JP4462436B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4462436B2
JP4462436B2 JP2005331128A JP2005331128A JP4462436B2 JP 4462436 B2 JP4462436 B2 JP 4462436B2 JP 2005331128 A JP2005331128 A JP 2005331128A JP 2005331128 A JP2005331128 A JP 2005331128A JP 4462436 B2 JP4462436 B2 JP 4462436B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid level
heat exchanger
level detection
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331128A
Other languages
Japanese (ja)
Other versions
JP2007139257A (en
Inventor
哲也 伊藤
聡 冨岡
隆廣 松永
剛 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2005331128A priority Critical patent/JP4462436B2/en
Publication of JP2007139257A publication Critical patent/JP2007139257A/en
Application granted granted Critical
Publication of JP4462436B2 publication Critical patent/JP4462436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、空気調和機などに適用される冷凍装置に関し、さらに詳しく言えば、凝縮器と蒸発器との間にレシーバタンク(気液分離器)と過冷却熱交換器(SC(サブクール)熱交換器)とが接続されているとともに、さらにレシーバタンクに液面検知手段が設けられている冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus applied to an air conditioner or the like, and more specifically, a receiver tank (gas-liquid separator) and a supercooling heat exchanger (SC (subcool) heat between a condenser and an evaporator. And a refrigerating apparatus in which a liquid level detecting means is provided in the receiver tank.

図6に示すように、空気調和機は室外機1と室内機20とを備え、スプリット型ではそれらが所定の配管を介して接続される。基本的な構成として、室外機1には、圧縮機2,四方弁3,室外ファン4aを有する室外熱交換器4および絞り機構としての例えば膨張弁5とが設けられ、冷媒戻り側の低圧配管にはアキュムレータ7が接続される。   As shown in FIG. 6, the air conditioner includes an outdoor unit 1 and an indoor unit 20, and in the split type, they are connected via a predetermined pipe. As a basic configuration, the outdoor unit 1 is provided with a compressor 2, a four-way valve 3, an outdoor heat exchanger 4 having an outdoor fan 4a, and, for example, an expansion valve 5 as a throttle mechanism, and a refrigerant return side low-pressure pipe Is connected to an accumulator 7.

一方、室内機20には室内ファン21aを有する室内熱交換器21が設けられるが、この例のように、1台の室外機1に対して、例えば2台の室内機20a,20bが接続される多室型空気調和機においては、それらを接続する配管長が長いことや設置の自由度を持たせるため、室内機20a,20bの各々に絞り機構としての例えば膨張弁23が設けられる。   On the other hand, the indoor unit 20 is provided with an indoor heat exchanger 21 having an indoor fan 21a. As shown in this example, for example, two indoor units 20a and 20b are connected to one outdoor unit 1. For example, an expansion valve 23 is provided as a throttle mechanism in each of the indoor units 20a and 20b in order to provide a long piping length for connecting them and a degree of freedom of installation.

また、室外機1側の膨張弁5と室内機20側の膨張弁23との間には、余剰冷媒の調整を行うレシーバタンク(気液分離器)6が設けられる。なお、この例での多室型空気調和機においては、室外機1の圧縮機2として、インバータ制御による可変速型圧縮機2aと一定速型圧縮機2bとが用いられている。   In addition, a receiver tank (gas-liquid separator) 6 for adjusting excess refrigerant is provided between the expansion valve 5 on the outdoor unit 1 side and the expansion valve 23 on the indoor unit 20 side. In the multi-room air conditioner in this example, a variable speed compressor 2a and a constant speed compressor 2b by inverter control are used as the compressor 2 of the outdoor unit 1.

冷房運転時には、図6中実線矢印に示すように、圧縮機2で生成された高温高圧のガス冷媒が室外熱交換器4に送られ、室外空気との熱交換により凝縮されて高温高圧の液冷媒となる。この高温高圧の液冷媒は、膨張弁5とこれに並列に接続された逆止弁5aを通過して(ここでの圧力損失は無視できるレベルに設計されている)、レシーバタンク6に流入する。そして、この高温高圧の液冷媒は、レシーバタンク6から室内熱交換器21,21に送られ、室内機側の電子膨張弁23で減圧されることにより、低温低圧の2相冷媒となる。この2相冷媒が室内空気との熱交換により室内空気を冷却し、自身は加温され蒸発して低温低圧のガス冷媒となる。この低温低圧のガス冷媒は、流路切替弁としての四方弁3およびアキュムレータ7を経て圧縮機2に戻される。このように、冷房運転時、室外熱交換器4側が凝縮器となり、室内熱交換器21,21側が蒸発器となる。   During the cooling operation, as indicated by the solid line arrow in FIG. 6, the high-temperature and high-pressure gas refrigerant generated by the compressor 2 is sent to the outdoor heat exchanger 4 and condensed by heat exchange with the outdoor air, and the high-temperature and high-pressure liquid Becomes a refrigerant. This high-temperature and high-pressure liquid refrigerant passes through the expansion valve 5 and the check valve 5a connected in parallel thereto (the pressure loss here is designed to be negligible) and flows into the receiver tank 6. . The high-temperature and high-pressure liquid refrigerant is sent from the receiver tank 6 to the indoor heat exchangers 21 and 21, and is reduced in pressure by the electronic expansion valve 23 on the indoor unit side to become a low-temperature and low-pressure two-phase refrigerant. The two-phase refrigerant cools the room air by exchanging heat with the room air, and heats itself and evaporates to become a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant is returned to the compressor 2 through the four-way valve 3 and the accumulator 7 as a flow path switching valve. Thus, during the cooling operation, the outdoor heat exchanger 4 side becomes a condenser, and the indoor heat exchangers 21 and 21 side become evaporators.

一方、暖房運転時には四方弁3が切り替えられ、図6中破線矢印に示すように、圧縮機2で生成された高温高圧のガス冷媒は室内熱交換器21,21に送られ、室内空気との熱交換により室内空気を加温し、自身は冷却されて凝縮し高温高圧の液冷媒となる。この高温高圧の液冷媒は、室内機側の電子膨張弁23で減圧されて2相冷媒となり、接続配管を介してレシーバタンク6に入り、膨張弁5で減圧されて低温低圧の2相冷媒となる。そして、室外熱交換器4で室外空気との熱交換により加温され蒸発し、低温低圧のガス冷媒となる。この低温低圧のガス冷媒は、四方弁3およびアキュムレータ7を経て圧縮機2に戻される。このように、暖房運転時には、室外熱交換器4側が蒸発器となり、室内熱交換器21,21側が凝縮器となる。   On the other hand, the four-way valve 3 is switched during the heating operation, and the high-temperature and high-pressure gas refrigerant generated by the compressor 2 is sent to the indoor heat exchangers 21 and 21, as indicated by the broken line arrows in FIG. The room air is heated by heat exchange, and is cooled and condensed to become a high-temperature and high-pressure liquid refrigerant. This high-temperature and high-pressure liquid refrigerant is depressurized by the electronic expansion valve 23 on the indoor unit side to become a two-phase refrigerant, enters the receiver tank 6 through the connection pipe, and is depressurized by the expansion valve 5 to be a low-temperature and low-pressure two-phase refrigerant. Become. And it heats and evaporates by heat exchange with outdoor air in the outdoor heat exchanger 4, and becomes a low-temperature low-pressure gas refrigerant. This low-temperature and low-pressure gas refrigerant is returned to the compressor 2 via the four-way valve 3 and the accumulator 7. Thus, at the time of heating operation, the outdoor heat exchanger 4 side becomes an evaporator, and the indoor heat exchangers 21 and 21 side become condensers.

上記したように、特に1台の室外機に対して複数台の室内機が接続される多室型空気調和機においては、運転モード(冷房もしくは暖房)や運転室内機容量,それに室内外の温度条件によって運転に必要とされる冷媒量が変化するため、レシーバタンク6を設けて余剰冷媒量の調整を行うようにしているが、暖房運転時において、膨張弁5で必要とされる冷媒流量を確保できない場合がある。   As described above, particularly in a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit, the operation mode (cooling or heating), the operating indoor unit capacity, and the indoor / outdoor temperature Since the amount of refrigerant required for operation varies depending on conditions, the receiver tank 6 is provided to adjust the amount of excess refrigerant. However, the refrigerant flow rate required by the expansion valve 5 during heating operation is adjusted. There are cases where it cannot be secured.

この点について、暖房運転時の冷媒状態の変化を示した図7のモリエル線図により説明する。A点での低圧ガス冷媒が圧縮機2に吸い込まれ圧縮されてB点の高圧ガス冷媒になる。この高圧ガス冷媒が室内熱交換器21にて凝縮されC点の高圧液冷媒となる。この高圧ガス冷媒は室内機膨張弁23にて減圧され、かつ、接続配管での圧力損失も加わり、レシーバタンク6の入口のD点では2相冷媒となる。この2相冷媒は室外機膨張弁5で減圧されることにより、室外機膨張弁5の出口側のE点では低圧2相冷媒となる。この低圧2相冷媒は室外熱交換器4で蒸発されてA点に戻る。   This point will be described with reference to the Mollier diagram of FIG. 7 showing changes in the refrigerant state during the heating operation. The low-pressure gas refrigerant at point A is sucked into the compressor 2 and compressed to become high-pressure gas refrigerant at point B. This high-pressure gas refrigerant is condensed in the indoor heat exchanger 21 to become a high-pressure liquid refrigerant at point C. This high-pressure gas refrigerant is depressurized by the indoor unit expansion valve 23, and pressure loss in the connection pipe is also added, so that it becomes a two-phase refrigerant at point D at the inlet of the receiver tank 6. The two-phase refrigerant is decompressed by the outdoor unit expansion valve 5, and becomes a low-pressure two-phase refrigerant at point E on the outlet side of the outdoor unit expansion valve 5. The low-pressure two-phase refrigerant is evaporated by the outdoor heat exchanger 4 and returns to the point A.

