JP2011106688A - Condensation pressure detecting system and refrigeration cycle system - Google Patents

Condensation pressure detecting system and refrigeration cycle system Download PDF

Info

Publication number
JP2011106688A
JP2011106688A JP2009258987A JP2009258987A JP2011106688A JP 2011106688 A JP2011106688 A JP 2011106688A JP 2009258987 A JP2009258987 A JP 2009258987A JP 2009258987 A JP2009258987 A JP 2009258987A JP 2011106688 A JP2011106688 A JP 2011106688A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
condensation
pipe
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258987A
Other languages
Japanese (ja)
Other versions
JP4902723B2 (en
Inventor
Koyu Tanaka
航祐 田中
Junichi Kameyama
純一 亀山
Hirobumi Takashita
博文 高下
Koji Higashi
幸志 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009258987A priority Critical patent/JP4902723B2/en
Publication of JP2011106688A publication Critical patent/JP2011106688A/en
Application granted granted Critical
Publication of JP4902723B2 publication Critical patent/JP4902723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning device capable of controlling supercooling with high accuracy by calculating a condensation pressure in a condenser from an operation state quantity of the air conditioning device. <P>SOLUTION: This condensation pressure detecting system 70 of a refrigeration cycle device constituting a refrigerant circuit by connecting a compressor 1, indoor heat exchangers 11b, 11c condensing a refrigerant in a full heating operation and a heating-based operation, flow control devices 12b, 12c adjusting a pressure of the condensed refrigerant, and a heat source-side heat exchanger 3 evaporating the refrigerant, by piping, further includes a low-pressure pressure loss operating section 72 calculating pressure loss of a low-pressure refrigerant pipe in the refrigerant circuit, a high-pressure pressure loss calculating section 74 calculating pressure loss of a high-pressure refrigerant pipe based on a ratio of cross-sectional areas of the high-pressure refrigerant pipe and the low-pressure refrigerant pipe, and the pressure loss of the low-pressure refrigerant pipe, and a condensation pressure calculating section 75 calculating a condensation pressure in the indoor heat exchangers 11b, 11c by subtracting the high-pressure pressure loss from a pressure at a discharge side of the compressor 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、室外機と室内機とを接続して冷媒を循環させる冷媒回路を構成する空気調和装置において、凝縮器の凝縮圧力を推測することで空気調和装置を高い効率で運転しようとする凝縮圧力検知システム等に関するものである。   The present invention relates to an air conditioner that constitutes a refrigerant circuit that circulates a refrigerant by connecting an outdoor unit and an indoor unit, and condensing to operate the air conditioner with high efficiency by estimating the condensation pressure of the condenser. The present invention relates to a pressure detection system and the like.

従来から、室外機と室内機とが接続配管を介して接続されることにより、室外機と室内機との間で冷媒を循環させる冷媒回路を構成したセパレートタイプの空気調和装置がある。セパレートタイプの空気調和装置としては、例えば、ルームエアコンやパッケージエアコンがある。以下、空気調和装置とは、セパレートタイプの空気調和装置のことであるものとする。   2. Description of the Related Art Conventionally, there is a separate type air conditioner that configures a refrigerant circuit that circulates a refrigerant between an outdoor unit and an indoor unit by connecting the outdoor unit and the indoor unit via a connection pipe. Examples of the separate type air conditioner include a room air conditioner and a packaged air conditioner. Hereinafter, the air conditioner is a separate type air conditioner.

ここで、空気調和装置において、冷媒回路を流れる冷媒は、接続配管での圧力損失(以下、圧損と称する)のため圧力降下が生じる。そして、室外機と室内機(利用ユニット)との接続配管長さが長くなるほど、圧損が大きく、圧力が降下する。暖房運転においては、圧縮機から吐出された高温高圧のガス冷媒が接続配管を流通する過程での圧力降下により、圧縮機吐出での圧力に対して、暖房を行う室内機の熱交換器を流通する冷媒の圧力は低くなるため、凝縮温度が低下する。   Here, in the air conditioner, the refrigerant flowing through the refrigerant circuit undergoes a pressure drop due to pressure loss (hereinafter referred to as pressure loss) in the connection pipe. And as the length of the connecting pipe between the outdoor unit and the indoor unit (usage unit) increases, the pressure loss increases and the pressure drops. In the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor flows through the heat exchanger of the indoor unit that performs heating against the pressure at the discharge of the compressor due to the pressure drop in the process of flowing through the connection pipe. Since the pressure of the refrigerant | coolant to perform becomes low, a condensation temperature falls.

そこで、従来、この圧力効果に伴う凝縮温度の低下を検出するために暖房している室内機の熱交換器のほぼ中間の位置に温度センサを付加し、その温度を凝縮温度(飽和温度)としていた。また、熱交換器の冷媒流出口にも冷媒の液温度を検出する温度センサを配置し、凝縮温度と熱交換器の冷媒流出口における温度との温度差である過冷却度を検出し、この過冷却度が所望の温度となるように、膨張弁等の絞り手段の開度の制御を行っていた(例えば、特許文献1参照)。   Therefore, conventionally, in order to detect a decrease in the condensing temperature due to the pressure effect, a temperature sensor is added at a substantially intermediate position of the heat exchanger of the indoor unit that is heating, and the temperature is set as the condensing temperature (saturation temperature) It was. In addition, a temperature sensor that detects the liquid temperature of the refrigerant is also arranged at the refrigerant outlet of the heat exchanger to detect the degree of supercooling that is the temperature difference between the condensation temperature and the temperature at the refrigerant outlet of the heat exchanger. The degree of opening of a throttle means such as an expansion valve is controlled so that the degree of supercooling becomes a desired temperature (see, for example, Patent Document 1).

図8は凝縮器出口の過冷却度と冷凍サイクルの成績係数COPの関係を表す図である。図7に示すように、一般的に過冷却度が大きいほど、凝縮器前後でのエンタルピー差が拡大して効率は高くなるが、凝縮器内において液相が占める割合が増加する。このため、凝縮器内において熱伝達率の高い気液二相部の割合が減少し、熱通過率としては減少してしまうことになる。以上のことから、効率と熱通過率との関係において最適な過冷却度が存在する。したがって、空気調和装置の効率の高い運転を実現するために、過冷却度を精度よく検出し、最適に制御することが必要である。   FIG. 8 is a graph showing the relationship between the degree of supercooling at the outlet of the condenser and the coefficient of performance COP of the refrigeration cycle. As shown in FIG. 7, in general, the greater the degree of supercooling, the greater the enthalpy difference before and after the condenser and the higher the efficiency, but the proportion of the liquid phase in the condenser increases. For this reason, the ratio of the gas-liquid two-phase part with a high heat transfer rate in the condenser is reduced, and the heat passing rate is reduced. From the above, there is an optimum degree of supercooling in the relationship between efficiency and heat transfer rate. Therefore, in order to realize an efficient operation of the air conditioner, it is necessary to accurately detect the degree of supercooling and optimally control it.

特許第2508347号公報Japanese Patent No. 2508347

上記の特許文献1では、凝縮器の中間温度を検出する中間温度センサと、凝縮器出口温度を検出する出口温度センサの温度差に基づいて、膨張弁などの流量制御装置の制御を行っている。しかし、冷媒量が不足している場合、過剰に充填されている場合などの場合には、想定している中間温度センサ部分において検出される温度は凝縮温度とならない。例えば、冷媒量が不足している場合はガス冷媒となり凝縮温度よりも高く検出され、冷媒が過剰に充填されている場合は、液冷媒となり、凝縮温度よりも低く検出される。このため演算した過冷却度が正確なものとはならず、適切な過冷却度制御ができないといった問題があった。   In the above-mentioned Patent Document 1, a flow control device such as an expansion valve is controlled based on a temperature difference between an intermediate temperature sensor that detects the intermediate temperature of the condenser and an outlet temperature sensor that detects the outlet temperature of the condenser. . However, when the refrigerant amount is insufficient or when the refrigerant is excessively charged, the temperature detected at the assumed intermediate temperature sensor portion does not become the condensation temperature. For example, when the amount of the refrigerant is insufficient, the refrigerant becomes a gas refrigerant and is detected to be higher than the condensation temperature. When the refrigerant is excessively charged, the refrigerant is a liquid refrigerant and is detected to be lower than the condensation temperature. For this reason, the calculated degree of supercooling is not accurate, and there is a problem that appropriate supercooling degree control cannot be performed.

本発明は、上記のような課題を解決するためになされたもので、室外機と室内機とが冷媒配管を介して接続された空気調和装置の場合に、冷媒配管長が未知であっても、充填冷媒量の過不足が生じている場合であっても、空気調和装置の運転状態量から高圧側の圧力損失を推測し、過冷却度の演算に必要となる、凝縮器における凝縮圧力を算出することを目的とする。そして、精度の良い過冷却制御を実現することができる空気調和装置等の冷凍サイクルシステムに適用できる凝縮圧力検知システムを得ることを目的とする。   The present invention has been made to solve the above-described problems, and in the case of an air conditioner in which an outdoor unit and an indoor unit are connected via a refrigerant pipe, the refrigerant pipe length is unknown. Even if there is an excess or deficiency in the amount of refrigerant charged, the pressure loss on the high pressure side is estimated from the operating state quantity of the air conditioner, and the condensation pressure in the condenser, which is necessary for calculating the degree of supercooling, is estimated. The purpose is to calculate. And it aims at obtaining the condensation pressure detection system applicable to refrigeration cycle systems, such as an air conditioning apparatus which can implement | achieve accurate supercooling control.

また、同時に、膨張弁の絞り手段にて、誤検出による制御のハンチング及び冷媒音の発生を抑え、運転状態の安定性及び利用者の快適性を向上させることができる空気調和装置の凝縮圧力検知システムを得ることを目的とする。   At the same time, the condensing pressure detection of the air conditioner can improve the stability of the operating state and the comfort of the user by suppressing the occurrence of control hunting and refrigerant noise due to erroneous detection by the expansion valve throttle means. The purpose is to obtain a system.

