JPS5969663A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS5969663A
JPS5969663A JP17760082A JP17760082A JPS5969663A JP S5969663 A JPS5969663 A JP S5969663A JP 17760082 A JP17760082 A JP 17760082A JP 17760082 A JP17760082 A JP 17760082A JP S5969663 A JPS5969663 A JP S5969663A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
expansion valve
heat exchanger
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17760082A
Other languages
Japanese (ja)
Inventor
今飯田 毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17760082A priority Critical patent/JPS5969663A/en
Publication of JPS5969663A publication Critical patent/JPS5969663A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷凍サイクィレに関する。[Detailed description of the invention] FIELD OF THE INVENTION The present invention relates to frozen cyquiles.

従来空気調和機の冷媒回路に使用されている絞り装置と
しては、毛細管などがあるが、能力可変型圧縮機を使用
した冷凍サイクルを制御するためには、複数個の毛細管
を圧縮機の能力に応じて切換えて使用し々ければ、十分
な制御ができ々い。
Conventionally, the throttling device used in the refrigerant circuit of an air conditioner includes a capillary tube, but in order to control a refrigeration cycle using a variable capacity compressor, multiple capillary tubes are used to adjust the capacity of the compressor. If you switch over and use them as needed, you will not be able to achieve sufficient control.

また、従来のガス式膨張弁は、蒸発器の出口の冷媒過熱
度を検知してこれが一定となるように絞シ量を加減し冷
媒流量を制御するので、蒸発器の一部分に過熱した冷媒
ガスが存在し、過熱した冷媒ガスの熱伝達率は液・ガス
2相状態の沸騰熱伝達率に比べて非常に小さいから、効
率の悪い運転状態となっている。
In addition, conventional gas-type expansion valves detect the degree of superheating of the refrigerant at the outlet of the evaporator and control the flow rate of the refrigerant by adjusting the amount of throttling so that the degree of superheating at the outlet of the evaporator remains constant. exists, and the heat transfer coefficient of the superheated refrigerant gas is much smaller than the boiling heat transfer coefficient of the two-phase liquid/gas state, resulting in an inefficient operating state.

さらに、蒸発器が多サーキット分岐回路を有する場合に
、各サーキット毎の熱負荷が異なると、ガス式膨張弁は
冷媒の過熱度を検知して制御をしているので、最も熱負
荷の少ないサーキットに合わせて冷媒流量制御が行なわ
れ、熱負荷の大きなサーキットは過熱した冷媒が大部分
を占め、蒸発器全体を有効に使用することを阻害する。
Furthermore, if the evaporator has multiple circuit branch circuits and the heat load differs for each circuit, the gas expansion valve detects and controls the degree of superheat of the refrigerant, so the circuit with the least heat load is The refrigerant flow rate is controlled accordingly, and in a circuit with a large heat load, superheated refrigerant occupies most of the circuit, which prevents effective use of the entire evaporator.

さらにまた、従来の絞り装置は蒸発器出口の過熱度制御
を行なっているので、凝縮器出口の過冷却度制御につい
ては何ら制御をしていないから、冷凍サイクルの運転状
態によっては、凝縮器に過大量の液冷媒が溜りこんで冷
媒凝縮圧力を異常に上げたシ、又は凝縮器で完全に冷媒
が液化せずにガス状で絞り装置に入り、加熱能力を低下
させたりしている°。
Furthermore, since conventional throttling devices control the degree of superheating at the outlet of the evaporator, they do not control the degree of supercooling at the outlet of the condenser. Either an excessive amount of liquid refrigerant has accumulated and the refrigerant condensation pressure has increased abnormally, or the refrigerant is not completely liquefied in the condenser and enters the throttling device in a gaseous state, reducing heating capacity.