ここで、問題となるのは、図7のサイクルで暖房運転を行う際、レシーバタンク6内にいつでも液冷媒が溜まることを保証できないという点である。レシーバタンク6内に液冷媒が溜まらないと、室外機膨張弁5での通過流量を確保できず、室外熱交換器4での蒸発能力低下→低圧低下→暖房能力不足という運転になってしまう。   Here, the problem is that it is not possible to guarantee that the liquid refrigerant is always accumulated in the receiver tank 6 when the heating operation is performed in the cycle of FIG. If the liquid refrigerant does not accumulate in the receiver tank 6, the passage flow rate in the outdoor unit expansion valve 5 cannot be ensured, and the operation of reducing the evaporation capacity in the outdoor heat exchanger 4 → decreasing the low pressure → insufficient in the heating capacity will result.

また、レシーバタンク6内に液冷媒が溜まらない状態で、室外機膨張弁5での通過流量を確保しようとすると、必要以上に大きな膨張弁(電子膨張弁)を用いなければならなくなり、コストアップとなる。   Further, if it is attempted to secure the passage flow rate in the outdoor unit expansion valve 5 in a state where liquid refrigerant does not accumulate in the receiver tank 6, an unnecessarily large expansion valve (electronic expansion valve) must be used, which increases costs. It becomes.

このように、従来の冷凍装置では、暖房運転中に室外機膨張弁の通過流量が不足し、暖房能力不足が発生することがある。理想的な暖房運転を行うには、蒸発器(室外熱交換器)で必要している冷媒流量を室外機膨張弁を制御して供給する必要がある。   Thus, in the conventional refrigeration apparatus, the passage flow rate of the outdoor unit expansion valve is insufficient during the heating operation, and the heating capacity may be insufficient. In order to perform an ideal heating operation, it is necessary to supply the refrigerant flow rate required by the evaporator (outdoor heat exchanger) by controlling the outdoor unit expansion valve.

蒸発器で必要としている冷媒流量は、運転圧縮機容量,室外負荷(外気温度),熱交換面積により決められる。熱交換面積が不変とすると、運転圧縮機容量,室外負荷の2つの条件により、蒸発器が必要とする冷媒流量が決められる。この必要流量より室外機膨張弁の通過流量が少ないと低圧降下により暖房能力不足が発生し、多すぎると湿り運転となり圧縮機の信頼性を低下させることになる。   The refrigerant flow rate required in the evaporator is determined by the operating compressor capacity, outdoor load (outside air temperature), and heat exchange area. If the heat exchange area is unchanged, the refrigerant flow rate required by the evaporator is determined by two conditions of the operating compressor capacity and the outdoor load. If the flow rate of the outdoor unit expansion valve is less than this required flow rate, the heating capacity will be insufficient due to the low pressure drop, and if it is too high, the operation will be wet and the reliability of the compressor will be reduced.

この必要流量にあった冷媒流量を室外機膨張弁で制御する方法として、特許文献1の方法がある。特許文献1に記載の発明では、暖房運転時に、室外機側のみで検出した圧縮機の吸入側および吐出側の各温度(または圧力)、室外熱交換器の温度と、圧縮機のポリトロープ指数とにより目標吐出冷媒温度を算出し、この目標吐出冷媒温度に実際の圧縮機の吐出温度が追従するように室外機膨張弁の開度を制御する。   As a method of controlling the refrigerant flow rate suitable for the required flow rate with the outdoor unit expansion valve, there is a method of Patent Document 1. In the invention described in Patent Document 1, each temperature (or pressure) on the suction side and the discharge side of the compressor detected only on the outdoor unit side during heating operation, the temperature of the outdoor heat exchanger, and the polytropic index of the compressor Thus, the target discharge refrigerant temperature is calculated, and the opening degree of the outdoor unit expansion valve is controlled so that the actual discharge temperature of the compressor follows this target discharge refrigerant temperature.

特開2004−116978号公報JP 2004-116978 A

しかしながら、上記特許文献1に記載の発明でも、レシーバタンク内に液冷媒が溜まっていることが前提であり、そうでない場合には制御自体が成り立たない。   However, the invention described in Patent Document 1 is also based on the premise that liquid refrigerant is accumulated in the receiver tank. Otherwise, the control itself is not realized.

レシーバタンク内に液冷媒が溜まらないと、室外機膨張弁での通過流量を確保することができない理由は、室外機膨張弁を通過する質量流量をqm[kg/s],室外機膨張弁の開度の流量係数換算をCv[単位なし],室外機膨張弁の入口側と出口側の差圧をΔP[MPa],室外機膨張弁の入口側での冷媒密度をD[kg/m]とすると、
qm=Cv×(ΔP×D)0.5/Const
となる。つまり、レシーバタンク内に液冷媒が溜まらず2相状態となると、冷媒の密度が急速に低下するため、流量が確保できなくなる。
If the liquid refrigerant does not accumulate in the receiver tank, the reason why the flow rate at the outdoor unit expansion valve cannot be secured is that the mass flow rate through the outdoor unit expansion valve is qm [kg / s], and the outdoor unit expansion valve The flow coefficient conversion of the opening is Cv [no unit], the differential pressure between the inlet side and outlet side of the outdoor unit expansion valve is ΔP [MPa], and the refrigerant density at the inlet side of the outdoor unit expansion valve is D [kg / m 3]. ]
qm = Cv × (ΔP × D) 0.5 / Const
It becomes. In other words, when the liquid refrigerant does not accumulate in the receiver tank and the two-phase state is reached, the density of the refrigerant rapidly decreases, and the flow rate cannot be secured.

図8に2相冷媒の乾き度と密度の関係を表したグラフを示す。このグラフにおいて、乾き度=0の点が飽和液状態であり、その状態から2相領域に入ると急激に冷媒の密度が低下することが分かる。   FIG. 8 is a graph showing the relationship between the dryness and density of the two-phase refrigerant. In this graph, the point of dryness = 0 is the saturated liquid state, and it can be seen that the refrigerant density rapidly decreases when entering the two-phase region from that state.

したがって、本発明の課題は、暖房運転時において、室外機膨張弁での通過流量不足をきたさいように、レシーバタンク内の液面を制御することにある。   Accordingly, an object of the present invention is to control the liquid level in the receiver tank so that the passage flow rate is insufficient in the outdoor unit expansion valve during heating operation.

上記課題を解決するため、本発明は、圧縮機,流路切替弁,凝縮器および蒸発器を含み、上記流路切替弁の切り替えにより冷房運転と暖房運転とを選択的に実行する冷凍サイクルを備え、上記凝縮器と上記蒸発器との間にレシーバタンクと過冷却熱交換器とが接続されているとともに、上記レシーバタンクに液面検知手段が設けられている冷凍装置において、暖房運転時、上記液面検知手段からの液面レベル検出信号に基づいて上記過冷却熱交換器の膨張弁の開度を制御する制御手段を備えていることを特徴としている(請求項1)。   In order to solve the above problems, the present invention includes a refrigeration cycle that includes a compressor, a flow path switching valve, a condenser, and an evaporator, and selectively performs cooling operation and heating operation by switching the flow path switching valve. In a refrigeration apparatus in which a receiver tank and a supercooling heat exchanger are connected between the condenser and the evaporator, and a liquid level detection means is provided in the receiver tank, during heating operation, Control means for controlling the opening degree of the expansion valve of the supercooling heat exchanger based on a liquid level detection signal from the liquid level detection means is provided (claim 1).

本発明において、上記制御手段は、上記液面検知手段にて検出される上記レシーバタンク内の液面レベルが所定値よりも低い場合には、上記過冷却熱交換器の膨張弁の開度を大きくする方向に制御し、上記液面レベルが所定値よりも高い場合には、上記過冷却熱交換器の膨張弁の開度を絞る方向に制御する(請求項2)。   In the present invention, when the liquid level in the receiver tank detected by the liquid level detection means is lower than a predetermined value, the control means sets the opening of the expansion valve of the supercooling heat exchanger. When the liquid level is higher than a predetermined value, the opening degree of the expansion valve of the supercooling heat exchanger is controlled to be reduced (Claim 2).

本発明の好ましい態様として、上記制御手段は、上記圧縮機側に戻される上記過冷却熱交換器の冷却用冷媒が湿った冷媒とならないように、上記レシーバタンク内の液面レベルの制御に優先して、上記過冷却熱交換器のスーパーヒート制御を実行する(請求項3)。   As a preferred aspect of the present invention, the control means has priority over the control of the liquid level in the receiver tank so that the cooling refrigerant of the supercooling heat exchanger returned to the compressor side does not become a damp refrigerant. And the superheat control of the said supercooling heat exchanger is performed (Claim 3).

