用キャピラリチューブで、インジェクションボート17
に接続され、暖房時、均圧回路となると共に、インジェ
クション用としての回路ともなる。18は1号機室内ユ
ニット、19は2号機室内ユニ7)、20.21はガス
側電磁弁、22゜23はこのガス側電磁弁20.21と
並列に設けられた逆止弁、24はガス側三方弁、26は
インジェクションボート17側への逆流防止用逆止弁、
2θはアキュウムレータ、27は高圧圧力調整弁である
。Conventionally, for example, a heat pump component air conditioner that connects two indoor units to one outdoor unit,
The circuit is as shown in FIG. 1 is a compressor, 2
is a four-way valve, 3 is an outdoor heat exchanger, 4 is a source side three-way valve, 6,6
is a check valve that passes during cooling; 7 and 8 are heating capillary tubes installed in parallel with the check valves 6 and 6; 9 and 1Q are
is a capillary tube for cooling, 11.12 is a source side solenoid valve, 13.14 is a backflow valve for preventing backflow, 15.16 is a capillary tube for pressure equalization, and injection boat 17
It is connected to the circuit and serves as a pressure equalization circuit during heating, as well as a circuit for injection. 18 is the No. 1 indoor unit, 19 is the No. 2 indoor unit 7), 20.21 is the gas side solenoid valve, 22°23 is the check valve installed in parallel with this gas side solenoid valve 20.21, and 24 is the gas side solenoid valve. side three-way valve, 26 is a check valve for preventing backflow to the injection boat 17 side,
2θ is an accumulator, and 27 is a high pressure regulating valve.
このように従来は、冷媒回路が構成され、仮に冷房時に
おいて、室内ユニットの1台運転と、2台同時運転とは
、それぞれ最大能力を出すこと75玉出来ない。即ち、
1号機室内ユニット18または。Conventionally, the refrigerant circuit is configured in this manner, and even if one indoor unit is operated or two indoor units are operated simultaneously, it is impossible to achieve the maximum capacity of each indoor unit during cooling. That is,
Unit 1 indoor unit 18 or.
2号機室内ユニット19の1台運転時と1,2号機室内
ユニ帰の2台同時運転時とでは能力を最大に出すために
は、絞り量を変えてやらなければ1台運転時(1号機)
の冷房用キャピラリチューブ9を通過した後の蒸発圧力
と、2台同時運転時の冷房用キャピラリチューブ9,1
0を通過した後の蒸発圧力とは異なるだめ、十分な冷房
能力は得られ々い。また、暖房時において、1号機室内
ユニット18または2号機室内ユニット19の1台運転
時と、1,2号機室内ユニソ)18.19の2台同時運
転時とでは、インジェクションボート17に流れるイン
ジェクション量が異なり、2台同運転時は2台の室内ユ
ニットにおける凝縮能力が大きくなることにより、高圧
圧力が低下し、そのためにインジェクション量が減少す
るなど、1台または2台同時運転のどちらかにインジェ
クションキャビを調節すればその一方はインジェクショ
ン量が適当でなく十分な暖房効果が得られないなどの欠
点を有していた。(インジェクション量を適切にするこ
とによって、暖房能力が上昇するのは圧縮機の圧縮冷媒
量が多くなり、高圧側の冷媒循環量が多くなるだめであ
る。In order to maximize the capacity when one Unit 2 indoor unit 19 is operated and when two Units 1 and 2 indoor unit 19 are operated simultaneously, it is necessary to change the throttle amount. )
The evaporation pressure after passing through the cooling capillary tube 9 and the cooling capillary tube 9 and 1 when two units are operated simultaneously.
Since the evaporation pressure after passing through 0 is different, sufficient cooling capacity cannot be obtained. In addition, during heating, the amount of injection flowing into the injection boat 17 is different when one of the No. 1 indoor unit 18 or No. 2 indoor unit 19 is operated, and when two units (No. 1 and 2 indoor unit 18.19) are operated simultaneously. When two indoor units are operated at the same time, the condensing capacity of the two indoor units increases, which lowers the high pressure and therefore reduces the injection amount. However, if the cavity was adjusted, the amount of injection would not be appropriate and a sufficient heating effect could not be obtained. (By setting the injection amount appropriately, the heating capacity increases because the amount of refrigerant compressed by the compressor increases, and the amount of refrigerant circulated on the high-pressure side increases.