本発明はこのよう々事情に鑑みて提案されたもので、圧
縮機から吐出される広範囲の冷媒流量変化に応じて蒸発
器および凝縮器を常に良好に制御する冷凍サイクルを提
供することを目的とし、圧縮機、凝縮器、熱電膨張弁。
The present invention was proposed in view of the above circumstances, and an object of the present invention is to provide a refrigeration cycle in which the evaporator and condenser are always well controlled in response to a wide range of changes in the flow rate of refrigerant discharged from the compressor. , compressors, condensers, thermoelectric expansion valves.

蒸発器を環状に接続してなる冷凍サイクルにおいて、凝
縮器および熱電膨張弁前の温度を検出して作動する熱電
膨張弁を具えたことを特徴とする。
The refrigeration cycle includes an evaporator connected in a ring, and is characterized by comprising a thermoelectric expansion valve that operates by detecting the temperature in front of the condenser and the thermoelectric expansion valve.

本発明の一実施例を図面について説明すると、第1図は
その系統図、第2図は第1図の熱電膨張弁を示す拡大縦
断面図、第3図は第1図における冷媒のエンタルピー圧
力線図、第4図は第2図の熱電膨張弁のヒータ電圧と冷
媒流量との関係を示す線図である。
An embodiment of the present invention will be explained with reference to the drawings. FIG. 1 is a system diagram thereof, FIG. 2 is an enlarged vertical sectional view showing the thermoelectric expansion valve of FIG. 1, and FIG. 3 is the enthalpy pressure of the refrigerant in FIG. 1. 4 is a diagram showing the relationship between the heater voltage of the thermoelectric expansion valve of FIG. 2 and the refrigerant flow rate.

まず、第1図において、1は能力可変型又は定速型圧縮
機、2は四方弁、3は室外側熱交換器、4は分配器、5
. 6. 7. 8はそれぞれ逆止弁、10は熱電膨張
弁、14は分配器、15は室内側熱交換器、16はアキ
ュムレータ、1.7はアキュムレータ熱交換器、18は
圧縮機吸入管、19は逆止弁7又は逆止弁6を通過した
冷媒がアキュームレ−タ熱交換器17に至る配管で、圧
縮機吸入管18と熱交換できるように配設されている。
First, in Fig. 1, 1 is a variable capacity or constant speed compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a distributor, and 5 is a
.. 6. 7. 8 is a check valve, 10 is a thermoelectric expansion valve, 14 is a distributor, 15 is an indoor heat exchanger, 16 is an accumulator, 1.7 is an accumulator heat exchanger, 18 is a compressor suction pipe, 19 is a check The refrigerant that has passed through the valve 7 or the check valve 6 is connected to the accumulator heat exchanger 17 through piping, which is arranged so that it can exchange heat with the compressor suction pipe 18.

20は電子制御装置、21は室外側熱交換器3を通る冷
媒配管の中央部に設置した温度検出端、22は熱電膨張
弁10に流れ込む冷媒配管に設置された温度検出端、2
3は室内側熱交換器15を通る冷媒配管の中央部に設置
した温度検出端である。
20 is an electronic control device; 21 is a temperature detection end installed in the center of the refrigerant pipe passing through the outdoor heat exchanger 3; 22 is a temperature detection end installed in the refrigerant pipe flowing into the thermoelectric expansion valve 10;
3 is a temperature detection end installed in the center of the refrigerant pipe passing through the indoor heat exchanger 15.