本発明において、上記液面検知手段は、一端が上記レシーバタンクの所定高さ部位に接続される少なくとも1本の液面検知用配管と、上記液面検知用配管内を流れる冷媒を減圧する減圧手段と、上記液面検知用配管内の冷媒を加熱する加熱手段と、上記加熱手段にて加熱された冷媒の温度を検出する温度検出手段とを有し、上記液面検知用配管の他端が、上記過冷却熱交換器の冷却側配管に接続され、上記液面検知に用いた冷媒が上記過冷却熱交換器に流され、その蒸発潜熱を利用する(請求項4)。   In the present invention, the liquid level detection means is a pressure reducing unit that depressurizes the refrigerant flowing in the liquid level detection pipe and at least one liquid level detection pipe having one end connected to a predetermined height portion of the receiver tank. Means, heating means for heating the refrigerant in the liquid level detection pipe, and temperature detection means for detecting the temperature of the refrigerant heated by the heating means, and the other end of the liquid level detection pipe Is connected to the cooling side pipe of the supercooling heat exchanger, and the refrigerant used for detecting the liquid level is caused to flow through the supercooling heat exchanger and uses the latent heat of evaporation (claim 4).

また、上記液面検知手段は、上記温度検出手段から得られる冷媒温度に基づいて、上記液面検知用配管の一端が接続されている位置での上記レシーバタンク内の冷媒の相状態を検知する(請求項5)。   The liquid level detection means detects the phase state of the refrigerant in the receiver tank at a position where one end of the liquid level detection pipe is connected based on the refrigerant temperature obtained from the temperature detection means. (Claim 5).

本発明の好ましい態様によれば、上記加熱手段として、上記圧縮機の冷媒吐出管から発熱される熱を利用する(請求項6)。   According to a preferred aspect of the present invention, the heat generated from the refrigerant discharge pipe of the compressor is used as the heating means (Claim 6).

本発明によれば、圧縮機,流路切替弁,凝縮器および蒸発器を含み、流路切替弁の切り替えにより冷房運転と暖房運転とを選択的に実行する冷凍サイクルを備え、凝縮器と蒸発器との間にレシーバタンクと過冷却熱交換器とが接続されているとともに、レシーバタンクに液面検知手段が設けられている冷凍装置において、暖房運転時、液面検知手段からの液面レベル検出信号に基づいて過冷却熱交換器の膨張弁の開度を制御する、すなわち液面検知手段にて検出されるレシーバタンク内の液面レベルが所定値よりも低い場合には、過冷却熱交換器の膨張弁の開度を大きくする方向に制御し、液面レベルが所定値よりも高い場合には、過冷却熱交換器の膨張弁の開度を絞る方向に制御することにより、レシーバタンク内に常に液冷媒が溜められ、室外機膨張弁で必要とされる通過流量が確保されるため、暖房能力不足に陥ることがない。   The present invention includes a compressor, a flow path switching valve, a condenser, and an evaporator, and includes a refrigeration cycle that selectively executes a cooling operation and a heating operation by switching the flow path switching valve. In a refrigeration system in which a receiver tank and a supercooling heat exchanger are connected between the receiver and a liquid level detection means provided in the receiver tank, the liquid level from the liquid level detection means during heating operation Based on the detection signal, the opening degree of the expansion valve of the supercooling heat exchanger is controlled, that is, when the liquid level in the receiver tank detected by the liquid level detecting means is lower than a predetermined value, the supercooling heat Control the direction to increase the opening degree of the expansion valve of the exchanger, and if the liquid level is higher than the predetermined value, control the direction to reduce the opening degree of the expansion valve of the supercooling heat exchanger. Liquid refrigerant is always stored in the tank. Since the passage flow rate required by the outdoor unit expansion valve is secured, it never runs out heating capacity.

次に、図1ないし図5により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。図1は本発明の冷凍装置を空気調和機に適用した例の全体的な構成を示す模式図,図2は本発明の要部であるレシーバタンクの液面検知手段と過冷却熱交換器とを拡大して示す模式図,図3は液面検知手段の作用を説明するためのモリエル線図,図4は過冷却熱交換器の作用を説明するためのモリエル線図,図5はレシーバタンクでの外気との熱交換状態を説明するための模式図である。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 5, but the present invention is not limited to this. FIG. 1 is a schematic diagram showing an overall configuration of an example in which the refrigeration apparatus of the present invention is applied to an air conditioner. FIG. 2 is a schematic diagram of a liquid level detection means of a receiver tank, a supercooling heat exchanger, FIG. 3 is a Mollier diagram for explaining the operation of the liquid level detection means, FIG. 4 is a Mollier diagram for explaining the operation of the supercooling heat exchanger, and FIG. 5 is a receiver tank. It is a schematic diagram for demonstrating the heat exchange state with the external air in.

まず、図1を参照して、この実施形態に係る空気調和機の全体的な構成を説明する。この空気調和機には、室外機10と室内機20とが含まれている。室外機10と室内機20は、それらが所定の配管部材を介して接続されるスプリット型であるが、室内機20は壁掛け式,天井埋め込み式もしくは床置き式のいずれであってもよい。なお、この実施形態における空気調和機は多室型空気調和機で、室内機20には、先の図6で説明した従来例と同じく、同一構成で並列的に接続された2台の室内機20a,20bが含まれている。   First, the overall configuration of the air conditioner according to this embodiment will be described with reference to FIG. This air conditioner includes an outdoor unit 10 and an indoor unit 20. The outdoor unit 10 and the indoor unit 20 are of a split type in which they are connected via a predetermined piping member. However, the indoor unit 20 may be of a wall-mounted type, a ceiling embedded type, or a floor type. Note that the air conditioner in this embodiment is a multi-room air conditioner, and the two indoor units connected in parallel with the same configuration are connected to the indoor unit 20 in the same manner as the conventional example described in FIG. 20a and 20b are included.

この空気調和機は、冷房運転と暖房運転とが可能なヒートポンプ式の冷媒回路を備えている。そのため、室外機10は、基本的な構成として、圧縮機11,流路切替弁としての四方弁12,室外送風ファン13aを有する室外熱交換器13,レシーバタンク(気液分離器)14,並列に接続された逆止弁15aを有する室外機膨張弁15およびアキュムレータ16を備えるが、この場合、レシーバタンク14には液面検知手段30が設けられ、また、レシーバタンク14には過冷却熱交換器40が接続される。この例において、圧縮機11には、インバータ制御による可変速型圧縮機11aと、一定速型圧縮機11bとが含まれている。   This air conditioner includes a heat pump type refrigerant circuit capable of cooling operation and heating operation. Therefore, the outdoor unit 10 includes, as a basic configuration, a compressor 11, a four-way valve 12 as a flow path switching valve, an outdoor heat exchanger 13 having an outdoor blower fan 13a, a receiver tank (gas-liquid separator) 14, and a parallel configuration. In this case, the receiver tank 14 is provided with a liquid level detecting means 30, and the receiver tank 14 is subjected to supercooling heat exchange. A device 40 is connected. In this example, the compressor 11 includes a variable speed compressor 11a controlled by an inverter and a constant speed compressor 11b.

図2を参照して、液面検知手段30は、レシーバタンク14の例えば上限位置に接続される第1液面検知用配管31,中間位置に接続される第2液面検知用配管32および下限位置に接続される第3液面検知用配管33の3本の液面検知用配管を備えている。   Referring to FIG. 2, the liquid level detection means 30 includes, for example, a first liquid level detection pipe 31 connected to an upper limit position of the receiver tank 14, a second liquid level detection pipe 32 connected to an intermediate position, and a lower limit. Three liquid level detection pipes 33, which are third liquid level detection pipes 33 connected to the positions, are provided.

各液面検知用配管31,32,33には、減圧手段としてのキャピラリチューブ31a,32a,33aが設けられ、その下流側には、減圧された冷媒を加熱するための加熱手段34が設けられている。加熱手段34をキャピラリチューブ31a,32a,33aの上流側に設けてもよい。   Each of the liquid level detection pipes 31, 32, 33 is provided with capillary tubes 31a, 32a, 33a as pressure reducing means, and on the downstream side thereof, heating means 34 for heating the decompressed refrigerant is provided. ing. The heating means 34 may be provided on the upstream side of the capillary tubes 31a, 32a, 33a.

各キャピラリチューブ31a,32a,33aの仕様は同一であることを条件として任意に決められてよいが、一例として内径0.8mm,長さ1000mmのキャピラリチューブを用いることができる。なお、この例ではキャピラリチューブ31a,32a,33aの上流側に、キャピラリチューブの目詰まり防止用のストレーナ31c,32c,33cが設けられている。   Although the specifications of the capillary tubes 31a, 32a, and 33a may be arbitrarily determined on condition that they are the same, a capillary tube having an inner diameter of 0.8 mm and a length of 1000 mm can be used as an example. In this example, strainers 31c, 32c, and 33c for preventing clogging of the capillary tube are provided upstream of the capillary tubes 31a, 32a, and 33a.