本発明は上記従来の欠点を解消するもので、以下にその
一実施例を第2図にもとづいて説明する。The present invention solves the above-mentioned conventional drawbacks, and one embodiment thereof will be described below based on FIG. 2.
31は1台の室外ユニット、32はこの室外ユニット3
1と接続された1号機室内ユニット、33は同2号機室
内ユニット、34は圧縮機、35は四方弁、36は室外
側熱交換器、37は冷房主回路38に設けられた逆止弁
、39は同回路に設けられた冷房用1次キャピラリチュ
ーブ、4oは源側三方弁、41.42は室内ユニット数
に応じた数に設けられ、源側三方弁40側より分岐して
設けられた冷房用2次キャピラリチューブ、43゜44
は源側電磁弁、45.46は室内ユニット数に応じて、
それぞれ独立した暖房主回路47.48中に設けられた
逆止弁、49.50は同回路中に設けられた暖房用キャ
ピラリチューブ、51はインジェクション用キャピラリ
チューブで、一端が、冷房用1次キャピラリチューブ3
9と、源側三方弁40との間に接続され、他端がインジ
ェクションボート52に接続されている。53は冷房時
、インジェクションボート62から、一部の冷媒を四方
弁36側に流す逆止弁、54.56は1号機室内ユニッ
ト32と、2号機室内ユニット33に設けられた室内側
熱交換器、66.6了はガス側電磁弁、58.59はこ
のガス側電磁弁56 、57と並列に設けられ、冷房時
、冷媒が通過する逆止弁である。60はガス側三方弁、
61はアキュウムレータ、62は高圧圧力調節弁で、冷
房時、及び、暖房時、所定圧力以上の高圧圧力になると
、開度作動を行なうものである。31 is one outdoor unit, 32 is this outdoor unit 3
1 is connected to the No. 1 indoor unit, 33 is the No. 2 indoor unit, 34 is a compressor, 35 is a four-way valve, 36 is an outdoor heat exchanger, 37 is a check valve provided in the main cooling circuit 38, 39 is a primary capillary tube for cooling provided in the same circuit, 4o is a source side three-way valve, and 41.42 is provided in a number according to the number of indoor units, and is provided branching from the source side three-way valve 40 side. Secondary capillary tube for cooling, 43°44
is the source side solenoid valve, 45.46 is according to the number of indoor units,
Check valves are provided in independent heating main circuits 47 and 48, 49 and 50 are heating capillary tubes provided in the same circuits, and 51 is an injection capillary tube, one end of which is connected to the cooling primary capillary tube. tube 3
9 and the source three-way valve 40, and the other end is connected to the injection boat 52. 53 is a check valve that allows part of the refrigerant to flow from the injection boat 62 to the four-way valve 36 side during cooling, and 54 and 56 are indoor heat exchangers provided in the No. 1 indoor unit 32 and the No. 2 indoor unit 33. , 66.6 is a gas-side solenoid valve, and 58.59 is a check valve provided in parallel with the gas-side solenoid valves 56 and 57 through which refrigerant passes during cooling. 60 is a gas side three-way valve,
61 is an accumulator, and 62 is a high-pressure pressure regulating valve, which performs an opening operation when a high pressure equal to or higher than a predetermined pressure is reached during cooling and heating.