次に、第2図において、熱電膨張弁10は大別すれば、
弁部分101と弁駆動部分120とより構成され、弁部
分101は弁棒102と弁体103とからなり、弁棒1
02は弁座部104.流出ポート105.流入ボート1
06を具え、各ポート105,106にはそれぞれ冷凍
管107,108が接続されている。弁体103は弁棒
102に形成された孔114内に上下に摺動自在に挿入
されている〇 一方、弁駆動部分120は上ケーシング121、下ケー
シング122.弁棒102により密閉空間123を形成
し、密閉空間123内には2つのバイメタル124,1
25が収納され1両バイメタル124,125はその両
端にてスペーサ126,127を介して互いに並設され
、それぞれの中央部に孔128゜129が穿設され、上
ケーシング121の内面中央部に固定された支持ビン1
30が上バイメタル124の孔128に上方から挿入さ
れ、また弁体103の上端に形成されたピン部131が
下バイメタル125の孔129に下方から挿入されてそ
れぞれ密閉空間123内に支持される。なお弁体103
は座132を介してスプリング133により常に上方向
に付勢されている。134は上バイメタル124を強制
加熱する電気ヒータで、上バイメタル124に巻装され
ている。135゜136は電気ヒータ134の両端にそ
れぞれ接続された端子で、それぞれ上ケーシング121
を貫通して設けられ上バイメタル12−4は電気ヒータ
134によって強制加熱されることによりその両端が下
方に移動するよう変形し、スペーサ126,127.バ
イメタル125を介してスプリング133に抗して弁体
103を下方に押し下げ、弁座104と弁体103の下
端との間を閉弁方向に動かす。
Next, in FIG. 2, the thermoelectric expansion valve 10 can be roughly divided into:
It is composed of a valve part 101 and a valve driving part 120, and the valve part 101 is composed of a valve stem 102 and a valve body 103.
02 is the valve seat portion 104. Outflow port 105. Inflow boat 1
06, and freezing tubes 107 and 108 are connected to each port 105 and 106, respectively. The valve body 103 is inserted into a hole 114 formed in the valve stem 102 so as to be slidable up and down. Meanwhile, the valve driving portion 120 is inserted into an upper casing 121, a lower casing 122, and so on. A sealed space 123 is formed by the valve stem 102, and two bimetals 124, 1 are arranged in the sealed space 123.
25 is stored, and one bimetal 124 and 125 are arranged in parallel with each other at both ends with spacers 126 and 127 interposed therebetween, and holes 128° and 129 are bored in the center of each, and they are fixed to the center of the inner surface of the upper casing 121. Support bin 1
30 is inserted from above into the hole 128 of the upper bimetal 124, and a pin portion 131 formed at the upper end of the valve body 103 is inserted from below into the hole 129 of the lower bimetal 125, and each is supported in the sealed space 123. Note that the valve body 103
is always urged upward by a spring 133 via a seat 132. 134 is an electric heater that forcibly heats the upper bimetal 124, and is wound around the upper bimetal 124. 135° and 136 are terminals connected to both ends of the electric heater 134, respectively, and the upper casing 121.
The upper bimetal 12-4 provided through the spacers 126, 127, . The valve body 103 is pushed down against the spring 133 via the bimetal 125, and the space between the valve seat 104 and the lower end of the valve body 103 is moved in the valve closing direction.

この場合の弁の開度は、電気ヒータ134への通電電力
量により調整され、第4図に示すように、大電力を通せ
ば、上バイメタル124は大きく変形湾曲し、弁の開度
が小さくなり、逆に電気ヒータ134への電力が小さい
場合には、上バイメタル124の変形量は少なく弁の開
度は太きい。なお下バイメタル125は孔114と弁体
103との摺動面から密閉空間123内に流入した冷媒
および周囲の空気温度による温度影響を受は変形するも
ので、負荷状態補償用のバイメタルでちる。
In this case, the opening degree of the valve is adjusted by the amount of electric power applied to the electric heater 134, and as shown in FIG. Conversely, when the electric power to the electric heater 134 is small, the amount of deformation of the upper bimetal 124 is small and the opening degree of the valve is large. The lower bimetal 125 deforms under the influence of the temperature of the refrigerant flowing into the closed space 123 from the sliding surface between the hole 114 and the valve body 103 and the ambient air temperature, and is made of a bimetal for load condition compensation.