上記課題を解決するために、本発明の高圧の接続配管の圧力損失の検知システムは以下に示す手段を採用するものであり、冷媒を圧縮する圧縮機と、熱交換により冷媒を凝縮する凝縮器と、凝縮された冷媒の圧力調整をするための流量制御装置と、減圧した冷媒と空気とを熱交換して冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成する冷凍サイクル装置の凝縮圧力を検知する凝縮圧力検知システムであって、冷媒回路において低圧側の冷媒配管となる低圧冷媒配管の圧力損失を算出する低圧圧力損失演算部と、冷媒回路において高圧側の冷媒配管となる高圧冷媒配管と低圧冷媒配管との配管断面積比及び低圧冷媒配管の圧力損失に基づいて、高圧冷媒配管の圧力損失を算出する高圧圧力損失演算部と、圧縮機の吐出側の圧力から高圧圧力損失を差し引き凝縮器における凝縮圧力を算出する凝縮圧力演算部とを備えるものである。   In order to solve the above-described problems, the pressure loss detection system for a high-pressure connection pipe according to the present invention employs the following means: a compressor that compresses the refrigerant, and a condenser that condenses the refrigerant by heat exchange. And a flow rate control device for adjusting the pressure of the condensed refrigerant, and an evaporator for exchanging heat between the decompressed refrigerant and air to evaporate the refrigerant, and connecting the pipes to each other, A condensing pressure detecting system for detecting condensing pressure, a low pressure pressure loss calculating unit for calculating a pressure loss of a low pressure refrigerant pipe serving as a low pressure refrigerant pipe in the refrigerant circuit, and a high pressure serving as a high pressure side refrigerant pipe in the refrigerant circuit. Based on the pipe cross-sectional area ratio between the refrigerant pipe and the low-pressure refrigerant pipe and the pressure loss of the low-pressure refrigerant pipe, the high-pressure pressure loss calculation unit that calculates the pressure loss of the high-pressure refrigerant pipe and the high pressure from the pressure on the discharge side of the compressor It is intended and a condensing pressure calculating section for calculating a condensing pressure in the condenser subtracting the pressure loss.

本発明によれば、低圧圧力損失演算部が演算した低圧圧力損失及び高圧圧力損失演算部が演算した高圧圧力損失から、凝縮圧力演算部が凝縮圧力を算出し、検知を行うようにしたので、冷凍サイクル装置の冷媒配管での圧力損失等の影響を排除した適正な凝縮圧力を検知することができる。このため、凝縮圧力から換算した適正な凝縮温度に基づいて過冷却制御を行うことができるので、精度の良い過冷却制御を行うことが可能となる。そして、流量制御装置でのハンチング及び冷媒音を抑制し、かつ、効率の良い運転状態を実現することができる。   According to the present invention, the condensation pressure calculation unit calculates the condensation pressure from the low pressure loss calculated by the low pressure loss calculation unit and the high pressure loss calculated by the high pressure loss calculation unit. Appropriate condensing pressure can be detected without the influence of pressure loss or the like in the refrigerant piping of the refrigeration cycle apparatus. For this reason, since supercooling control can be performed based on an appropriate condensation temperature converted from the condensation pressure, it is possible to perform precise supercooling control. And the hunting and refrigerant | coolant sound in a flow control apparatus can be suppressed, and an efficient driving | running state can be implement | achieved.

この発明の実施の形態の空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device of an embodiment of this invention. この発明の実施の形態の空気調和装置の全冷房運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the cooling only operation | movement of the air conditioning apparatus of embodiment of this invention. この発明の実施の形態の空気調和装置の全暖房運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the all heating operation of the air conditioning apparatus of embodiment of this invention. この発明の実施の形態の空気調和装置の暖房主体運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of heating main operation of the air harmony device of an embodiment of this invention. この発明の実施の形態の空気調和装置の冷房主体運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the cooling main operation | movement of the air conditioning apparatus of embodiment of this invention. この発明の実施の形態1の制御演算装置70の構成を表す図である。It is a figure showing the structure of the control arithmetic unit 70 of Embodiment 1 of this invention. この発明の実施の形態2の制御演算装置70等の構成を表す図である。It is a figure showing structures, such as control arithmetic unit 70 of Embodiment 2 of this invention. 過冷却度と冷凍サイクルのCOPの関係を示す図である。It is a figure which shows the relationship between a supercooling degree and COP of a refrigerating cycle.

以下に、本発明にかかる冷凍空気調和装置の凝縮圧力検知システムに係る実施形態について、図面を参照して説明する。先ず、本発明を適用することができる空気調和装置について説明した後に、本発明に係る凝縮圧力検知システムについて説明する。   EMBODIMENT OF THE INVENTION Below, embodiment which concerns on the condensing pressure detection system of the frozen air conditioning apparatus concerning this invention is described with reference to drawings. First, after describing an air conditioner to which the present invention can be applied, a condensing pressure detection system according to the present invention will be described.

実施の形態1.
図1は、実施の形態1に係る冷凍空気調和装置の構成を示す冷媒回路図である。図1は、室外機1台に対して複数台の室内機を接続する多室型ヒートポンプ空気調和装置の例を示している。本実施の形態の空気調和装置は、室内機毎に冷暖房を選択的に行なうことができ、冷房を行なう室内機と、暖房を行なう室内機とを同時に運転することができる例を示している。ここで、本実施の形態では、図1に示すように、室外機1台に室内機2台、分流コントローラ1台を接続した場合について説明するが、3台以上の室内機、及び2台以上の分流コントローラを接続した場合でも同様に実施することができる。また、空気調和装置に用いられる冷媒は、特に限定しない。例えば、R410A、R407C、R404AなどのHFC冷媒、R22、R134aなどのHCFC冷媒、もしくは炭化水素、ヘリウムのような自然冷媒などを用いることができる。ここで、冷媒回路における圧力の高低については、圧縮機等の圧縮、冷媒流量制御等による減圧等により生じる冷媒回路内の相対的な圧力の高低を表すものとする。また、温度の高低についても同様であるものとする。また、添字を付した手段等については、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合もある。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram illustrating a configuration of a refrigeration air conditioning apparatus according to Embodiment 1. FIG. FIG. 1 shows an example of a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one outdoor unit. The air conditioner of the present embodiment shows an example in which air conditioning can be selectively performed for each indoor unit, and an indoor unit that performs cooling and an indoor unit that performs heating can be operated simultaneously. Here, in this embodiment, as shown in FIG. 1, a case where two indoor units and one shunt controller are connected to one outdoor unit will be described, but three or more indoor units and two or more units are connected. Even when the shunt controller is connected, the same operation can be performed. Moreover, the refrigerant | coolant used for an air conditioning apparatus is not specifically limited. For example, HFC refrigerants such as R410A, R407C, and R404A, HCFC refrigerants such as R22 and R134a, or natural refrigerants such as hydrocarbon and helium can be used. Here, the level of pressure in the refrigerant circuit represents the level of relative pressure in the refrigerant circuit caused by compression of a compressor or the like, pressure reduction by refrigerant flow rate control, or the like. The same applies to the temperature level. In addition, the suffixed means may be described with the suffix omitted if it is not particularly necessary to distinguish or specify the suffix.

図1において、Aは室外機である。また、B、Cは後述するように互いに並列接続された室内機で、本実施の形態ではそれぞれ同じ構成とする。Dは室外機Aと室内機B、Cとを接続する分流コントローラである。   In FIG. 1, A is an outdoor unit. B and C are indoor units connected in parallel to each other as will be described later, and have the same configuration in this embodiment. D is a shunt controller that connects the outdoor unit A and the indoor units B and C.

室外機Aは以下に述べる各構成要素によって構成されている。例えば、冷媒を圧縮する圧縮機1と、この圧縮機1に接続され、冷媒の流通方向を切り換える四方切換弁2と、外気と冷媒との熱交換を行う室外熱交換器3と、四方切換弁2及び圧縮機1の間に接続されたアキュムレータ4と、室外熱交換器3及び後述する第1の接続配管6の間に設けられ、室外熱交換器3から第1の接続配管6の方向へのみ冷媒流通を許容する第1の逆止弁5aと、四方切換弁2及び後述する第2の接続配管7の間に設けられ、第2の接続配管7から四方切換弁2の方向へのみ冷媒流通を許容する第2の逆止弁5bと、四方切換弁2及び第1の接続配管6の間に設けられ、四方切換弁2から第1の接続配管6の方向へのみ冷媒流通を許容する第3の逆止弁5cと、室外熱交換器3及び第2の接続配管7の間に設けられ、第2の接続配管7から室外熱交換器3の方向へのみ冷媒流通を許容する第4の逆止弁5dとから構成されている。   The outdoor unit A is configured by each component described below. For example, a compressor 1 that compresses refrigerant, a four-way switching valve 2 that is connected to the compressor 1 and switches the flow direction of the refrigerant, an outdoor heat exchanger 3 that exchanges heat between the outside air and the refrigerant, and a four-way switching valve 2 and the accumulator 4 connected between the compressor 1 and the outdoor heat exchanger 3 and a first connection pipe 6 to be described later, from the outdoor heat exchanger 3 to the first connection pipe 6. The refrigerant is provided only between the first check valve 5a that allows refrigerant flow only, the four-way switching valve 2 and the second connection pipe 7 described later, and only in the direction from the second connection pipe 7 to the four-way switching valve 2. Provided between the second check valve 5b that allows the flow, the four-way switching valve 2 and the first connection pipe 6, and allows the refrigerant to flow only from the four-way switching valve 2 to the first connection pipe 6. Provided between the third check valve 5c, the outdoor heat exchanger 3 and the second connection pipe 7, The is composed of a fourth check valve 5d that allows only refrigerant flow from the connecting pipe 7 in the direction of the outdoor heat exchanger 3.