上記構成において、例えば冷房時においては、圧縮機3
4.四方弁35.室外側熱交換器36゜接続部65.逆
止弁37.冷房用1次キャピラリチューブ39.接続部
66、源側三方弁40.接続部67.2台同時運転の時
は冷房用2次キャピラリチューブ41,42.源側電磁
弁43. 44゜室内側熱交換器54. 5B、逆止弁
6B、 E>9゜ガス側三方弁60.四方弁35.ア
キュウムレータ61.圧縮機34の順に冷媒回路が構成
され、この時、室内ユニットが、2台同時運転の時は、
冷房用1次キャピラリチューブ39と、冷房用2次キャ
ピラリチューブ41.42とで減圧されるから、1台運
転時に比べて、冷房用2次キャピラリチューブ41.4
2を通過した時点において冷媒蒸発温度が高くなり、2
台同時運転時に適切な蒸発温度となり冷凍効果を高める
のである。又、1台運転時においては、例えば、冷房用
1次キャピラリチューブ39と、冷房用2次キャピラリ
チューブ41側を通過した時点においては、冷媒蒸発温
度が低くなり、1台運転時に適切な蒸発温度となり冷凍
効果を高める。即ち、2台同時運転時、冷房用2次キャ
ピラリチューブ41.42の並列流路となり、減圧が小
さくなり、1台運転時は、冷房用2次キャピラリチュー
ブ41のみの流路となる為、減圧が大となり、且、蒸発
温度が低くなり、1台の室内ユニット(1号機室内ユニ
ット)に合った流量変化となるのである。又この時、冷
房用1次キャピラリチューブ39を通ったごく一部の液
冷媒は、インジェクション用キャピラリチューブ51を
通って、インジェクションポート62から出たガス冷媒
といっしょになり、逆止弁53を流れ、四方弁35.ア
キュウムレータ61と流れて、パワーセーブ(能力制御
)されるのである。In the above configuration, for example, during cooling, the compressor 3
4. Four-way valve 35. Outdoor heat exchanger 36° connection part 65. Check valve 37. Primary capillary tube for cooling39. Connection part 66, source side three-way valve 40. Connection part 67. When two units are operated at the same time, the secondary capillary tubes for cooling 41, 42. Source side solenoid valve 43. 44° indoor heat exchanger 54. 5B, check valve 6B, E>9° gas side three-way valve 60. Four-way valve 35. Accumulator 61. The refrigerant circuit is configured in the order of the compressor 34, and at this time, when two indoor units are operated simultaneously,
Since the pressure is reduced by the primary cooling capillary tube 39 and the secondary cooling capillary tube 41.42, the cooling secondary capillary tube 41.4 is reduced compared to when one unit is operated.
2, the refrigerant evaporation temperature becomes high, and 2
When the units are operated simultaneously, the evaporation temperature becomes appropriate and the refrigeration effect is enhanced. In addition, when one unit is operated, for example, the refrigerant evaporation temperature becomes low at the time when it passes through the primary cooling capillary tube 39 and the cooling secondary capillary tube 41 side, and the evaporation temperature is lower than the appropriate evaporation temperature when one unit is operated. This increases the freezing effect. That is, when two units are operated at the same time, the cooling secondary capillary tubes 41 and 42 are in parallel flow paths, resulting in less pressure reduction, while when one unit is in operation, only the cooling secondary capillary tubes 41 are in the flow path, resulting in less pressure reduction. becomes large, and the evaporation temperature becomes low, resulting in a flow rate change that matches one indoor unit (No. 1 indoor unit). Also, at this time, a small portion of the liquid refrigerant that has passed through the primary capillary tube 39 for cooling passes through the capillary tube 51 for injection, becomes together with the gas refrigerant that comes out from the injection port 62, and flows through the check valve 53. , four-way valve 35. It flows to the accumulator 61 and power is saved (capacity controlled).
次に、暖房時においては、2台同時運転時、圧縮機34
.四方弁35.ガス側三方弁60.ガス側電磁弁66、
67、室内側熱交換器54. 55゜逆止弁46.
46.暖房用キャピラリチューブ49.50.接続点6
5.室外熱交換器36.四方弁35.アキュウムレータ
61.圧縮機34の順に冷媒回路が構成され、この時、
室内側熱交換器64.65で、凝縮されだ液冷媒・が、
それぞれの室数に応じた暖房主回路47.48で、独立
した回路を流れて減圧されることになり、一方、室内側
熱交換器54.55で凝縮されだ液冷媒の一部が冷房用
2次キャピラリチューブ4.1,42゜接続点67、源
側三方弁40.接続点66、インジェクション用キャピ
ラリチューブ51と流れ、ここで、更に減圧されて、イ
ンジェクションポート52に流れて、圧縮機34ヘイン
ジエクシヨンされ、室内側熱交換器64.55への冷媒
循環量を増加せしめ、暖房能力を高めるのである。又、
暖房1台運転時、例えば、1号機室内ユニット32の運
転時においては、室内側熱交換器64で凝縮しだ液冷媒
が、逆止弁46.暖房用キャピラリチューブ49.接続
点65と、その室内側熱交換器54に合った暖房用キャ
ピラリチューブ49を設けた暖房主回路47を設ける一
方、冷房用2次キャピラリチューブ41.源側三方弁4
0.接続部66、インジェクション用キャピラリチュー
ブ61、インジェクションポート52と、一部の液冷媒
を流すようにしたものであるから、1台の運転において
も、能力は十分に得られるのである。Next, during heating, when two units are operated simultaneously, the compressor 34