このような装置において、冷房運転時は、第1図の実線
矢印に示すように、冷媒が流れ、このとき、室外熱交換
器3は凝縮器として、室内熱交換器15は蒸発器として
それぞれ動作して室内を冷房し、1だ暖房運転時は、同
図中に破線矢印で示すように、冷媒の流れは四方弁20
作用により冷房運転時と逆方向と々す、室内側熱交換器
15は凝縮器として動作し室内を暖房する。
In such a device, during cooling operation, the refrigerant flows as shown by the solid arrow in Fig. 1, and at this time, the outdoor heat exchanger 3 operates as a condenser, and the indoor heat exchanger 15 operates as an evaporator. During the heating operation, the refrigerant flow is controlled by the four-way valve 20, as shown by the dashed arrow in the figure.
Due to this action, the indoor heat exchanger 15 moves in the opposite direction to that during cooling operation, and operates as a condenser to heat the room.

その際の代表的々運転状態は第3図圧力(p)−エンタ
ルピ(i)線図上に示すように、冷房運転時は、まず圧
縮機1から吐出された高温高圧の吐出冷媒(状態a)は
四方弁2を介して室外熱交換器3に到り、こ\で凝縮液
化し、このときの冷媒の状態は状態すである。更に冷媒
は分配器4.逆fト弁6を通シ、配管19内で吸入管1
8と熱交換して過冷却して状態Cになり、ついでアキュ
ムレータ熱交換器17でアキュムレータ16内の液冷媒
と熱交換し、更に過冷却して状態dになり、ついで熱電
膨張弁10により減圧、膨張しく状態e)、逆止弁89
分配管14を経て室内熱交換器15内で蒸発しく状態f
)、四方弁2を経てアキュムレータ16に入り、こ\で
アキュムレータ熱交換器17で加熱され(状態g)、さ
らに吸入管18を通過するとき配管19で加熱され(状
態h)、圧縮機1に吸込まれる。
Typical operating conditions at that time are shown in the pressure (p)-enthalpy (i) diagram in Figure 3. During cooling operation, first, the high-temperature, high-pressure discharged refrigerant (in state a) discharged from the compressor 1 is ) reaches the outdoor heat exchanger 3 via the four-way valve 2, where it is condensed and liquefied, and the state of the refrigerant at this time is as follows. Furthermore, the refrigerant is distributed through the distributor 4. Pass through the reverse ft valve 6 and connect the suction pipe 1 in the piping 19.
It exchanges heat with the liquid refrigerant in the accumulator 16 in the accumulator heat exchanger 17 and becomes supercooled to state D, and then the pressure is reduced by the thermoelectric expansion valve 10. , expansion state e), check valve 89
The state f is evaporated in the indoor heat exchanger 15 through the distribution pipe 14.
), enters the accumulator 16 via the four-way valve 2, is heated in the accumulator heat exchanger 17 (state g), and is further heated in the piping 19 as it passes through the suction pipe 18 (state h), and then flows into the compressor 1. It gets sucked in.

次に、暖房運転時には、冷媒は圧縮機1゜四方弁2.室
内熱交換器15.分配管14゜逆止弁7.配管19.ア
キュムレータ熱交換器17.熱電膨張弁10.逆止弁5
分配器4゜室外熱交換器3.四方弁2.アキュムレータ
16、配管18.圧縮機1の順に循環する。
Next, during heating operation, the refrigerant is pumped through the compressor 1° four-way valve 2. Indoor heat exchanger 15. Distribution pipe 14° check valve 7. Piping 19. Accumulator heat exchanger 17. Thermoelectric expansion valve 10. Check valve 5
Distributor 4° Outdoor heat exchanger 3. Four-way valve 2. Accumulator 16, piping 18. It circulates in the order of compressor 1.

こうして、第3図に示すような運転状態は、熱電膨張弁
10の容量および冷凍サイクル内の冷媒量を適宜選定す
ることにより容易に達成される。
Thus, the operating state shown in FIG. 3 can be easily achieved by appropriately selecting the capacity of the thermoelectric expansion valve 10 and the amount of refrigerant in the refrigeration cycle.