加熱手段34には電気ヒータなどを用いてもよいが、圧縮機11の冷媒吐出管から発熱される熱を利用することが好ましい。これには、配管の一部分を冷媒吐出管に沿わせて溶接すればよい。   An electric heater or the like may be used as the heating unit 34, but it is preferable to use heat generated from the refrigerant discharge pipe of the compressor 11. For this purpose, a part of the pipe may be welded along the refrigerant discharge pipe.

また、各液面検知用配管31,32,33には、加熱された冷媒の温度を検出する例えばサーミスタからなる温度センサ31b,32b,33bが設けられている。各液面検知用配管31,32,33は、加熱手段34による冷媒の加熱後、最終的に1本にまとめられ、電磁弁35を介して過冷却熱交換器40の冷却側配管に接続される。   Each of the liquid level detection pipes 31, 32, 33 is provided with temperature sensors 31b, 32b, 33b made of, for example, a thermistor for detecting the temperature of the heated refrigerant. The liquid level detection pipes 31, 32, 33 are finally combined into one after the refrigerant is heated by the heating means 34, and connected to the cooling side pipe of the supercooling heat exchanger 40 via the electromagnetic valve 35. The

各温度センサ31b,32b,33bにて検出された冷媒温度は、例えばマイクロコンピュータからなる制御手段50に入力され、制御手段50は、それらの検出冷媒温度に基づいて、レシーバタンク14内の液面レベルや相状態を判定する。   The refrigerant temperature detected by each of the temperature sensors 31b, 32b, 33b is input to the control means 50 composed of a microcomputer, for example, and the control means 50 determines the liquid level in the receiver tank 14 based on the detected refrigerant temperature. Determine level and phase state.

ここで、レシーバタンク14内の液面レベルが上限位置と中間位置との間にあり、第1液面検知用配管31にはガス冷媒が流され、第2,第3液面検知用配管32,33には液冷媒が流されるとして、冷媒液面検知手段30の作用について説明する。なお、第2液面検知用配管32と第3液面検知用配管33は同一条件下におかれるため、液冷媒側は第3液面検知用配管33について説明する。   Here, the liquid level in the receiver tank 14 is between the upper limit position and the intermediate position, the gas refrigerant flows through the first liquid level detection pipe 31, and the second and third liquid level detection pipes 32. , 33, the operation of the refrigerant liquid level detection means 30 will be described on the assumption that liquid refrigerant flows. Since the second liquid level detection pipe 32 and the third liquid level detection pipe 33 are placed under the same conditions, the third liquid level detection pipe 33 will be described on the liquid refrigerant side.

第1液面検知用配管31において、キャピラリチューブ31aの入口点をA1,出口点をC1,温度センサ31bの検出点をE1とする。また、第3液面検知用配管33において、キャピラリチューブ33aの入口点をB1,出口点をD1,温度センサ33bの検出点をF1とする。   In the first liquid level detection pipe 31, the inlet point of the capillary tube 31a is A1, the outlet point is C1, and the detection point of the temperature sensor 31b is E1. In the third liquid level detection pipe 33, the inlet point of the capillary tube 33a is B1, the outlet point is D1, and the detection point of the temperature sensor 33b is F1.

圧力系は、レシーバタンク14内の圧力を吐出圧力Ph,上記検出点E1,F1での飽和圧力をPm,電磁弁35の流出側の圧力をPlとする。これらの各圧力は図示しない圧力センサにより計測される。   In the pressure system, the pressure in the receiver tank 14 is the discharge pressure Ph, the saturation pressure at the detection points E1 and F1 is Pm, and the pressure on the outflow side of the solenoid valve 35 is Pl. Each of these pressures is measured by a pressure sensor (not shown).

電磁弁35を開けると、第1液面検知用配管31にはガス冷媒が流され、第3液面検知用配管33には液冷媒が流される。その各冷媒は、それぞれキャピラリチューブ31a,33aに等しく減圧され、図3のモリエル線図に示すように、A1点はC1点の状態となり、B1点はD1点の状態となる。   When the electromagnetic valve 35 is opened, the gas refrigerant flows through the first liquid level detection pipe 31 and the liquid refrigerant flows through the third liquid level detection pipe 33. Each refrigerant is decompressed equally in the capillary tubes 31a and 33a, and as shown in the Mollier diagram of FIG. 3, point A1 is in the state of point C1, and point B1 is in the state of point D1.

C1点とD1点はともにPmの圧力線上にあるため同一温度であるが、その後、加熱手段34での加熱(好ましくは圧縮機11の冷媒吐出管との熱交換)により、第1液面検知用配管31側のガス冷媒はC1点から過熱領域内のE1点にまで温度上昇する。ノンフロンタイプのR410Aの場合でも、E1点の温度TEは、C1点の温度TCよりも好ましくは10℃以上高くなる(TE>TC+10℃)。   Since C1 point and D1 point are both on the pressure line of Pm, they are at the same temperature. Thereafter, the first liquid level detection is performed by heating by the heating means 34 (preferably heat exchange with the refrigerant discharge pipe of the compressor 11). The temperature of the gas refrigerant on the piping 31 side rises from point C1 to point E1 in the overheated region. Even in the case of the non-fluorocarbon type R410A, the temperature TE at the point E1 is preferably higher by 10 ° C. or more than the temperature TC at the point C1 (TE> TC + 10 ° C.).

これに対して、第3液面検知用配管33側の冷媒は液冷媒であるため、減圧して加熱したのちもエンタルピーは上昇するが温度は変わらず飽和領域に存在し、D1点が同じ温度のF1点に移動するだけである。すなわち、D1点の温度TDとF1点の温度TFは同温度である(TD=TF)。   On the other hand, since the refrigerant on the third liquid level detection pipe 33 side is a liquid refrigerant, the enthalpy rises even after the pressure is reduced and heated, but the temperature does not change and exists in the saturation region, and the point D1 has the same temperature. It just moves to F1 point. That is, the temperature TD at the point D1 and the temperature TF at the point F1 are the same temperature (TD = TF).

制御手段50は、温度センサ31bにて検出されたE1点の温度TEと、温度センサ33bにて検出されたF1点の温度TFとを比較して、レシーバタンク14内の液面レベルを判定する。この場合、TE>TFであるから、液面レベルが上限位置と下限位置との間にあると判定するが、この場合、その温度差が大きいため、判定結果に高い信頼性が得られる。   The control means 50 compares the temperature TE at point E1 detected by the temperature sensor 31b with the temperature TF at point F1 detected by the temperature sensor 33b, and determines the liquid level in the receiver tank 14. . In this case, since TE> TF, it is determined that the liquid level is between the upper limit position and the lower limit position. In this case, since the temperature difference is large, high reliability is obtained in the determination result.

ところで、温度センサ31bの検出温度TEと温度センサ33bの検出温度TFとが等しい場合には、レシーバタンク14内がガス冷媒だけ、もしくは液冷媒だけの2通りが想定される。このレシーバタンク14内の全体の相状態を判定可能とするため、制御手段50は次の処理を行う。   By the way, when the detected temperature TE of the temperature sensor 31b and the detected temperature TF of the temperature sensor 33b are equal, the receiver tank 14 is assumed to have only two types of gas refrigerant or liquid refrigerant. In order to be able to determine the overall phase state in the receiver tank 14, the control means 50 performs the following processing.

すなわち、F1点での圧力Pmから求められる飽和温度T(Pm)を基準温度Tsとし、この基準温度Tsと温度センサ33bから得られる検出温度TFとを比較し、Dを所定値として、TF−Ts<Dを満たした場合には、レシーバタンク14内が液冷媒だけの状態で、TF−Ts<Dを満たさない場合には、レシーバタンク14内がガス冷媒だけの状態であると判定する。   That is, the saturation temperature T (Pm) obtained from the pressure Pm at the point F1 is set as the reference temperature Ts, the reference temperature Ts is compared with the detected temperature TF obtained from the temperature sensor 33b, D is set as a predetermined value, and TF− When Ts <D is satisfied, it is determined that the receiver tank 14 is in a state of only liquid refrigerant, and when TF−Ts <D is not satisfied, the receiver tank 14 is in a state of only gas refrigerant.

このように、本発明が備える液面検知手段30によれば、レシーバタンク14内から冷媒を取り出し、その冷媒を減圧したのち加熱するようにしたことにより、液冷媒とガス冷媒とで大きな温度差が出るため、レシーバタンク14内の液面レベルを確実に検知することができる。また、レシーバタンク14内が液冷媒だけもしくはガス冷媒だけとなった場合でも、その相状態をも検知することができる。   As described above, according to the liquid level detection means 30 provided in the present invention, a large temperature difference between the liquid refrigerant and the gas refrigerant is obtained by taking out the refrigerant from the receiver tank 14 and heating the refrigerant after decompressing the refrigerant. Therefore, the liquid level in the receiver tank 14 can be reliably detected. Even when only the liquid refrigerant or the gas refrigerant is contained in the receiver tank 14, the phase state can be detected.