.. Four-way valve 35. Gas side three-way valve 60. gas side solenoid valve 66,
67. Indoor heat exchanger 54. 55° check valve 46.
46. Heating capillary tube 49.50. Connection point 6
5. Outdoor heat exchanger 36. Four-way valve 35. Accumulator 61. A refrigerant circuit is constructed in the order of the compressor 34, and at this time,
In the indoor heat exchanger 64.65, the condensed liquid refrigerant is
In the main heating circuits 47 and 48, which correspond to the number of rooms, it flows through independent circuits and is depressurized, while a part of the liquid refrigerant condensed in the indoor heat exchangers 54 and 55 is used for cooling. Secondary capillary tube 4.1, 42° connection point 67, source side three-way valve 40. The refrigerant flows to the connection point 66 and the injection capillary tube 51, where it is further depressurized, flows to the injection port 52, is injected into the compressor 34, and the refrigerant circulates to the indoor heat exchanger 64.55. This increases heating capacity. or,
When one heating unit is in operation, for example, when the No. 1 indoor unit 32 is in operation, the liquid refrigerant condensed in the indoor heat exchanger 64 flows through the check valve 46. Heating capillary tube 49. A heating main circuit 47 is provided with a connection point 65 and a heating capillary tube 49 that matches its indoor heat exchanger 54, while a cooling secondary capillary tube 41. Source side three-way valve 4
0. Since a part of the liquid refrigerant is allowed to flow through the connection part 66, the injection capillary tube 61, and the injection port 52, sufficient capacity can be obtained even when one unit is operated.
このように本発明は、室外ユニットにおいて、冷房時は
、冷房主回路において、冷房用1次キャピラリチューブ
と、更に、室内ユニット数に応じて冷房用2次キャピラ
リチューブを設け、暖房時は、室内側熱交換器で凝縮さ
れた液冷媒が室外ユニット内に流れ、室内ユニット数に
応じた暖房主回路中の暖房用キャピラリチューブを通過
させる一方、一部の液冷媒を、前記冷房用2次キャピラ
リチューブと、冷房用1次キャピラリチューブとの間よ
り、インジェクション用キャピラリチューブを介してイ
ンジェクションポートに戻す回路に構成したものである
から、冷房時、1台運転と、2台同時運転で、それぞれ
最大能力を引き出すべく、減圧量を変え、即ち、冷房用
2次キャピラリチューブは、2台同時運転中、サイクル
全体がらすると、並列となり冷房用1次キャピラリチュ
ーブと、冷暖用2次キャピラリチューブの分割比率を変
えることとなり、1台運転時、及び、2台同時運転時の
いずれの場合も、最大能力を引き出すことが出来るので
ある。In this way, the present invention provides an outdoor unit with a primary capillary tube for cooling in the cooling main circuit during cooling, and a secondary capillary tube for cooling depending on the number of indoor units; The liquid refrigerant condensed in the inner heat exchanger flows into the outdoor unit and passes through heating capillary tubes in the heating main circuit according to the number of indoor units, while a portion of the liquid refrigerant is passed through the cooling secondary capillary tube. Since the circuit is configured to return from between the tube and the primary capillary tube for cooling to the injection port via the capillary tube for injection, during cooling, the maximum In order to bring out the capacity, the amount of pressure reduction is changed. In other words, when two units are operating simultaneously, the secondary capillary tubes for cooling become parallel when considering the entire cycle, and the division ratio of the primary capillary tube for cooling and the secondary capillary tube for cooling/heating is changed. This makes it possible to bring out the maximum performance both when one unit is operated and when two units are operated simultaneously.