また、室内機B、Cは、それぞれ負荷側熱交換器11b、11cと、各負荷側熱交換器11b、11cに直列接続された絞り装置等の流量制御装置12b、12cとで構成されている。なお、各流量制御装置12b、12cは、冷房時は負荷側熱交換器11b、11cの出口側の過熱度により、暖房時は同じく出口側の過冷却度により開閉状態が制御されるようにされている。   Each of the indoor units B and C includes load-side heat exchangers 11b and 11c, and flow control devices 12b and 12c such as expansion devices connected in series to the load-side heat exchangers 11b and 11c. . The flow rate control devices 12b and 12c are controlled to be opened and closed by the degree of superheat on the outlet side of the load side heat exchangers 11b and 11c during cooling, and also by the degree of supercooling on the outlet side during heating. ing.

分流コントローラDは四方切換弁2と接続された太い第2の接続配管7及び室外熱交換器3と接続され、第2の接続配管7より細い第1の接続配管6によって室外機Aと接続され、室内機B、Cの負荷側熱交換器11b、11cと接続された負荷側の第2の接続配管7b、7c及び室内機B、Cの流量制御装置12b、12cに接続された負荷側の第1の接続配管6b、6cによって各室内機B、Cと接続される。   The shunt controller D is connected to the thick second connection pipe 7 and the outdoor heat exchanger 3 connected to the four-way switching valve 2, and is connected to the outdoor unit A by the first connection pipe 6 narrower than the second connection pipe 7. The load-side second connection pipes 7b and 7c connected to the load-side heat exchangers 11b and 11c of the indoor units B and C and the load-side connected to the flow control devices 12b and 12c of the indoor units B and C It connects with each indoor unit B and C by the 1st connection piping 6b and 6c.

分流コントローラDの構成について、まず、弁装置13a1、13a2、13b1、13b2は負荷側の第2の接続配管7b、7cを、第1の接続配管6または第2の接続配管7に切り換え可能に接続する。2個の第1の弁装置13a1、13a2は、一端が負荷側の第2の接続配管7b、7cにそれぞれ接続され、他端が一括接続されて第1の接続配管6に接続されている。また、2個の第2の弁装置13b1、13b2は、一端が負荷側の第2の接続配管7b、7cにそれぞれ接続され、他端が一括接続されて第2の接続配管7に接続されている。第1の弁装置13a1を開路、13a2を閉路、第2の弁装置13b1を開路、13b2を閉路にすることにより、負荷側の第2の接続配管7b、7cを第1の接続配管6に接続し、また、第1の弁装置13a1を閉路、13a2を開路、第2の弁装置13b1を閉路、13b2を開路にすることにより、負荷側の第2の接続配管7b、7cを第2の接続配管7に接続するものである。   Regarding the configuration of the shunt controller D, first, the valve devices 13a1, 13a2, 13b1, and 13b2 connect the load-side second connection pipes 7b and 7c to the first connection pipe 6 or the second connection pipe 7 in a switchable manner. To do. One end of each of the two first valve devices 13a1 and 13a2 is connected to the load-side second connection pipes 7b and 7c, and the other end is connected to the first connection pipe 6 in a lump. In addition, one end of each of the two second valve devices 13b1 and 13b2 is connected to the second connection pipes 7b and 7c on the load side, and the other end is connected to the second connection pipe 7 in a lump. Yes. The second connection pipes 7b and 7c on the load side are connected to the first connection pipe 6 by opening the first valve device 13a1, closing the 13a2, closing the second valve device 13b1, and closing the 13b2. In addition, the first valve device 13a1 is closed, 13a2 is opened, the second valve device 13b1 is closed, and 13b2 is opened, so that the second connection pipes 7b and 7c on the load side are second connected. This is connected to the pipe 7.

また、第1の接続配管6の途中に気液分離器14が設けられ、その気相部が、第1の接続配管6の後半部を経て第1の弁装置13aに接続され、その液相部が第1の熱交換部15、開閉自在な第2の流量制御装置16及び第2の熱交換部17を介して負荷側の第1の接続配管6b、6cに接続されている。また、バイパス配管18に設けられた第3の流量制御装置19を経て気液分離器14からの液冷媒の一部が第2の熱交換部17及び第1の熱交換部15で熱交換し、気液分離器14からの液冷媒を過冷却して第2の接続配管7に戻るようにされている。   In addition, a gas-liquid separator 14 is provided in the middle of the first connection pipe 6, and its gas phase part is connected to the first valve device 13 a via the second half part of the first connection pipe 6, and the liquid phase thereof The parts are connected to the first connection pipes 6b, 6c on the load side via the first heat exchange part 15, the second flow control device 16 that can be opened and closed, and the second heat exchange part 17. In addition, a part of the liquid refrigerant from the gas-liquid separator 14 exchanges heat with the second heat exchange unit 17 and the first heat exchange unit 15 via the third flow rate control device 19 provided in the bypass pipe 18. The liquid refrigerant from the gas-liquid separator 14 is supercooled and returned to the second connection pipe 7.

圧力センサ20及び21は、それぞれ圧縮機1の吐出側、吸入側に設置されて、圧力を検出する。また、温度センサ22、23、24及び25(25b、25c)は、それぞれ、第2の熱交換部17と第3の流量制御装置19との間、圧縮機1の吐出側、第2の熱交換部17とバイパス配管18との間、室内熱交換器11と流量制御装置12との間に設置されている。   The pressure sensors 20 and 21 are installed on the discharge side and the suction side of the compressor 1 to detect pressure. Further, the temperature sensors 22, 23, 24, and 25 (25b, 25c) are respectively connected between the second heat exchange unit 17 and the third flow control device 19, on the discharge side of the compressor 1, and on the second heat. It is installed between the exchange unit 17 and the bypass pipe 18 and between the indoor heat exchanger 11 and the flow control device 12.

このように構成された本実施の形態の冷凍空気調和装置では、大きく分けて3つの形態の運転が行うことができるものとする。形態については、例えば、動作している室内機の総てが冷房を行なうときの運転である全冷房運転、動作している室内機の総てが暖房を行なうときの運転である全暖房運転と、複数の室内機のうち一部は冷房を行ない、他の一部は暖房を行なうときの運転である冷暖房同時運転となる。また、冷暖房同時運転については、複数の室内機のうち大部分の室内機が暖房運転を行なう暖房主体運転と、複数の室内機のうち大部分の室内機が冷房運転を行なう冷房主体運転に更に分かれる。   In the refrigeration air conditioning apparatus of the present embodiment configured as described above, it is assumed that the operation of three forms can be performed roughly. With regard to the form, for example, a full cooling operation that is an operation when all of the operating indoor units perform cooling, a full heating operation that is an operation when all of the operating indoor units perform heating, and Some of the indoor units perform cooling, and the other part performs simultaneous cooling and heating operation, which is an operation when heating. In addition, for the simultaneous cooling and heating operation, a heating main operation in which most of the indoor units among the plurality of indoor units perform the heating operation, and a cooling main operation in which most of the indoor units among the plurality of indoor units perform the cooling operation are further performed. Divided.

<全冷房運転>
図2は全冷房運転における冷媒の流れを示す図である。図2では全冷房運転時の冷媒の流れを実線矢印で示している。まず、図2に基づいて全冷房運転について説明する。圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、室外熱交換器3で熱交換して凝縮された後、第1の逆止弁5a、第1の接続配管6を通り、分流コントローラDへ流入する。分流コントローラDへ流入した冷媒は気液分離器14、第2の流量制御装置16の順に通り、第2の熱交換部17を通り、逆止弁30a1、30b1を通り、負荷側の第1の接続配管6b、6cを通り、各室内機B、Cに流入し、各負荷側熱交換器11b、11cの出口の過熱度により制御される流量制御装置12b、12cにより低圧まで減圧されて負荷側熱交換器11b、11cで室内空気と熱交換して蒸発しガス化され室内を冷房する。
<Cooling only operation>
FIG. 2 is a diagram illustrating the flow of the refrigerant in the cooling only operation. In FIG. 2, the flow of the refrigerant during the cooling only operation is indicated by solid arrows. First, the cooling only operation will be described with reference to FIG. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and is condensed by exchanging heat in the outdoor heat exchanger 3, and then passes through the first check valve 5a and the first connection pipe 6. And flows into the diversion controller D. The refrigerant flowing into the diversion controller D passes through the gas-liquid separator 14 and the second flow rate control device 16 in this order, passes through the second heat exchange unit 17, passes through the check valves 30a1 and 30b1, and passes through the first on the load side. Passes through the connecting pipes 6b and 6c, flows into the indoor units B and C, and is reduced to a low pressure by the flow rate control devices 12b and 12c controlled by the degree of superheat at the outlets of the load side heat exchangers 11b and 11c. The heat exchangers 11b and 11c exchange heat with room air, evaporate and gasify, and cool the room.

そして、ガス状態となった冷媒は、負荷側の第2の接続配管7b、7c、第2の弁装置13bを通り、第2の接続配管7、第2の逆止弁5b、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房運転を行なう。この時、第1の弁装置13a1は閉路、13a2は開路、第2の弁装置13b1は閉路、13b2は開路になっている。   The refrigerant in the gas state passes through the second connection pipes 7b and 7c and the second valve device 13b on the load side, passes through the second connection pipe 7, the second check valve 5b, and the four-way switching valve 2. Then, a circulation cycle that is sucked into the compressor 1 through the accumulator 4 is formed, and the cooling operation is performed. At this time, the first valve device 13a1 is closed, 13a2 is open, the second valve device 13b1 is closed, and 13b2 is open.