こ\で本発明では、圧縮機1から吐出される冷媒循環量
に応じて凝縮器(冷房時は室外熱交換器3暖房時は室内
熱交換器15)および蒸発器(冷房時は室内熱交換器1
5.暖房時は室外熱交換器3)を最適に動作させるだめ
の絞り装置として熱電膨張弁10があり、下記の動作を
行なう。
Therefore, in the present invention, depending on the circulating amount of refrigerant discharged from the compressor 1, the condenser (outdoor heat exchanger 3 for cooling, indoor heat exchanger 15 for heating) and the evaporator (indoor heat exchanger for cooling) Vessel 1
5. During heating, there is a thermoelectric expansion valve 10 as a throttling device for optimally operating the outdoor heat exchanger 3), which performs the following operations.

まず、冷房運転時には、室外側熱交換器3を通る冷媒配
管の中央部に設置された温度検出端21により検出され
た温度t1と、熱電膨張弁10直前の高圧配管に設置さ
れた温度検出端22により検出された温度t2が電子制
御装置20内で1.−12の値すなわち過冷却度を前も
って決められた値Δtcにするように、熱電膨張弁10
内の電気ヒータ134に供給する電圧を制御し、これに
より熱電膨張弁10の絞り量を変化して冷媒流量を制御
する。
First, during cooling operation, the temperature t1 detected by the temperature detection end 21 installed in the center of the refrigerant pipe passing through the outdoor heat exchanger 3 and the temperature detection end installed in the high pressure pipe just before the thermoelectric expansion valve 10 The temperature t2 detected by 22 is set to 1 within the electronic control device 20. -12, that is, the degree of subcooling, to a predetermined value Δtc.
The voltage supplied to the electric heater 134 inside the thermoelectric expansion valve 10 is controlled, thereby changing the throttle amount of the thermoelectric expansion valve 10 and controlling the refrigerant flow rate.

その際、j+   t2の値が設定値Δtc よりも太
きいときは熱電膨張弁10の電気ヒータ134への供給
電圧を減少するので、熱電膨張弁10の開度は増加し始
め、1.−12の値は減少し、一方t、−t2の値が設
定値Δtc よシも小さいときは、熱電膨張弁10の電
気ヒータ134への供給電圧を増加するので、熱電膨張
弁10の開度は減少し始め、j+   L2の値は増加
する。
At this time, when the value of j+t2 is larger than the set value Δtc, the voltage supplied to the electric heater 134 of the thermoelectric expansion valve 10 is reduced, so the opening degree of the thermoelectric expansion valve 10 begins to increase. -12 decreases, and on the other hand, when the values t and -t2 are smaller than the set value Δtc, the voltage supplied to the electric heater 134 of the thermoelectric expansion valve 10 is increased, so the opening degree of the thermoelectric expansion valve 10 is increased. starts to decrease and the value of j+L2 increases.

このようにして熱電膨張弁前の過冷却度t、−t2の値
は設定値ΔtcK’&るように熱電膨張弁の開度の自動
調節が行なわれる。
In this way, the opening degree of the thermoelectric expansion valve is automatically adjusted so that the subcooling degree t, -t2 before the thermoelectric expansion valve is set to the set value ΔtcK'&.

次に、暖房運転時には、室内側熱交換器15を通る冷媒
配管の中央部に設置された温度検出端23により検出さ
れた温度t、と、熱電膨張弁10直前の高圧配管に設置
された温度検出端22によシ検出された温度t2が。
Next, during heating operation, the temperature t detected by the temperature detection end 23 installed in the center of the refrigerant pipe passing through the indoor heat exchanger 15, and the temperature t installed in the high pressure pipe immediately before the thermoelectric expansion valve 10 The temperature t2 detected by the detection end 22 is.