又、暖房時においては、2台同時運転時、凝縮能力が大
きくなるから、高圧圧力は低下し、キャピラリチューブ
は減圧量(抵抗)があまり変化しないと云う特性を利用
し、冷房時のようにキャピラリチューブを分割すること
なく、ロー付箇所等も増やすことなく、低コストに能力
調整を行ない、且)インジェクション量において、2台
同時運転中は接続部66の圧力が高圧圧力の低下により
、大きく下がる従来の回路と比べ本発明は冷房用2次キ
ャピラリチューブが、並列にある為、接続部の圧力が、
高圧圧力の低下による影響をうけず、1台運転時の接続
部の圧力に近い適切なインジェクション量を得ることが
でき、2台運転時の総合能力は更に犬とすることが出来
るなど、1台及び2台同時運転時の冷房及び暖房能力を
従来のものより大きく、しかもそれぞれ最大に、尚かつ
コストも安く作ることが出来るなどの実用的効果を発揮
するものである。Also, during heating, when two units are operated simultaneously, the condensing capacity increases, so the high pressure decreases, and the capillary tube uses the characteristic that the amount of pressure reduction (resistance) does not change much. The capacity can be adjusted at low cost without dividing the capillary tube or increasing the number of brazed parts, and) In terms of injection volume, when two units are operated simultaneously, the pressure at the connection part 66 will decrease significantly due to the drop in high pressure. Compared to the conventional circuit, the pressure at the connection part is lower because the secondary capillary tubes for cooling in the present invention are in parallel.
It is not affected by the drop in high pressure pressure, and it is possible to obtain an appropriate injection amount close to the pressure at the connection part when operating one unit, and the overall capacity when operating two units can be further improved. Moreover, when two units are operated at the same time, the cooling and heating capacities are greater than those of conventional units, and each unit can be manufactured to its maximum capacity at a low cost.
第1図は、従来の説明に付するヒートポンプ成分離形空
気調和機の冷媒回路図、第2図は本発明によるヒートポ
ンプ成分離形空気調和機の冷媒回路図である。
31・・・・・・室外ユニッ)、32.33・・・・・
・室内ユニット、36・・・・・・室外側熱交換器、3
7・・・・・・逆止弁、38・・・・・・冷房主回路、
39・・・・・・冷房用1次キャピラリチューブ、40
・・・・・・源側三方弁、41゜42・・・・・・冷房
用2次キャピラリチューブ、43゜44・・・・・・源
側電磁弁、45.46・・・・・・逆止弁、47.48
・・・・・・暖房主回路、49.50・・川・暖房用キ
ャピラリチューブ、61・・・・・・インジェクション
用キャピラリチューブ、52・・川・インジェクション
ポー)、54. 55・・・・・・室内側熱交換器。FIG. 1 is a refrigerant circuit diagram of a heat pump separable air conditioner to be explained in the related art, and FIG. 2 is a refrigerant circuit diagram of a heat pump separable air conditioner according to the present invention. 31...Outdoor unit), 32.33...
・Indoor unit, 36...Outdoor heat exchanger, 3
7... Check valve, 38... Cooling main circuit,
39... Primary capillary tube for cooling, 40
......Source side three-way valve, 41゜42...Secondary capillary tube for cooling, 43゜44...Source side solenoid valve, 45.46... Check valve, 47.48
... Heating main circuit, 49.50... River/heating capillary tube, 61... Injection capillary tube, 52... River/injection port), 54. 55...Indoor heat exchanger.