また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第1の逆止弁5a、第2の逆止弁5bへ冷媒が流通する。更に、このサイクルの時、第2の流量制御装置16を通過した冷媒の一部が第2の熱交換部17及び第3の流量制御装置19を経てバイパス配管18へ入り、第3の流量制御装置19で低圧まで減圧されて、第2の熱交換部17で負荷側の第1の接続配管6b、6cに流入する冷媒との間で熱交換を行ない、また、第1の熱交換部15で第2の流量制御装置16に流入する冷媒との間で熱交換を行ない蒸発した冷媒は、第2の接続配管7へ入り、第2の逆止弁5b、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。一方、第1の熱交換部15および第2の熱交換部17で熱交換し、過冷却度が増大された冷媒は、負荷側の第1の接続配管6b、6cを経由して冷房しようとしている室内機B、Cへ流入する。   In addition, since the second connection pipe 7 is low pressure and the first connection pipe 6 is high pressure, the refrigerant inevitably flows to the first check valve 5a and the second check valve 5b. Further, during this cycle, a part of the refrigerant that has passed through the second flow rate control device 16 enters the bypass pipe 18 via the second heat exchange unit 17 and the third flow rate control device 19, and the third flow rate control. The apparatus 19 is depressurized to a low pressure, and the second heat exchange unit 17 exchanges heat with the refrigerant flowing into the first connection pipes 6b and 6c on the load side, and the first heat exchange unit 15 The refrigerant that has exchanged heat with the refrigerant flowing into the second flow control device 16 and enters the second connecting pipe 7 enters the second check valve 5b, the four-way switching valve 2, and the accumulator 4. Then, it is sucked into the compressor 1. On the other hand, the refrigerant that has exchanged heat in the first heat exchange unit 15 and the second heat exchange unit 17 and has an increased degree of supercooling is going to be cooled through the first connection pipes 6b and 6c on the load side. Flows into the existing indoor units B and C.

<全暖房運転>
図3は全暖房運転における冷媒の流れを示す図である。図3では全暖房運転時の冷媒の流れを実線矢印で示している。次に、図3に基づいて全暖房運転について説明する。四方切換弁2は、全暖房運転時と異なる流れになるように切り換えられる。圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、第3の逆止弁5c、第1の接続配管6を通り、分流コントローラDへ流入する。分流コントローラDへ流入した冷媒は気液分離器14、第1の接続配管6の後半部を経て第1の弁装置13a1、第2の13b1を通り、負荷側の第2の接続配管7b、7cを通り、各室内機B、Cに流入し、室内空気と熱交換して凝縮液化し、室内を暖房する。
<Heating operation>
FIG. 3 is a diagram showing a refrigerant flow in the all-heating operation. In FIG. 3, the flow of the refrigerant at the time of heating only operation is indicated by solid line arrows. Next, the heating only operation will be described with reference to FIG. The four-way switching valve 2 is switched so as to have a flow different from that in the heating only operation. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, passes through the third check valve 5 c and the first connection pipe 6, and flows into the branch controller D. The refrigerant flowing into the diversion controller D passes through the first valve device 13a1 and the second 13b1 through the gas-liquid separator 14, the second half of the first connection pipe 6, and the second connection pipes 7b and 7c on the load side. , Flows into each of the indoor units B and C, exchanges heat with room air, condenses, and heats the room.

そして、液状態となった冷媒は、各負荷側熱交換器11b、11cの出口の過冷却度により制御される流量制御装置12b、12cを通り、負荷側の第1の接続配管6b、6cから、逆止弁30a2、30b2を通り、バイパス配管18の第3の流量制御装置19に流入して低圧の気液二相状態まで減圧される。低圧まで減圧された冷媒は、第2の熱交換部17、第1の熱交換部15を経た後、第2の接続配管7を通り、第4の逆止弁5d、室外熱交換器3に流入し熱交換して蒸発しガス状態となった冷媒は、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房運転を行なう。この時、第1の弁装置13a1は開路、13a2は閉路、第2の弁装置13b1は開路、13b2は閉路になっている。また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第3の逆止弁5c、第4の逆止弁5dへ冷媒が流通する。   And the refrigerant | coolant which became the liquid state passes through the flow control apparatuses 12b and 12c controlled by the subcooling degree of the exit of each load side heat exchanger 11b and 11c, and is from the load side 1st connection piping 6b and 6c. Then, after passing through the check valves 30a2 and 30b2, it flows into the third flow control device 19 of the bypass pipe 18 and is depressurized to a low-pressure gas-liquid two-phase state. The refrigerant depressurized to a low pressure passes through the second connection pipe 7 after passing through the second heat exchange unit 17 and the first heat exchange unit 15, and then enters the fourth check valve 5 d and the outdoor heat exchanger 3. The refrigerant that has flowed in, exchanged heat, and has evaporated to form a gas state constitutes a circulation cycle that is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4, and performs the heating operation. At this time, the first valve device 13a1 is open, 13a2 is closed, the second valve device 13b1 is open, and 13b2 is closed. In addition, since the second connection pipe 7 is low pressure and the first connection pipe 6 is high pressure, the refrigerant inevitably flows to the third check valve 5c and the fourth check valve 5d.

<暖房主体運転>
図4は暖房主体運転における冷媒の流れを示す図である。図4では冷暖房同時運転における暖房主体運転時の冷媒の流れを実線矢印で示している。次に、図4に基づいて暖房主体運転について説明する。ここでは、室内機Bが暖房、室内機Cが冷房しようとしている場合について説明する。圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2、第3の逆止弁5c、第1の接続配管6を通り、分流コントローラDに流入する。分流コントローラDに流入した冷媒は気液分離器14、第1の接続配管6の後半部を経て第2の弁装置13b1、負荷側の第2の接続配管7bの順に通り、暖房しようとしている室内機Bに流入し、負荷側熱交換器11bで室内空気と熱交換して凝縮液化し、室内を暖房する。
<Heating-based operation>
FIG. 4 is a diagram showing the refrigerant flow in the heating-main operation. In FIG. 4, the flow of the refrigerant at the time of heating main operation in the simultaneous cooling and heating operation is indicated by solid arrows. Next, the heating main operation will be described with reference to FIG. Here, the case where the indoor unit B is heating and the indoor unit C is going to be cooled will be described. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2, the third check valve 5 c, and the first connection pipe 6 and flows into the branch controller D. The refrigerant flowing into the shunt controller D passes through the gas-liquid separator 14, the second half of the first connection pipe 6, the second valve device 13 b 1, and the load-side second connection pipe 7 b in this order. It flows into the machine B, heat-exchanges with room air by the load side heat exchanger 11b, is condensed and liquefied, and the room is heated.

そして、液状態となった冷媒は、負荷側熱交換器11bの出口の過冷却度により制御され、ほぼ全開状態の流量制御装置12bを通り少し減圧されて高圧と低圧の中間の圧力(中間圧)になり、負荷側の第1の接続配管6bに流入した冷媒の一部が矢印のように第2の熱交換部17を経て冷房しようとしている室内機Cに接続された負荷側の第1の接続配管6cを通り、負荷側熱交換器11cの出口の過熱度により制御される流量制御装置12cにより減圧された後に室内機Cの負荷側熱交換器11cに入り熱交換して蒸発しガス状態となって室内を冷房し、室内機Cに接続された第1の弁装置13a2を介して第2の接続配管7に流入する。   Then, the refrigerant in the liquid state is controlled by the degree of supercooling at the outlet of the load side heat exchanger 11b, and is slightly depressurized through the flow control device 12b in the almost fully open state, so that the intermediate pressure between the high pressure and the low pressure (intermediate pressure) ), And a part of the refrigerant that has flowed into the first connection pipe 6b on the load side passes through the second heat exchange part 17 as indicated by the arrow, and the first on the load side connected to the indoor unit C that is going to be cooled. After being depressurized by the flow rate control device 12c controlled by the degree of superheat at the outlet of the load side heat exchanger 11c, the gas enters the load side heat exchanger 11c of the indoor unit C, evaporates by heat exchange It becomes a state, cools the room, and flows into the second connection pipe 7 via the first valve device 13a2 connected to the indoor unit C.

一方、室内機Bから分流コントローラDの第2の熱交換部17に流入した室内機Bの暖房用の冷媒の他の一部は、バイパス配管18を経て第1の接続配管6の高圧と流量制御装置12bの出口の中間圧との差を一定にするように制御される開閉自在な第3の流量制御装置19を通って上述のように第2の接続配管7に至るため、ここで室内機Cを冷房した冷媒と合流して太い第2の接続配管7に流入し、第4の逆止弁5d、室外熱交換器3に流入し熱交換して蒸発しガス状態となった冷媒は、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房主体運転を行なう。   On the other hand, the other part of the refrigerant for heating the indoor unit B that has flowed from the indoor unit B into the second heat exchange unit 17 of the shunt controller D passes through the bypass pipe 18 and the high pressure and flow rate of the first connection pipe 6. Since the second connecting pipe 7 is reached through the third flow control device 19 that can be opened and closed that is controlled so as to make the difference from the intermediate pressure at the outlet of the control device 12b constant, The refrigerant that has cooled the machine C and flows into the thick second connection pipe 7 flows into the fourth check valve 5d and the outdoor heat exchanger 3, exchanges heat, evaporates, and enters the gas state. A circulation cycle that is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4 is configured, and the heating main operation is performed.

この時、暖房しようとしている室内機Bに接続されている第1の弁装置13a1は開路、13a2は閉路であり、冷房しようとしている室内機Cに接続されている第2の弁装置13b1は閉路、13b2は開路になっている。また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第3の逆止弁5c、第4の逆止弁5dへ冷媒が流通する。   At this time, the first valve device 13a1 connected to the indoor unit B to be heated is open, 13a2 is closed, and the second valve device 13b1 connected to the indoor unit C to be cooled is closed. , 13b2 is open. In addition, since the second connection pipe 7 is low pressure and the first connection pipe 6 is high pressure, the refrigerant inevitably flows to the third check valve 5c and the fourth check valve 5d.

また、このサイクルのとき、バイパス配管18へ入った冷媒は、第3の流量制御装置19で低圧まで減圧されて、第2の熱交換部17で負荷側の第1の接続配管6cへ流入する冷媒との間で熱交換を行ない、更に第1の熱交換部15で第2の流量制御装置16へ流入する冷媒との間で熱交換を行ない蒸発した冷媒は、第2の接続配管7へ入り、第4の逆止弁5dを経て、室外熱交換器3に流入し熱交換して蒸発しガス状態となる。そして、この冷媒は四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。一方、第2の熱交換部17で熱交換し過冷却度が増大された冷媒は、上述のように、冷房しようとしている室内機Cへ流入する。   In this cycle, the refrigerant that has entered the bypass pipe 18 is decompressed to a low pressure by the third flow control device 19 and flows into the first connection pipe 6c on the load side by the second heat exchange unit 17. The refrigerant that exchanges heat with the refrigerant and further exchanges heat with the refrigerant flowing into the second flow rate control device 16 in the first heat exchanging unit 15, and the evaporated refrigerant passes to the second connection pipe 7. Enters, passes through the fourth check valve 5d, flows into the outdoor heat exchanger 3, exchanges heat, evaporates, and enters a gas state. The refrigerant is sucked into the compressor 1 through the four-way switching valve 2 and the accumulator 4. On the other hand, the refrigerant whose degree of supercooling has been increased by exchanging heat in the second heat exchanging unit 17 flows into the indoor unit C that is going to be cooled, as described above.