電子制御装置20内で、13−12の値すなわち過冷却
度を前もって決められだ値Δ1++にするように熱電膨
張弁10内の電気ヒータ134に供給する電圧を制御し
、これにより熱電膨張弁10の絞り量が変化して冷媒流
量を制御する。
Within the electronic control unit 20, the voltage supplied to the electric heater 134 within the thermoelectric expansion valve 10 is controlled so that the value of 13-12, that is, the degree of subcooling, is a predetermined value Δ1++, and thereby the thermoelectric expansion valve 10 The amount of throttling changes to control the refrigerant flow rate.

この際にΔtcおよびΔt uの値は、アキュムレータ
熱交換器17および配管18と配管19における熱交換
量によって異なるが、第3図に示すように、凝縮器出口
にて冷媒の状態がbとなシ、熱電膨張弁前で状態dとな
ったときのdとbの間の過冷却度から設定すれば良く、
通常の冷房および暖房運転では20〜30’C程度にな
る。
At this time, the values of Δtc and Δt u vary depending on the amount of heat exchanged between the accumulator heat exchanger 17 and the pipes 18 and 19, but as shown in FIG. B, the degree of supercooling can be set from the degree of supercooling between d and b when state d is reached in front of the thermoelectric expansion valve.
In normal cooling and heating operations, the temperature is about 20 to 30'C.

このような装置によれば、下記の効果が奏せられる。According to such a device, the following effects can be achieved.

(1)冷暖房時とも、過冷却度が一定になるように熱電
膨張弁の開度を調節するので、凝縮器内に多量の液冷媒
が溜シこんで凝縮圧力を異常に上げた。す、また凝縮器
内で冷媒が液化せずにガス状で絞り装置に入シ、凝縮器
の放熱能力を損うことを防止し、広範囲の条件で凝縮器
を有効に使用することができる。
(1) Since the opening degree of the thermoelectric expansion valve is adjusted so that the degree of subcooling remains constant during both cooling and heating, a large amount of liquid refrigerant accumulates in the condenser, causing an abnormal increase in condensing pressure. Furthermore, the refrigerant does not liquefy in the condenser and enters the throttling device in a gaseous state, thereby preventing damage to the heat dissipation ability of the condenser, allowing the condenser to be used effectively under a wide range of conditions.

(2)蒸発器に対しては、冷媒は液ガス混合状態(第3
図f点)で蒸発器を出ておシ、アキュムレータ16内に
液ガス混合状態となって冷媒が流れ込み、これらの液冷
媒はアキュムレータ熱交換器17で加熱され(第3図g
点)さらに、吸入管18中で高圧配管19と熱交換し、
飽和ガスに近い状態(第3図り点)で圧縮機に吸込まれ
る。
(2) For the evaporator, the refrigerant is in a liquid-gas mixed state (third
The refrigerant exits the evaporator at point f in Figure 3 and flows into the accumulator 16 in a liquid-gas mixed state, and these liquid refrigerants are heated in the accumulator heat exchanger 17 (point g in Figure 3).
point) Furthermore, heat is exchanged with the high pressure pipe 19 in the suction pipe 18,
The gas is sucked into the compressor in a state close to saturated gas (third point).

このため、従来は蒸発器の過熱度制御をしたために蒸発
器の出口部分に過熱した冷媒ガスが存在して冷媒側熱伝
達率が低く、蒸発器を有効に作動させることができなか
ったが、本発明では冷媒は液ガス混合状態で蒸発器を出
ており、蒸発器を有効に作動させることが可能と々つだ
For this reason, in the past, because the degree of superheating of the evaporator was controlled, superheated refrigerant gas existed at the outlet of the evaporator, resulting in a low heat transfer coefficient on the refrigerant side, making it impossible to operate the evaporator effectively. In the present invention, the refrigerant leaves the evaporator in a liquid-gas mixed state, making it possible to operate the evaporator effectively.

このことは蒸発器が、第1図に示したように、多サーキ
ットに分岐している場合に、各サーキット毎の熱負荷が
異なっていても。
This is true even if the evaporator is branched into multiple circuits, as shown in Figure 1, and the heat load for each circuit is different.