Claims (1)
続したマルチタイプのヒートポンプ成分離形空気調和機
において、前記室外ユニット内に設けられた室外側熱交
換器、冷房時流通の逆止弁、冷房用1次キャビラリチー
−プ、源側三方弁、室内数に応じて並列に設けられた冷
房用2次キャピヲリチューブ、源側電磁弁をそれぞれ接
続した冷房主回路と、前記複数台の室内ユニットに設け
られた室内側熱交換器よシ室外ユニットに流れ、前記並
列に設けられた源側電磁弁との間より、室内ユニット数
に応じて暖房時流通の逆止弁、暖房用キャピラリチュー
ブを接続して構成した暖房回路とを有し、この暖房回路
は、前記室外側熱交換器と、前記冷房時流通の逆止弁間
に接続されると共に、前記冷房主回路の冷房用1次キャ
ビシリチューブと、源側三方弁との間を、インジェクシ
ョン用キャピラリチューブを介して、圧縮機側のインジ
ェクションポートに接続したヒートポンプ成分離形空気
調和機。In a multi-type heat pump component air conditioner in which multiple indoor units are connected to one outdoor unit, an outdoor heat exchanger provided in the outdoor unit, a check valve for circulation during cooling, A cooling main circuit to which a primary cooling cavity cheap, a source three-way valve, a cooling secondary capillary tube installed in parallel according to the number of rooms, and a source solenoid valve are respectively connected, and the plurality of indoor units. The flow flows through the indoor heat exchanger installed at The heating circuit is connected between the outdoor heat exchanger and the cooling flow check valve, and the heating circuit is connected to the cooling primary cabinet of the cooling main circuit. This is a heat pump separation type air conditioner that connects the SiriTube and source side three-way valve to the injection port on the compressor side via an injection capillary tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12697182A JPS5918349A (en) | 1982-07-20 | 1982-07-20 | Heat pump system separation type air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12697182A JPS5918349A (en) | 1982-07-20 | 1982-07-20 | Heat pump system separation type air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5918349A true JPS5918349A (en) | 1984-01-30 |
Family
ID=14948421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12697182A Pending JPS5918349A (en) | 1982-07-20 | 1982-07-20 | Heat pump system separation type air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5918349A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60155571A (en) * | 1984-01-23 | 1985-08-15 | 工業技術院長 | Manufacture of titanium carbonitride ceramic by normal baking process |
JPS63111154A (en) * | 1986-10-29 | 1988-05-16 | Agency Of Ind Science & Technol | Titanium carbonitride ceramic material containing trace amount of iron-group metal |
US5551116A (en) * | 1994-11-14 | 1996-09-03 | Dekelaita; Nergal | Device to refresh wipers in use |
-
1982
- 1982-07-20 JP JP12697182A patent/JPS5918349A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60155571A (en) * | 1984-01-23 | 1985-08-15 | 工業技術院長 | Manufacture of titanium carbonitride ceramic by normal baking process |
JPS6353150B2 (en) * | 1984-01-23 | 1988-10-21 | Kogyo Gijutsu Incho | |
JPS63111154A (en) * | 1986-10-29 | 1988-05-16 | Agency Of Ind Science & Technol | Titanium carbonitride ceramic material containing trace amount of iron-group metal |
US5551116A (en) * | 1994-11-14 | 1996-09-03 | Dekelaita; Nergal | Device to refresh wipers in use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106052216A (en) | Method for controlling electronic expansion valves during multi-connected air conditioning unit heating | |
US4516408A (en) | Refrigeration system for refrigerant heating type air conditioning apparatus | |
JPH05332630A (en) | Air conditioner | |
US6038873A (en) | Air conditioner capable of controlling an amount of bypassed refrigerant according to a temperature of circulating refrigerant | |
CN212538379U (en) | Condenser flow path and air conditioner | |
KR100528292B1 (en) | Heat-pump type air conditioner | |
JPH1114177A (en) | Air conditioner | |
JPS5918349A (en) | Heat pump system separation type air conditioner | |
KR100225634B1 (en) | Coolant flow control apparatus for air conditioner | |
US12111082B2 (en) | Air conditioning apparatus | |
US11397015B2 (en) | Air conditioning apparatus | |
JPS5849863A (en) | Refrigerating cycle of heat pump type hot-water supply machine | |
JPS63286676A (en) | Air conditioner | |
JPH03129259A (en) | Multi-room type air conditioner | |
JP2611297B2 (en) | Air conditioner | |
JPH10141815A (en) | Air conditioner | |
JPS6124955A (en) | Air conditioner | |
JPS5969663A (en) | Refrigeration cycle | |
JPS5989959A (en) | Separation type air conditioner | |
JPS637314B2 (en) | ||
CN117847706A (en) | Air conditioner | |
CN115077272A (en) | Air-cooled heat exchange system | |
JPS60248972A (en) | Heat pump type air conditioner | |
JPS61211669A (en) | Air conditioner | |
JPS59145460A (en) | Multi-chamber type heat pump system air conditioner |