<冷房主体運転>
図5は冷房主体運転における冷媒の流れを示す図である。図5では冷暖房同時運転における冷房主体運転時の冷媒の流れを実線矢印で示している。次に、図5に基づいて冷房主体運転について説明する。ここでは、室内機Bが暖房、室内機Cが冷房しようとしている場合について説明する。圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、室外熱交換器3で任意量熱交換して気液二相の高温高圧冷媒となり、第1の逆止弁5a、第1の接続配管6を通り、分流コントローラDに流入する。分流コントローラDに流入した冷媒は気液分離器14へ送られ、ここで、ガス冷媒と液冷媒に分離される。分離されたガス冷媒は、第1の接続配管6の後半部を経て分流コントローラDの第2の弁装置13b1、負荷側の第2の接続配管7bの順に通り、暖房しようとしている室内機Bに流入し、負荷側熱交換器11bで室内空気と熱交換して凝縮液化し、室内を暖房する。
<Cooling operation>
FIG. 5 is a diagram showing the flow of the refrigerant in the cooling main operation. In FIG. 5, the flow of the refrigerant | coolant at the time of the air_conditioning | cooling main operation | movement in the cooling / heating simultaneous operation is shown by the solid line arrow. Next, the cooling main operation will be described with reference to FIG. Here, the case where the indoor unit B is heating and the indoor unit C is going to be cooled will be described. The high-temperature and high-pressure refrigerant gas discharged from the compressor 1 passes through the four-way switching valve 2 and exchanges an arbitrary amount of heat in the outdoor heat exchanger 3 to become a gas-liquid two-phase high-temperature and high-pressure refrigerant, and the first check valve 5a, It passes through the first connection pipe 6 and flows into the diversion controller D. The refrigerant flowing into the diversion controller D is sent to the gas-liquid separator 14 where it is separated into a gas refrigerant and a liquid refrigerant. The separated gas refrigerant passes through the second half of the first connection pipe 6 in the order of the second valve device 13b1 of the shunt controller D and the second connection pipe 7b on the load side, and reaches the indoor unit B that is to be heated. It flows in, heat-exchanges with indoor air with the load side heat exchanger 11b, is condensed and liquefied, and the room is heated.

更に、負荷側熱交換器11bの出口の過冷却度により制御されほぼ全開状態の流量制御装置12bを通り少し減圧されて、高圧と低圧の中間の圧力(中間圧)となり、負荷側の第1の接続配管6bを経てバイパス配管18に流入し、第3の流量制御装置19で低圧まで減圧されて、第2の熱交換部17で負荷側の第1の接続配管6cに流入する冷媒との間で熱交換を行ない、また、第1の熱交換部15で第2の流量制御装置16へ流入する冷媒との間で熱交換を行ない蒸発した冷媒は、第2の接続配管7に至る。一方、分流コントローラDの気液分離器14で分離された残りの液冷媒は、第1の熱交換部15で熱交換して過冷却度が増大された後、高圧と中間圧の差を一定にするように制御される第2の流量制御装置16を通って矢印で示すように、逆止弁30b1を通り、負荷側の第1の接続配管6cを通り、室内機Cに流入する。そして、この冷媒は、室内機Cの負荷側熱交換器11cの出口の過熱度により制御される流量制御装置12cにより低圧まで減圧されて負荷側熱交換器11cで室内空気と熱交換して蒸発しガス化され室内を冷房する。   Furthermore, it is controlled by the degree of supercooling at the outlet of the load side heat exchanger 11b and is slightly depressurized through the flow control device 12b in a fully open state, resulting in an intermediate pressure between the high pressure and the low pressure (intermediate pressure). The refrigerant flows into the bypass pipe 18 through the connection pipe 6b, is depressurized to a low pressure by the third flow rate control device 19, and flows into the first connection pipe 6c on the load side in the second heat exchange section 17. The refrigerant that has exchanged heat and that has exchanged heat with the refrigerant flowing into the second flow rate control device 16 in the first heat exchanging unit 15 reaches the second connection pipe 7. On the other hand, the remaining liquid refrigerant separated by the gas-liquid separator 14 of the shunt controller D is subjected to heat exchange by the first heat exchange unit 15 and the degree of supercooling is increased, and then the difference between the high pressure and the intermediate pressure is constant. As shown by the arrow through the second flow rate control device 16 controlled so as to pass through the check valve 30b1, passes through the first connection pipe 6c on the load side, and flows into the indoor unit C. The refrigerant is decompressed to a low pressure by the flow rate control device 12c controlled by the degree of superheat at the outlet of the load side heat exchanger 11c of the indoor unit C, and exchanges heat with room air in the load side heat exchanger 11c to evaporate. It is gasified and the room is cooled.

そして、ガス状態となった冷媒は、負荷側の第2の接続配管7c、第2の弁装置13bを経て第2の接続配管7へ流入し、バイパス配管18を経て第2の接続配管7に流入する上述の室内機Bの暖房用冷媒と合流した後、第2の逆止弁5b、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房主体運転を行なう。   The gas refrigerant enters the second connection pipe 7 via the load-side second connection pipe 7c and the second valve device 13b, and passes through the bypass pipe 18 to the second connection pipe 7. After merging with the heating refrigerant of the indoor unit B that flows in, a circulation cycle is formed which is sucked into the compressor 1 through the second check valve 5b, the four-way switching valve 2, and the accumulator 4, and the cooling main operation is performed. Do.

このとき、冷房しようとしている室内機Cに接続されている第1の弁装置13a1は閉路、13a2は開路され、暖房しようとしている室内機Bに接続されている第2の弁装置13b1は開路、13b2は閉路になっている。また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第1の逆止弁5a、第2の逆止弁5bへ冷媒が流通する。   At this time, the first valve device 13a1 connected to the indoor unit C to be cooled is closed, 13a2 is opened, and the second valve device 13b1 connected to the indoor unit B to be heated is open, 13b2 is closed. In addition, since the second connection pipe 7 is low pressure and the first connection pipe 6 is high pressure, the refrigerant inevitably flows to the first check valve 5a and the second check valve 5b.

この実施の形態による空気調和装置は、以上のように構成されているため、第1の接続配管6は常に高圧で使用され、第2の接続配管7は常に低圧で使用される。従って、第1の接続配管6は高圧の設計圧力、第2の接続配管7は低圧の設計圧力で設計することができる。   Since the air conditioning apparatus according to this embodiment is configured as described above, the first connection pipe 6 is always used at a high pressure, and the second connection pipe 7 is always used at a low pressure. Accordingly, the first connection pipe 6 can be designed with a high design pressure, and the second connection pipe 7 can be designed with a low design pressure.

[ガス冷媒配管の圧力損失検知]
上記のように構成した空気調和装置において、暖房および暖房主体運転時の第1の接続配管6にガス冷媒が流れ、圧力損失が発生する場合の室内機Bの凝縮圧力を検知する等の処理手順について説明する。
[Detection of pressure loss in gas refrigerant piping]
In the air conditioner configured as described above, a processing procedure such as detecting the condensing pressure of the indoor unit B when gas refrigerant flows into the first connection pipe 6 during heating and heating main operation and pressure loss occurs. Will be described.

図6は実施の形態1に係る制御演算装置70の構成を表す図である。図6に示すように、制御演算装置70は、凝縮圧力検知を行うシステムとして機能し、運転制御部71、低圧圧力損失演算部72、記憶部73、高圧圧力損失演算部74、凝縮圧力演算部75を備えている。運転制御部71は、上述した各運転モードによる冷媒の流れを制御する。本実施の形態では、凝縮圧力を検知しようとする場合の室外機A、室内機Bおよび室内機Cの運転を制御する。ここでは、特に凝縮圧力演算部75が算出した凝縮圧力から換算した凝集温度に基づいて、凝縮器の冷媒流出口の過冷却度の制御を行う。低圧圧力損失演算部72は、第2の接続配管7内を流れる低圧側の冷媒の圧力損失(以下、低圧圧力損失という)ΔPL を算出する。記憶部73は、第1の接続配管6に対する、第2の接続配管7の配管径の比率を記憶する。高圧圧力損失演算部74は、低圧圧力損失および記憶部73が記憶する配管径の比率に基づいて、第1の接続配管6内を流れる高圧側の冷媒の圧力(以下高圧圧力損失という)ΔPH を演算する。凝縮圧力演算部75は、圧縮機1の吐出に係る冷媒の圧力(高圧圧力)と高圧圧力損失の差から凝縮圧力を演算する。 FIG. 6 is a diagram illustrating the configuration of the control arithmetic device 70 according to the first embodiment. As shown in FIG. 6, the control calculation device 70 functions as a system that performs condensation pressure detection, and includes an operation control unit 71, a low pressure loss calculation unit 72, a storage unit 73, a high pressure loss loss calculation unit 74, and a condensation pressure calculation unit. 75. The operation control unit 71 controls the refrigerant flow in each operation mode described above. In the present embodiment, the operation of the outdoor unit A, the indoor unit B, and the indoor unit C when the condensation pressure is to be detected is controlled. Here, the degree of supercooling of the refrigerant outlet of the condenser is controlled based on the condensation temperature converted from the condensation pressure calculated by the condensation pressure calculator 75 in particular. The low-pressure pressure loss calculation unit 72 calculates the pressure loss (hereinafter referred to as low-pressure pressure loss) ΔP L of the low-pressure side refrigerant flowing in the second connection pipe 7. The storage unit 73 stores the ratio of the pipe diameter of the second connection pipe 7 to the first connection pipe 6. High pressure loss calculation unit 74, based on the ratio of pipe diameter to be stored in the low pressure loss and a storage unit 73, the first connecting pipe pressure of the high pressure side of the refrigerant flowing through the 6 (hereinafter referred to as high pressure drop) [Delta] P H Is calculated. The condensing pressure calculation unit 75 calculates the condensing pressure from the difference between the refrigerant pressure (high pressure) related to the discharge of the compressor 1 and the high pressure loss.

次に制御演算装置70が行う処理について説明する。運転制御部71は、室内機B、室内機Cの少なくとも1台が暖房を行う場合には、空気調和装置を全暖房運転または暖房主体運転させる。   Next, processing performed by the control arithmetic device 70 will be described. When at least one of the indoor unit B and the indoor unit C performs heating, the operation control unit 71 causes the air conditioner to perform a full heating operation or a heating main operation.

低圧圧力損失演算部72は、バイパス配管18の第3の流量制御装置19出口に設けた温度センサ22の検出に係る飽和温度から冷媒の物性に基づいて飽和圧力Peに換算する。そして、圧縮機1の吸入部分に設けた圧力センサ21の検出に係る低圧圧力PSLと飽和圧力Peとの差から低圧側圧力損失ΔPL (ΔPL =Pe−PSL)を算出する。 The low-pressure pressure loss calculation unit 72 converts the saturation temperature related to detection by the temperature sensor 22 provided at the outlet of the third flow rate control device 19 of the bypass pipe 18 to the saturation pressure Pe based on the physical properties of the refrigerant. Then, the low pressure side pressure loss ΔP L (ΔP L = Pe−PSL) is calculated from the difference between the low pressure PSL related to the detection of the pressure sensor 21 provided in the suction portion of the compressor 1 and the saturation pressure Pe.

ここで、圧力センサ21は、本実施の形態の冷暖同時を可能とする空気調和装置が圧力制御運転を行う場合に、低圧側の圧力を測定するために通常設けられているものなので、これを流用することでセンサ(検出手段)の数を減らすことができる。   Here, the pressure sensor 21 is normally provided to measure the pressure on the low pressure side when the air conditioning apparatus capable of simultaneous heating and cooling according to the present embodiment performs pressure control operation. By diverting, the number of sensors (detection means) can be reduced.

低圧圧力損失演算部72が算出した低圧側圧力損失ΔPL と、第1の接続配管6に対する、第2の接続配管7の配管径の比率を記憶している記憶部73の値から、高圧圧力損失ΔPH を高圧圧力損失演算部74が演算する。ここで、第1の接続配管6に対する、第2の接続配管7の配管径の比率は、室外機Aの第1の接続配管6および第2の接続配管7の接続口で配管サイズが決定されるため、室外機Aの機種固有の値となる。 A low side pressure loss [Delta] P L which low pressure loss calculating section 72 calculates, for the first connection pipe 6, the value of the second connection pipe 7 storage unit 73 the ratio of the pipe diameter stored in, the high pressure loss [Delta] P H is high pressure loss calculating section 74 calculates. Here, the ratio of the pipe diameter of the second connection pipe 7 to the first connection pipe 6 is determined at the connection port of the first connection pipe 6 and the second connection pipe 7 of the outdoor unit A. Therefore, the value is unique to the model of the outdoor unit A.

一般に、圧力損失ΔPは、以下のダルシーの式(Darcy's Formula )によって算出することができる。ここで、λはダルシーの管摩擦係数、Lは配管長さ、Dは配管内径、ρは冷媒の比重、Uは平均流速、Lは接続配管の配管長である。   In general, the pressure loss ΔP can be calculated by the following Darcy's Formula. Here, λ is Darcy's pipe friction coefficient, L is the pipe length, D is the pipe inner diameter, ρ is the specific gravity of the refrigerant, U is the average flow velocity, and L is the pipe length of the connection pipe.

Figure 2011106688
Figure 2011106688

そして、(1)式に基づいて、第1の接続配管6および第2の接続配管7における高圧圧力損失ΔPH 、低圧圧力損失ΔPL をそれぞれ次式(2)、(3)で表す。ここでは、高圧に係る添え字をHとし、低圧に係る添え字をLとする。また、第1の接続配管6および第2の接続配管7の配管長は共にLとする。 Based on the formula (1), the high pressure loss ΔP H and the low pressure loss ΔP L in the first connection pipe 6 and the second connection pipe 7 are expressed by the following formulas (2) and (3), respectively. Here, the subscript relating to the high pressure is H, and the subscript relating to the low pressure is L. The pipe lengths of the first connection pipe 6 and the second connection pipe 7 are both L.

Figure 2011106688
Figure 2011106688

ここで、全暖房運転、暖房主体運転時においては、第2の接続配管7には気液二相冷媒が流れるため、単相の場合よりも一般的に圧力損失が増加する。これは管摩擦係数λが増倍するとして考慮することができる。また、冷媒循環量Grについては、次式(4)、(5)のように、それぞれ高圧側のパラメータ、低圧側のパラメータで表すことができる。

Figure 2011106688
Here, in the heating only operation and the heating main operation, the gas-liquid two-phase refrigerant flows through the second connection pipe 7, so that the pressure loss generally increases as compared with the single-phase operation. This can be considered as an increase in the tube friction coefficient λ. The refrigerant circulation amount Gr can be expressed by a high-pressure side parameter and a low-pressure side parameter, respectively, as in the following equations (4) and (5).
Figure 2011106688

そして、ΔPH とΔPL との圧力損失比率RDPは次式(6)で表される。 The pressure loss ratio RDP between ΔP H and ΔP L is expressed by the following equation (6).

Figure 2011106688
Figure 2011106688

配管内径DH 、DL は、それぞれ第1の接続配管6、第2の接続配管7の配管仕様で決定される値である。また、高圧側の冷媒密度ρH は、図1において圧縮機出口に設けられた圧力センサ20が検出した高圧圧力PSHと温度センサ23が検出した温度とに基づいて算出することができる。低圧側の冷媒密度ρLは、温度センサ22と流量制御装置19入口に設けられた温度センサ24とが検出する液冷媒の温度から算出されるエンタルピーを用いて算出することができる。そして、λH とλL の比率λH /λL は、第1の接続配管6、第2の接続配管7の配管仕様並びに圧縮機1の吐出部分に設けた圧力センサ20の検出に係る高圧圧力PSHと温度センサ23の検出に係る温度から求まる高圧側の冷媒物性及び温度センサ22と温度センサ24との温度から求まる低圧側の冷媒物性で決まる。以上より、RDPを算出することができる。 The pipe inner diameters D H and D L are values determined by the pipe specifications of the first connection pipe 6 and the second connection pipe 7, respectively. Further, the refrigerant density ρ H on the high pressure side can be calculated based on the high pressure PSH detected by the pressure sensor 20 provided at the compressor outlet in FIG. 1 and the temperature detected by the temperature sensor 23. The refrigerant density ρL on the low-pressure side can be calculated using the enthalpy calculated from the temperature of the liquid refrigerant detected by the temperature sensor 22 and the temperature sensor 24 provided at the inlet of the flow control device 19. The ratio λ H / λ L between λ H and λ L is the high pressure related to the piping specifications of the first connecting pipe 6 and the second connecting pipe 7 and the detection of the pressure sensor 20 provided at the discharge portion of the compressor 1. It is determined by the refrigerant physical property on the high pressure side obtained from the pressure PSH and the temperature detected by the temperature sensor 23 and the refrigerant physical property on the low pressure side obtained from the temperature of the temperature sensor 22 and the temperature sensor 24. From the above, RDP can be calculated.

RDPを算出すれば、ΔPH =ΔPL ×RDPとなるので、高圧圧力損失演算部74は、低圧圧力損失演算部72が算出した低圧圧力損失ΔPL から高圧圧力損失ΔPH を演算可能となる。次に、凝縮圧力演算部74は、高圧圧力PSHから高圧圧力損失ΔPH を差し引くことで暖房に係る室内機の室内熱交換器11における凝縮圧力を算出することが可能となる。そして、運転制御部71は、温度センサ25b、25cの検出に係る温度と凝縮圧力から換算した凝縮温度とに基づいて凝縮器となる室内機11の過冷却度の制御を行う。 If RDP is calculated, ΔP H = ΔP L × RDP, so that the high pressure loss calculator 74 can calculate the high pressure loss ΔP H from the low pressure loss ΔP L calculated by the low pressure loss calculator 72. . Next, the condensing pressure calculating unit 74, it is possible to calculate the condensing pressure in the indoor heat exchanger 11 of the indoor unit according to the heating by subtracting the high pressure loss [Delta] P H from the high pressure PSH. And the operation control part 71 controls the supercooling degree of the indoor unit 11 used as a condenser based on the temperature which detects the temperature sensors 25b and 25c, and the condensation temperature converted from the condensation pressure.

ここで、(6)式に示すように、凝縮圧力の算出において、圧縮機1の運転容量となる冷媒循環量Grへの依存性がないため、圧縮機1の性能ばらつきの影響を受けることなく高精度に暖房に係る室内機11の凝縮圧力を算出することが可能となる。   Here, as shown in the equation (6), the calculation of the condensation pressure has no dependency on the refrigerant circulation amount Gr, which is the operating capacity of the compressor 1, and thus is not affected by the performance variation of the compressor 1. It becomes possible to calculate the condensation pressure of the indoor unit 11 relating to heating with high accuracy.

また、システムにおける上記の処理においては、第1の接続配管6と第2の接続配管7の長さが同じものとして演算等をしているが、第1の接続配管6と第2の接続配管7の長さが異なる場合は、その配管長さの比をRDPにかけあわせることで、より高精度に凝縮圧力が演算可能となる。   In the above processing in the system, the first connection pipe 6 and the second connection pipe 7 are calculated to have the same length. However, the first connection pipe 6 and the second connection pipe are calculated. When the lengths of 7 are different, the condensation pressure can be calculated with higher accuracy by multiplying the ratio of the pipe lengths to the RDP.

また、システムにおける上記の処理において、λL の算出にあたり、第2の接続配管7を流れる冷媒の乾き度について、全暖房運転では0.2程度であり殆ど変わらないため、気液二相冷媒における圧力損失を表す二相増倍係数は一定でもよい。一方、暖房主体運転の場合は、冷房を行っている室内機の台数の比率に応じて、第2の接続配管7を流れる冷媒乾き度が0.2〜0.9程度まで変化する。そのため、乾き度に応じて二相増倍係数を算出することで、より高精度に凝縮圧力が演算可能となる。 Further, in the above processing in the system, in calculating λ L , the dryness of the refrigerant flowing through the second connection pipe 7 is about 0.2 in the all-heating operation and hardly changes. The two-phase multiplication factor representing the pressure loss may be constant. On the other hand, in the heating-main operation, the dryness of the refrigerant flowing through the second connection pipe 7 varies from about 0.2 to 0.9 depending on the ratio of the number of indoor units that are performing cooling. Therefore, the condensation pressure can be calculated with higher accuracy by calculating the two-phase multiplication coefficient according to the dryness.

また、上記の処理において、低圧圧力損失演算部72は、第2の接続配管7の両端が同じ高さにあるものとして低圧圧力損失ΔPL を演算した。実際の空気調和装置では、第2の接続配管7の端部に高低差があることが多く、高低差によるヘッド差が生じることが多い。そこで、例えば接続配管7の高低差に係るデータを外部的に入力等しておき、低圧圧力損失ΔPL に対してヘッド差による圧力降下を補正することで、より高精度に凝縮圧力を演算することができる。 In the above processing, the low pressure pressure loss calculation unit 72 calculates the low pressure loss ΔP L on the assumption that both ends of the second connection pipe 7 are at the same height. In an actual air conditioner, the end of the second connection pipe 7 often has a height difference, and a head difference due to the height difference often occurs. Therefore, for example, data related to the height difference of the connecting pipe 7 is input externally, and the pressure drop due to the head difference is corrected with respect to the low pressure loss ΔP L to calculate the condensation pressure with higher accuracy. be able to.

以上のように、本実施の形態における制御演算装置70に係るシステムによれば、第1の冷媒配管6における低圧圧力損失及び第2の冷媒配管7における高圧圧力損失から、例えば空気調和装置の冷媒配管での圧力損失等の影響を排除した凝縮圧力を検知することができる。そして、運転制御部71が凝縮圧力から換算した適正な凝縮温度に基づいて過冷却制御を行うことができるので、例えば、凝縮機の容積、パス形状、連絡配管長が大幅に変化するような場合であっても、精度の良い過冷却制御を行うことが可能となる。このため、流量制御装置でのハンチング及び冷媒音を抑制し、かつ、効率の良い運転状態を実現することができる。   As described above, according to the system related to the control arithmetic device 70 in the present embodiment, the refrigerant of the air conditioner, for example, from the low pressure loss in the first refrigerant pipe 6 and the high pressure loss in the second refrigerant pipe 7. It is possible to detect the condensing pressure excluding the influence of pressure loss and the like in the piping. And since the operation control part 71 can perform supercooling control based on the proper condensing temperature converted from the condensing pressure, for example, when the volume of the condenser, the path shape, and the connecting pipe length change significantly. Even so, it is possible to perform supercooling control with high accuracy. For this reason, it is possible to suppress hunting and refrigerant noise in the flow control device and to realize an efficient operation state.

また、例えば、プレート式熱交換器のように、プレートの積層構造上、温度センサ等を挿入して凝縮温度を検出することが困難な場合でも、温度センサ等を用いることなく簡便な構成で凝縮圧力を演算することが可能となる。   Also, for example, even if it is difficult to detect the condensation temperature by inserting a temperature sensor etc. due to the laminated structure of the plates, such as a plate heat exchanger, the condensation can be done with a simple configuration without using the temperature sensor etc. The pressure can be calculated.

実施の形態2.
図8は実施の形態2に係る制御演算装置70等の構成を表す図である。本実施の形態では、例えば、スピーカ、ディスプレイ等によって、聴覚、視覚的に報知を行う報知手段80を備えているものとする。また、空気調和装置の冷媒不足を判断して報知手段80に報知させるための報知処理部76を制御演算装置70が有している。
Embodiment 2. FIG.
FIG. 8 is a diagram illustrating the configuration of the control arithmetic device 70 and the like according to the second embodiment. In the present embodiment, for example, it is assumed that a notification unit 80 that performs auditory and visual notification using a speaker, a display, or the like is provided. In addition, the control arithmetic device 70 has a notification processing unit 76 for determining that the refrigerant of the air conditioner is insufficient and notifying the notification means 80 of it.

報知処理部76は、例えば、室内熱交換器11b、11cが凝縮器となる全暖房運転、暖房主体運転の場合に、温度センサ25の検出に係る室内熱交換器11の流出口における温度と前述の処理により演算された凝縮圧力から換算した凝縮温度との温度差を算出する。そして、温度差が所定値より小さい、または室内熱交換器11の流出口における温度の方が大きい場合は、室内熱交換器11の流出口で冷媒が過熱ガスとなっているとして、空気調和装置の冷媒が不足していると判断し、報知手段80に冷媒不足の旨を報知させる。これにより、例えば冷媒回路における冷媒漏れによる冷媒不足等を適切に報知することができ、安全性、信頼性の向上をはかることができる。   For example, in the case of a heating only operation or a heating main operation in which the indoor heat exchangers 11b and 11c are condensers, the notification processing unit 76 determines the temperature at the outlet of the indoor heat exchanger 11 related to the detection of the temperature sensor 25 and the above-described temperature. The temperature difference with the condensation temperature converted from the condensation pressure calculated by the process is calculated. If the temperature difference is smaller than the predetermined value or the temperature at the outlet of the indoor heat exchanger 11 is larger, the air conditioner assumes that the refrigerant is superheated gas at the outlet of the indoor heat exchanger 11. It is determined that the refrigerant is insufficient, and the informing means 80 is informed that the refrigerant is insufficient. As a result, for example, a refrigerant shortage due to refrigerant leakage in the refrigerant circuit can be appropriately notified, and safety and reliability can be improved.

この発明の凝縮圧力検知システム、この発明を適用する空気調和装置は、上述した実施の形態の構成に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々変形実施することができる。   The condensing pressure detection system of the present invention and the air conditioner to which the present invention is applied are not limited to the configuration of the embodiment described above, and various modifications can be made without departing from the gist of the present invention.

また、本発明のシステムを適用可能な機器例として、冷凍空気調和装置以外にも、冷蔵庫、除湿器、ヒートポンプ式給湯機、ショーケース等、他の冷凍サイクル装置においても適用し、凝縮圧力検知システムを有する冷凍サイクルシステムを構成することができる。   Further, as an example of equipment to which the system of the present invention can be applied, in addition to a refrigeration air conditioner, the present invention is also applied to other refrigeration cycle devices such as refrigerators, dehumidifiers, heat pump water heaters, showcases, etc. Can be configured.

1 圧縮機、2 四方切換弁、3 熱源側熱交換器、4 アキュムレータ、5a 第1の逆止弁、5b 第2の逆止弁、5c 第3の逆止弁、5d 第4の逆止弁、6 第1の接続配管、6b,6c 負荷側の第1の接続配管、7 第2の接続配管、7b,7c 負荷側の第2の接続配管、11b,11c 室内熱交換器、12b,12c 流量制御装置、13a1,13a2,13b1,13b2 弁装置、14 気液分離器、15 第1の熱交換部、16 第2の流量制御装置、17 第2の熱交換部、18 バイパス配管、19 第3の流量制御装置、30a1,30a2,30b1,30b2 逆止弁、20,21 圧力センサ、22,23,24,25 温度センサ、70 制御演算装置、71 運転制御部、72 低圧圧力損失演算部、73 記憶部、74 高圧圧力損失演算部、75 凝縮圧力演算部、76 報知処理部、80 報知手段、A 室外機、B,C 室内機、D 分流コントローラ。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 way switching valve, 3 Heat source side heat exchanger, 4 Accumulator, 5a 1st check valve, 5b 2nd check valve, 5c 3rd check valve, 5d 4th check valve , 6 First connection pipe, 6b, 6c Load side first connection pipe, 7 Second connection pipe, 7b, 7c Load side second connection pipe, 11b, 11c Indoor heat exchanger, 12b, 12c Flow control device, 13a1, 13a2, 13b1, 13b2 Valve device, 14 Gas-liquid separator, 15 First heat exchange unit, 16 Second flow control device, 17 Second heat exchange unit, 18 Bypass piping, 19 First 3 flow control device, 30a1, 30a2, 30b1, 30b2 check valve, 20, 21 pressure sensor, 22, 23, 24, 25 temperature sensor, 70 control operation device, 71 operation control unit, 72 low pressure pressure loss calculation unit, 73 Memory , 74 high pressure loss calculating section, 75 the condensation pressure calculating unit, 76 notification unit, 80 notification unit, A outdoor unit, B, C indoor unit, D branch controller.

Claims (7)

冷媒を圧縮する圧縮機と、熱交換により前記冷媒を凝縮する凝縮器と、凝縮された冷媒の圧力調整をするための流量制御装置と、減圧した前記冷媒と空気とを熱交換して前記冷媒を蒸発させる蒸発器とを配管接続して冷媒回路を構成する冷凍サイクル装置の凝縮圧力を検知する凝縮圧力検知システムであって、
前記冷媒回路において低圧側の冷媒配管となる低圧冷媒配管の圧力損失を算出する低圧圧力損失演算部と、
前記冷媒回路において高圧側の冷媒配管となる高圧冷媒配管と前記低圧冷媒配管との配管断面積比及び前記低圧冷媒配管の圧力損失に基づいて、前記高圧冷媒配管の圧力損失を算出する高圧圧力損失演算部と、
前記圧縮機の吐出側の圧力から前記高圧圧力損失を差し引き凝縮器における凝縮圧力を算出する凝縮圧力演算部と
を備えることを特徴とする凝縮圧力検知システム。
A compressor that compresses the refrigerant; a condenser that condenses the refrigerant by heat exchange; a flow rate control device that adjusts the pressure of the condensed refrigerant; and the refrigerant and air that are depressurized to exchange heat. A condensing pressure detection system for detecting a condensing pressure of a refrigeration cycle apparatus that constitutes a refrigerant circuit by pipe connection to an evaporator for evaporating
A low-pressure pressure loss calculation unit for calculating a pressure loss of a low-pressure refrigerant pipe serving as a low-pressure side refrigerant pipe in the refrigerant circuit;
A high pressure loss that calculates a pressure loss of the high pressure refrigerant pipe based on a cross sectional area ratio of the high pressure refrigerant pipe and the low pressure refrigerant pipe that is a high pressure side refrigerant pipe in the refrigerant circuit and a pressure loss of the low pressure refrigerant pipe An arithmetic unit;
A condensation pressure detection system comprising: a condensation pressure calculation unit that subtracts the high pressure loss from the pressure on the discharge side of the compressor and calculates a condensation pressure in the condenser.
前記凝縮圧力演算部が算出した凝縮圧力から換算した凝縮温度に基づいて、前記凝縮器の冷媒流出口の過冷却度を制御する運転制御部を備えることを特徴とする請求項1に記載の凝縮圧力検知システム。   2. The condensation according to claim 1, further comprising an operation control unit that controls a degree of supercooling of a refrigerant outlet of the condenser based on a condensation temperature converted from a condensation pressure calculated by the condensation pressure calculation unit. Pressure detection system. 前記高圧圧力損失演算部は、前記低圧冷媒配管と前記高圧冷媒配管の配管長の比に基づいて、前記高圧冷媒配管の圧力損失を補正することを特徴とする請求項1または請求項2に記載の凝縮圧力検知システム。   The said high pressure pressure loss calculating part correct | amends the pressure loss of the said high pressure refrigerant | coolant piping based on ratio of the pipe length of the said low pressure refrigerant | coolant piping and the said high pressure refrigerant | coolant piping. Condensation pressure detection system. 前記高圧圧力損失演算部は、前記低圧冷媒配管を流れる冷媒の乾き度に基づいて、前記高圧冷媒配管の圧力損失を補正することを特徴とする請求項1乃至請求項3のいずれかに記載の凝縮圧力検知システム。   The said high-pressure-pressure-loss calculating part correct | amends the pressure loss of the said high-pressure refrigerant | coolant piping based on the dryness of the refrigerant | coolant which flows through the said low-pressure refrigerant | coolant piping. Condensation pressure detection system. 前記高圧圧力損失演算部は、前記低圧冷媒配管の高低差に基づいて、前記高圧冷媒配管の圧力損失を補正することを特徴とする請求項1乃至請求項4のいずれかに記載の凝縮圧力検知システム。   5. The condensation pressure detection according to claim 1, wherein the high-pressure pressure loss calculation unit corrects a pressure loss of the high-pressure refrigerant pipe based on a height difference of the low-pressure refrigerant pipe. system. 前記凝縮器の冷媒流出口における冷媒の温度を検出するための凝縮器出口温度検出手段と、
前記凝縮圧力演算部が演算した前記凝縮圧力に基づく凝縮温度と凝縮器出口温度検出手段の検出に係る温度との温度差が所定の値以下であると判断すると、前記空気調和装置の冷媒が不足していることを報知手段に報知させる報知処理部と
を備えることを特徴とする請求項1乃至請求項5のいずれかに記載の凝縮圧力検知システム。
Condenser outlet temperature detection means for detecting the temperature of the refrigerant at the refrigerant outlet of the condenser;
When it is determined that the temperature difference between the condensation temperature based on the condensation pressure calculated by the condensation pressure calculation unit and the temperature related to the detection by the condenser outlet temperature detection means is equal to or less than a predetermined value, the air conditioner has insufficient refrigerant. The condensation pressure detection system according to claim 1, further comprising: a notification processing unit that notifies the notification unit that the information is being performed.
請求項1乃至請求項6のいずれかに記載の凝縮圧力検知システムを有する冷凍サイクルシステム。   A refrigeration cycle system having the condensing pressure detection system according to any one of claims 1 to 6.
JP2009258987A 2009-11-12 2009-11-12 Condensation pressure detection system and refrigeration cycle system Active JP4902723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258987A JP4902723B2 (en) 2009-11-12 2009-11-12 Condensation pressure detection system and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258987A JP4902723B2 (en) 2009-11-12 2009-11-12 Condensation pressure detection system and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2011106688A true JP2011106688A (en) 2011-06-02
JP4902723B2 JP4902723B2 (en) 2012-03-21

Family

ID=44230359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258987A Active JP4902723B2 (en) 2009-11-12 2009-11-12 Condensation pressure detection system and refrigeration cycle system

Country Status (1)

Country Link
JP (1) JP4902723B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004747A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Refrigeration cycle apparatus
JP2015040680A (en) * 2013-08-23 2015-03-02 三菱電機株式会社 Air conditioner
CN104748293A (en) * 2013-12-30 2015-07-01 海尔集团公司 Method for controlling air conditioning super-cooling degree through pressure sensor
CN110657554A (en) * 2019-10-21 2020-01-07 宁波奥克斯电气股份有限公司 Air conditioner condensation prevention control method and device and air conditioner
CN114198807A (en) * 2021-11-19 2022-03-18 青岛海尔空调电子有限公司 Self-adaptive control method and device for multi-connected air conditioning unit, air conditioning unit and medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099974A (en) * 1983-11-04 1985-06-03 三洋電機株式会社 Method of measuring degree of overheat
JPH10318588A (en) * 1997-05-21 1998-12-04 Matsushita Refrig Co Ltd Air-conditioning device
JP2001280763A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating and air conditioning system
JP2002327949A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner
JP2005009734A (en) * 2003-06-18 2005-01-13 Sanden Corp Compressor intake refrigerant pressure calculating device in refrigerating cycle
JP2005188790A (en) * 2003-12-24 2005-07-14 Samsung Electronics Co Ltd Air conditioner
JP2006023072A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner
JP2006183979A (en) * 2004-12-28 2006-07-13 Mitsubishi Heavy Ind Ltd Detection system of refrigerant pipe length and detection method of refrigerant pipe length
JP2008064456A (en) * 2007-11-28 2008-03-21 Daikin Ind Ltd Air conditioner
JP2008096019A (en) * 2006-10-11 2008-04-24 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009006921A (en) * 2007-06-29 2009-01-15 Denso Corp Vehicular refrigeration cycle device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099974A (en) * 1983-11-04 1985-06-03 三洋電機株式会社 Method of measuring degree of overheat
JPH10318588A (en) * 1997-05-21 1998-12-04 Matsushita Refrig Co Ltd Air-conditioning device
JP2001280763A (en) * 2000-03-30 2001-10-10 Mitsubishi Electric Corp Refrigerating and air conditioning system
JP2002327949A (en) * 2001-04-27 2002-11-15 Daikin Ind Ltd Air conditioner
JP2005009734A (en) * 2003-06-18 2005-01-13 Sanden Corp Compressor intake refrigerant pressure calculating device in refrigerating cycle
JP2005188790A (en) * 2003-12-24 2005-07-14 Samsung Electronics Co Ltd Air conditioner
JP2006023072A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner
JP2006183979A (en) * 2004-12-28 2006-07-13 Mitsubishi Heavy Ind Ltd Detection system of refrigerant pipe length and detection method of refrigerant pipe length
JP2008096019A (en) * 2006-10-11 2008-04-24 Mitsubishi Heavy Ind Ltd Air conditioner
JP2009006921A (en) * 2007-06-29 2009-01-15 Denso Corp Vehicular refrigeration cycle device
JP2008064456A (en) * 2007-11-28 2008-03-21 Daikin Ind Ltd Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004747A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2015004747A1 (en) * 2013-07-10 2017-02-23 三菱電機株式会社 Refrigeration cycle equipment
EP3021059A4 (en) * 2013-07-10 2017-03-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10113763B2 (en) 2013-07-10 2018-10-30 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2015040680A (en) * 2013-08-23 2015-03-02 三菱電機株式会社 Air conditioner
CN104748293A (en) * 2013-12-30 2015-07-01 海尔集团公司 Method for controlling air conditioning super-cooling degree through pressure sensor
CN104748293B (en) * 2013-12-30 2018-09-14 海尔集团公司 A kind of air-conditioning degree of supercooling control method using pressure sensor
CN110657554A (en) * 2019-10-21 2020-01-07 宁波奥克斯电气股份有限公司 Air conditioner condensation prevention control method and device and air conditioner
CN114198807A (en) * 2021-11-19 2022-03-18 青岛海尔空调电子有限公司 Self-adaptive control method and device for multi-connected air conditioning unit, air conditioning unit and medium

Also Published As

Publication number Publication date
JP4902723B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US10508826B2 (en) Refrigeration cycle apparatus
EP1998124B1 (en) Air conditioner
CN102207324B (en) Air conditioner
JP4093275B2 (en) Air conditioner
AU2007244357A1 (en) Air conditioner
AU2006324602A1 (en) Air conditioner
JP6715929B2 (en) Refrigeration cycle device and air conditioner including the same
AU2006324593A1 (en) Air conditioner
JP4462435B2 (en) Refrigeration equipment
WO2021049463A1 (en) Refrigerant leakage determination system
JP6479181B2 (en) Air conditioner
JP4902723B2 (en) Condensation pressure detection system and refrigeration cycle system
JP5164527B2 (en) Air conditioner
JP4418936B2 (en) Air conditioner
JP4462436B2 (en) Refrigeration equipment
EP2314954A1 (en) Freezer device
JP5855284B2 (en) Air conditioner
JP5306450B2 (en) Refrigeration air conditioner and refrigerant filling method thereof
WO2014103013A1 (en) Heat pump system
JP6762422B2 (en) Refrigeration cycle equipment
JP6537629B2 (en) Air conditioner
JP6540074B2 (en) Air conditioner
WO2021229766A1 (en) Refrigerator
JP4548502B2 (en) Refrigeration equipment
JP5194842B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250