次に、過冷却熱交換器40は、内側の冷却側配管(内管)41と外側の被冷却側配管(外管)42とを同軸配管とした2重熱交換器で、冷房運転時において、外側の被冷却側配管42には、レシーバタンク14から取り出した液冷媒が流され、内側の冷却側配管41には、レシーバタンク14の底部から取り出した液冷媒を過冷却熱交換器用膨張弁43で減圧し、低圧ガス状態とした冷媒が流される。   Next, the supercooling heat exchanger 40 is a double heat exchanger in which an inner cooling side pipe (inner pipe) 41 and an outer cooled side pipe (outer pipe) 42 are coaxial pipes. The liquid refrigerant taken out from the receiver tank 14 is passed through the outer cooled side pipe 42, and the liquid refrigerant taken out from the bottom of the receiver tank 14 is passed through the inner cooling side pipe 41 to the expansion valve for the supercooling heat exchanger. The refrigerant is depressurized at 43 and brought into a low-pressure gas state.

この実施形態において、上記液面検知手段30の各液面検知用配管31,32,33を流れる冷媒は、加熱手段34による冷媒の加熱後、最終的に1本にまとめられ、電磁弁35を介して過冷却熱交換器用膨張弁43の下流側で過冷却熱交換器40の内側の冷却側配管41に供給される。   In this embodiment, the refrigerant flowing through the liquid level detection pipes 31, 32, 33 of the liquid level detection unit 30 is finally combined into one after the refrigerant is heated by the heating unit 34. And is supplied to the cooling side pipe 41 inside the supercooling heat exchanger 40 on the downstream side of the expansion valve 43 for the supercooling heat exchanger.

なお、上記の例とは逆に、内管41を被冷却側配管として、レシーバタンク14から取り出した液冷媒を流し、外管42を冷却側配管として、過冷却熱交換器用膨張弁43で減圧し、低圧ガス状態とした冷媒および液面検知手段30からの冷媒を流す構成としてもよい。   Contrary to the above example, the liquid refrigerant taken out from the receiver tank 14 is flowed using the inner pipe 41 as the cooled pipe, and the pressure is reduced by the expansion valve 43 for the supercooling heat exchanger using the outer pipe 42 as the cooling pipe. However, the refrigerant in the low pressure gas state and the refrigerant from the liquid level detection means 30 may be flowed.

各室内機20a,20bは、室内送風ファン21aを有する室内熱交換器21を備え、各室内機20a,20bごとに減圧手段としての膨張弁23が設けられ、膨張弁23により流量調整が行われる。   Each indoor unit 20a, 20b includes an indoor heat exchanger 21 having an indoor blower fan 21a, and an expansion valve 23 is provided as a decompression means for each indoor unit 20a, 20b, and the flow rate is adjusted by the expansion valve 23. .

室内熱交換器21の一端は、膨張弁23,過冷却熱交換器40,レシーバタンク14および室外機膨張弁15を介して室外熱交換器13に接続され、他端は四方弁12を介して圧縮機11もしくはアキュムレータ15のいずれか一方に選択的に接続される。   One end of the indoor heat exchanger 21 is connected to the outdoor heat exchanger 13 via the expansion valve 23, the supercooling heat exchanger 40, the receiver tank 14 and the outdoor unit expansion valve 15, and the other end is connected via the four-way valve 12. It is selectively connected to either the compressor 11 or the accumulator 15.

冷房運転時には、四方弁(流路切替弁)12が図1の実線のように切り替えられ、冷媒が圧縮機11→四方弁12→室外熱交換器13→室外機膨張弁15に並列の逆止弁15a→レシーバタンク14→過冷却熱交換器40→室内機膨張弁23→室内熱交換器21→四方弁12→アキュムレータ15→圧縮機11へと流れる。この場合、室外熱交換器13が凝縮器として作用し、室内熱交換器21が蒸発器となる。   During the cooling operation, the four-way valve (flow path switching valve) 12 is switched as shown by the solid line in FIG. 1, and the refrigerant is a non-return check in parallel with the compressor 11 → the four-way valve 12 → the outdoor heat exchanger 13 → the outdoor unit expansion valve 15. It flows from the valve 15 a → the receiver tank 14 → the supercooling heat exchanger 40 → the indoor unit expansion valve 23 → the indoor heat exchanger 21 → the four-way valve 12 → the accumulator 15 → the compressor 11. In this case, the outdoor heat exchanger 13 acts as a condenser, and the indoor heat exchanger 21 becomes an evaporator.

この冷房運転時において、室内熱交換器21の冷媒流入側に設けられている蒸発温度検出サーミスタ22aの検出温度をTHin,冷媒流出側に設けられているスーパーヒート(SH)検出サーミスタ22bの検出温度をTHoutとすると、室内機20の図示しない制御部は、室内機膨張弁23を次のように制御して、目標SH制御(能力最大制御)を行う。 During this cooling operation, the temperature detected by the evaporation temperature detection thermistor 22a provided at a refrigerant inlet side of the indoor heat exchanger 21 TH in, the detection of superheat (SH) detecting thermistor 22b provided on the refrigerant outlet side When the temperature is TH out , the control unit (not shown) of the indoor unit 20 controls the indoor unit expansion valve 23 as follows to perform target SH control (maximum capability control).

すなわち、実際のSHをSH(=THout−THin)とし、目標SHをSHとして、SH<SHの場合には、膨張弁23を絞るように制御し、SH>SHの場合には、膨張弁23を開くように制御する。一般的に能力を最大限発揮させるには、SH=1〜3℃に設定される。 That is, the actual SH is SH R (= TH out −TH in ), the target SH is SH T , and when SH T <SH R , control is performed to throttle the expansion valve 23, and SH T > SH R In this case, the expansion valve 23 is controlled to open. In general, SH T = 1 to 3 ° C. is set in order to maximize the ability.

また、室温制御との関係についていえば、室内機20の設定温度TSET(通常,18〜30℃)と、図示しない温度センサにより検出される室内温度TROOMとの差に応じて、目標SH(SH)を変える。すなわち、TROOM−TSETが小さい場合には、膨張弁23を絞って目標SHを大きくし、TROOM−TSETが大きい場合には、膨張弁23を開いて目標SHを小さくする。 Regarding the relationship with the room temperature control, the target SH is set according to the difference between the set temperature T SET (usually 18 to 30 ° C.) of the indoor unit 20 and the indoor temperature T ROOM detected by a temperature sensor (not shown). Change (SH T ). That is, when T ROOM -T SET is small, the expansion valve 23 is throttled to increase the target SH T , and when T ROOM -T SET is large, the expansion valve 23 is opened and the target SH T is decreased.

なお、暖房運転時には、四方弁12が図1の鎖線のように切り替えられ、冷媒が圧縮機11→四方弁12→室内熱交換器21→室内機膨張弁23→過冷却熱交換器40→レシーバタンク14→室外機膨張弁15→室外熱交換器13→四方弁12→アキュムレータ15→圧縮機11へと流れる。この場合、室内熱交換器21が凝縮器として作用し、室外熱交換器13が蒸発器となる。   During the heating operation, the four-way valve 12 is switched as indicated by a chain line in FIG. 1, and the refrigerant is the compressor 11, the four-way valve 12, the indoor heat exchanger 21, the indoor unit expansion valve 23, the supercooling heat exchanger 40, and the receiver. It flows from the tank 14 to the outdoor unit expansion valve 15 to the outdoor heat exchanger 13 to the four-way valve 12 to the accumulator 15 to the compressor 11. In this case, the indoor heat exchanger 21 acts as a condenser, and the outdoor heat exchanger 13 becomes an evaporator.

ここで、過冷却熱交換器40の作用・効果について説明する。過冷却熱交換器40を用いるのは、主として冷房運転時,レシーバタンク14から取り出された冷媒(この時点では液飽和状態)を過冷却して液状態とすることにより、冷凍効果を大きくするためである。   Here, the operation and effect of the supercooling heat exchanger 40 will be described. The reason for using the supercooling heat exchanger 40 is to increase the refrigeration effect mainly by supercooling the refrigerant (liquid saturated state at this time) taken out from the receiver tank 14 during the cooling operation to bring it into a liquid state. It is.

図4のモリエル線図を参照して、過冷却熱交換器40を用いない場合の冷凍サイクルのモリエル線図は、A→B→C→Dとなる。A点はレシーバタンク14の出口で液飽和線上である。B点は室内熱交換器21の出口側,C点は圧縮機11の吸入側,D点は圧縮機11の吐出側である。この冷凍サイクルの冷凍効果はΔIbであり、室内機20での冷房能力Qbは、冷媒循環量をqmbとすると、Qb=qmb×ΔIb[kW]で表される。   Referring to the Mollier diagram of FIG. 4, the Mollier diagram of the refrigeration cycle when the supercooling heat exchanger 40 is not used is A → B → C → D. Point A is on the liquid saturation line at the outlet of the receiver tank 14. Point B is the outlet side of the indoor heat exchanger 21, point C is the suction side of the compressor 11, and point D is the discharge side of the compressor 11. The refrigeration effect of this refrigeration cycle is ΔIb, and the cooling capacity Qb in the indoor unit 20 is represented by Qb = qmb × ΔIb [kW], where the refrigerant circulation amount is qmb.