過熱度制御根太きな影響を受けず、蒸発器を有効に作動
させることを可能とする。
To enable an evaporator to operate effectively without being affected by superheat degree control.

(3)第1図に示したように、4個の逆上弁5゜6.7
.8を用いて回路を形成しているので冷房および暖房と
もに1組の熱電膨張弁10と、温度検出端21,22.
23および電子制御装置20で済み、冷凍回路の構成が
簡素化し、安価となる。
(3) As shown in Figure 1, four reverse valves 5° 6.7
.. Since the circuit is formed using thermoelectric expansion valves 10 and temperature detection terminals 21, 22.8 for both cooling and heating.
23 and the electronic control device 20, the configuration of the refrigeration circuit is simplified and the cost becomes low.

蒸上のように1本発明においては、熱電膨張弁10によ
り、冷媒の膨張弁前の過冷却度を一定にするように制御
することにより、広範囲に冷媒流量が変化する能力可変
圧縮機を使用したり、定速圧縮機を広範囲な運転条件で
使用した場合でも、凝縮器および蒸発器を有効に作動さ
せて効率の良い空気調和を行Aうと\もに、圧縮機の過
熱運転や液戻りを少なくシ、寿命の上でも有利となり、
また冷暖房いずれの場合も一個の絞り装置で済むので、
コストを低減することができる。
As described above, the present invention uses a variable capacity compressor in which the refrigerant flow rate can be varied over a wide range by controlling the degree of subcooling of the refrigerant before the expansion valve to be constant using the thermoelectric expansion valve 10. Even when a constant speed compressor is used under a wide range of operating conditions, the condenser and evaporator must be operated effectively to achieve efficient air conditioning, and the compressor may not be overheated or the liquid may return. It is advantageous in terms of lifespan as it reduces
In addition, only one diaphragm device is needed for both heating and cooling.
Cost can be reduced.

要するに本発明によれば、圧縮機、凝縮器。In short, according to the invention, a compressor, a condenser.

熱電膨張弁、蒸発器を環状に接続してなる冷凍サイクル
において、凝縮器および熱電膨張弁前の温度を検出して
作動する熱電膨張弁を具えたことによシ、高性能、低コ
ストの冷凍サイクルを得るから、本発明は産業上極めて
有益なものである。
In a refrigeration cycle in which a thermoelectric expansion valve and an evaporator are connected in a ring, the thermoelectric expansion valve is activated by detecting the temperature in front of the condenser and thermoelectric expansion valve, resulting in high-performance, low-cost refrigeration. The present invention is industrially extremely useful because of the cycle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は第1
図の熱電膨張弁を示す拡大縦断面図、第3図は第1図に
おける冷媒のエンタルピー圧力線図、第4図は第2図の
熱電膨張弁のヒータ電圧と冷媒流量との関係を示す線図
である。 1・・圧縮機、2・・四方弁、3・・室外側熱交換器、
4・・分配器、5. 6. 7. 8・・逆上弁、10
・・熱電膨張弁、14・・分配管、15・・室内側熱交
換器、16・・アキュムレータ、17・・アキュムレー
タ熱交換器、18・・圧縮機吸入管、19・・配管、2
0・・電子制御装置、21,22.23・・温度検出端
、101・・弁部分、102・・弁棒、103・・弁体
、104・・弁座部、105・・流出ボート、106・
・流入ポート、107゜108・・冷凍管、114・・
孔、120・・弁駆動部分、121・・上ケーシング、
122・・下ケーシング、123・・密閉空間、124
.125・・バイメタル、 126,127・・スペーサ、 128.129・・孔、130・・支持ピン、131・
・ビン部、132・・座、 133・・スプリング、134・・電気ヒータ、135
.136・・端子、 復代理人 弁理士  塚 本 正 文
Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is a system diagram showing an embodiment of the present invention.
3 is an enthalpy pressure diagram of the refrigerant in FIG. 1, and FIG. 4 is a line showing the relationship between the heater voltage and refrigerant flow rate of the thermoelectric expansion valve in FIG. 2. It is a diagram. 1. Compressor, 2. Four-way valve, 3. Outdoor heat exchanger,
4. Distributor, 5. 6. 7. 8. Reverse valve, 10
...Thermoelectric expansion valve, 14.. Distribution pipe, 15.. Indoor heat exchanger, 16.. Accumulator, 17.. Accumulator heat exchanger, 18.. Compressor suction pipe, 19.. Piping, 2
0...Electronic control unit, 21, 22.23...Temperature detection end, 101...Valve portion, 102...Valve stem, 103...Valve body, 104...Valve seat, 105...Outflow boat, 106・
・Inflow port, 107゜108... Freezer pipe, 114...
Hole, 120... Valve drive part, 121... Upper casing,
122... Lower casing, 123... Closed space, 124
.. 125... Bimetal, 126, 127... Spacer, 128.129... Hole, 130... Support pin, 131...
・Bin part, 132...Seat, 133...Spring, 134...Electric heater, 135
.. 136...Terminal, Sub-Agent Patent Attorney Masafumi Tsukamoto

