JP5306450B2 - Refrigeration air conditioner and refrigerant filling method thereof - Google Patents

Refrigeration air conditioner and refrigerant filling method thereof Download PDF

Info

Publication number
JP5306450B2
JP5306450B2 JP2011508134A JP2011508134A JP5306450B2 JP 5306450 B2 JP5306450 B2 JP 5306450B2 JP 2011508134 A JP2011508134 A JP 2011508134A JP 2011508134 A JP2011508134 A JP 2011508134A JP 5306450 B2 JP5306450 B2 JP 5306450B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
heat source
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011508134A
Other languages
Japanese (ja)
Other versions
JPWO2010116496A1 (en
Inventor
修 森本
博幸 岡野
航祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2010116496A1 publication Critical patent/JPWO2010116496A1/en
Application granted granted Critical
Publication of JP5306450B2 publication Critical patent/JP5306450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/003Control issues for charging or collecting refrigerant to or from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

A refrigerant charging method for a refrigeration air-conditioner provided with a compressor (1) for sucking a refrigerant and discharging the refrigerant after compressing the refrigerant. The refrigerant discharged from the compressor (1) is returned to the suction side of the compressor (1) via an on-off valve (5), and a refrigerant is charged between the on-off valve (5) and the suction side of the compressor (1) from a refrigerant charging port (7) via a refrigerant charging on-off device (6).

Description

この発明は、室外機と室内機を冷媒配管で接続する冷凍空調機に係り、特に冷媒を自動で充填する技術に関する。   The present invention relates to a refrigeration air conditioner in which an outdoor unit and an indoor unit are connected by a refrigerant pipe, and more particularly to a technique for automatically filling a refrigerant.

冷凍サイクルの運転状態から、冷凍空調装置の冷媒回路内の冷媒量の過不足の状態を推定して、冷媒を充填する技術が従来から提案されている(例えば、特許文献1、2)。   Conventionally, a technique for charging the refrigerant by estimating an excess or deficiency of the refrigerant amount in the refrigerant circuit of the refrigeration air conditioner from the operation state of the refrigeration cycle has been proposed (for example, Patent Documents 1 and 2).

特開2008−64456号公報JP 2008-64456 A 特開2008−232579号公報JP 2008-232579 A

しかしながら、従来は、冷媒回路内に充填された冷媒が不足していると判断して冷媒を充填する際に、一旦、アキュムレータに液冷媒が入るようになっていた。アキュムレータに液冷媒が入ると、アキュムレータからの放熱があるため、ホットガスをアキュムレータに吹込んでも冷媒が蒸発しにくく、アキュムレータの液が蒸発するまでに時間が係るという課題があった。
また、外気温度が低い場合には、アキュムレータ内の液が蒸発したかどうかの判断が困難であり、アキュムレータに液冷媒が溜まったまま冷媒量を判定する結果、冷媒が過充填になる可能性もあるという課題があった。
However, conventionally, when it is determined that the refrigerant filled in the refrigerant circuit is insufficient and the refrigerant is charged, the liquid refrigerant once enters the accumulator. When liquid refrigerant enters the accumulator, heat is radiated from the accumulator. Therefore, even when hot gas is blown into the accumulator, the refrigerant hardly evaporates, and there is a problem that it takes time until the liquid in the accumulator evaporates.
In addition, when the outside air temperature is low, it is difficult to determine whether or not the liquid in the accumulator has evaporated, and as a result of determining the refrigerant amount while the liquid refrigerant is accumulated in the accumulator, there is a possibility that the refrigerant is overfilled. There was a problem that there was.

この発明は上記課題に対応したもので、より速やかに、かつより正確に冷媒充填を完了することができる冷凍空調装置を提案するものである。   This invention respond | corresponds to the said subject, and proposes the refrigerating air conditioning apparatus which can complete refrigerant | coolant filling more promptly and more correctly.

この発明は、少なくとも圧縮機、凝縮器、絞り装置および蒸発器で構成される冷凍空調装置であって、前記圧縮機の吐出側から分岐し開閉手段を介して前記圧縮機の吸入側の冷媒回路と接続するホットガスバイパス回路と、前記ホットガスバイパス回路上の前記開閉手段と前記圧縮機吸入側の前記冷媒回路との接続部との間に冷媒充填用開閉器を介して接続された冷媒充填ポートと、を有し、前記圧縮機の吐出圧力の飽和温度と前記凝縮器出口の冷媒温度との差SCを演算し、演算したSCとその目標値のSCmを比較して、SC<SCmの場合は、前記開閉手段と前記冷媒充填用開閉器を共に開放するようにしたものである。 The present invention is a refrigerating and air-conditioning apparatus comprising at least a compressor, a condenser, a throttling device, and an evaporator, wherein the refrigerant circuit branches off from the discharge side of the compressor and is connected to the suction side of the compressor via an opening / closing means the refrigerant which is connected via a refrigerant filling switch between the hot gas bypass circuit that connects a connecting portion between the refrigerant circuit of the switching means and the compressor suction side on the hot gas bypass circuit and possess a fill port, and calculates the difference SC between the refrigerant temperature of the condenser outlet and the saturation temperature of the discharge pressure of the compressor, as compared the calculated SC and the SCm of the target value, SC <SCm In this case, both the opening / closing means and the refrigerant charging switch are opened.

この発明の冷凍空調装置は、冷媒を充填する際に、充填する液冷媒を圧縮機から吐出された吐出冷媒(ホットガス)と合流させることで、そのホットガスの熱で充填した液冷媒が蒸発した状態でメインの冷媒回路に充填されるため、冷凍空調装置内の冷媒量の判定に時間をかけることなく、速やかに、かつ、正確に冷媒充填を完了することができる。   In the refrigeration air conditioner of the present invention, when the refrigerant is charged, the liquid refrigerant filled with the heat of the hot gas is evaporated by joining the liquid refrigerant to be charged with the discharged refrigerant (hot gas) discharged from the compressor. Since the main refrigerant circuit is filled in this state, the refrigerant filling can be completed promptly and accurately without taking time to determine the amount of refrigerant in the refrigeration air conditioner.

この発明の実施の形態1に係る冷凍空調装置の冷媒回路図。1 is a refrigerant circuit diagram of a refrigeration air conditioner according to Embodiment 1 of the present invention. この発明の実施の形態1に係る冷凍空調装置の絞り装置の制御のフローチャート。The flowchart of control of the expansion apparatus of the refrigeration air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷凍空調装置の冷媒自動充填の制御のフローチャート。The flowchart of control of the refrigerant | coolant automatic charging of the refrigerating and air-conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る冷凍空調装置の冷媒回路図。The refrigerant circuit figure of the refrigerating and air-conditioning apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る冷凍空調装置の冷媒自動充填の制御のフローチャート。The flowchart of control of the refrigerant | coolant automatic charging of the refrigerating and air-conditioning apparatus which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る冷凍空調装置の冷媒自動充填の制御のフローチャート。The flowchart of control of the refrigerant | coolant automatic charging of the refrigerating and air-conditioning apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る冷凍空調装置の冷媒回路図。FIG. 6 is a refrigerant circuit diagram of a refrigeration air conditioner according to Embodiment 4 of the present invention. この発明の実施の形態4に係る冷凍空調装置の更新に関する作業フローチャート。The work flowchart regarding the update of the refrigerating air-conditioning apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る冷凍空調装置の冷房運転での冷媒自動充填の制御のフローチャート。The flowchart of control of the refrigerant | coolant automatic charging in the air_conditionaing | cooling operation of the refrigerating air conditioning apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る冷凍空調装置の暖房運転での冷媒自動充填の制御のフローチャート。The flowchart of the control of refrigerant | coolant automatic filling in the heating operation of the refrigerating air conditioner which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る冷凍空調装置の冷媒回路図。The refrigerant circuit figure of the refrigerating and air-conditioning apparatus which concerns on Embodiment 5 of this invention. この発明の実施の形態5に係る冷凍空調装置の冷房運転での冷媒自動充填の制御のフローチャート。The flowchart of control of the automatic refrigerant | coolant filling in the air_conditionaing | cooling operation of the refrigerating air conditioning apparatus which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係る冷凍空調装置の冷媒回路図。The refrigerant circuit figure of the refrigerating air-conditioning apparatus which concerns on Embodiment 6 of this invention. この発明の実施の形態6に係る冷凍空調装置の冷媒自動充填の制御のフローチャート。The flowchart of control of the refrigerant | coolant automatic filling of the refrigerating air conditioner which concerns on Embodiment 6 of this invention.

実施の形態1.
図1にこの発明の実施の形態1に係る冷凍空調装置の冷媒回路図を示す。図1において、1は圧縮機、2は凝縮器、3は絞り装置、4は蒸発器であり、これらによりメインの冷媒回路を構成する。また、圧縮機1の吐出側を分岐し、流路開閉手段としての開閉弁5を介して圧縮機の吸入に至るホットガスバイパス回路(冷媒回路)を構成する。さらに、このホットガスバイパス回路上の開閉弁5と圧縮機の吸入側との間の冷媒回路を分岐し、冷媒充てん用開閉弁6を介して冷媒充てんポート7が接続されている。8は圧縮機1の吐出側の高圧部にて圧力を検出する圧力センサ、9は圧縮機1の吐出側で冷媒の温度を検出する第1の温度センサである。10は凝縮器2の出口で冷媒の温度を検知する第2の温度センサ、そして11、12は各々蒸発器4の出入口にて冷媒の温度を検出する第3、第4の温度センサである。
Embodiment 1 FIG.
FIG. 1 shows a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is an expansion device, and 4 is an evaporator, and these constitute a main refrigerant circuit. Further, a hot gas bypass circuit (refrigerant circuit) is formed which branches the discharge side of the compressor 1 and reaches the intake of the compressor via an on-off valve 5 as a flow path opening / closing means. Further, a refrigerant circuit between the on-off valve 5 on the hot gas bypass circuit and the suction side of the compressor is branched, and a refrigerant filling port 7 is connected via a refrigerant filling on-off valve 6. Reference numeral 8 denotes a pressure sensor that detects a pressure at a high-pressure portion on the discharge side of the compressor 1, and reference numeral 9 denotes a first temperature sensor that detects a refrigerant temperature on the discharge side of the compressor 1. Reference numeral 10 denotes a second temperature sensor that detects the temperature of the refrigerant at the outlet of the condenser 2, and reference numerals 11 and 12 denote third and fourth temperature sensors that detect the temperature of the refrigerant at the inlet / outlet of the evaporator 4.

次に、上記の冷媒回路冷媒における冷媒の流れについて説明する。圧縮機1を駆動すると、高温、高圧のガス冷媒が圧縮機から吐出され、凝縮器で液化する。液化した冷媒は、絞り装置3で低温まで絞られ、蒸発器で蒸発・気化した後、圧縮機1に戻る。   Next, the flow of the refrigerant in the refrigerant circuit refrigerant will be described. When the compressor 1 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor and liquefied by the condenser. The liquefied refrigerant is squeezed to a low temperature by the expansion device 3, evaporated and vaporized by the evaporator, and then returned to the compressor 1.

このような冷凍サイクルでの絞り装置の制御について図2を使って説明する。図2は、絞り装置3の制御アルゴリズムの一例を示すフローチャートである。STEP1で運転を開始し、STEP2では制御間隔を取るため、所定時間が経過するまで待ち、所定時間経過後、STEP3に進む。STEP3では、第3、第4の温度センサで蒸発器4の出入口温度を測定する。STEP4では蒸発器入口温度Teinと蒸発器出口温度Teoutの差SHを演算する。STEP5では、STEP4で演算したSHとその目標値SHmとの差に応じて絞り装置3の開度の補正値△LEVを決定し、設定を実施する。STEP6では、運転を終了するかどうかを判定し、終了の場合はSTEP7に進み運転を終了させ、運転を終了しない場合はSTEP2に戻る。   Control of the expansion device in such a refrigeration cycle will be described with reference to FIG. FIG. 2 is a flowchart showing an example of the control algorithm of the diaphragm device 3. The operation is started in STEP 1 and the control interval is taken in STEP 2, so that a predetermined time elapses and the process proceeds to STEP 3 after the predetermined time elapses. In STEP3, the inlet / outlet temperature of the evaporator 4 is measured by the third and fourth temperature sensors. In STEP 4, the difference SH between the evaporator inlet temperature Tein and the evaporator outlet temperature Teout is calculated. In STEP 5, the opening correction value ΔLEV of the expansion device 3 is determined according to the difference between the SH calculated in STEP 4 and the target value SHm, and the setting is performed. In STEP 6, it is determined whether or not to end the operation. If the operation is ended, the process proceeds to STEP 7 and the operation is ended. If the operation is not ended, the process returns to STEP 2.

このような運転をさせる冷凍サイクルにおいて、冷媒量を判定し、冷媒を自動で充填する方法について図3を使って説明する。図3は冷媒を自動で充填する時のアルゴリズムを示すフローチャートである。図3において、冷媒が入っている冷媒供給ボンベを冷媒充てんポート7に接続した状態で、STEP1では、冷媒量を調整する運転を開始する。開始のトリガとしては、室外機部分に設けられたサービス用のスイッチ、リモコン、外部からの接点入力、パソコンなどからの制御信号などを使う。STEP2では制御間隔を取るため、所定時間が経過するまで待ち、所定時間経過後、STEP3に進む。STEP3では、圧縮機1の吐出圧力Pdと凝縮器2の出口での冷媒温度Tcoutを検出する。STEP4では、吐出圧力Pdの飽和温度Tsat(Pd)と凝縮器2出口の冷媒温度Tcoutとの差SCを演算する。STEP5では、演算したSCとその目標値のSCmを比較し、SC≧SCmの場合はSTEP6に進み冷媒量調整を終了する。SC<SCmの場合はSTEP7に進み、所定時間冷媒充てん用開閉弁6を開放し、冷媒供給ボンベから冷媒充てんポート7を介して冷媒を冷媒回路内に充填する。このとき併せて開閉弁5を開放する。STEP7で所定時間冷媒を充填した後はSTEP2に進む。なお、冷媒量調整を終了する際には、サービス用の表示機、リモコン、制御用のパソコン、電気信号によるランプ表示などを使い、冷媒量調整が完了したことを外部に知らせるようにするのがよい。   A method of determining the amount of refrigerant and automatically charging the refrigerant in the refrigeration cycle that performs such operation will be described with reference to FIG. FIG. 3 is a flowchart showing an algorithm when the refrigerant is automatically charged. In FIG. 3, in a state where the refrigerant supply cylinder containing the refrigerant is connected to the refrigerant charging port 7, in STEP 1, an operation for adjusting the refrigerant amount is started. As a start trigger, a service switch provided in the outdoor unit, a remote controller, an external contact input, a control signal from a personal computer or the like is used. In STEP2, in order to take a control interval, the process waits until a predetermined time elapses, and proceeds to STEP3 after the predetermined time elapses. In STEP 3, the discharge pressure Pd of the compressor 1 and the refrigerant temperature Tcout at the outlet of the condenser 2 are detected. In STEP 4, the difference SC between the saturation temperature Tsat (Pd) of the discharge pressure Pd and the refrigerant temperature Tcout at the outlet of the condenser 2 is calculated. In STEP5, the calculated SC is compared with the SCm of the target value. If SC ≧ SCm, the process proceeds to STEP6 and the refrigerant amount adjustment is finished. When SC <SCm, the routine proceeds to STEP 7 where the refrigerant filling on-off valve 6 is opened for a predetermined time, and the refrigerant is filled into the refrigerant circuit from the refrigerant supply cylinder through the refrigerant filling port 7. At the same time, the on-off valve 5 is opened. After filling the refrigerant for a predetermined time in STEP 7, proceed to STEP 2. When finishing the refrigerant amount adjustment, use a service display, remote control, personal computer for control, lamp display with electrical signals, etc. to notify the outside that the refrigerant amount adjustment has been completed. Good.

このように、STEP7で冷媒充てんする際に開閉弁5を併せて開放することで、ホットガスバイパス回路には、圧縮機1を吐出した高温のガス冷媒が流れ、冷媒供給ボンベから充填される液冷媒と混合しそれを蒸発気化した後、圧縮機1吸入側でメイン回路を流れる冷媒と合流する。このため、液バックすることがなく、冷媒充填した際の液冷媒を速やかに蒸発することができるので、冷媒量の判定も速やかに完了させることができる。また、圧縮機1内の潤滑油の希釈や液圧縮が発生することがないので、信頼性の高いシステムとすることができる。   As described above, when the refrigerant is charged in STEP 7, the on-off valve 5 is also opened so that the high-temperature gas refrigerant discharged from the compressor 1 flows into the hot gas bypass circuit, and the liquid filled from the refrigerant supply cylinder. After mixing with the refrigerant and evaporating it, it merges with the refrigerant flowing through the main circuit on the compressor 1 suction side. For this reason, the liquid refrigerant when the refrigerant is charged can be quickly evaporated without liquid back, so that the determination of the refrigerant amount can also be completed quickly. Moreover, since the dilution of the lubricating oil in the compressor 1 and liquid compression do not occur, a highly reliable system can be achieved.

実施の形態2.
図4にこの発明の実施の形態2に係る冷媒回路図を示す。図4の図1との相違点は、冷媒充てんポート7が、ホットガスバイパス回路上の開閉弁5と圧縮機1の吸入側との間に、冷媒充てん用開閉弁6に代えて、流量制御可能な第2の絞り装置46を介して接続されている点である。
Embodiment 2. FIG.
FIG. 4 shows a refrigerant circuit diagram according to Embodiment 2 of the present invention. The difference between FIG. 4 and FIG. 1 is that the refrigerant filling port 7 has a flow rate control between the on-off valve 5 on the hot gas bypass circuit and the suction side of the compressor 1 instead of the refrigerant filling on-off valve 6. It is connected through a possible second diaphragm device 46.

図4のような冷凍サイクルにおいて、冷媒量を判定し、冷媒を自動で充填する方法について図5を使って説明する。図5は冷媒を自動で充填する時のアルゴリズムを示すフローチャートである。図5において、冷媒供給ボンベを冷媒充てんポート7に接続した状態で、STEP1では、冷媒量を調整する運転を開始する。STEP2では制御間隔を取るため、所定時間が経過するまで待ち、所定時間経過後、STEP3に進む。STEP3では、圧縮機1の吐出圧力Pdと凝縮器2の出口での冷媒温度Tcoutを検出する。STEP4では、吐出圧力Pdの飽和温度Tsat(Pd)と凝縮器2の出口冷媒温度Tcoutとの差SCを演算する。STEP5では、演算したSCとその目標値のSCmを比較し、SC≧SCmの場合はSTEP6に進み冷媒量調整を終了する。SC<SCmの場合はSTEP7に進み第2の絞り装置46を開放し、冷媒供給ボンベから冷媒充てんポート7を介して冷媒を冷媒回路内に充填する。このとき併せて開閉弁5を開放する。STEP8では圧縮機1の吐出圧力Pdと圧縮機1の吐出冷媒温度Tdを検出する。STEP9では、圧縮機1の吐出冷媒温度Tdと圧縮機1の吐出圧力Pdの飽和温度Tsat(Pd)の差SHdを演算する。STEP10では、演算したSHdと、その目標値SHdmとの差に応じて第2の絞り装置46の開度を△LEV2に基づいて補正しSTEP11に進む。STEP11では、所定時間経過していれば、STEP2に戻り、所定時間経過していなければ、STEP7に戻る。   A method for determining the amount of refrigerant and automatically filling the refrigerant in the refrigeration cycle as shown in FIG. 4 will be described with reference to FIG. FIG. 5 is a flowchart showing an algorithm when the refrigerant is automatically charged. In FIG. 5, in a state where the refrigerant supply cylinder is connected to the refrigerant filling port 7, the operation for adjusting the refrigerant amount is started in STEP 1. In STEP2, in order to take a control interval, the process waits until a predetermined time elapses, and proceeds to STEP3 after the predetermined time elapses. In STEP 3, the discharge pressure Pd of the compressor 1 and the refrigerant temperature Tcout at the outlet of the condenser 2 are detected. In STEP 4, the difference SC between the saturation temperature Tsat (Pd) of the discharge pressure Pd and the outlet refrigerant temperature Tcout of the condenser 2 is calculated. In STEP5, the calculated SC is compared with the SCm of the target value. If SC ≧ SCm, the process proceeds to STEP6 and the refrigerant amount adjustment is finished. When SC <SCm, the process proceeds to STEP 7 where the second expansion device 46 is opened, and the refrigerant is charged into the refrigerant circuit from the refrigerant supply cylinder through the refrigerant filling port 7. At the same time, the on-off valve 5 is opened. In STEP 8, the discharge pressure Pd of the compressor 1 and the discharge refrigerant temperature Td of the compressor 1 are detected. In STEP9, the difference SHd between the discharge refrigerant temperature Td of the compressor 1 and the saturation temperature Tsat (Pd) of the discharge pressure Pd of the compressor 1 is calculated. In STEP 10, the opening of the second expansion device 46 is corrected based on ΔLEV2 in accordance with the difference between the calculated SHd and the target value SHdm, and the process proceeds to STEP11. In STEP 11, if the predetermined time has elapsed, the process returns to STEP 2, and if the predetermined time has not elapsed, the process returns to STEP 7.

以上のように、冷媒供給ボンベから冷媒回路内に冷媒充てんする際に、圧縮機1の吐出の状態により第2の絞り装置46で充填流量を調整することにより、圧縮機1への液戻りを防止するとともに、圧縮機1の吐出過熱度が大きい場合には、絞り開度を大きくし、充填流量を適正な範囲で最大限とすることができるため、迅速な冷媒充てんが可能である。なお、本実施の形態では、圧縮機1から吐出される冷媒の過熱度が予め決定する所定の目標値となるように冷媒供給ボンベから充填される冷媒流量を制御する方法について述べたが、圧縮機1に吸入される冷媒の過熱度を指標としても同様の効果がある。   As described above, when the refrigerant is filled from the refrigerant supply cylinder into the refrigerant circuit, the liquid flow back to the compressor 1 is controlled by adjusting the charging flow rate with the second throttle device 46 according to the discharge state of the compressor 1. When the discharge superheat degree of the compressor 1 is large, the throttle opening can be increased and the charging flow rate can be maximized within an appropriate range, so that quick refrigerant charging is possible. In the present embodiment, the method for controlling the flow rate of the refrigerant charged from the refrigerant supply cylinder so that the superheat degree of the refrigerant discharged from the compressor 1 becomes a predetermined target value determined in advance has been described. The same effect can be obtained by using the superheat degree of the refrigerant sucked into the machine 1 as an index.

実施の形態3.
図6はこの発明の実施の形態3に係る冷媒自動充填のアルゴリズムを示すフローチャートである。ここでの冷媒回路の構成は実施の形態1と同様のものとする。図6において、冷媒供給ボンベを冷媒充てんポート7に接続した状態で、STEP1では、冷媒量を調整する運転を開始する。STEP2では制御間隔を取るため、所定時間が経過するまで待ち、所定時間経過後、STEP3に進む。STEP3では、圧縮機1の吐出圧力Pdと凝縮器出口での冷媒温度Tcoutを検出する。STEP4では、圧縮機1の吐出圧力Pdの飽和温度Tsat(Pd)と凝縮器2の出口冷媒温度Tcoutとの差SCiを演算する。STEP5では、今回演算したSCiと前回の演算結果SCi-1との差△SCを演算する。ただし、初回に前回の値がないため前回の値は0とする。STEP6では、△SCが“0”かどうかを判定し、“0”が所定回数以上の場合は、冷媒が充填されていないことになるため、冷媒供給ボンベが空もしくは接続されていないものとしてSTEP7に進み、ボンベ交換信号を発報する。発報の方法は、サービス用の表示機、リモコン、制御用のパソコン、電気信号によるランプ表示など何でもよい。△SC=0を所定回数検知していない場合はSTEP8に進む。STEP8では演算したSCiとその目標値のSCmを比較し、SCi≧SCmの場合はSTEP9に進み冷媒量調整を終了する。SCi<SCmの場合はSTEP10に進み所定時間冷媒充てん用開閉弁6を開放し、冷媒供給ボンベから冷媒充てんポート7を介して冷媒を冷媒回路内に充填する。このとき併せて開閉弁5を開放する。STEP10で所定時間冷媒を充填した後はSTEP2に進む。
Embodiment 3 FIG.
FIG. 6 is a flowchart showing an algorithm for automatic refrigerant charging according to Embodiment 3 of the present invention. The configuration of the refrigerant circuit here is the same as in the first embodiment. In FIG. 6, in a state where the refrigerant supply cylinder is connected to the refrigerant filling port 7, in STEP 1, an operation for adjusting the refrigerant amount is started. In STEP2, in order to take a control interval, the process waits until a predetermined time elapses, and proceeds to STEP3 after the predetermined time elapses. In STEP 3, the discharge pressure Pd of the compressor 1 and the refrigerant temperature Tcout at the condenser outlet are detected. In STEP 4, the difference SCi between the saturation temperature Tsat (Pd) of the discharge pressure Pd of the compressor 1 and the outlet refrigerant temperature Tcout of the condenser 2 is calculated. In STEP 5, the difference ΔSC between the SCi calculated this time and the previous calculation result SCi-1 is calculated. However, since there is no previous value for the first time, the previous value is set to 0. In STEP 6, it is determined whether or not ΔSC is “0”. If “0” is equal to or greater than the predetermined number of times, the refrigerant is not charged, so that the refrigerant supply cylinder is empty or not connected. STEP 7 Proceed to, and issue cylinder replacement signal. The notification method may be anything such as a service display, a remote control, a control personal computer, or a lamp display using an electrical signal. If ΔSC = 0 has not been detected a predetermined number of times, proceed to STEP 8. In STEP 8, the calculated SCi is compared with the SCm of the target value. If SCi ≧ SCm, the process proceeds to STEP 9 and the refrigerant amount adjustment is completed. When SCi <SCm, the routine proceeds to STEP 10, where the refrigerant filling on-off valve 6 is opened for a predetermined time, and the refrigerant is filled into the refrigerant circuit from the refrigerant supply cylinder through the refrigerant filling port 7. At the same time, the on-off valve 5 is opened. After filling the refrigerant for a predetermined time in STEP 10, proceed to STEP2.

以上の動作により、冷媒充てんポート7に冷媒供給ボンベが接続されていなかったり、冷媒供給ボンベが空になった状態のまま冷媒充てんのための運転を継続し続けることが防止でき、冷媒の自動充填に対する信頼性の高いシステムとすることができる。   By the above operation, it is possible to prevent the refrigerant supply cylinder 7 from being connected to the refrigerant supply port 7 or to continue the operation for charging the refrigerant while the refrigerant supply cylinder is empty. It is possible to make the system highly reliable.

実施の形態4.
図7にこの発明の実施の形態4に係る冷凍空調装置の冷媒回路図を示す。図7において、1は圧縮機、21は四方弁、22は熱源側熱交換器、23はアキュムレータ、24は冷媒熱交換器、26は室外絞り装置、14は開閉弁であり、これらによって熱源側ユニット51のメインの冷媒回路を構成する。なお、13は冷媒熱交換器24をバイパスする回路上にある開閉弁である。また、冷媒熱交換器24の液側において、冷媒熱交換器と開閉弁14の間を分岐し、絞り装置17を介してガス側のガス管102と冷媒熱交換器24の間の冷媒回路に合流させる。圧縮機1の吐出配管を分岐した配管は開閉弁5を介して四方弁21とアキュムレータ23の間の冷媒回路と合流させ、その合流部と開閉弁5の間を分岐し、冷媒充てん用開閉弁6を介して冷媒充てんポート7を接続する。
アキュムレータ23の底に接続された配管は開閉弁15を介して回収器25と接続され、回収器25の上部は開閉弁16を介して、四方弁21とアキュムレータ23の間の冷媒回路に接続される。また、アキュムレータ23の底に接続された配管は開閉弁15との間で分岐され、開閉弁19を介してアキュムレータ23と圧縮機1の間の冷媒回路と接続される。
さらに、8は圧縮機1の吐出側の高圧部にて圧力を検出する圧力センサ、9は圧縮機1の吐出側で冷媒の温度を検出する第1の温度センサである。10は熱源側熱交換機22の出口で冷媒の温度を検出する第2の温度センサである。18は四方弁21とアキュムレータ23の間の冷媒回路において、開閉弁5を介して合流するホットガスバイパス回路の合流点よりも下流に設置され、冷媒の温度を検知する第5の温度センサである。また、20は液管101を通る冷媒の圧力を検知する第2の圧力センサ、28は四方弁21とアキュムレータ23の間の冷媒回路を通る冷媒の圧力を検知する第3の圧力センサである。ここでは以上により、熱源側ユニット51を構成する。
Embodiment 4 FIG.
FIG. 7 shows a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 4 of the present invention. In FIG. 7, 1 is a compressor, 21 is a four-way valve, 22 is a heat source side heat exchanger, 23 is an accumulator, 24 is a refrigerant heat exchanger, 26 is an outdoor expansion device, and 14 is an on-off valve. The main refrigerant circuit of the unit 51 is configured. Reference numeral 13 denotes an on-off valve on a circuit that bypasses the refrigerant heat exchanger 24. Further, on the liquid side of the refrigerant heat exchanger 24, the refrigerant heat exchanger and the on-off valve 14 are branched, and a refrigerant circuit between the gas pipe 102 on the gas side and the refrigerant heat exchanger 24 is connected via the expansion device 17. Merge. The pipe branched from the discharge pipe of the compressor 1 is joined to the refrigerant circuit between the four-way valve 21 and the accumulator 23 via the on-off valve 5 and branched between the junction and the on-off valve 5 to provide a refrigerant filling on-off valve. The refrigerant charging port 7 is connected through 6.
The pipe connected to the bottom of the accumulator 23 is connected to the recovery device 25 via the on-off valve 15, and the upper portion of the recovery device 25 is connected to the refrigerant circuit between the four-way valve 21 and the accumulator 23 via the on-off valve 16. The The piping connected to the bottom of the accumulator 23 branches off from the on-off valve 15 and is connected to the refrigerant circuit between the accumulator 23 and the compressor 1 through the on-off valve 19.
Further, 8 is a pressure sensor that detects the pressure at the high-pressure section on the discharge side of the compressor 1, and 9 is a first temperature sensor that detects the temperature of the refrigerant on the discharge side of the compressor 1. Reference numeral 10 denotes a second temperature sensor that detects the temperature of the refrigerant at the outlet of the heat source side heat exchanger 22. Reference numeral 18 denotes a refrigerant circuit between the four-way valve 21 and the accumulator 23. The fifth temperature sensor is installed downstream of the junction of the hot gas bypass circuit that merges via the on-off valve 5 and detects the refrigerant temperature. . Reference numeral 20 denotes a second pressure sensor for detecting the pressure of the refrigerant passing through the liquid pipe 101, and reference numeral 28 denotes a third pressure sensor for detecting the pressure of the refrigerant passing through the refrigerant circuit between the four-way valve 21 and the accumulator 23. Here, the heat source side unit 51 is configured as described above.

一方、3a,3bは絞り装置、27a,27bは負荷側熱交換器である。11a,11bは絞り装置3a,3bと、負荷側熱交換器27a,27bの間で冷媒の温度を検知する第3の温度センサ、12a,12bは負荷側熱交換器とガス管102の間で冷媒の温度を検知する第4の温度センサである。これらによって負荷側ユニット52a,52bを構成する。なお、添え字のa,bは室内機が複数台接続されるマルチ形空調機を示すものである。   On the other hand, 3a and 3b are expansion devices, and 27a and 27b are load-side heat exchangers. 11a and 11b are third temperature sensors that detect the temperature of the refrigerant between the expansion devices 3a and 3b and the load side heat exchangers 27a and 27b, and 12a and 12b are between the load side heat exchanger and the gas pipe 102. It is a 4th temperature sensor which detects the temperature of a refrigerant | coolant. These constitute load-side units 52a and 52b. The subscripts a and b indicate multi-type air conditioners to which a plurality of indoor units are connected.

また、101は液管、102はガス管であり、これらは、既設のユニットで使用されていた天井裏などに埋設されている配管が利用できる。この液管101とガス管102によって熱源側ユニット51と負荷側ユニット52a,52bを接続し、冷媒回路を構成する。   Reference numeral 101 denotes a liquid pipe, and reference numeral 102 denotes a gas pipe. For these, pipes embedded in a ceiling or the like used in an existing unit can be used. The liquid pipe 101 and the gas pipe 102 connect the heat source side unit 51 and the load side units 52a and 52b to constitute a refrigerant circuit.

図7のようなユニットを用いて、空調運転に先立ち、既設の液管101およびガス管102内にある既設ユニットで使用していた劣化した潤滑油などの異物を取除く流れを、図8のフローチャートを用いて説明する。まず、STEP1で更新を開始する。STEP2では既設ユニット(熱源側ユニット、負荷側ユニット)を撤去する。STEP3では新しいユニットを据え付ける。STEP4では新しいユニットと既設の冷媒配管を接続する。STEP5では液管101、ガス管102、負荷側ユニット52a,52bの真空引きを行った後、負荷側ユニット分の冷媒を充填する。STEP6では、システムに必要な冷媒量を判断しながら異物を回収する運転を実施する。STEP7では空調機として、冷房暖房、暖房運転を確認した後、STEP8で更新が完了する。   Using the unit as shown in FIG. 7, the flow of removing foreign matters such as deteriorated lubricating oil used in the existing unit in the existing liquid pipe 101 and gas pipe 102 prior to the air-conditioning operation is shown in FIG. This will be described with reference to a flowchart. First, update is started at STEP1. In STEP2, existing units (heat source side unit, load side unit) are removed. In STEP 3, install a new unit. In STEP 4, connect the new unit to the existing refrigerant piping. In STEP5, the liquid pipe 101, the gas pipe 102, and the load side units 52a and 52b are evacuated, and then the refrigerant for the load side unit is filled. In STEP6, the operation | movement which collects a foreign material is implemented, judging the refrigerant | coolant amount required for a system. In STEP 7, after confirming the cooling and heating operation as the air conditioner, the update is completed in STEP 8.

ここで、異物を回収する運転の詳細について説明する。まず冷房モードで異物回収運転を実施する場合の冷媒の流れについて説明する。圧縮機1を吐出した高温・高圧のガス冷媒は、四方弁21を介して、熱源側熱交換器22に至り凝縮・液化する。凝縮・液化した液冷媒は、第2の圧力センサ20の検知値が、既設の冷媒配管の耐圧以下の圧力となるように、室外絞り装置26にて絞られ、中間圧の液冷媒となり、冷媒熱交換器24で冷却され、開閉弁14を介して液管101に流れる。液管101に流れた液冷媒は、液管101内の異物を冷媒の流れで剥ぎ取りながら負荷側ユニットに流れる。負荷側ユニットに流れた異物を含む液冷媒は、絞り装置3a,3bで低圧まで絞られ、負荷側熱交換器27a,27bで周囲より熱を奪い、蒸発して冷房するとともに、自身は液冷媒を含む二相冷媒となってガス管102に流れる。ガス管102に流れた気液二相冷媒はガス管102内の異物も剥ぎ取りながら熱源側ユニット51に流れる。熱源側ユニット51に戻った異物を含む気液二相冷媒は、冷媒熱交換器24にて、高圧の液冷媒と熱交換して自身は完全なガス冷媒となって四方弁21を介してアキュムレータ23に流れる。アキュムレータ23に流れた異物を含むガス冷媒は、アキュムレータ23内で異物を分離され、ガス冷媒は圧縮機1に戻る。アキュムレータ23内で分離された異物は、開閉弁15を介して回収器25に流れ、回収器25内に溜められる。この際、アキュムレータ23内部で冷媒の動圧の一部が静圧に変る一方で、開閉弁16を開放することにより、回収器25内の圧力はアキュムレータ23の圧力よりも低くなるため、差圧に従ってアキュムレータ23から回収器25への異物の流れが発生するものである。なお、負荷側ユニットの出口の気液二相冷媒の乾き度の制御については、第5の温度センサ18と第3の圧力センサ28から演算されるアキュムレータ23の吸入部での冷媒の過熱度が一定となるように絞り装置3a,3bを制御することで実施する。   Here, the detail of the driving | operation which collects a foreign material is demonstrated. First, the flow of the refrigerant when the foreign matter collecting operation is performed in the cooling mode will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the heat source side heat exchanger 22 via the four-way valve 21 and is condensed and liquefied. The condensed and liquefied liquid refrigerant is squeezed by the outdoor expansion device 26 so that the detected value of the second pressure sensor 20 is equal to or lower than the pressure resistance of the existing refrigerant pipe, and becomes an intermediate-pressure liquid refrigerant. It is cooled by the heat exchanger 24 and flows to the liquid pipe 101 via the on-off valve 14. The liquid refrigerant that has flowed to the liquid pipe 101 flows to the load side unit while stripping off the foreign matter in the liquid pipe 101 with the flow of the refrigerant. The liquid refrigerant containing the foreign matter flowing to the load side unit is throttled to a low pressure by the expansion devices 3a and 3b, takes heat from the surroundings by the load side heat exchangers 27a and 27b, evaporates and cools itself, and is itself a liquid refrigerant. The refrigerant flows into the gas pipe 102. The gas-liquid two-phase refrigerant that has flowed to the gas pipe 102 flows to the heat source unit 51 while stripping off foreign matter in the gas pipe 102. The gas-liquid two-phase refrigerant containing foreign matter that has returned to the heat source side unit 51 exchanges heat with the high-pressure liquid refrigerant in the refrigerant heat exchanger 24 to become a complete gas refrigerant, and the accumulator via the four-way valve 21. It flows to 23. The gas refrigerant containing the foreign matter flowing into the accumulator 23 is separated in the accumulator 23, and the gas refrigerant returns to the compressor 1. The foreign matter separated in the accumulator 23 flows to the recovery device 25 via the on-off valve 15 and is stored in the recovery device 25. At this time, while a part of the dynamic pressure of the refrigerant changes to static pressure inside the accumulator 23, the pressure in the recovery device 25 becomes lower than the pressure of the accumulator 23 by opening the on-off valve 16, and thus the differential pressure Accordingly, the flow of foreign matter from the accumulator 23 to the recovery device 25 occurs. Regarding the control of the dryness of the gas-liquid two-phase refrigerant at the outlet of the load side unit, the degree of superheat of the refrigerant at the suction portion of the accumulator 23 calculated from the fifth temperature sensor 18 and the third pressure sensor 28 is determined. This is carried out by controlling the expansion devices 3a and 3b so as to be constant.

上記の運転を所定時間実施した後、冷凍空調装置の制御を以下のように変更し、冷媒量の確認を実施する。圧縮機1を吐出した高温・高圧のガス冷媒は、四方弁21を介して、熱源側熱交換器22に至り凝縮・液化する。凝縮・液化した液冷媒は、第2の圧力センサ20の検知値が、既設の冷媒配管の耐圧以下の圧力となるように、室外絞り装置26にて絞られ、中間圧の液冷媒となり、冷媒熱交換器24で過冷却が付くまで冷却され、一部は絞り装置17を介して低圧まで絞られ、低圧のガス部を流れるガス冷媒と合流する。残りの液冷媒は、開閉弁14を介して液管101に流れる。液管101に流れた液冷媒は、負荷側ユニットに流れ、負荷側ユニットに流れた液冷媒は、絞り装置3a,3bで低圧まで絞られ、負荷側熱交換器27a,27bで周囲より熱を奪い、蒸発して冷房するとともに、自身は第3の温度センサ11a,11bと第4の温度センサ12a,12bの検知値の差として求められる負荷側熱交換器の出口冷媒の過熱度が一定となるように制御されてガス化し、ガス管102に流れる。ガス管102に流れたガス冷媒は熱源側ユニット51に流れる。熱源側ユニット51に戻ったガス冷媒は、絞り装置17を有するバイパス回路を流れた低温の気液二相冷媒と合流した後、冷媒熱交換器24にて、高圧の液冷媒と熱交換して自身は完全なガス冷媒となって四方弁21を介してアキュムレータ23に流れる。アキュムレータ23に流れたガス冷媒は圧縮機1に戻る。なお、この際にアキュムレータ23の底に接続された配管に設置されている開閉弁15は閉止し、異物を閉じ込めると共に、開閉弁19が開放され、冷媒と共に持出された圧縮機1内の潤滑油が開閉弁19を介して圧縮機1の吸入管に流れ、返油されるようにする。このように異物回収後に冷媒制御方法を変更することで、液管101の冷媒の状態は完全な液となり、また、ガス管102の冷媒の状態は完全なガス冷媒となり、空調運転を実施する場合の冷媒の分布状態となるため、正確な冷媒量判定が可能となる。   After carrying out the above operation for a predetermined time, the control of the refrigeration air conditioner is changed as follows to check the refrigerant amount. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the heat source side heat exchanger 22 via the four-way valve 21 and is condensed and liquefied. The condensed and liquefied liquid refrigerant is squeezed by the outdoor expansion device 26 so that the detected value of the second pressure sensor 20 is equal to or lower than the pressure resistance of the existing refrigerant pipe, and becomes an intermediate-pressure liquid refrigerant. It is cooled until supercooling is applied by the heat exchanger 24, and a part thereof is throttled to a low pressure via the expansion device 17 and merges with the gas refrigerant flowing through the low-pressure gas part. The remaining liquid refrigerant flows into the liquid pipe 101 via the on-off valve 14. The liquid refrigerant that has flowed to the liquid pipe 101 flows to the load side unit, the liquid refrigerant that has flowed to the load side unit is throttled to a low pressure by the expansion devices 3a and 3b, and heat is supplied from the surroundings by the load side heat exchangers 27a and 27b. It steals, evaporates and cools itself, and the degree of superheat of the refrigerant at the outlet of the load-side heat exchanger, which is obtained as the difference between the detected values of the third temperature sensors 11a and 11b and the fourth temperature sensors 12a and 12b, is constant. The gas is gasified by being controlled to flow to the gas pipe 102. The gas refrigerant that has flowed to the gas pipe 102 flows to the heat source side unit 51. The gas refrigerant that has returned to the heat source side unit 51 merges with the low-temperature gas-liquid two-phase refrigerant that has flowed through the bypass circuit having the expansion device 17, and then exchanges heat with the high-pressure liquid refrigerant in the refrigerant heat exchanger 24. It becomes a complete gas refrigerant and flows to the accumulator 23 through the four-way valve 21. The gas refrigerant that has flowed to the accumulator 23 returns to the compressor 1. At this time, the on-off valve 15 installed in the pipe connected to the bottom of the accumulator 23 is closed to confine foreign matter, and the on-off valve 19 is opened and lubricated in the compressor 1 taken out together with the refrigerant. The oil flows into the suction pipe of the compressor 1 through the on-off valve 19 and is returned to the oil. In this way, by changing the refrigerant control method after collecting foreign matter, the state of the refrigerant in the liquid pipe 101 becomes a complete liquid, and the state of the refrigerant in the gas pipe 102 becomes a complete gas refrigerant, and air conditioning operation is performed. Therefore, the refrigerant amount can be accurately determined.

次に、冷房での異物回収運転中に冷媒を自動で充填する方法について図9のフローチャートを用いて説明する。図9において、STEP1では異物回収運転を開始し、圧縮機1を起動する。STEP2では圧縮機1から吐出される冷媒の温度Tdを検出する。STEP3では、特に初期状態では、冷媒回路中には予め熱源側ユニットに充填されている冷媒と、真空引きの後に充填された負荷側ユニット分の冷媒しか充填されていないため、冷媒が不足気味となるため、検知した吐出温度Tdと、予め設定する吐出温度の上限値Tdmaxとを比較し、Td>Tdmaxの場合は冷媒が不足しているものと判断し、STEP5に進み、開閉弁5と共に冷媒充てん用開閉弁6を開放し、冷媒を充填する。STEP3でTd≦Tdmaxの場合には、STEP4に進み所定時間が経過したか判断する。STEP4で所定時間が経過していれば、STEP6に進み、所定時間が経過していなければ、STEP2に戻る。STEP6では前述した通り、制御方法を変更し、負荷側ユニット出口で冷媒を過熱させる運転を実施する。STEP7では、再度、所定時間が経過しているかを判断し、所定時間が経過していれば、STEP8に進み、圧縮機1から吐出される冷媒の吐出圧力Pdと、熱源側熱交換器22の出口温度Tcoutを検知する。STEP9では、Pdの飽和温度Tsat(Pd)とTcoutの差SCを演算し、STEP10では、SCとSCの目標値SCmを比較し、SC≧SCmとなればSTEP11へ進み異物回収運転を完了する。SC<SCmの場合はSTEP12に進み、所定時間、開閉弁5および冷媒充てん用開閉弁6を開放して、冷媒充てんポート7から冷媒を充填した後、STEP7に戻る。   Next, a method of automatically filling the refrigerant during the foreign matter recovery operation in the cooling will be described with reference to the flowchart of FIG. In FIG. 9, in STEP 1, the foreign substance recovery operation is started and the compressor 1 is started. In STEP2, the temperature Td of the refrigerant discharged from the compressor 1 is detected. In STEP 3, particularly in the initial state, the refrigerant circuit is filled with only the refrigerant that has been charged in the heat source side unit in advance and the refrigerant for the load side unit that has been filled after evacuation. Therefore, the detected discharge temperature Td is compared with the preset upper limit value Tdmax of the discharge temperature, and when Td> Tdmax, it is determined that the refrigerant is insufficient. The filling on-off valve 6 is opened and filled with refrigerant. If Td ≦ Tdmax in STEP 3, the process proceeds to STEP 4 to determine whether a predetermined time has elapsed. If the predetermined time has elapsed in STEP4, the process proceeds to STEP6, and if the predetermined time has not elapsed, the process returns to STEP2. In STEP 6, as described above, the control method is changed, and the operation of heating the refrigerant at the load side unit outlet is performed. In STEP 7, it is determined again whether the predetermined time has elapsed. If the predetermined time has elapsed, the process proceeds to STEP 8, where the refrigerant discharge pressure Pd discharged from the compressor 1 and the heat source side heat exchanger 22 Detect outlet temperature Tcout. In STEP 9, the difference SC between the saturation temperature Tsat (Pd) of Pd and Tcout is calculated, and in STEP 10, the SC and SC target value SCm are compared, and if SC ≧ SCm, the process proceeds to STEP 11 and the foreign matter collecting operation is completed. If SC <SCm, the process proceeds to STEP 12, and after opening and closing the on-off valve 5 and the refrigerant filling on-off valve 6 for a predetermined time, the refrigerant is charged from the refrigerant filling port 7, and then the process returns to STEP 7.

次に、異物を回収する運転を暖房モードで実施する場合の冷媒の流れについて図7を基に説明する。圧縮機1を吐出した高温・高圧のガス冷媒は、四方弁21を介して、冷媒熱交換器24に流れ、冷媒熱交換器24で冷却され、高圧の気液二相冷媒となりガス管102に流れる。この際、高圧は圧縮機1の容量制御などで既設配管の耐圧以下の圧力に制御する。ガス管102に流れた気液二相冷媒は、ガス管102内の異物を冷媒の流れで剥ぎ取りながら負荷側ユニットに流れる。負荷側ユニットに流れた異物を含む気液二相冷媒は、負荷側熱交換器27a,27bで周囲に放熱し、凝縮して暖房するとともに、自身は液化した後、絞り装置3a,3bで中間圧まで絞られ、異物を含む二相冷媒となって液管101に流れる。液管101に流れた気液二相冷媒は液管101内の異物も剥ぎ取りながら熱源側ユニット51に流れる。熱源側ユニット51に戻った異物を含む気液二相冷媒は、開閉弁14を介して冷媒熱交換器24に流れ、高圧のガス冷媒と熱交換して自身は乾き度の大きな二相冷媒となって室外絞り装置26で低圧まで絞られた後、熱源側熱交換器22を流れ、ここで完全に気化し、四方弁21を介してアキュムレータ23に流れる。アキュムレータ23に流れた異物を含むガス冷媒は、アキュムレータ23内で異物を分離され、ガス冷媒は圧縮機1に戻る。アキュムレータ23内で分離された異物は、開閉弁15を介して回収器25に流れ、回収器25内に溜められる。この際、アキュムレータ23内部で冷媒の動圧の一部が静圧に変る一方で、開閉弁16を開放することにより、回収器25内の圧力はアキュムレータ23の圧力よりも低くなるため、差圧に従ってアキュムレータ23から回収器25への異物の流れが発生するものである。なお、熱源側熱交換器22の出口での冷媒の過熱度は室外絞り装置26により制御する。   Next, the flow of the refrigerant when the operation for collecting the foreign matter is performed in the heating mode will be described with reference to FIG. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the refrigerant heat exchanger 24 via the four-way valve 21, is cooled by the refrigerant heat exchanger 24, becomes a high-pressure gas-liquid two-phase refrigerant, and enters the gas pipe 102. Flowing. At this time, the high pressure is controlled to a pressure equal to or lower than the pressure resistance of the existing piping by the capacity control of the compressor 1 or the like. The gas-liquid two-phase refrigerant that has flowed to the gas pipe 102 flows to the load-side unit while stripping off foreign matters in the gas pipe 102 with the flow of the refrigerant. The gas-liquid two-phase refrigerant containing foreign matter that has flowed to the load-side unit radiates heat to the surroundings by the load-side heat exchangers 27a and 27b, condenses and heats it, and liquefies itself before being intermediated by the expansion devices 3a and 3b. It is squeezed to a pressure and flows into the liquid pipe 101 as a two-phase refrigerant containing foreign matter. The gas-liquid two-phase refrigerant that has flowed to the liquid pipe 101 flows to the heat source unit 51 while stripping off foreign matter in the liquid pipe 101. The gas-liquid two-phase refrigerant containing the foreign matter that has returned to the heat source side unit 51 flows into the refrigerant heat exchanger 24 via the on-off valve 14 and exchanges heat with the high-pressure gas refrigerant to produce a two-phase refrigerant having a high degree of dryness. After being reduced to a low pressure by the outdoor expansion device 26, it flows through the heat source side heat exchanger 22, where it completely evaporates and flows to the accumulator 23 via the four-way valve 21. The gas refrigerant containing the foreign matter that has flowed into the accumulator 23 is separated in the accumulator 23, and the gas refrigerant returns to the compressor 1. The foreign matter separated in the accumulator 23 flows to the recovery device 25 via the on-off valve 15 and is stored in the recovery device 25. At this time, while a part of the dynamic pressure of the refrigerant changes to static pressure inside the accumulator 23, the pressure in the recovery device 25 becomes lower than the pressure of the accumulator 23 by opening the on-off valve 16, and thus the differential pressure Accordingly, the flow of foreign matter from the accumulator 23 to the recovery device 25 occurs. Note that the degree of superheat of the refrigerant at the outlet of the heat source side heat exchanger 22 is controlled by the outdoor expansion device 26.

上記の運転を所定時間実施した後、冷凍空調装置の制御を次のように変更し冷媒量の確認を実施する。圧縮機1を吐出した高温・高圧のガス冷媒は、四方弁21を介して、冷媒熱交換器24に流れるが、低圧側には冷媒を流さないため熱交換せずに過熱ガスの状態のままガス管102に流れる。この際、高圧は圧縮機1の容量制御などで既設配管の耐圧以下の圧力に制御する。ガス管102に流れた高温のガス冷媒は負荷側ユニットに流れる。負荷側ユニットに流れた高温のガス冷媒は、負荷側熱交換器27a,27bで周囲に放熱し、凝縮して暖房するとともに、自身は液化した後、絞り装置3a,3bで中間圧まで絞られ、異物を含む二相冷媒となって液管101に流れる。液管101に流れた気液二相冷媒は熱源側ユニット51に流れる。熱源側ユニット51に戻った異物を含む気液二相冷媒は、開閉弁13を介して冷媒熱交換器24をバイパスするように流れ、室外絞り装置26で低圧まで絞られた後、熱源側熱交換器22を流れ、ここで完全に気化し、四方弁21を介してアキュムレータ23に流れる。このように異物回収後に冷媒制御方法を変更することで、液管101の冷媒の状態は通常の暖房運転と同じか、若干液に近い状態となり、また、ガス管102の冷媒の状態は完全なガス冷媒となり、空調運転を実施する場合の冷媒の分布状態となるため、正確な冷媒量判定が可能となる。   After carrying out the above operation for a predetermined time, the control of the refrigeration air conditioner is changed as follows to check the refrigerant amount. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the four-way valve 21 to the refrigerant heat exchanger 24. However, since the refrigerant does not flow to the low-pressure side, it remains in the state of superheated gas without heat exchange. It flows to the gas pipe 102. At this time, the high pressure is controlled to a pressure equal to or lower than the pressure resistance of the existing piping by the capacity control of the compressor 1 or the like. The high-temperature gas refrigerant that has flowed to the gas pipe 102 flows to the load side unit. The high-temperature gas refrigerant that has flowed to the load-side unit radiates heat to the surroundings by the load-side heat exchangers 27a and 27b, condenses and heats it, liquefies itself, and then is throttled to the intermediate pressure by the expansion devices 3a and 3b. Then, the refrigerant flows into the liquid pipe 101 as a two-phase refrigerant containing foreign substances. The gas-liquid two-phase refrigerant that has flowed to the liquid pipe 101 flows to the heat source side unit 51. The gas-liquid two-phase refrigerant containing foreign matter that has returned to the heat source side unit 51 flows so as to bypass the refrigerant heat exchanger 24 via the on-off valve 13, and after being throttled to a low pressure by the outdoor throttling device 26, It flows through the exchanger 22 where it is completely vaporized and flows to the accumulator 23 via the four-way valve 21. In this way, by changing the refrigerant control method after collecting the foreign matter, the state of the refrigerant in the liquid pipe 101 becomes the same as that in the normal heating operation or slightly close to the liquid, and the state of the refrigerant in the gas pipe 102 is complete. Since the refrigerant becomes a gas refrigerant and is in a distribution state of the refrigerant when the air-conditioning operation is performed, the refrigerant amount can be accurately determined.

次に、暖房での異物回収運転中に冷媒を自動で充填する方法について図10のフローチャートを用いて説明する。図10において、STEP1では異物回収運転を開始し、圧縮機1を起動する。STEP2では圧縮機1から吐出される冷媒の温度Tdを検出する。STEP3では、特に初期状態では、冷媒回路中には予め熱源側ユニット51に充填されている冷媒と、真空引きの後に充填された負荷側ユニット分の冷媒しか充填されていないため、冷媒が不足気味となるため、検知した吐出温度Tdと、予め設定する吐出温度の上限値Tdmaxとを比較し、Td>Tdmaxの場合は冷媒が不足しているものと判断し、STEP5に進み、開閉弁5と共に冷媒充てん用開閉弁6を開放し、冷媒充てんポート7から冷媒を充填する。STEP3でTd≦Tdmaxの場合には、STEP4に進み所定時間が経過したか判断する。STEP4で所定時間が経過していれば、STEP6に進み、所定時間が経過していなければ、STEP2に戻る。STEP6では前述の通り、制御方法を変更し、冷媒熱交換器24を低圧側でバイパスする運転を実施する。STEP7では、再度、所定時間が経過しているかを判断し、所定時間が経過していれば、STEP8に進み、圧縮機1から吐出される冷媒の吐出圧力Pdと、負荷側熱交換器27a,27bの出口温度の平均値Tcout_aveを検知・演算する。STEP9では、Pdの飽和温度Tsat(Pd)とTcout_aveの差SCを演算し、STEP10では、SCとSCの目標値SCmを比較し、SC≧SCmとなればSTEP11へ進み異物回収運転を完了する。SC<SCmの場合は、STEP12に進み、所定時間、開閉弁5および冷媒充てん用開閉弁6を開放して冷媒充てんポート7から冷媒を充填した後、STEP7に戻る。   Next, a method of automatically filling the refrigerant during the foreign matter recovery operation in heating will be described with reference to the flowchart of FIG. In FIG. 10, in STEP 1, the foreign substance recovery operation is started and the compressor 1 is started. In STEP2, the temperature Td of the refrigerant discharged from the compressor 1 is detected. In STEP 3, particularly in the initial state, the refrigerant circuit is filled with only the refrigerant previously charged in the heat source side unit 51 and the refrigerant for the load side unit filled after evacuation. Therefore, the detected discharge temperature Td is compared with the preset upper limit value Tdmax of the discharge temperature, and if Td> Tdmax, it is determined that the refrigerant is insufficient, and the process proceeds to STEP 5 together with the on-off valve 5. The refrigerant filling on-off valve 6 is opened and the refrigerant is filled from the refrigerant filling port 7. If Td ≦ Tdmax in STEP 3, the process proceeds to STEP 4 to determine whether a predetermined time has elapsed. If the predetermined time has elapsed in STEP4, the process proceeds to STEP6, and if the predetermined time has not elapsed, the process returns to STEP2. In STEP 6, as described above, the control method is changed, and the operation of bypassing the refrigerant heat exchanger 24 on the low pressure side is performed. In STEP 7, it is determined again whether the predetermined time has elapsed. If the predetermined time has elapsed, the process proceeds to STEP 8, and the refrigerant discharge pressure Pd discharged from the compressor 1 and the load-side heat exchanger 27a, The average value Tcout_ave of the outlet temperature 27b is detected and calculated. In STEP 9, the difference SC between the saturation temperature Tsat (Pd) of Pd and Tcout_ave is calculated. In STEP 10, the SC and SC target value SCm are compared. If SC ≧ SCm, the process proceeds to STEP 11 and the foreign matter recovery operation is completed. If SC <SCm, the process proceeds to STEP 12, and after opening and closing the on-off valve 5 and the refrigerant filling on-off valve 6 for a predetermined time to fill the refrigerant from the refrigerant filling port 7, the process returns to STEP 7.

以上の動作により、既設の冷媒配管を利用してユニットを更新する場合に、既設配管の形状が壁や天井に埋設された状態でも、ユニット自身で正しく冷媒量を判断し冷媒を充填することができるようになるため、施工時間を短縮し、冷房、暖房を問わず冷媒量の判定ができる。従って、季節を問わず冷媒量に対する信頼性の高いシステムとすることができる。   With the above operation, when the unit is updated using the existing refrigerant pipe, the unit itself can correctly determine the refrigerant amount and fill the refrigerant even when the shape of the existing pipe is embedded in the wall or ceiling. Therefore, the construction time can be shortened, and the refrigerant amount can be determined regardless of cooling or heating. Therefore, it can be set as the reliable system with respect to the amount of refrigerant | coolants irrespective of a season.

なお、本実施の形態では、室内機が2台の場合について説明をしたが、室内機が3台あるシステムでも同様の効果を奏することは自明である。また、熱源側ユニットが複数台接続されるものであっても、同様の方法で熱源側熱交換器の出口冷媒の状態を平均化するなどの処理によって、同様の制御方法が可能である。   In the present embodiment, the case where there are two indoor units has been described. However, it is obvious that the same effect can be obtained even in a system having three indoor units. Further, even when a plurality of heat source side units are connected, the same control method is possible by processing such as averaging the state of the outlet refrigerant of the heat source side heat exchanger by the same method.

実施の形態5.
図11にこの発明の実施の形態5に係る冷凍空調装置の冷媒回路図を示す。この装置は、熱源側ユニット51、負荷側ユニット52a,52b、および分流コントローラ53を備える。
まず、熱源側ユニット51の構成を説明する。1は圧縮機、21は四方弁、22は熱源側熱交換器、23はアキュムレータ、32a,32b,32c,32dは逆止弁であり、これらを接続して熱源側ユニット51のメインの冷媒回路を構成する。また、圧縮機1の吐出配管を分岐した配管は開閉弁5を介して四方弁21とアキュムレータ23の間の冷媒回路と合流させ、その合流部と開閉弁5の間を分岐し、冷媒充てん用開閉弁6を介して冷媒充てんポート7を接続する。また、8は圧縮機1の吐出側の高圧部にて圧力を検出する圧力センサ、9は圧縮機1の吐出側で冷媒の温度を検出する第1の温度センサである。これらによって熱源側ユニット51を構成する。
Embodiment 5 FIG.
FIG. 11 shows a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 5 of the present invention. This apparatus includes a heat source side unit 51, load side units 52 a and 52 b, and a shunt controller 53.
First, the configuration of the heat source side unit 51 will be described. 1 is a compressor, 21 is a four-way valve, 22 is a heat source side heat exchanger, 23 is an accumulator, 32a, 32b, 32c and 32d are check valves, which are connected to the main refrigerant circuit of the heat source side unit 51 Configure. Further, the pipe branched from the discharge pipe of the compressor 1 is joined to the refrigerant circuit between the four-way valve 21 and the accumulator 23 via the on-off valve 5, and the junction between the junction and the on-off valve 5 is branched to fill the refrigerant. A refrigerant charging port 7 is connected via the on-off valve 6. Reference numeral 8 denotes a pressure sensor that detects pressure at the high-pressure portion on the discharge side of the compressor 1, and 9 denotes a first temperature sensor that detects the temperature of the refrigerant on the discharge side of the compressor 1. These constitute the heat source unit 51.

次に負荷側ユニットの構成について説明する。3a,3bは絞り装置、27a,27bは負荷側熱交換器である。11a,11bは絞り装置3a,3bと、負荷側熱交換器27a,27bの間で冷媒の温度を検知する第3の温度センサ、12a,12bは負荷側熱交換器とガス管との間で冷媒の温度を検知する第4の温度センサである。これらによって負荷側ユニット52a,52bを構成する。なお、添え字のa,bは室内機が複数台接続されるマルチ形空調機を示すものである。   Next, the configuration of the load side unit will be described. 3a and 3b are expansion devices, and 27a and 27b are load-side heat exchangers. 11a and 11b are third temperature sensors that detect the temperature of the refrigerant between the expansion devices 3a and 3b and the load side heat exchangers 27a and 27b, and 12a and 12b are between the load side heat exchanger and the gas pipe. It is a 4th temperature sensor which detects the temperature of a refrigerant | coolant. These constitute load-side units 52a and 52b. The subscripts a and b indicate multi-type air conditioners to which a plurality of indoor units are connected.

最後に熱源側ユニット51と負荷側ユニット52a,52bとの間に配置された分流コントローラ53の構成について説明する。33は気液分離器で気液分離器33の上部は高圧用開閉弁41a,41bと接続され、気液分離器33の下部は第1の冷媒熱交換器35と接続される。第1の冷媒熱交換器35の他端は、絞り装置34を介して逆止弁39a,39b、および第2の冷媒熱交換器36と接続される。また、第2の冷媒熱交換機36の他端は負荷側ユニットの絞り装置3a,3bと接続される逆止弁40a,40bと接続される。また、第2の冷媒熱交換器36と逆止弁40a,40bの間から分岐した冷媒回路(バイパス回路)が、絞り装置37を介して、第2の冷媒熱交換器36と第1の冷媒熱交換器35の低圧側に接続された後、低圧管104の入口に接続される。さらに、負荷側熱交換器27a,27bのガス側配管は高圧用開閉弁41a,41bを介して気液分離器33の上部配管と接続されると共に、低圧用開閉弁42a,42bを介して低圧管104とも接続される。   Finally, the configuration of the shunt controller 53 disposed between the heat source side unit 51 and the load side units 52a and 52b will be described. Reference numeral 33 denotes a gas-liquid separator. The upper part of the gas-liquid separator 33 is connected to the high-pressure on-off valves 41 a and 41 b, and the lower part of the gas-liquid separator 33 is connected to the first refrigerant heat exchanger 35. The other end of the first refrigerant heat exchanger 35 is connected to the check valves 39a and 39b and the second refrigerant heat exchanger 36 via the expansion device 34. The other end of the second refrigerant heat exchanger 36 is connected to check valves 40a and 40b connected to the expansion devices 3a and 3b of the load side unit. A refrigerant circuit (bypass circuit) branched from between the second refrigerant heat exchanger 36 and the check valves 40a and 40b is connected to the second refrigerant heat exchanger 36 and the first refrigerant via the expansion device 37. After being connected to the low pressure side of the heat exchanger 35, it is connected to the inlet of the low pressure pipe 104. Further, the gas side pipes of the load side heat exchangers 27a and 27b are connected to the upper pipe of the gas-liquid separator 33 via the high pressure on / off valves 41a and 41b, and low pressure via the low pressure on / off valves 42a and 42b. A tube 104 is also connected.

熱源側ユニット51と負荷側ユニット52a,52bは、分流コントローラ53を介して接続される。このとき、熱源側ユニット51と分流コントローラ53は高圧管103および低圧管104で接続され、分流コントローラ53と負荷側ユニット52a,52bは液管とガス管を介して接続される。   The heat source side unit 51 and the load side units 52 a and 52 b are connected via a shunt controller 53. At this time, the heat source side unit 51 and the diversion controller 53 are connected by the high pressure pipe 103 and the low pressure pipe 104, and the diversion controller 53 and the load side units 52a and 52b are connected via the liquid pipe and the gas pipe.

この構成のマルチシステムにおいて、冷媒量を調整し、必要に応じて冷媒を自動充填する時の冷媒の流れについて説明する。運転モードは全ての室内機が冷房を実施するように運転する。このとき、圧縮機1を運転すると、高温・高圧のガス冷媒は、四方弁21を介して熱源側熱交換器22で凝縮・気化し、液状態となる。ただし、高圧管103については、暖房時の圧力損失を考慮すると配管径が太く、配管全体を液で満たすほどの冷媒封入ができないことが多いため、凝縮器(熱源側熱交換器22)出口で冷媒の過冷却状態にならない。この場合、若干のガスを含んだ気液二相冷媒が高圧管103を流れ、気液分離器33に流れる。気液分離器33に流れた気液二相冷媒は、気液分離器33の下部から第1の冷媒熱交換器35に流れ、絞り装置34を介して中間圧まで絞られ、第2の冷媒熱交換器36で完全に凝縮するまで冷却される。そして、その一部は絞り装置37を介して低圧まで絞られ、第2の冷媒熱交換器36と第1の冷媒熱交換器35の低圧側を流れ、高圧側を流れる中間圧の気液二相冷媒と熱交換器し、自身は蒸発・気化して、メイン回路を流れる冷媒と合流し、低圧管104に流れる。この際、絞り装置37は、第2の冷媒熱交換器36の入口に設置された温度センサ44と、第1の冷媒熱交換器35の出口側に設置された温度センサ45の差温により冷媒の過熱度を検知し、その過熱度が一定となるように制御する。第2の冷媒熱交換器36で過冷却した残りの液冷媒は、逆止弁40a,40bを介して、負荷側ユニットに流れる。そして、絞り装置11a,11bで低圧まで絞られ、負荷側熱交換器27a,27bで周囲から熱を奪って冷房すると共に、自身は蒸発・気化し、開閉弁42a,42bを介して低圧管104に流れ熱源側ユニット51に戻る。熱源側ユニット51に戻ったガス冷媒は逆止弁32b、四方弁21、アキュムレータ23を介して圧縮機1に戻る。   In the multi-system having this configuration, the flow of the refrigerant when the refrigerant amount is adjusted and the refrigerant is automatically charged as necessary will be described. In the operation mode, all indoor units are operated so as to perform cooling. At this time, when the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant is condensed and vaporized in the heat source side heat exchanger 22 via the four-way valve 21 to be in a liquid state. However, the high-pressure pipe 103 has a large pipe diameter in consideration of the pressure loss during heating, and it is often impossible to enclose the refrigerant to the extent that the entire pipe is filled with liquid, so at the outlet of the condenser (heat source side heat exchanger 22). The refrigerant is not overcooled. In this case, the gas-liquid two-phase refrigerant containing some gas flows through the high-pressure pipe 103 and flows into the gas-liquid separator 33. The gas-liquid two-phase refrigerant that has flowed to the gas-liquid separator 33 flows from the lower part of the gas-liquid separator 33 to the first refrigerant heat exchanger 35, and is throttled to an intermediate pressure via the throttle device 34. It is cooled in the heat exchanger 36 until it is completely condensed. A part of the refrigerant is throttled to a low pressure via a throttle device 37, flows through the low pressure side of the second refrigerant heat exchanger 36 and the first refrigerant heat exchanger 35, and has an intermediate pressure gas-liquid two flowing through the high pressure side. It heat-exchanges with the phase refrigerant, evaporates and vaporizes itself, merges with the refrigerant flowing through the main circuit, and flows to the low pressure pipe 104. At this time, the expansion device 37 uses the temperature difference between the temperature sensor 44 installed at the inlet of the second refrigerant heat exchanger 36 and the temperature sensor 45 installed on the outlet side of the first refrigerant heat exchanger 35 to generate a refrigerant. The degree of superheat is detected and controlled so that the degree of superheat is constant. The remaining liquid refrigerant supercooled by the second refrigerant heat exchanger 36 flows to the load side unit via the check valves 40a and 40b. Then, the pressure is reduced to a low pressure by the expansion devices 11a and 11b, the heat is removed from the surroundings by the load side heat exchangers 27a and 27b, and the air is evaporated and vaporized. The flow returns to the heat source side unit 51. The gas refrigerant that has returned to the heat source side unit 51 returns to the compressor 1 via the check valve 32 b, the four-way valve 21, and the accumulator 23.

このような冷房運転を実施する中で、冷媒の不足状態を判定し、冷媒を自動充填する方法について図12のフローチャートを用いて説明する。図12において、冷媒供給ボンベを冷媒充てんポート7に接続した状態で、STEP1では、冷媒量を調整する運転を開始する。開始のトリガとしては、室外機に設けられたサービス用のスイッチ、リモコン、外部からの接点入力、パソコンなどからの制御信号などを使う。STEP2では制御間隔を取るため、所定時間が経過するまで待ち、所定時間経過後、STEP3に進む。STEP3では、分流コントローラ53の中間圧Pmと第2の冷媒熱交換器36での冷媒温度Troutを検出する。STEP4では、Pmの飽和温度Tsat(Pm)と第2の冷媒熱交換器36の出口冷媒温度Troutとの差SCを演算する。STEP5では、演算したSCとその目標値のSCmを比較し、SC≧SCmの場合はSTEP6に進み冷媒量調整を終了する。SC<SCmの場合はSTEP7に進み所定時間冷媒充てん用開閉弁6を開放し、冷媒供給ボンベから冷媒充てんポート7を介して冷媒を冷媒回路内に充填する。このとき併せて開閉弁5を開放する。所定時間STEP7で冷媒を充填した後はSTEP2に進む。   A method of determining the shortage state of the refrigerant and automatically filling the refrigerant while performing such cooling operation will be described with reference to the flowchart of FIG. In FIG. 12, in a state where the refrigerant supply cylinder is connected to the refrigerant filling port 7, the operation for adjusting the refrigerant amount is started in STEP1. As a start trigger, a service switch provided in the outdoor unit, a remote controller, an external contact input, a control signal from a personal computer or the like is used. In STEP2, in order to take a control interval, the process waits until a predetermined time elapses, and proceeds to STEP3 after the predetermined time elapses. In STEP 3, the intermediate pressure Pm of the flow dividing controller 53 and the refrigerant temperature Trout in the second refrigerant heat exchanger 36 are detected. In STEP 4, the difference SC between the saturation temperature Tsat (Pm) of Pm and the outlet refrigerant temperature Trout of the second refrigerant heat exchanger 36 is calculated. In STEP5, the calculated SC is compared with the SCm of the target value. If SC ≧ SCm, the process proceeds to STEP6 and the refrigerant amount adjustment is finished. When SC <SCm, the routine proceeds to STEP 7, where the refrigerant filling on-off valve 6 is opened for a predetermined time, and the refrigerant is filled into the refrigerant circuit from the refrigerant supply cylinder through the refrigerant filling port 7. At the same time, the on-off valve 5 is opened. After filling the refrigerant at STEP 7 for a predetermined time, proceed to STEP 2.

次に上記冷凍空調装置の通常の空調運転時の動作について説明する。まず、全部の負荷側ユニットが冷房運転を実施する全冷房運転について説明する。圧縮機1を吐出した高温、高圧のガス冷媒は、熱源側熱交換器22で凝縮した後、逆止弁32aと高圧管103を介して分流コントローラ53内の気液分離器33に至る。気液分離器33に至った液冷媒は気液分離器33の下部から第1の冷媒熱交換器35に流れ、絞り装置34を介して中間圧まで絞られた後に、第2の冷媒熱交換器36で冷却されて過冷却度を増大させ、その一部は、逆止弁40a,40bを介して負荷側ユニット52a,52bに至る。負荷側ユニット52a,52bに至った液冷媒は絞り装置3a,3bで低圧まで絞られ、低温の気液二相冷媒となって負荷側熱交換器27a,27bに流れ、周囲から熱を奪って冷房すると共に、自身は蒸発・気化し、開閉弁42a,42bを介して低圧管104に流れる。一方、第2の冷媒熱交換器36で過冷却度を増大させた液冷媒の残りは、絞り装置37で絞られ低温の気液二相冷媒となって第2の冷媒熱交換器36および第1の冷媒熱交換器35に流れ、気液分離器33で他方の流路から流れた液冷媒と熱交換して蒸発・気化し、負荷側熱交換器27a,27bで蒸発・気化したガス冷媒と合流した後、低圧管104を流れ、逆止弁32b、四方弁21およびアキュムレータ23を介して圧縮機1に戻る。   Next, the operation of the refrigeration air conditioner during normal air conditioning operation will be described. First, the cooling only operation in which all the load side units perform the cooling operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 condenses in the heat source side heat exchanger 22 and then reaches the gas-liquid separator 33 in the diversion controller 53 via the check valve 32 a and the high-pressure pipe 103. The liquid refrigerant that has reached the gas-liquid separator 33 flows from the lower part of the gas-liquid separator 33 to the first refrigerant heat exchanger 35, and is squeezed to an intermediate pressure through the expansion device 34, and then the second refrigerant heat exchange. It is cooled by the vessel 36 to increase the degree of supercooling, and part of it reaches the load side units 52a and 52b via the check valves 40a and 40b. The liquid refrigerant reaching the load-side units 52a and 52b is throttled to a low pressure by the expansion devices 3a and 3b, flows into the load-side heat exchangers 27a and 27b as a low-temperature gas-liquid two-phase refrigerant, and takes heat from the surroundings. While cooling, it evaporates and vaporizes itself and flows to the low-pressure pipe 104 via the on-off valves 42a and 42b. On the other hand, the remaining liquid refrigerant whose degree of supercooling has been increased by the second refrigerant heat exchanger 36 is throttled by the expansion device 37 to become a low-temperature gas-liquid two-phase refrigerant and the second refrigerant heat exchanger 36 and the second refrigerant heat exchanger 36. The gas refrigerant that has flowed into the first refrigerant heat exchanger 35, exchanged heat with the liquid refrigerant that has flowed from the other flow path in the gas-liquid separator 33, and evaporated and vaporized, and evaporated and vaporized in the load-side heat exchangers 27a and 27b. And then flows through the low-pressure pipe 104 and returns to the compressor 1 via the check valve 32 b, the four-way valve 21 and the accumulator 23.

次に、冷房運転と暖房運転が混在し、かつ、冷房負荷が暖房負荷よりも大きくなる冷房主体運転について説明する。圧縮機1を吐出した高温、高圧のガス冷媒は、熱源側熱交換器22で一部が凝縮し、高温・高圧の気液二相冷媒となった後、逆止弁32aと高圧管103を介して分流コントローラ53内の気液分離器33に至る。ここで、負荷側ユニット52aが暖房運転、負荷側ユニット52bが冷房運転をしているものとする。気液分離器33に至った気液二相冷媒は、気液分離器33の上部からガス冷媒が分離され開閉弁41aを介して負荷側熱交換器27aに流れ、周囲に熱を放熱して暖房すると共に、自身は凝縮・液化して絞り装置3aを介して中間圧まで絞られ分流コントローラ53に戻る。分流コントローラ53に戻った液冷媒は、気液分離器33で分離され第1の冷媒熱交換器35で過冷却を増加させ絞り装置34で中間圧まで絞られた液冷媒と合流した後、第2の冷媒熱交換器36でさらに過冷却度を増大させた後、その一部は逆止弁40bを介して負荷側ユニット52bに流れ、残りの液冷媒は絞り装置37に流れる。負荷側ユニット52bに流れた液冷媒は、絞り装置3bで低圧まで絞られ、低温の気液二相冷媒となって負荷側熱交換器27bに流れ、周囲から熱を奪って冷房すると共に、自身は蒸発・気化し、開閉弁42bを介して低圧管104に流れる。一方、絞り装置37に流れた液冷媒は、絞り装置37で絞られ低温の気液二相冷媒となって第2の冷媒熱交換器36および第1の冷媒熱交換器35に流れ、気液分離器33から流れた液冷媒と熱交換して蒸発・気化し、負荷側熱交換器27bで蒸発・気化したガス冷媒と合流した後、逆止弁32b、四方弁21およびアキュムレータ23を介して圧縮機1に戻る。   Next, the cooling main operation in which the cooling operation and the heating operation are mixed and the cooling load is larger than the heating load will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is partially condensed in the heat source side heat exchanger 22 to become a high-temperature and high-pressure gas-liquid two-phase refrigerant, and then the check valve 32a and the high-pressure pipe 103 are connected. To the gas-liquid separator 33 in the diversion controller 53. Here, it is assumed that the load side unit 52a is in the heating operation and the load side unit 52b is in the cooling operation. The gas-liquid two-phase refrigerant reaching the gas-liquid separator 33 is separated from the gas refrigerant from the upper part of the gas-liquid separator 33 and flows to the load-side heat exchanger 27a via the on-off valve 41a to dissipate heat to the surroundings. While heating, it condenses and liquefies itself, is throttled to an intermediate pressure via the throttle device 3a, and returns to the diversion controller 53. The liquid refrigerant that has returned to the diversion controller 53 is separated by the gas-liquid separator 33, increases supercooling by the first refrigerant heat exchanger 35, and merges with the liquid refrigerant that has been throttled to the intermediate pressure by the throttling device 34. After the degree of supercooling is further increased by the second refrigerant heat exchanger 36, a part thereof flows to the load side unit 52 b via the check valve 40 b, and the remaining liquid refrigerant flows to the expansion device 37. The liquid refrigerant that has flowed to the load-side unit 52b is throttled to a low pressure by the expansion device 3b, becomes a low-temperature gas-liquid two-phase refrigerant, flows to the load-side heat exchanger 27b, takes heat from the surroundings, and cools itself. Evaporates and vaporizes, and flows to the low-pressure pipe 104 through the on-off valve 42b. On the other hand, the liquid refrigerant that has flowed to the expansion device 37 is throttled by the expansion device 37 and becomes a low-temperature gas-liquid two-phase refrigerant, and then flows to the second refrigerant heat exchanger 36 and the first refrigerant heat exchanger 35 to be gas-liquid. After heat exchange with the liquid refrigerant flowing from the separator 33 to evaporate / vaporize and merge with the gas refrigerant evaporated / vaporized in the load side heat exchanger 27b, the refrigerant flows through the check valve 32b, the four-way valve 21 and the accumulator 23. Return to Compressor 1.

次に、冷房運転と暖房運転が混在し、かつ、暖房負荷が冷房負荷よりも大きくなる暖房主体運転について説明する。圧縮機1を吐出した高温、高圧のガス冷媒は、四方弁21、逆止弁32cを介して高圧管103に流れ、分流コントローラ53内の気液分離器33に至る。ここで、負荷側ユニット52aが暖房運転、負荷側ユニット52bが冷房運転をしているものとする。気液分離器33に至った高温・高圧のガス冷媒は気液分離器33の上部から開閉弁41aを介して負荷側熱交換器27aに流れ、周囲に熱を放熱して暖房すると共に、自身は凝縮・液化して絞り装置3aを介して中間圧まで絞られ分流コントローラ53に戻る。分流コントローラ53に戻った液冷媒の一部は、第2の冷媒熱交換器36で冷却された後、逆止弁40bを介して負荷側ユニット52bに流れる。負荷側ユニット52bに流れた液冷媒は、絞り装置3bで低圧まで絞られ、低温の気液二相冷媒となって負荷側熱交換器27bに流れ、周囲から熱を奪って冷房すると共に、自身は蒸発・気化し、開閉弁42bを介して低圧管104に流れる。分流コントローラ53に戻った残りの液冷媒は、絞り装置37で低圧まで絞られた後、負荷側熱交換器52bで蒸発・気液したガス冷媒と合流し、低圧管104を流れ、逆止弁32dを介して、熱源側熱交換器22で蒸発・気化し、四方弁21およびアキュムレータ23を介して圧縮機1に戻る。   Next, the heating main operation in which the cooling operation and the heating operation are mixed and the heating load is larger than the cooling load will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the high-pressure pipe 103 via the four-way valve 21 and the check valve 32 c and reaches the gas-liquid separator 33 in the branch controller 53. Here, it is assumed that the load side unit 52a is in the heating operation and the load side unit 52b is in the cooling operation. The high-temperature and high-pressure gas refrigerant that has reached the gas-liquid separator 33 flows from the upper part of the gas-liquid separator 33 to the load-side heat exchanger 27a via the on-off valve 41a, radiates heat to the surroundings, and heats itself. Is condensed and liquefied, throttled to an intermediate pressure via the throttle device 3a, and returned to the flow dividing controller 53. A part of the liquid refrigerant returned to the diversion controller 53 is cooled by the second refrigerant heat exchanger 36 and then flows to the load side unit 52b via the check valve 40b. The liquid refrigerant that has flowed to the load-side unit 52b is throttled to a low pressure by the expansion device 3b, becomes a low-temperature gas-liquid two-phase refrigerant, flows to the load-side heat exchanger 27b, takes heat from the surroundings, and cools itself. Evaporates and vaporizes, and flows to the low-pressure pipe 104 through the on-off valve 42b. The remaining liquid refrigerant returned to the diversion controller 53 is throttled to a low pressure by the expansion device 37, and then merged with the gas refrigerant evaporated and gas-liquid at the load side heat exchanger 52b, flows through the low pressure pipe 104, and a check valve. It evaporates and vaporizes in the heat source side heat exchanger 22 through 32d, and returns to the compressor 1 through the four-way valve 21 and the accumulator 23.

最後に、全ての負荷側ユニットが暖房運転を実施する全暖房運転について説明する。圧縮機1を吐出した高温、高圧のガス冷媒は、四方弁21、逆止弁32cを介して高圧管103に流れ、分流コントローラ53内の気液分離器33に至る。気液分離器33に至った高温・高圧のガス冷媒は気液分離器33の上部から開閉弁41a、41bを介して負荷側熱交換器27a、27bに流れ、周囲に熱を放熱して暖房すると共に、自身は凝縮・液化して絞り装置3a、3bを介して中間圧まで絞られ分流コントローラ53に戻る。分流コントローラ53に戻った液冷媒は、絞り装置37で低圧まで絞られた後、負荷側熱交換器52bで蒸発・気化したガス冷媒と合流し、低圧管104を流れ、逆止弁32dを介して、熱源側熱交換器22で蒸発・気化し、四方弁21およびアキュムレータ23を介して圧縮機1に戻る。   Finally, the heating only operation in which all the load side units perform the heating operation will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the high-pressure pipe 103 via the four-way valve 21 and the check valve 32 c and reaches the gas-liquid separator 33 in the branch controller 53. The high-temperature and high-pressure gas refrigerant that has reached the gas-liquid separator 33 flows from the upper part of the gas-liquid separator 33 to the load-side heat exchangers 27a and 27b via the on-off valves 41a and 41b. At the same time, it condenses and liquefies itself, is throttled to an intermediate pressure via the throttle devices 3a and 3b, and returns to the diversion controller 53. The liquid refrigerant returned to the diversion controller 53 is throttled to a low pressure by the expansion device 37, and then merged with the gas refrigerant evaporated and vaporized by the load side heat exchanger 52b, flows through the low pressure pipe 104, and passes through the check valve 32d. Then, it evaporates and vaporizes in the heat source side heat exchanger 22 and returns to the compressor 1 through the four-way valve 21 and the accumulator 23.

以上の構成と動作によって、高圧管103が太い2管式の冷暖同時運転可能なシステムにおいても、冷媒を適正に判断して、不足の場合には冷媒の自動充填を実施することが可能となる。また、熱源側熱交換器22で冷媒の過冷却がつけられない場合でも、冷媒熱交換器35,36の出口の過冷却度により、適正な冷媒量を判定して精度のよい冷媒充てんが可能なので、冷媒が過充填となることがなく、信頼性が高いシステムとすることができる。   With the above-described configuration and operation, even in a system in which cooling and heating can be performed simultaneously with a two-tube type having a large high-pressure pipe 103, it is possible to appropriately determine the refrigerant and to perform automatic filling of the refrigerant when there is a shortage. . Further, even when the refrigerant is not supercooled by the heat source side heat exchanger 22, it is possible to accurately charge the refrigerant by determining an appropriate amount of refrigerant based on the degree of supercooling at the outlets of the refrigerant heat exchangers 35 and 36. Therefore, the refrigerant is not overfilled, and a highly reliable system can be obtained.

実施の形態6.
図13にこの発明の実施の形態6に係る冷凍空調装置の冷媒回路図を示す。この装置は、熱源側ユニット51、負荷側ユニット52a,52b、および分流キット54a,54bを備える。
熱源側ユニット51の構成は以下の通りである。1は圧縮機、22は熱源側熱交換器、23はアキュムレータ、26は室外絞り装置である。圧縮機1の吐出配管は、開閉弁29bを介して熱源側熱交換器22と接続されると共に、その途中を分岐して高圧管103とも接続される。アキュムレータ23の流入管は開閉弁29aを介して開閉弁29bと熱源側熱交換器22の間の冷媒回路と接続されると共に、その途中を分岐して低圧管104とも接続される。また、熱源側熱交換器22の他端は液管101と接続される。さらに、圧縮機1の吐出配管を分岐した配管を、開閉弁5を介して四方弁21とアキュムレータ23の間の冷媒回路に合流させ、その合流部と開閉弁5の間から、冷媒充てん用開閉弁6を介して冷媒充てんポート7を接続する。また、8は圧縮機1の吐出側の高圧部にて圧力を検出する圧力センサ、9は圧縮機1の吐出側の高圧部で冷媒の温度を検出する第1の温度センサである。これらによって熱源側ユニット51を構成する。
Embodiment 6 FIG.
FIG. 13 shows a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 6 of the present invention. This apparatus includes a heat source side unit 51, load side units 52a and 52b, and diversion kits 54a and 54b.
The configuration of the heat source side unit 51 is as follows. Reference numeral 1 denotes a compressor, 22 denotes a heat source side heat exchanger, 23 denotes an accumulator, and 26 denotes an outdoor expansion device. The discharge pipe of the compressor 1 is connected to the heat source side heat exchanger 22 via the on-off valve 29b, and is branched in the middle to be connected to the high pressure pipe 103. The inflow pipe of the accumulator 23 is connected to the refrigerant circuit between the on-off valve 29b and the heat source side heat exchanger 22 via the on-off valve 29a, and is branched in the middle to be connected to the low-pressure pipe 104. The other end of the heat source side heat exchanger 22 is connected to the liquid pipe 101. Further, the pipe branched from the discharge pipe of the compressor 1 is joined to the refrigerant circuit between the four-way valve 21 and the accumulator 23 via the opening / closing valve 5, and the refrigerant filling opening / closing is performed between the junction and the opening / closing valve 5. A refrigerant charging port 7 is connected through the valve 6. Reference numeral 8 denotes a pressure sensor that detects pressure at the high-pressure portion on the discharge side of the compressor 1, and 9 denotes a first temperature sensor that detects the temperature of the refrigerant at the high-pressure portion on the discharge side of the compressor 1. These constitute the heat source unit 51.

次に負荷側ユニットの構成について説明する。3a,3bは絞り装置、27a,27bは負荷側熱交換器である。11a,11bは、絞り装置3a,3bと負荷側熱交換器27a,27bの間で冷媒の温度を検知する第3の温度センサ、12a,12bは負荷側熱交換器27a,27bと分流キット54a,54bの間で冷媒の温度を検知する第4の温度センサである。これらによって負荷側ユニット52a,52bを構成する。なお、添え字のa,bは室内機が複数台接続されるマルチ形空調機を示すものである。   Next, the configuration of the load side unit will be described. 3a and 3b are expansion devices, and 27a and 27b are load-side heat exchangers. 11a and 11b are third temperature sensors for detecting the temperature of the refrigerant between the expansion devices 3a and 3b and the load side heat exchangers 27a and 27b, and 12a and 12b are load side heat exchangers 27a and 27b and a diversion kit 54a. , 54b is a fourth temperature sensor that detects the temperature of the refrigerant. These constitute load-side units 52a and 52b. The subscripts a and b indicate multi-type air conditioners to which a plurality of indoor units are connected.

以上の構成の熱源側ユニット51と負荷側ユニット52は、液管101を介して熱源側熱交換器22と絞り装置3a,3bとが接続され、負荷側熱交換器27a,27bが分流キット54a,54bを介して高圧管103および低圧管104に接続される。分流キット54a,54bでは、開閉弁30a,30bを介して高圧管103と負荷側熱交換器27a,27bが接続されると共に、開閉弁31a,31bを介して、低圧管104と負荷側熱交換器27a,27bが接続される。   The heat source side unit 51 and the load side unit 52 configured as described above are connected to the heat source side heat exchanger 22 and the expansion devices 3a and 3b via the liquid pipe 101, and the load side heat exchangers 27a and 27b are connected to the diversion kit 54a. , 54b to the high pressure pipe 103 and the low pressure pipe 104. In the diversion kits 54a and 54b, the high-pressure pipe 103 and the load-side heat exchangers 27a and 27b are connected via the on-off valves 30a and 30b, and the low-pressure pipe 104 and the load-side heat exchange are connected via the on-off valves 31a and 31b. Devices 27a and 27b are connected.

上記構成のマルチシステムにおいて、冷媒量を調整し、必要に応じて冷媒を自動充填する時の冷媒の流れについて説明する。運転モードは、まず、全ての負荷側ユニットが冷房を実施する場合について説明する。このとき、圧縮機1を運転すると、高温・高圧のガス冷媒は、開閉弁29bを介して熱源側熱交換器22に流れ、凝縮・液化する。液化した液冷媒は、液管101を流れ、負荷側ユニット52a,52bに流れ、絞り装置3a,3bで低圧まで絞られ、負荷側熱交換器27a,27bで周囲から熱を奪って冷房すると共に、自身は蒸発・気化して開閉弁31a,31bを介して低圧管104に流れ熱源側ユニット51に戻る。熱源側ユニット51に戻ったガス冷媒はアキュムレータ23を介して圧縮機1に戻る。   The flow of the refrigerant when the refrigerant amount is adjusted and the refrigerant is automatically charged as necessary in the multi-system having the above configuration will be described. The operation mode will be described first in the case where all the load side units perform cooling. At this time, when the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant flows into the heat source side heat exchanger 22 via the on-off valve 29b, and is condensed and liquefied. The liquefied liquid refrigerant flows through the liquid pipe 101, flows to the load side units 52a and 52b, is throttled to a low pressure by the expansion devices 3a and 3b, and cools by taking heat from the surroundings by the load side heat exchangers 27a and 27b. , Itself evaporates and vaporizes, flows into the low-pressure pipe 104 via the on-off valves 31a and 31b, and returns to the heat source side unit 51. The gas refrigerant that has returned to the heat source unit 51 returns to the compressor 1 via the accumulator 23.

次に、運転モードが、冷房と暖房が混在し、かつ冷房負荷が大きい場合の運転について説明する。なお、ここでは、負荷側ユニット52aが暖房、負荷側ユニット52bが冷房を実施するものとする。圧縮機1を運転すると、圧縮機1から吐出された高温・高圧のガス冷媒は、開閉弁29bを介して熱源側熱交換器22に流れると共に、高圧管103を負荷側ユニットに向かって流れる。熱源側熱交換器22に流れたガス冷媒は、放熱して凝縮・液化し、液化した冷媒は、室外絞り装置26で中間圧まで絞られ、液管101を流れ、負荷側ユニットに向かって流れる。一方、高圧管103を流れたガス冷媒は、開閉弁30aを介して負荷側熱交換器27aに流れ、周囲に放熱して暖房すると共に、自身は凝縮・液化した後、絞り装置3aで中間圧まで絞られ、液管101を流れた液冷媒と合流し、負荷側ユニット52bに向かって流れる。負荷側ユニット52bに流れた液冷媒は、絞り装置3bで低圧まで絞られ、負荷側熱交換器27bで周囲から熱を奪って冷房すると共に、自身は蒸発・気化して開閉弁31bを介して低圧管104に流れ熱源側ユニット51に戻り、アキュムレータ23を介して圧縮機1に戻る。   Next, the operation when the operation mode is a mixture of cooling and heating and a large cooling load will be described. Here, it is assumed that the load side unit 52a performs heating and the load side unit 52b performs cooling. When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows to the heat source side heat exchanger 22 through the on-off valve 29b and flows to the load side unit through the high pressure pipe 103. The gas refrigerant flowing to the heat source side heat exchanger 22 dissipates heat, condenses and liquefies, and the liquefied refrigerant is throttled to an intermediate pressure by the outdoor expansion device 26, flows through the liquid pipe 101, and flows toward the load side unit. . On the other hand, the gas refrigerant that has flowed through the high-pressure pipe 103 flows to the load-side heat exchanger 27a through the on-off valve 30a, dissipates heat to the surroundings, heats it, condenses and liquefies itself, and then expands to an intermediate pressure by the expansion device 3a. The liquid refrigerant that has flowed through the liquid pipe 101 and flows toward the load side unit 52b. The liquid refrigerant that has flowed to the load side unit 52b is throttled to a low pressure by the expansion device 3b, takes heat from the surroundings by the load side heat exchanger 27b, cools, and evaporates and vaporizes itself through the on-off valve 31b. It flows into the low pressure pipe 104 and returns to the heat source side unit 51 and returns to the compressor 1 via the accumulator 23.

次に、運転モードが、冷房と暖房が混在し、かつ暖房負荷が大きい場合の運転について説明する。なお、ここでは、負荷側ユニット52aが暖房、負荷側ユニット52bが冷房を実施するものとする。圧縮機1を運転すると、圧縮機1から吐出された高温・高圧のガス冷媒は、高圧管103を負荷側ユニットに向かって流れる。高圧管103を流れたガス冷媒は、開閉弁30aを介して負荷側熱交換器27aに流れ、周囲に放熱して暖房すると共に、自身は凝縮・液化した後、絞り装置3aで中間圧まで絞られ、一部は負荷側ユニット52bに向かって流れ、残りの液冷媒は液管101を流れて熱源側ユニット51に流れる。負荷側ユニット52bに流れた液冷媒は、絞り装置3bで低圧まで絞られ、負荷側熱交換器27bで周囲から熱を奪って冷房すると共に、自身は蒸発・気化して開閉弁31bを介して低圧管104に流れ熱源側ユニット51に戻る。また、液管101を流れて熱源側ユニット51に戻った液冷媒は、室外絞り装置26で低圧まで絞られ、熱源側熱交換器22で外気と熱交換して蒸発・気化し、開閉弁29aを介して低圧管104を流れたガス冷媒と合流し、アキュムレータ23を介して圧縮機1に戻る。   Next, the operation when the operation mode is a mixture of cooling and heating and a large heating load will be described. Here, it is assumed that the load side unit 52a performs heating and the load side unit 52b performs cooling. When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the high-pressure pipe 103 toward the load side unit. The gas refrigerant that has flowed through the high-pressure pipe 103 flows to the load-side heat exchanger 27a via the on-off valve 30a, dissipates heat to the surroundings, heats it, condenses and liquefies itself, and then throttles to an intermediate pressure by the expansion device 3a. A part of the liquid refrigerant flows toward the load side unit 52 b, and the remaining liquid refrigerant flows through the liquid pipe 101 to the heat source side unit 51. The liquid refrigerant that has flowed to the load side unit 52b is throttled to a low pressure by the expansion device 3b, takes heat from the surroundings by the load side heat exchanger 27b, cools, and evaporates and vaporizes itself through the on-off valve 31b. It flows into the low pressure pipe 104 and returns to the heat source side unit 51. The liquid refrigerant that has flowed through the liquid pipe 101 and returned to the heat source side unit 51 is throttled to a low pressure by the outdoor expansion device 26, and is evaporated and vaporized by exchanging heat with the outside air by the heat source side heat exchanger 22. The gas refrigerant that has flowed through the low-pressure pipe 104 passes through and is returned to the compressor 1 through the accumulator 23.

次に、冷房運転もしくは冷房主体運転を実施する中で、冷媒の不足状態を判定し、冷媒を自動充填する方法を図14のフローチャートを用いて説明する。図14において、冷媒供給ボンベを冷媒充てんポート7に接続した状態で、STEP1では、冷媒量を調整する運転を開始する。開始のトリガとしては、室外機に設けられたサービス用のスイッチ、リモコン、外部からの接点入力、パソコンなどからの制御信号などを使う。STEP2では制御間隔を取るため、所定時間が経過するまで待ち、所定時間経過後、STEP3に進む。STEP3では、圧縮機1の吐出圧力Pdと熱源側熱交換器22の出口の冷媒温度Tcoutを検出する。STEP4では、Pdの飽和温度Tsat(Pd)と熱源側熱交換器22の出口の冷媒温度Tcoutとの差SCを演算する。STEP5では、演算したSCとその目標値のSCmを比較し、SC≧SCmの場合はSTEP6に進み冷媒量調整を終了する。SC<SCmの場合はSTEP7に進み、所定時間冷媒充てん用開閉弁6を開放し、冷媒供給ボンベから冷媒充てんポート7を介して冷媒を冷媒回路内に充填する。このとき併せて開閉弁5を開放する。所定時間STEP7で冷媒を充填した後はSTEP2に進む。   Next, a method of determining the refrigerant shortage and automatically charging the refrigerant during the cooling operation or the cooling main operation will be described with reference to the flowchart of FIG. In FIG. 14, in a state where the refrigerant supply cylinder is connected to the refrigerant filling port 7, the operation for adjusting the refrigerant amount is started in STEP1. As a start trigger, a service switch provided in the outdoor unit, a remote controller, an external contact input, a control signal from a personal computer or the like is used. In STEP2, in order to take a control interval, the process waits until a predetermined time elapses, and proceeds to STEP3 after the predetermined time elapses. In STEP 3, the discharge pressure Pd of the compressor 1 and the refrigerant temperature Tcout at the outlet of the heat source side heat exchanger 22 are detected. In STEP 4, the difference SC between the saturation temperature Tsat (Pd) of Pd and the refrigerant temperature Tcout at the outlet of the heat source side heat exchanger 22 is calculated. In STEP5, the calculated SC is compared with the SCm of the target value. If SC ≧ SCm, the process proceeds to STEP6 and the refrigerant amount adjustment is finished. When SC <SCm, the routine proceeds to STEP 7 where the refrigerant filling on-off valve 6 is opened for a predetermined time, and the refrigerant is filled into the refrigerant circuit from the refrigerant supply cylinder through the refrigerant filling port 7. At the same time, the on-off valve 5 is opened. After filling the refrigerant at STEP 7 for a predetermined time, proceed to STEP 2.

以上の構成・動作により、冷暖房同時運転可能な3管式の冷凍空調システムにおいても、適正冷媒量を速やかに判断し、必要に応じて冷媒を充填することができるため、正確な冷媒充填を速やかに完了させることができる。   With the above-described configuration and operation, even in a three-pipe refrigeration and air conditioning system that can be operated simultaneously with cooling and heating, the appropriate amount of refrigerant can be quickly determined and charged as necessary. Can be completed.

1 圧縮機、2 凝縮器、3,3a,3b 絞り装置、4 蒸発器、5 開閉弁、6 冷媒充てん用開閉弁、7 冷媒充てんポート、8 圧力センサ、9 第1の温度センサ、10 第2の温度センサ、 11,11a,11b 第3の温度センサ、12,12a,12b 第4の温度センサ、13 開閉弁、 14 開閉弁、15 開閉弁、16 開閉弁、17 絞り装置、18 第5の温度センサ、19 開閉弁、20 第2の圧力センサ、21 四方弁、22 熱源側熱交換器、23 アキュムレータ、24 冷媒熱交換器、25 回収器、26 室外絞り装置、27a,27b 負荷側熱交換器、28 第3の圧力センサ、29a,29b 開閉弁、30a,30b 開閉弁、31a,31b 開閉弁、32a,32b,33c,33d 逆止弁、33 気液分離器、34 絞り装置、35 第1の冷媒熱交換器、36 第2の冷媒熱交換器、37 絞り装置、38 温度センサ、39a,39b 逆止弁、40a,40b 逆止弁、41a,41b 高圧用開閉弁、42a,42b 低圧用開閉弁、43 圧力センサ、44 温度センサ、45 温度センサ、46 第2の絞り装置、51 熱源側ユニット、52a,52b 負荷側ユニット、53 分流コントローラ、54 分流キット、101 液管、102 ガス管、103 高圧管、104 低圧管。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3, 3a, 3b Throttle device, 4 Evaporator, 5 On-off valve, 6 Refrigerant filling on-off valve, 7 Refrigerant filling port, 8 Pressure sensor, 9 1st temperature sensor, 10 2nd 11, 11a, 11b Third temperature sensor, 12, 12a, 12b Fourth temperature sensor, 13 Open / close valve, 14 Open / close valve, 15 Open / close valve, 16 Open / close valve, 17 Throttle device, 18 5th Temperature sensor, 19 On-off valve, 20 Second pressure sensor, 21 Four-way valve, 22 Heat source side heat exchanger, 23 Accumulator, 24 Refrigerant heat exchanger, 25 Recovery unit, 26 Outdoor expansion device, 27a, 27b Load side heat exchange 28, third pressure sensor, 29a, 29b on-off valve, 30a, 30b on-off valve, 31a, 31b on-off valve, 32a, 32b, 33c, 33d check valve, 33 gas-liquid Separator, 34 throttle device, 35 first refrigerant heat exchanger, 36 second refrigerant heat exchanger, 37 throttle device, 38 temperature sensor, 39a, 39b check valve, 40a, 40b check valve, 41a, 41b Open / close valve for high pressure, 42a, 42b Open / close valve for low pressure, 43 Pressure sensor, 44 Temperature sensor, 45 Temperature sensor, 46 Second throttle device, 51 Heat source side unit, 52a, 52b Load side unit, 53 Split flow controller, 54 Split flow Kit, 101 liquid pipe, 102 gas pipe, 103 high pressure pipe, 104 low pressure pipe.

Claims (9)

少なくとも圧縮機、凝縮器、絞り装置および蒸発器で構成される冷凍空調装置であって、
前記圧縮機の吐出側から分岐し開閉手段を介して前記圧縮機の吸入側の冷媒回路と接続するホットガスバイパス回路と、
前記ホットガスバイパス回路上の前記開閉手段と前記圧縮機吸入側の前記冷媒回路との接続部との間に冷媒充填用開閉器を介して接続された冷媒充填ポートと、
を有し、
前記圧縮機の吐出圧力の飽和温度と前記凝縮器出口の冷媒温度との差SCを演算し、演算したSCとその目標値のSCmを比較して、SC<SCmの場合は、前記開閉手段と前記冷媒充填用開閉器を共に開放する
ことを特徴とする冷凍空調装置。
A refrigerating and air-conditioning apparatus comprising at least a compressor, a condenser, a throttling device and an evaporator,
A hot gas bypass circuit branched from the discharge side of the compressor and connected to a refrigerant circuit on the suction side of the compressor via an opening / closing means;
A refrigerant charging port connected via a refrigerant charging switch between the opening / closing means on the hot gas bypass circuit and the connecting portion of the refrigerant circuit on the compressor suction side ;
I have a,
The difference SC between the saturation temperature of the discharge pressure of the compressor and the refrigerant temperature at the condenser outlet is calculated, and the calculated SC is compared with the SCm of the target value. When SC <SCm, the switching means A refrigerating and air-conditioning apparatus, wherein both the refrigerant charging switch are opened .
前記冷媒充填用開閉器を流量調整が可能なもので構成し、前記圧縮機の吐出冷媒の過熱度もしくは吸入冷媒の過熱度のうち、少なくとも1つが所定の値となるように、前記冷媒充填用開閉器から流入する冷媒の流量を制御することを特徴とする請求項1記載の冷凍空調装置。   The refrigerant charging switch is configured to be capable of adjusting the flow rate, and the refrigerant charging switch is configured so that at least one of the superheat degree of the refrigerant discharged from the compressor or the superheat degree of the suction refrigerant has a predetermined value. 2. The refrigerating and air-conditioning apparatus according to claim 1, wherein the flow rate of the refrigerant flowing from the switch is controlled. 所定時間の間、前記凝縮器の出口冷媒の過冷却度に変化が無い場合には、前記冷媒充填ポートに接続されている冷媒供給ボンベが空であることを示す信号を外部に発報することを特徴とする請求項1〜2のいずれか一項に記載の冷凍空調装置。   When there is no change in the degree of supercooling of the outlet refrigerant of the condenser for a predetermined time, a signal indicating that the refrigerant supply cylinder connected to the refrigerant charging port is empty is issued to the outside. The refrigeration air conditioner according to any one of claims 1 to 2. 少なくとも圧縮機、熱源側熱交換器、四方弁で構成される熱源側ユニットと、少なくとも絞り装置と負荷側熱交換器で構成される負荷側ユニットとを備え、前記熱源側ユニットと前記負荷側ユニットを冷媒配管で接続してなる冷凍空調装置であって、
前記圧縮機の吐出側から分岐し開閉手段を介して前記圧縮機の吸入側の冷媒回路と接続するホットガスバイパス回路と、
前記ホットガスバイパス回路上の前記開閉手段と前記圧縮機吸入側の前記冷媒回路との接続部との間に冷媒充填用開閉器を介して接続された冷媒充填ポートと、
を有し、
前記圧縮機の吐出圧力の飽和温度と前記凝縮器出口の冷媒温度との差SCを演算し、演算したSCとその目標値のSCmを比較して、SC<SCmの場合は、前記開閉手段と前記冷媒充填用開閉器を共に開放する
ことを特徴とする冷凍空調装置。
A heat source side unit including at least a compressor, a heat source side heat exchanger, and a four-way valve; and a load side unit including at least a throttle device and a load side heat exchanger, the heat source side unit and the load side unit. A refrigerating and air-conditioning apparatus connected by refrigerant piping,
A hot gas bypass circuit branched from the discharge side of the compressor and connected to a refrigerant circuit on the suction side of the compressor via an opening / closing means;
A refrigerant charging port connected via a refrigerant charging switch between the opening / closing means on the hot gas bypass circuit and the connecting portion of the refrigerant circuit on the compressor suction side ;
I have a,
The difference SC between the saturation temperature of the discharge pressure of the compressor and the refrigerant temperature at the condenser outlet is calculated, and the calculated SC is compared with the SCm of the target value. When SC <SCm, the switching means A refrigerating and air-conditioning apparatus, wherein both the refrigerant charging switch are opened .
少なくとも圧縮機、熱源側熱交換器、四方弁、逆止弁で構成される熱源側ユニットと、少なくとも絞り装置、負荷側熱交換器で構成される負荷側ユニットと、少なくとも気液分離器、冷媒の高低圧回路を切り替える開閉手段およびバイパス用絞り装置を介して液部から低圧部へバイパスする回路を有する分流コントローラとを備え、前記熱源側ユニットと前記負荷側ユニットとを前記分流コントローラを介して2本の冷媒配管で接続してなる冷凍空調装置であって、
前記圧縮機の吐出側から分岐し開閉手段を介して前記圧縮機の吸入側の冷媒回路と接続するホットガスバイパス回路と、
前記ホットガスバイパス回路上の前記開閉手段と前記圧縮機吸入側の前記冷媒回路との接続部との間に冷媒充填用開閉器を介して接続された冷媒充填ポートと、
を有し、
前記圧縮機の吐出圧力の飽和温度と前記凝縮器出口の冷媒温度との差SCを演算し、演算したSCとその目標値のSCmを比較して、SC<SCmの場合は、前記開閉手段と前記冷媒充填用開閉器を共に開放する
ことを特徴とする冷凍空調装置。
A heat source side unit composed of at least a compressor, a heat source side heat exchanger, a four-way valve and a check valve; a load side unit composed of at least a throttling device and a load side heat exchanger; at least a gas-liquid separator; And a shunt controller having a circuit for bypassing from the liquid part to the low pressure part via a bypass throttling device, and switching the heat source side unit and the load side unit via the shunt controller. A refrigeration air conditioner connected by two refrigerant pipes,
A hot gas bypass circuit branched from the discharge side of the compressor and connected to a refrigerant circuit on the suction side of the compressor via an opening / closing means;
A refrigerant charging port connected via a refrigerant charging switch between the opening / closing means on the hot gas bypass circuit and the connecting portion of the refrigerant circuit on the compressor suction side ;
I have a,
The difference SC between the saturation temperature of the discharge pressure of the compressor and the refrigerant temperature at the condenser outlet is calculated, and the calculated SC is compared with the SCm of the target value. When SC <SCm, the switching means A refrigerating and air-conditioning apparatus, wherein both the refrigerant charging switch are opened .
少なくとも圧縮機、熱源側熱交換器、四方弁および熱源側絞り装置で構成される熱源側ユニットと、少なくとも負荷側絞り装置と負荷側熱交換器で構成される負荷側ユニットを有し、
前記熱源側ユニットと前記負荷側ユニットとは、分流キットを介して高圧管と低圧管とを切り替え可能に前記熱源側熱交換器と前記負荷側熱交換器と接続すると共に、液管により前記熱源側絞り装置と前記負荷側絞り装置とを接続してなる冷凍空調装置であって、
前記圧縮機の吐出側から分岐し開閉手段を介して前記圧縮機の吸入側の冷媒回路と接続するホットガスバイパス回路と、
前記ホットガスバイパス回路上の前記開閉手段と前記圧縮機吸入側の前記冷媒回路との接続部との間に冷媒充填用開閉器を介して接続された冷媒充填ポートと、
を有し、
前記圧縮機の吐出圧力の飽和温度と前記凝縮器出口の冷媒温度との差SCを演算し、演算したSCとその目標値のSCmを比較して、SC<SCmの場合は、前記開閉手段と前記冷媒充填用開閉器を共に開放する
ことを特徴とする冷凍空調装置。
At least a compressor, a heat source side heat exchanger, a heat source side unit composed of a four-way valve and a heat source side expansion device, and a load side unit composed of at least a load side expansion device and a load side heat exchanger,
The heat source side unit and the load side unit are connected to the heat source side heat exchanger and the load side heat exchanger so as to be able to switch between a high pressure pipe and a low pressure pipe via a diversion kit, and the heat source is connected by a liquid pipe. A refrigerating and air-conditioning apparatus formed by connecting a side throttle device and the load side throttle device,
A hot gas bypass circuit branched from the discharge side of the compressor and connected to a refrigerant circuit on the suction side of the compressor via an opening / closing means;
A refrigerant charging port connected via a refrigerant charging switch between the opening / closing means on the hot gas bypass circuit and the connecting portion of the refrigerant circuit on the compressor suction side ;
I have a,
The difference SC between the saturation temperature of the discharge pressure of the compressor and the refrigerant temperature at the condenser outlet is calculated, and the calculated SC is compared with the SCm of the target value. When SC <SCm, the switching means A refrigerating and air-conditioning apparatus, wherein both the refrigerant charging switch are opened .
前記圧縮機の吸入側は、前記圧縮機の吸入側に接続されたアキュムレータの冷媒吸入路または冷媒吐出路である、ことを特徴とする請求項1〜のいずれか一項に記載の冷凍空調装置。 The refrigerating and air-conditioning according to any one of claims 1 to 6 , wherein the suction side of the compressor is a refrigerant suction path or a refrigerant discharge path of an accumulator connected to the suction side of the compressor. apparatus. 少なくとも圧縮機、凝縮器、絞り装置および蒸発器で構成される冷凍空調装置であって、前記圧縮機の吐出側から分岐し開閉手段を介して前記圧縮機の吸入側の冷媒回路と接続するホットガスバイパス回路と、前記ホットガスバイパス回路上の前記開閉手段と前記圧縮機吸入側の前記冷媒回路との接続部との間に冷媒充填用開閉器を介して接続された冷媒充填ポートと、を備えた冷凍空調装置の冷媒充填方法であって、
前記圧縮機の吐出圧力の飽和温度と前記凝縮器出口の冷媒温度との差SCを演算し、演算したSCとその目標値のSCmを比較して、SC<SCmの場合に、
前記圧縮機の吐出冷媒を、前記開閉手段を介して前記圧縮機の吸入側に戻しながら、前記開閉手段と前記圧縮機の前記吸入側との間に、前記冷媒充填用開閉器を介して前記冷媒充填ポートから冷媒を充填する冷凍空調装置の冷媒充填方法。
A refrigerating and air-conditioning apparatus comprising at least a compressor, a condenser, a throttling device, and an evaporator, the hot branching off from the discharge side of the compressor and connected to a refrigerant circuit on the suction side of the compressor via an opening / closing means A gas bypass circuit, and a refrigerant charging port connected via a refrigerant charging switch between the opening / closing means on the hot gas bypass circuit and the connection portion of the refrigerant circuit on the compressor suction side , A refrigerant charging method of a refrigeration air conditioner provided,
The difference SC between the saturation temperature of the discharge pressure of the compressor and the refrigerant temperature at the outlet of the condenser is calculated, and the calculated SC is compared with the SCm of the target value. When SC <SCm,
Wherein the refrigerant discharged from the compressor, while returning to the suction side of the compressor through the switching means, between the suction side of the compressor and the switching means, via the refrigerant charging switching device A refrigerant charging method for a refrigerating and air-conditioning apparatus, wherein the refrigerant is charged from a refrigerant charging port.
前記冷媒充填用開閉器を流量調整が可能なものとし、前記圧縮機の吐出冷媒の過熱度もしくは吸入冷媒の過熱度のうち、少なくとも1つが所定の値となるように、前記冷媒充填用開閉器から流入する冷媒の流量を制御することを特徴とする請求項記載の冷媒充填方法。 The refrigerant charging switch is adjustable in flow rate, and the refrigerant charging switch is configured so that at least one of the superheat degree of the refrigerant discharged from the compressor or the superheat degree of the suction refrigerant has a predetermined value. The refrigerant charging method according to claim 8 , wherein the flow rate of the refrigerant flowing from the refrigerant is controlled.
JP2011508134A 2009-04-08 2009-04-08 Refrigeration air conditioner and refrigerant filling method thereof Active JP5306450B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057159 WO2010116496A1 (en) 2009-04-08 2009-04-08 Refrigeration air-conditioner and refrigerant charging method for the same

Publications (2)

Publication Number Publication Date
JPWO2010116496A1 JPWO2010116496A1 (en) 2012-10-11
JP5306450B2 true JP5306450B2 (en) 2013-10-02

Family

ID=42935805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011508134A Active JP5306450B2 (en) 2009-04-08 2009-04-08 Refrigeration air conditioner and refrigerant filling method thereof

Country Status (4)

Country Link
JP (1) JP5306450B2 (en)
GB (1) GB2481128B (en)
HK (1) HK1162068A1 (en)
WO (1) WO2010116496A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718629B2 (en) * 2010-12-20 2015-05-13 株式会社サムスン日本研究所 Refrigerant amount detection device
WO2012098582A1 (en) * 2011-01-20 2012-07-26 三菱電機株式会社 Refrigeration cycle apparatus
CN102788403A (en) * 2012-07-30 2012-11-21 广东美的电器股份有限公司 Method for detecting lack of refrigerant in air conditioner, and air conditioner
CN103528288B (en) * 2013-10-24 2016-05-11 Tcl空调器(中山)有限公司 Charge and discharge the device of cold-producing medium to thering is the air-conditioner of snap joint
JP2015135192A (en) * 2014-01-16 2015-07-27 株式会社富士通ゼネラル Air conditioning device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101176U (en) * 1982-12-23 1984-07-07 エムケ−精工株式会社 Refrigerant filling device
JPH06101940A (en) * 1992-09-22 1994-04-12 Nippondenso Co Ltd Sealing of refrigerant
JP2000028208A (en) * 1998-07-09 2000-01-28 Komatsu Ltd Controller for refrigerating apparatus
JP2003130503A (en) * 2001-10-22 2003-05-08 Mitsubishi Electric Corp Replacing method for refrigerating/air-conditioning system
JP2003279203A (en) * 2002-03-19 2003-10-02 Mitsubishi Electric Building Techno Service Co Ltd Refrigerant liquid charge apparatus and liquid refrigerant charge method
JP2004012005A (en) * 2002-06-06 2004-01-15 Sanwa:Kk Refrigerant filling method for car air conditioner
WO2007049372A1 (en) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101176U (en) * 1982-12-23 1984-07-07 エムケ−精工株式会社 Refrigerant filling device
JPH06101940A (en) * 1992-09-22 1994-04-12 Nippondenso Co Ltd Sealing of refrigerant
JP2000028208A (en) * 1998-07-09 2000-01-28 Komatsu Ltd Controller for refrigerating apparatus
JP2003130503A (en) * 2001-10-22 2003-05-08 Mitsubishi Electric Corp Replacing method for refrigerating/air-conditioning system
JP2003279203A (en) * 2002-03-19 2003-10-02 Mitsubishi Electric Building Techno Service Co Ltd Refrigerant liquid charge apparatus and liquid refrigerant charge method
JP2004012005A (en) * 2002-06-06 2004-01-15 Sanwa:Kk Refrigerant filling method for car air conditioner
WO2007049372A1 (en) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus

Also Published As

Publication number Publication date
GB2481128A (en) 2011-12-14
JPWO2010116496A1 (en) 2012-10-11
WO2010116496A1 (en) 2010-10-14
GB2481128B (en) 2015-04-29
GB201109605D0 (en) 2011-07-20
HK1162068A1 (en) 2012-08-17

Similar Documents

Publication Publication Date Title
EP1998124B1 (en) Air conditioner
US7954333B2 (en) Air conditioner
JP4120676B2 (en) Air conditioner
KR101074322B1 (en) Air conditioner
KR101161240B1 (en) Air conditioner
US20090095000A1 (en) Air conditioner
US20090100849A1 (en) Air conditioner
JP5306450B2 (en) Refrigeration air conditioner and refrigerant filling method thereof
JP2011106688A (en) Condensation pressure detecting system and refrigeration cycle system
WO2014103013A1 (en) Heat pump system
JP2015135192A (en) Air conditioning device
JP4665748B2 (en) Air conditioner
JP5424705B2 (en) Refrigeration air conditioner
JP2014070835A (en) Refrigeration device
JP7397286B2 (en) Refrigeration cycle equipment
JP2008111584A (en) Air conditioner
GB2560455A (en) Air-conditioning device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Ref document number: 5306450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250