これに対して、過冷却熱交換器40を用いた場合の冷凍サイクルのモリエル線図は、E→F→C→Dとなる。すなわち、A点の冷媒を過冷却熱交換器40で過冷却することにより、E点に変化する。この冷凍サイクルの冷凍効果はΔIfであり、室内機20での冷房能力Qfは、冷媒循環量をqmfとすると、Qf=qmf×ΔIf[kW]で表される。   On the other hand, the Mollier diagram of the refrigeration cycle when the supercooling heat exchanger 40 is used is E → F → C → D. That is, when the refrigerant at point A is supercooled by the supercooling heat exchanger 40, the refrigerant changes to point E. The refrigeration effect of this refrigeration cycle is ΔIf, and the cooling capacity Qf in the indoor unit 20 is represented by Qf = qmf × ΔIf [kW] where the refrigerant circulation amount is qmf.

この場合、冷媒の一部を過冷却熱交換器40でアキュムレータ15側にバイパスしているため、qmb>qmfとなるが、ΔIb<ΔIfであるため、過冷却熱交換器40を用いた冷凍サイクルの方が能力,効率ともに高くなる。換言すれば、通常、Qb<Qfとなるように過冷却熱交換器40を設計している。   In this case, since a part of the refrigerant is bypassed to the accumulator 15 side by the supercooling heat exchanger 40, qmb> qmf is satisfied. However, since ΔIb <ΔIf, the refrigeration cycle using the supercooling heat exchanger 40 Has higher ability and efficiency. In other words, normally, the supercooling heat exchanger 40 is designed so that Qb <Qf.

なお、上記2つの冷凍サイクルでC点を共通としているが、これは室内機20側の膨張弁23の制御によるもので、室内機20側では図4に示すSH(スーパーヒート,過熱度)が上記したように目標値(例えば3℃)に追従するように制御している。よって、モリエル線図上では、過冷却が増えた分だけ、冷凍効果が高められる。   Note that the C point is common to the two refrigeration cycles, but this is due to the control of the expansion valve 23 on the indoor unit 20 side, and the SH (superheat, degree of superheat) shown in FIG. As described above, control is performed so as to follow a target value (for example, 3 ° C.). Therefore, on the Mollier diagram, the refrigeration effect is enhanced by the amount of increased supercooling.

過冷却熱交換器40を用いるもう一つの理由は、室外機10と室内機20との間の配管が長い場合、液配管での圧力損失が大きくなるため、図4のモリエル線図に示すように、室外機10の出口での冷媒状態がA点のとき、室内機20側の膨張弁23の手前側で冷媒状態はG点となる。   Another reason for using the supercooling heat exchanger 40 is that when the piping between the outdoor unit 10 and the indoor unit 20 is long, the pressure loss in the liquid piping increases, so that the Mollier diagram of FIG. Moreover, when the refrigerant state at the outlet of the outdoor unit 10 is point A, the refrigerant state is point G on the front side of the expansion valve 23 on the indoor unit 20 side.

過冷却熱交換器40を用いていない冷凍サイクルでは、圧力損失があると液冷媒は容易に2相冷媒となってしまう。室内機20の膨張弁23の手前側で冷媒が2相状態となると、膨張弁23から冷媒音が発生する。これは空気調和機としては大きな問題である。   In a refrigeration cycle that does not use the supercooling heat exchanger 40, the liquid refrigerant easily becomes a two-phase refrigerant if there is a pressure loss. When the refrigerant enters a two-phase state on the front side of the expansion valve 23 of the indoor unit 20, refrigerant noise is generated from the expansion valve 23. This is a big problem as an air conditioner.

これに対して、過冷却熱交換器40を用いた冷凍サイクルでは、室外機10の出口での冷媒が十分に過冷却されているため、仮に配管系に圧力損失があっても、室内機20の膨張弁23の手前において冷媒を液状態に保つことができる。図4のモリエル線図で説明すると、E点の冷媒が配管での圧力損失によりH点に変化しても、冷媒はまだ液領域であるため、膨張弁23から冷媒音が発生することはない。   On the other hand, in the refrigeration cycle using the supercooling heat exchanger 40, since the refrigerant at the outlet of the outdoor unit 10 is sufficiently subcooled, even if there is a pressure loss in the piping system, the indoor unit 20 The refrigerant can be kept in a liquid state before the expansion valve 23. Referring to the Mollier diagram of FIG. 4, even if the refrigerant at point E changes to point H due to pressure loss in the piping, the refrigerant is still in the liquid region, so no refrigerant noise is generated from the expansion valve 23. .

本発明では、上記したように、液面検知手段30で使用した冷媒を過冷却熱交換器40の冷却側配管41に供給する。この液面検知に使用した冷媒は、先にも説明したように、Q=qm×(Ic−If)[kW]の蒸発潜熱をもっているため、被冷却側配管42内を流れる液冷媒の過冷却に有効に利用することができる。   In the present invention, as described above, the refrigerant used in the liquid level detection means 30 is supplied to the cooling side pipe 41 of the supercooling heat exchanger 40. As described above, since the refrigerant used for the liquid level detection has latent heat of vaporization of Q = qm × (Ic−If) [kW], the supercooling of the liquid refrigerant flowing in the cooled pipe 42 is performed. Can be used effectively.

過冷却熱交換器用膨張弁43は、室外機10の制御手段50により、被冷却側配管42の冷媒流入側温度センサ44での検出温度TLinと、冷媒流出側温度センサ45での検出温度TLoutとの温度差(TLin−TLout:これが過冷却)が目標値に追従するように制御される。 The expansion valve 43 for the supercooling heat exchanger is detected by the control means 50 of the outdoor unit 10 with the detected temperature TL in at the refrigerant inflow side temperature sensor 44 of the cooled pipe 42 and the detected temperature TL at the refrigerant outflow side temperature sensor 45. Control is performed so that the temperature difference from out (TL in −TL out : this is supercooling) follows the target value.

これと並行して、過冷却熱交換器用膨張弁43は、冷却側配管41の冷媒流入側温度センサ46での検出温度TGinと、冷媒流出側温度センサ47での検出温度TGoutとの温度差(TGin−TGout:過冷却熱交換器40でのスーパーヒート)が一定以上になるように制御される。このスーパーヒート制御は、冷凍サイクルの吸入側に湿った冷媒(蒸発潜熱を有する冷媒)を返さない,すなわち能力ロスを生じさせないために行われる。 In parallel with this, the expansion valve 43 for the supercooling heat exchanger is a temperature between the detected temperature TG in at the refrigerant inflow side temperature sensor 46 of the cooling side pipe 41 and the detected temperature TG out at the refrigerant outflow side temperature sensor 47. The difference (TG in −TG out : superheat in the supercooling heat exchanger 40) is controlled to be a certain level or more. This super heat control is performed in order not to return the wet refrigerant (refrigerant having latent heat of evaporation) to the suction side of the refrigeration cycle, that is, to prevent a loss of capacity.

上記したように、本発明では、液面検知に用いた蒸発潜熱を有する冷媒を過冷却熱交換器40に流すが、それでも目標の過冷却に達しない場合は、過冷却熱交換器用膨張弁43を上記のように制御すればよい。   As described above, in the present invention, the refrigerant having the latent heat of vaporization used for liquid level detection is caused to flow to the supercooling heat exchanger 40. If the target supercooling is still not reached, the supercooling heat exchanger expansion valve 43 is used. May be controlled as described above.

なお、液面検知手段30の電磁弁35は、液面検知時にのみ開としてもよいが、本発明によれば、液面検知に用いた蒸発潜熱を有する冷媒を過冷却熱交換器40用の冷媒として有効に使用することができるため、能力的にも、また、制御の応答性を改善するうえでも電磁弁35を常時開放とすることが好ましい。   The electromagnetic valve 35 of the liquid level detection means 30 may be opened only at the time of liquid level detection. However, according to the present invention, the refrigerant having latent heat of vaporization used for liquid level detection is used for the supercooling heat exchanger 40. Since it can be used effectively as a refrigerant, it is preferable to always open the electromagnetic valve 35 in terms of performance and in order to improve control responsiveness.

暖房運転時には、室外機10の室外熱交換器13が蒸発器として機能するため、過冷却熱交換器40も蒸発器の一つとして用いられる。再び、暖房運転時の冷媒状態の変化を示した図7のモリエル線図を参照して、レシーバタンク14の入口での冷媒状態はD点であり、この2相冷媒が液冷媒になるためには、レシーバタンク14に流入する冷媒の質量流量をqmとして、
Q[kW]=qm[kg/s]×ΔI[kj/kg]
なる熱量をレシーバタンク14で捨てる必要がある。
During the heating operation, since the outdoor heat exchanger 13 of the outdoor unit 10 functions as an evaporator, the supercooling heat exchanger 40 is also used as one of the evaporators. Again referring to the Mollier diagram of FIG. 7 showing the change in refrigerant state during heating operation, the refrigerant state at the inlet of the receiver tank 14 is point D, and this two-phase refrigerant becomes liquid refrigerant. Is the mass flow rate of the refrigerant flowing into the receiver tank 14 as qm,
Q [kW] = qm [kg / s] × ΔI [kj / kg]
It is necessary to throw away the amount of heat in the receiver tank 14.