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、熱電膨張弁、蒸発器を環状に接続して
なる冷凍サイクルにおいて、凝縮器および熱電膨張弁前
の温度を検出して作動する熱電膨張弁を具えたことを特
徴とする空気調和機。
An air refrigeration cycle consisting of a compressor, a condenser, a thermoelectric expansion valve, and an evaporator connected in a ring, comprising a thermoelectric expansion valve that operates by detecting the temperature in front of the condenser and the thermoelectric expansion valve. harmonizer.
JP17760082A 1982-10-12 1982-10-12 Refrigeration cycle Pending JPS5969663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17760082A JPS5969663A (en) 1982-10-12 1982-10-12 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17760082A JPS5969663A (en) 1982-10-12 1982-10-12 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS5969663A true JPS5969663A (en) 1984-04-19

Family

ID=16033826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17760082A Pending JPS5969663A (en) 1982-10-12 1982-10-12 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5969663A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186654U (en) * 1984-11-10 1986-06-06
JPS62158966A (en) * 1986-01-08 1987-07-14 株式会社日立製作所 Air conditioner with detector for quantity of refrigerant
JPH03170753A (en) * 1989-11-30 1991-07-24 Mitsubishi Electric Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186654U (en) * 1984-11-10 1986-06-06
JPS62158966A (en) * 1986-01-08 1987-07-14 株式会社日立製作所 Air conditioner with detector for quantity of refrigerant
JPH03170753A (en) * 1989-11-30 1991-07-24 Mitsubishi Electric Corp Air conditioner

Similar Documents

Publication Publication Date Title
JP2761379B2 (en) Air conditioner
JP2006071268A (en) Refrigerating plant
JP4036288B2 (en) Air conditioner
JPS645227B2 (en)
JP4462435B2 (en) Refrigeration equipment
JP4462436B2 (en) Refrigeration equipment
JPH09119749A (en) Air conditioner
JPH07120076A (en) Air conditioner
JPS5969663A (en) Refrigeration cycle
JP2001033110A (en) Refrigerator
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JPS63251760A (en) Refrigerator
JPS5969664A (en) Refrigeration cycle
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JP2002228284A (en) Refrigerating machine
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method
JPH0419408Y2 (en)
JPH0639979B2 (en) Refrigeration cycle equipment
JPS63286664A (en) Heat pump type air conditioner
JPS5849863A (en) Refrigerating cycle of heat pump type hot-water supply machine
JPS63290368A (en) Heat pump type air conditioner
JP2002031417A (en) Refrigerating apparatus
JPS6222391B2 (en)
JPS6322463Y2 (en)