レシーバタンク14での熱交換量は、図5に示すように、ガス部分での容器外壁との熱交換量Q1と、液部分での容器外壁との熱交換量Q2とに分けられる。ここで、ガス部分での熱通過率K1と、液部分での熱通過率K2の関係はK1>K2(計算上では3〜4倍のオーダー)である。すなわち、ガス部分が大きいほどレシーバタンク14での熱交換量が大きくなる。   As shown in FIG. 5, the heat exchange amount in the receiver tank 14 is divided into a heat exchange amount Q1 with the container outer wall in the gas portion and a heat exchange amount Q2 with the container outer wall in the liquid portion. Here, the relationship between the heat passage rate K1 in the gas portion and the heat passage rate K2 in the liquid portion is K1> K2 (in the order of 3 to 4 times in the calculation). That is, the larger the gas portion, the greater the amount of heat exchange in the receiver tank 14.

レシーバタンク14内で液面が存在するためのバランスの式は、ガス部分,液部分の伝熱面積をA1,A2、外気の温度をT1,冷媒の温度をT2として、
qm[kg/s]×ΔI[kj/kg]
=Q1[kW]+Q2[kW]
=K1×A1×(T2−T1)+K2×A2×(T2−T1)
となる。
The balance equation for the liquid level in the receiver tank 14 is as follows. The heat transfer area of the gas part and the liquid part is A1 and A2, the temperature of the outside air is T1, and the temperature of the refrigerant is T2.
qm [kg / s] × ΔI [kj / kg]
= Q1 [kW] + Q2 [kW]
= K1 * A1 * (T2-T1) + K2 * A2 * (T2-T1)
It becomes.

ガス部分,液部分の伝熱面積A1,A2は、液面高さhとレシーバタンク14の径dとの関数となるため、
A1=πd(hmax−h)+π(d/2)
A2=πdh+π(d/2)
で表される。
Since the heat transfer areas A1 and A2 of the gas part and the liquid part are a function of the liquid level height h and the diameter d of the receiver tank 14,
A1 = πd (h max −h) + π (d / 2) 2
A2 = πdh + π (d / 2) 2
It is represented by

以上のことから、レシーバタンク14に流入する冷媒の乾き度が小さいほど(ΔIが小さいほど)、レシーバタンク14内での液面が出やすい、すなわち液面が高くなる、ということが言える。   From the above, it can be said that the smaller the dryness of the refrigerant flowing into the receiver tank 14 (the smaller the ΔI), the easier the liquid level in the receiver tank 14 comes out, that is, the higher the liquid level.

そこで、本発明では、暖房運転時、レシーバタンク14の流入側に位置する過冷却熱交換器40を用いて、レシーバタンク14に流入する冷媒の乾き度を変化させ、液面が出やすいように制御する。   Therefore, in the present invention, during the heating operation, the supercooling heat exchanger 40 located on the inflow side of the receiver tank 14 is used to change the dryness of the refrigerant flowing into the receiver tank 14 so that the liquid level is easily produced. Control.

図7のモリエル線図において、レシーバタンク14に流入する冷媒はD点(2相冷媒)であるが、過冷却熱交換器40で熱交換させることにより、冷媒状態を液飽和線に近づけることができる。すなわち、レシーバタンク14内で液面が存在しやすい状態に制御することができる。   In the Mollier diagram of FIG. 7, the refrigerant flowing into the receiver tank 14 is a point D (two-phase refrigerant). However, by performing heat exchange with the supercooling heat exchanger 40, the refrigerant state may be brought close to the liquid saturation line. it can. That is, it is possible to control the liquid level in the receiver tank 14 to be easily present.

具体的に説明すると、少なくとも暖房運転中は、常時、電磁弁35を開として液面検知手段30によりレシーバタンク14の液面レベルを監視する。制御手段50は、その液面レベルが例えば中間よりも低い場合には、過冷却熱交換器用膨張弁43の開度を開く方向に制御し、過冷却熱交換器40での熱交換量を高める。これにより、レシーバタンク14内の液面レベルが上昇する。   More specifically, at least during the heating operation, the liquid level of the receiver tank 14 is monitored by the liquid level detection means 30 with the electromagnetic valve 35 open at all times. When the liquid level is lower than the middle level, for example, the control means 50 controls the opening degree of the expansion valve 43 for the supercooling heat exchanger to open so as to increase the heat exchange amount in the supercooling heat exchanger 40. . Thereby, the liquid level in the receiver tank 14 rises.

一方、レシーバタンク14内の液面レベルが上限よりも高い場合には、過冷却熱交換器用膨張弁43の開度を絞る方向に制御し、過冷却熱交換器40での熱交換量を低くする。これにより、レシーバタンク14内の液面レベルが下がる。   On the other hand, when the liquid level in the receiver tank 14 is higher than the upper limit, the amount of heat exchange in the supercooling heat exchanger 40 is reduced by controlling the opening degree of the expansion valve 43 for the supercooling heat exchanger. To do. Thereby, the liquid level in the receiver tank 14 falls.

このように、本発明によれば、暖房運転時においてレシーバタンク14の液面を制御することができる。したがって、レシーバタンク14から室外機膨張弁15に液冷媒を供給することができ、蒸発器(室外熱交換器13)が必要とする冷媒流量を確保することが可能となる。よって、暖房能力不足となることはない。   Thus, according to the present invention, the liquid level of the receiver tank 14 can be controlled during the heating operation. Therefore, the liquid refrigerant can be supplied from the receiver tank 14 to the outdoor unit expansion valve 15, and the refrigerant flow rate required by the evaporator (outdoor heat exchanger 13) can be secured. Therefore, there is no shortage of heating capacity.

なお、上記したように、制御手段50は、冷却側配管41の冷媒流入側温度センサ46での検出温度TGinと、冷媒流出側温度センサ47での検出温度TGoutとの温度差(TGin−TGout:過冷却熱交換器40でのスーパーヒート)が一定以上になるように過冷却熱交換器用膨張弁43を制御して、冷凍サイクルの吸入側に湿った冷媒(蒸発潜熱を有する冷媒)を返さないようにしているが、このスーパーヒート制御は、上記したレシーバタンク14の液面レベル制御より優先して行われる。 Note that, as described above, the control unit 50 detects the temperature difference (TG in) between the detected temperature TG in at the refrigerant inflow side temperature sensor 46 of the cooling side pipe 41 and the detected temperature TG out at the refrigerant outflow side temperature sensor 47. -TG out: refrigerant having a superheat) controls the subcooling heat exchanger expansion valve 43 to be equal to or greater than the constant, wet refrigerant (latent heat of evaporation to the suction side of the refrigeration cycle in the subcooling heat exchanger 40 However, the superheat control is performed with priority over the liquid level control of the receiver tank 14 described above.

すなわち、暖房運転時においては、過冷却熱交換器40の冷却用ガス冷媒が湿らない範囲で、レシーバタンク14の液面が好ましくは中間レベルとなるように、過冷却熱交換器用膨張弁43を制御する。一方で、圧縮機11の吐出温度が目標値に追従するように、室外機膨張弁15を制御する、という2つの自立制御を実行する。   That is, during the heating operation, the supercooling heat exchanger expansion valve 43 is set so that the liquid level of the receiver tank 14 is preferably at an intermediate level within a range in which the cooling gas refrigerant of the supercooling heat exchanger 40 is not moistened. Control. On the other hand, two independent controls of controlling the outdoor unit expansion valve 15 are performed so that the discharge temperature of the compressor 11 follows the target value.

以上説明したように、本発明によれば、暖房運転時にレシーバタンク14の前に位置することになる過冷却熱交換器40での熱交換量を制御することにより、レシーバタンク14内で液面が出やすい状態を作り出すことができる。したがって、暖房運転時に室外機膨張弁15の前の冷媒状態を液状態に確保でき、蒸発器(室外熱交換器13)に供給する冷媒不足を解消することができる。   As described above, according to the present invention, the liquid level in the receiver tank 14 is controlled by controlling the amount of heat exchange in the supercooling heat exchanger 40 that is positioned in front of the receiver tank 14 during heating operation. It is possible to create a state where it is easy to get out. Therefore, the refrigerant state in front of the outdoor unit expansion valve 15 can be secured in the liquid state during the heating operation, and the shortage of refrigerant supplied to the evaporator (outdoor heat exchanger 13) can be solved.

本発明の冷凍装置を空気調和機に適用した例の全体的な構成を示す模式図。The schematic diagram which shows the whole structure of the example which applied the freezing apparatus of this invention to the air conditioner. 本発明の要部であるレシーバタンクの液面検知手段と過冷却熱交換器とを拡大して示す模式図。The schematic diagram which expands and shows the liquid level detection means and supercooling heat exchanger of the receiver tank which are the principal parts of this invention. 上記液面検知手段の作用を説明するためのモリエル線図。The Mollier diagram for demonstrating the effect | action of the said liquid level detection means. 上記過冷却熱交換器の作用を説明するためのモリエル線図。The Mollier diagram for demonstrating the effect | action of the said supercooling heat exchanger. レシーバタンクでの外気との熱交換状態を説明するための模式図。The schematic diagram for demonstrating the heat exchange state with the external air in a receiver tank. 従来の多室型空気調和機の全体的な構成を示す模式図。The schematic diagram which shows the whole structure of the conventional multi-room type air conditioner. 上記従来例での暖房運転時の冷媒状態の変化を示したモリエル線図。The Mollier diagram which showed the change of the refrigerant | coolant state at the time of the heating operation in the said prior art example. 2相冷媒の乾き度と密度の関係を表したグラフ。The graph showing the relationship between the dryness and density of a two-phase refrigerant.

符号の説明Explanation of symbols

10 室外機
11 圧縮機
12 四方弁
13 室外熱交換器
14 レシーバタンク
15 室外機膨張弁
16 アキュムレータ
20 室内機
21 室内熱交換器
23 室内機膨張弁
30 冷媒液面検知手段
31〜33 液面検知用配管
31a〜33a キャピラリチューブ(減圧手段)
31b〜33b 温度センサ
34 加熱手段
35 電磁弁
40 過冷却熱交換器
41 冷却側配管
42 被冷却側配管
43 過冷却熱交換器用膨張弁
50 制御手段
DESCRIPTION OF SYMBOLS 10 Outdoor unit 11 Compressor 12 Four-way valve 13 Outdoor heat exchanger 14 Receiver tank 15 Outdoor unit expansion valve 16 Accumulator 20 Indoor unit 21 Indoor heat exchanger 23 Indoor unit expansion valve 30 Refrigerant liquid level detection means 31-33 For liquid level detection Piping 31a to 33a Capillary tube (pressure reduction means)
31b to 33b Temperature sensor 34 Heating means 35 Electromagnetic valve 40 Supercooling heat exchanger 41 Cooling side piping 42 Cooled side piping 43 Expansion valve for supercooling heat exchanger 50 Control means

Claims (6)

圧縮機,流路切替弁,凝縮器および蒸発器を含み、上記流路切替弁の切り替えにより冷房運転と暖房運転とを選択的に実行する冷凍サイクルを備え、上記凝縮器と上記蒸発器との間にレシーバタンクと過冷却熱交換器とが接続されているとともに、上記レシーバタンクに液面検知手段が設けられている冷凍装置において、
暖房運転時、上記液面検知手段からの液面レベル検出信号に基づいて上記過冷却熱交換器の膨張弁の開度を制御する制御手段を備えていることを特徴とする冷凍装置。
A compressor, a flow path switching valve, a condenser, and an evaporator, comprising a refrigeration cycle that selectively executes a cooling operation and a heating operation by switching the flow path switching valve, wherein the condenser and the evaporator In the refrigeration apparatus in which a receiver tank and a supercooling heat exchanger are connected between the receiver tank and liquid level detection means are provided in the receiver tank,
A refrigeration apparatus comprising control means for controlling an opening degree of an expansion valve of the supercooling heat exchanger based on a liquid level detection signal from the liquid level detection means during heating operation.
上記制御手段は、上記液面検知手段にて検出される上記レシーバタンク内の液面レベルが所定値よりも低い場合には、上記過冷却熱交換器の膨張弁の開度を大きくする方向に制御し、上記液面レベルが所定値よりも高い場合には、上記過冷却熱交換器の膨張弁の開度を絞る方向に制御することを特徴とする請求項1に記載の冷凍装置。   When the liquid level in the receiver tank detected by the liquid level detecting means is lower than a predetermined value, the control means increases the opening degree of the expansion valve of the supercooling heat exchanger. 2. The refrigeration apparatus according to claim 1, wherein, when the liquid level is higher than a predetermined value, the refrigeration apparatus controls the opening degree of the expansion valve of the supercooling heat exchanger in a direction to throttle. 上記制御手段は、上記圧縮機側に戻される上記過冷却熱交換器の冷却用冷媒が湿った冷媒とならないように、上記レシーバタンク内の液面レベルの制御に優先して、上記過冷却熱交換器のスーパーヒート制御を実行することを特徴とする請求項2に記載の冷凍装置。   The control means prioritizes the control of the liquid level in the receiver tank so that the cooling refrigerant of the supercooling heat exchanger returned to the compressor does not become a wet refrigerant. The refrigeration apparatus according to claim 2, wherein superheat control of the exchanger is executed. 上記液面検知手段は、一端が上記レシーバタンクの所定高さ部位に接続される少なくとも1本の液面検知用配管と、上記液面検知用配管内を流れる冷媒を減圧する減圧手段と、上記液面検知用配管内の冷媒を加熱する加熱手段と、上記加熱手段にて加熱された冷媒の温度を検出する温度検出手段とを有し、
上記液面検知用配管の他端が、上記過冷却熱交換器の冷却側配管に接続され、上記液面検知に用いた冷媒が上記過冷却熱交換器に流され、その蒸発潜熱を利用するようにしたことを特徴とする請求項1ないし3のいずれか1項に記載の冷凍装置。
The liquid level detection means includes at least one liquid level detection pipe, one end of which is connected to a predetermined height portion of the receiver tank, a pressure reduction means for depressurizing the refrigerant flowing in the liquid level detection pipe, Heating means for heating the refrigerant in the liquid level detection pipe, and temperature detection means for detecting the temperature of the refrigerant heated by the heating means,
The other end of the liquid level detection pipe is connected to the cooling side pipe of the supercooling heat exchanger, and the refrigerant used for the liquid level detection is passed through the supercooling heat exchanger and uses the latent heat of evaporation. The refrigeration apparatus according to any one of claims 1 to 3, wherein the refrigeration apparatus is configured as described above.
上記液面検知手段は、上記温度検出手段から得られる冷媒温度に基づいて、上記液面検知用配管の一端が接続されている位置での上記レシーバタンク内の冷媒の相状態を検知することを特徴とする請求項4に記載の冷凍装置。   The liquid level detection means detects the phase state of the refrigerant in the receiver tank at a position where one end of the liquid level detection pipe is connected based on the refrigerant temperature obtained from the temperature detection means. 5. The refrigeration apparatus according to claim 4, wherein 上記加熱手段として、上記圧縮機の冷媒吐出管から発熱される熱を利用することを特徴とする請求項4または5に記載の冷凍装置。
The refrigeration apparatus according to claim 4 or 5, wherein heat generated from a refrigerant discharge pipe of the compressor is used as the heating means.
JP2005331128A 2005-11-16 2005-11-16 Refrigeration equipment Expired - Fee Related JP4462436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331128A JP4462436B2 (en) 2005-11-16 2005-11-16 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331128A JP4462436B2 (en) 2005-11-16 2005-11-16 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2007139257A JP2007139257A (en) 2007-06-07
JP4462436B2 true JP4462436B2 (en) 2010-05-12

Family

ID=38202346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331128A Expired - Fee Related JP4462436B2 (en) 2005-11-16 2005-11-16 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4462436B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO327832B1 (en) * 2007-06-29 2009-10-05 Sinvent As Steam circuit compression dress system with closed circuit as well as method for operating the system.
JP5493277B2 (en) * 2008-02-29 2014-05-14 ダイキン工業株式会社 Air conditioner
JP5422899B2 (en) * 2008-02-29 2014-02-19 ダイキン工業株式会社 Air conditioner
JP4864110B2 (en) * 2009-03-25 2012-02-01 三菱電機株式会社 Refrigeration air conditioner
JP5756919B2 (en) * 2010-11-30 2015-07-29 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP5808410B2 (en) * 2011-08-19 2015-11-10 三菱電機株式会社 Refrigeration cycle equipment
JP2022076215A (en) * 2020-11-09 2022-05-19 日本電気株式会社 Cooling device and cooling method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439178B2 (en) * 1993-12-28 2003-08-25 三菱電機株式会社 Refrigeration cycle device
JP4035871B2 (en) * 1997-10-21 2008-01-23 ダイキン工業株式会社 Refrigerant circuit
JP2002286333A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Freezing apparatus
JP2005282885A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005308393A (en) * 2005-07-25 2005-11-04 Daikin Ind Ltd Refrigerating machine and refrigerant amount detecting method of refrigerating machine

Also Published As

Publication number Publication date
JP2007139257A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP6351848B2 (en) Refrigeration cycle equipment
KR101096822B1 (en) Refrigeration device
US8020393B2 (en) Heat pump type hot water supply outdoor apparatus
JP4462435B2 (en) Refrigeration equipment
JP3894221B1 (en) Air conditioner
JP6223469B2 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
AU2004267299A1 (en) Refrigeration system
JP2007315702A (en) Freezer
JP6463491B2 (en) Refrigeration cycle equipment
KR20090020305A (en) Air conditioner
JP3781046B2 (en) Air conditioner
JP5734205B2 (en) Air conditioner
JP2006183979A (en) Detection system of refrigerant pipe length and detection method of refrigerant pipe length
JP5855284B2 (en) Air conditioner
WO2020208776A1 (en) Air conditioning apparatus
JP2011106688A (en) Condensation pressure detecting system and refrigeration cycle system
JP6017049B2 (en) Air conditioner
JP2011058749A (en) Air conditioner
JPH10176869A (en) Refrigeration cycle device
JP5194842B2 (en) Refrigeration equipment
JP2009030937A (en) Refrigeration device
JP2008145038A (en) Air conditioner
JP2006071271A (en) Refrigerating plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100209

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees