JPH06101940A - Sealing of refrigerant - Google Patents

Sealing of refrigerant

Info

Publication number
JPH06101940A
JPH06101940A JP25280192A JP25280192A JPH06101940A JP H06101940 A JPH06101940 A JP H06101940A JP 25280192 A JP25280192 A JP 25280192A JP 25280192 A JP25280192 A JP 25280192A JP H06101940 A JPH06101940 A JP H06101940A
Authority
JP
Japan
Prior art keywords
refrigerant
supercooling
expansion valve
liquid
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25280192A
Other languages
Japanese (ja)
Inventor
Hisao Nagashima
久夫 永島
Hideaki Sato
英明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25280192A priority Critical patent/JPH06101940A/en
Publication of JPH06101940A publication Critical patent/JPH06101940A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To obtain a method for sealing refrigerant in an amount suitable to provide the optimum supercooling without removing all the refrigerant from a refrigerating cycle. CONSTITUTION:In a supercooling cycle devoid of a proper supercooling zone on the inlet side of an expansion valve 6, a valve 14 provided on the inlet side of the expansion valve 6 and a refrigerant filler 1 are connected by a charging hose 11 and the refrigerant is poured into the refrigerant filler 1 from the high pressure side while the valve 3 is kept open. The foam in the refrigerant filler is visible through a sight glass 8 and, when the supercooling reaches 0 deg.C, the valve 3 is closed. The refrigerant filler 1 is first filled with the refrigerant in an amount to attain a proper supercooling and then transferred into a refrigerating cycle from the low pressure side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒封入方法に関し、
特に、適正な過冷却度となるように冷凍サイクル内の冷
媒量を封入することができる冷媒封入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant charging method,
In particular, the present invention relates to a refrigerant encapsulation method capable of enclosing the amount of refrigerant in a refrigeration cycle so as to obtain an appropriate degree of supercooling.

【0002】[0002]

【従来の技術】従来から公知の冷媒圧縮機と冷媒凝縮器
と膨張弁と冷媒蒸発器とからなる冷凍サイクルにおい
て、膨張弁入口側の冷媒が過冷却度を持つサブクールサ
イクルがある。このサブクールサイクルでは、図3の冷
媒封入量とサイクル効率との関係図に示すように、最高
効率にてサイクルを運転するための最適な冷媒封入量を
持つ。
2. Description of the Related Art In a conventional refrigeration cycle including a refrigerant compressor, a refrigerant condenser, an expansion valve and a refrigerant evaporator, there is a subcool cycle in which the refrigerant on the inlet side of the expansion valve has a supercooling degree. In this subcool cycle, as shown in the relationship diagram between the refrigerant charge amount and the cycle efficiency in FIG. 3, the optimum refrigerant charge amount for operating the cycle at the highest efficiency is provided.

【0003】ところで、自動車用空調装置に用いられる
冷凍サイクルでは、エンジンの振動に耐えるためにゴム
ホースが使用されているが、冷凍サイクル内の冷媒はゴ
ムホースから年間に数グラム程度洩れてしまう。そのた
め、適正な過冷却度を保持して最高効率にて冷凍サイク
ルを運転するためには、この冷凍サイクル内に冷媒を追
加補充する作業が必要である。
By the way, in a refrigeration cycle used for an air conditioner for an automobile, a rubber hose is used to withstand vibration of an engine, but the refrigerant in the refrigeration cycle leaks from the rubber hose by about several grams per year. Therefore, in order to maintain the proper degree of supercooling and operate the refrigeration cycle at the highest efficiency, it is necessary to additionally replenish the refrigeration cycle with refrigerant.

【0004】従来、冷凍サイクル内への冷媒の封入方法
としては、実開昭57−33975号公報に開示される
如く、サイクル内の冷媒を全て排出し、真空引きの作業
をしてから、適正な過冷却度を持たせるための適正な量
の冷媒を冷凍サイクル内に封入するものがある。
Conventionally, as a method of sealing the refrigerant in the refrigeration cycle, as disclosed in Japanese Utility Model Laid-Open No. 57-33975, it is appropriate to discharge all the refrigerant in the cycle, perform vacuuming work, and then perform proper operation. There is a type in which a refrigeration cycle is filled with an appropriate amount of refrigerant for providing a proper degree of supercooling.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の冷凍サイクル内への冷媒封入方法によれば、冷凍サ
イクル内の冷媒を全て排出し、サイクル内の真空引きの
作業をしてから、適正量の冷媒を封入するという作業を
しなければならず、作業性が良くないという問題があ
る。
However, according to the above-mentioned conventional method of enclosing the refrigerant in the refrigeration cycle, all the refrigerant in the refrigeration cycle is exhausted, and after the vacuuming operation in the cycle, the proper amount is removed. There is a problem that the workability is not good because the work of enclosing the refrigerant is required.

【0006】そこで、本発明では、冷凍サイクル内の全
冷媒を抜かずに最適過冷却度となる適正量の冷媒を封入
することのできる冷媒封入方法を提供することを目的と
する。
[0006] Therefore, an object of the present invention is to provide a refrigerant enclosing method capable of enclosing an appropriate amount of refrigerant having an optimum degree of supercooling without removing all refrigerant in the refrigeration cycle.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、ガス状の冷媒を圧縮する圧縮機と、この
圧縮機で圧縮されたガス状の冷媒を冷却して液冷媒にす
る凝縮器と、この凝縮器で液状になった冷媒を膨張させ
霧状の冷媒にする膨張弁と、及び、この膨張弁で霧状に
なった冷媒を空気と熱交換させる蒸発器とを有し、前記
膨張弁入口側の冷媒が過冷却度を持つサブクールサイク
ル内に冷媒を封入する冷媒封入方法において、前記サブ
クールサイクル内の膨張弁入口側の冷媒が、気液二相状
態と液相状態との何れの状態であるのかを検出し、前記
膨張弁入口側の冷媒が気液二相状態の時には、この膨張
弁入口側の冷媒が液相状態に変わるまで前記サブクール
サイクル内に冷媒を封入し、前記膨張弁入口側の冷媒が
液相状態の時には、この膨張弁入口側の冷媒が気液二相
状態に変わるまで前記サブクールサイクル内の冷媒を排
出し、その後、予め定められた過冷却度に対応する所定
量の冷媒を前記サブクールサイクル内に封入する冷媒封
入方法を採用するものである。
In order to achieve the above object, the present invention provides a compressor for compressing a gaseous refrigerant, and a gaseous refrigerant compressed by the compressor to be a liquid refrigerant. A condenser, an expansion valve that expands the refrigerant that is liquefied in the condenser into a mist-like refrigerant, and an evaporator that heat-exchanges the atomized refrigerant with the air. Then, in the refrigerant encapsulation method in which the refrigerant on the inlet side of the expansion valve has a subcooling cycle having a supercooling degree, the refrigerant on the inlet side of the expansion valve in the subcool cycle has a gas-liquid two-phase state and a liquid phase state. When the refrigerant on the inlet side of the expansion valve is in a gas-liquid two-phase state, the refrigerant is enclosed in the subcool cycle until the refrigerant on the inlet side of the expansion valve changes to a liquid phase state. However, when the refrigerant on the inlet side of the expansion valve is in the liquid phase, The refrigerant in the subcool cycle is discharged until the refrigerant on the inlet side of the expansion valve changes to a gas-liquid two-phase state, and then a predetermined amount of refrigerant corresponding to a predetermined degree of supercooling is sealed in the subcool cycle. The method of enclosing the refrigerant is adopted.

【0008】[0008]

【作用】上記構成よりなる本発明の冷媒封入方法によれ
ば、まず、サブクールサイクルにおいて膨張弁入口側の
冷媒が気液二相状態にあるのか、それとも液相状態にあ
るのかを検出する。この膨張弁入口側の冷媒が気液二相
状態の時には、液相状態に切り替わる瞬間までサイクル
内に冷媒を封入し、液相状態の時には、気液二相状態に
切り替わる瞬間までサイクル内の冷媒を排出すること
で、何れの場合においても膨張弁入口側の冷媒の状態が
過冷却度0°Cの状態にする。冷媒の状態を過冷却度0
°Cの状態にしてから、予め定められた過冷却度に対応
する所定量の冷媒をサイクル内に封入することで、適正
な過冷却度を持たせることができる適正量の冷媒が封入
される。
According to the refrigerant charging method of the present invention having the above-described structure, first, in the subcool cycle, it is detected whether the refrigerant on the inlet side of the expansion valve is in the gas-liquid two-phase state or the liquid phase state. When the refrigerant on the inlet side of the expansion valve is in the gas-liquid two-phase state, the refrigerant is enclosed in the cycle until the moment it switches to the liquid phase state, and when it is in the liquid phase state, the refrigerant in the cycle until the moment it switches to the gas-liquid two-phase state. In any case, the state of the refrigerant on the inlet side of the expansion valve is brought to the state of the supercooling degree of 0 ° C. The state of the refrigerant is 0
After a state of ° C, by enclosing a predetermined amount of refrigerant corresponding to a predetermined degree of supercooling in the cycle, an appropriate amount of refrigerant capable of providing an appropriate degree of supercooling is enclosed. .

【0009】[0009]

【実施例】以下、本発明の冷媒封入器による冷媒封入方
法について図面と共に説明する。図1に冷媒封入器1の
構造を示す。高圧力に耐えられる圧力容器1において、
中の冷媒量の存在および量がわかるように、のぞき窓ガ
ラス13を設ける。また、容器1の側面上部に冷凍サイ
クル内へ冷媒封入するためのバルブ2を設け、下面に冷
凍サイクル内の冷媒を容器1内に回収するためのバルブ
3を設置する。バルブ3は、最後に容器1内に残ったオ
イルを排出する際の排出口も兼ねる。車種ごとに、冷凍
サイクルが異なり、封入される冷媒量が異なるため、の
ぞき窓13の横には、冷凍サイクルのサイトグラス8で
の泡消え後から適正な過冷却度となるまでの冷媒量を、
車種毎に目盛りで示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigerant encapsulation method using a refrigerant encapsulator according to the present invention will be described below with reference to the drawings. FIG. 1 shows the structure of the refrigerant enclosure 1. In the pressure vessel 1 that can withstand high pressure,
A peep window glass 13 is provided so that the presence and amount of the refrigerant in the inside can be known. Further, a valve 2 for enclosing the refrigerant in the refrigeration cycle is provided on the upper side surface of the container 1, and a valve 3 for recovering the refrigerant in the refrigeration cycle into the container 1 is provided on the lower surface. The valve 3 also serves as a discharge port when the oil remaining in the container 1 is finally discharged. Since the refrigeration cycle is different for each vehicle type and the amount of the enclosed refrigerant is different, the amount of the refrigerant from the disappearance of bubbles in the sight glass 8 of the refrigeration cycle to the proper supercooling degree is provided next to the sight glass 13. ,
The scale is shown for each vehicle type.

【0010】カーエアコン用冷凍サイクルではゴムホー
ス等から年間に数グラムは洩れる。過冷却度をもつサブ
クールサイクルでは、図3に示すように、サイクル効率
が最高となる最適封入量、既ち最適過冷却度があるが、
初期に、最適量封入しても冷媒が洩れてしまうと過冷却
度が小さくなり、サイクル効率も減少してしまう。
In the refrigeration cycle for car air conditioners, several grams are leaked annually from a rubber hose or the like. In a subcool cycle with a supercooling degree, as shown in FIG. 3, there is an optimum amount of filling that maximizes the cycle efficiency and an optimum degree of subcooling already exists.
If the refrigerant leaks even if the optimal amount is filled in the initial stage, the degree of supercooling becomes small and the cycle efficiency also decreases.

【0011】そこで定期的に過冷却度をチェックし、不
足であれば最適となるまで冷媒を封入すれば、常に最高
なサイクル効率でカーエアコンの運転ができる。以下、
冷媒の封入方法を説明する。
Therefore, if the degree of supercooling is periodically checked and if it is insufficient, the refrigerant is filled until it becomes optimum, so that the car air conditioner can always be operated with the highest cycle efficiency. Less than,
A method of filling the refrigerant will be described.

【0012】図4,図5,図6に示すように、膨張弁6
の入口側での適正過冷却度をWとすると、冷媒を冷凍サ
イクル中に封入するのは次の3つの場合に分けられる。
図4に示すように、冷凍サイクルの運転中に、冷凍サイ
クル側のサイトグラス8において、泡はでていないが、
過冷却度が最適でなく、冷媒量が少ない状態の場合A
と、図5に示すように、サイトグラス8より、泡が確認
され、明らかにガス不足の状態の場合Bと、図6に示
すように、冷媒を初期封入したり、修理等で冷媒を空に
した際の場合Cとの3種類の場合に冷媒封入方法が分類
できる。
As shown in FIGS. 4, 5 and 6, the expansion valve 6
Letting W be an appropriate degree of supercooling on the inlet side of, the refrigerant is enclosed in the refrigeration cycle in the following three cases.
As shown in FIG. 4, during operation of the refrigeration cycle, no bubbles are generated in the sight glass 8 on the refrigeration cycle side,
When the degree of subcooling is not optimal and the amount of refrigerant is small A
Then, as shown in FIG. 5, bubbles are confirmed from the sight glass 8 and in the case of clearly gas shortage B, and as shown in FIG. 6, the refrigerant is initially filled, or the refrigerant is emptied for repair or the like. The refrigerant encapsulation method can be classified into three types, C in the case of the above.

【0013】過冷却度のチェック及び冷媒の封入が同一
条件にて行えるように、どの条件の場合においても、エ
ンジン回転数をアイドリング状態にし、エバポレータの
風量をHiとする。また、ガラス,ドアは開としてお
く。
Under any of the conditions, the engine speed is set to the idling state and the air volume of the evaporator is set to Hi so that the supercooling degree check and the refrigerant injection can be performed under the same condition. Also, keep the glass and door open.

【0014】それぞれの場合A〜Cの封入方法について
発明する。膨張弁6の入口側にて、冷媒が液相状態であ
るために、冷凍サイクルの運転中にサイトグラス8より
泡が見られないときにおいて、図4のモリエル線図に示
すように、適正過冷却度Wを持つ状態よりも過冷却度
が小さく、冷媒量が少ない状態の場合Aについて、即
ち状態〜状態の間に膨張弁6の入口側の冷媒状態が
ある時について説明する。
In each case, the method of enclosing A to C will be invented. At the inlet side of the expansion valve 6, since the refrigerant is in a liquid phase state, when no bubbles are seen from the sight glass 8 during the operation of the refrigeration cycle, as shown in the Mollier diagram of FIG. The case A in which the degree of supercooling is smaller than that in the state having the degree of cooling W and the amount of refrigerant is small, that is, when there is a refrigerant state on the inlet side of the expansion valve 6 between the states 1 to 4, will be described.

【0015】高圧リキッド配管9の虫バルブ14と冷媒
封入器1の回収バルブ3をチャージングホース11で連
通する。冷凍サイクルをアイドリング,風量Hiという
一定条件にて運転させた状態で回収バルブ3を開け、冷
凍サイクル内の冷媒を冷媒封入器の中へ除々に回収す
る。この時、バルブ2は閉じておく。冷媒封入器1内は
大気圧になっているため、冷凍サイクルの高圧側との圧
力差により、冷媒は冷媒回収器1内へ流入していく。こ
れに従って、冷凍サイクル内の冷媒の量が除々に減って
いき、過冷却度も減少していくため、図4において膨張
弁6の入口側の冷媒の状態は、状態より状態の方へ
除々に近づく。サイトグラス8より泡が見られた瞬間
が、冷媒の状態が飽和液線上の状態へ一致したとき
であり、過冷却度が0℃の時である。この時にバルブ3
を閉じて、チャージングホース11を外す。
A charging hose 11 connects the insect valve 14 of the high-pressure liquid pipe 9 and the recovery valve 3 of the refrigerant enclosure 1. The recovery valve 3 is opened in a state where the refrigeration cycle is operated under constant conditions of idling and air volume Hi, and the refrigerant in the refrigeration cycle is gradually recovered into the refrigerant enclosure. At this time, the valve 2 is closed. Since the inside of the refrigerant enclosure 1 is at atmospheric pressure, the refrigerant flows into the refrigerant recovery device 1 due to the pressure difference from the high pressure side of the refrigeration cycle. Accordingly, the amount of refrigerant in the refrigeration cycle gradually decreases, and the degree of supercooling also decreases. Therefore, in FIG. 4, the state of the refrigerant on the inlet side of the expansion valve 6 gradually changes from the state to the state. Get closer. The moment when bubbles are seen from the sight glass 8 is when the state of the refrigerant coincides with the state on the saturated liquid line and the degree of supercooling is 0 ° C. At this time valve 3
Is closed and the charging hose 11 is removed.

【0016】冷媒封入器1内に回収した冷媒量を予め設
定された適用車種(例えば車体A)の最適封入量と比べ
る。図7に示すように、この最適封入量よりも冷媒が少
ない時には、不足している冷媒量をΔWとすると、新し
く冷媒をΔWだけ冷媒封入器1へ補充する。
The amount of the refrigerant collected in the refrigerant enclosure 1 is compared with a preset optimum amount of the applicable vehicle type (for example, the vehicle body A). As shown in FIG. 7, when the amount of the refrigerant is less than the optimum amount, the amount of the insufficient refrigerant is ΔW, and a new amount of the refrigerant is replenished to the refrigerant enclosure 1 by ΔW.

【0017】次に、封入器への冷媒補充方法を図8に示
す。冷媒が封入された新品、もしくは使用途中の冷媒缶
12を頭を下向きにして配し、チャージングホース11
を通して、バルブ3より液冷媒でΔWだけ補充する。そ
の際、バルブ2を開にして、ガス冷媒をパージして、冷
媒封入器1内の圧力を下げると、冷媒缶12から液冷媒
が入り易くなる。
Next, FIG. 8 shows a method of replenishing the refrigerant to the enclosure. A new or filled refrigerant can 12 containing a refrigerant is placed with its head facing downward, and the charging hose 11
Through valve 3 to replenish the liquid refrigerant with ΔW. At that time, if the valve 2 is opened to purge the gas refrigerant to reduce the pressure in the refrigerant enclosure 1, the liquid refrigerant can easily enter from the refrigerant can 12.

【0018】冷媒封入器1の内部に適正冷却度を持たせ
ることのできる冷媒量Wまで封入した後、バルブ2と冷
凍サイクル側の低圧側にある冷媒封入用の虫バルブ10
をチャージングホース11で連通してバルブ2を開け
る。冷媒封入器1の上部に設けたバルブ2から気相状態
の冷媒を冷凍サイクルに設けた虫バルブ10から封入す
る。冷媒封入器1内のガス冷媒が除々に減っていくこと
で、冷媒封入器1内の圧力が下がっていき、液冷媒が徐
々にガス状態になっていく。このガス状態にて冷媒封入
器1の中の冷媒が空になる(Wだけ)まで、冷凍サイク
ル内部の低圧側へ封入する。これで、最適過冷却度とな
るように適正冷媒量の封入ができる。
After the refrigerant has been filled to the amount W of the refrigerant capable of providing an appropriate degree of cooling inside the refrigerant enclosure 1, the valve 2 and the insect valve 10 for enclosing the refrigerant on the low pressure side of the refrigeration cycle side.
The valve 2 is opened by communicating with the charging hose 11. The refrigerant in the vapor phase is sealed from the valve 2 provided at the top of the refrigerant enclosure 1 from the insect valve 10 provided in the refrigeration cycle. As the gas refrigerant in the refrigerant enclosure 1 gradually decreases, the pressure in the refrigerant enclosure 1 decreases and the liquid refrigerant gradually becomes a gas state. In this gas state, the refrigerant in the refrigerant enclosure 1 is filled into the low pressure side inside the refrigeration cycle until the refrigerant is emptied (only W). With this, an appropriate amount of refrigerant can be enclosed so as to achieve the optimum degree of supercooling.

【0019】次に、図5に示すように冷凍サイクルのサ
イトグラス8より泡がでていることが確認でき、冷媒が
気液二相状態である時について説明する。この時に
は、従来のガス入れ方法と同様に、冷媒缶より冷凍サイ
クル内へガス冷媒で封入していき、飽和液線上の状態
になり、サイトグラス8より泡が消えた瞬間にガス入れ
を一時中止する。
Next, as shown in FIG. 5, it is confirmed that bubbles are generated from the sight glass 8 of the refrigeration cycle, and the refrigerant is in the gas-liquid two-phase state. At this time, in the same way as the conventional gas charging method, the refrigerant can is charged into the refrigeration cycle with the gas refrigerant and becomes a state on the saturated liquid line, and the gas charging is temporarily stopped at the moment when the bubbles disappear from the sight glass 8. To do.

【0020】次にあらかじめ冷媒封入器1の中へ上記実
施例と同様にして適用車種に合わせて適正値Wまで冷媒
を補充する。そして、冷媒封入器1中の冷媒Wを全て冷
凍サイクル内部へ封入する。なお、この時の冷媒封入方
法は上記の実施例と同様である。
Next, in the same manner as in the above embodiment, the refrigerant is replenished in advance to the proper value W into the refrigerant enclosure 1 in accordance with the applied vehicle type. Then, all the refrigerant W in the refrigerant enclosure 1 is enclosed inside the refrigeration cycle. The method of charging the refrigerant at this time is the same as in the above embodiment.

【0021】図6に示すように、初期冷媒封入の場合C
について説明すると、この時も、上記図5に示す実施例
の如く従来通りに冷媒のガス入れを行い、サイクル側の
サイトグサス8より泡が消えた瞬間の状態でガス入れ
を一時中止する。そして、あらかじめ適正値Wまで上記
実施例と同様に冷媒封入器1内へ冷媒を補充しておき、
冷媒封入器1内の全ての冷媒Wを冷凍サイクルへ封入す
る。
As shown in FIG. 6, in the case of initial refrigerant charging C
In this case, also, at this time, as in the embodiment shown in FIG. 5, the refrigerant gas is charged in the conventional manner, and the gas injection is temporarily stopped at the moment when the bubbles disappear from the cycle side cytosus 8. Then, the refrigerant is replenished to the appropriate value W in advance in the refrigerant enclosure 1 as in the above embodiment,
All the refrigerant W in the refrigerant enclosure 1 is enclosed in the refrigeration cycle.

【0022】本発明の如く冷凍サイクル内に冷媒を封入
することで、従来のように全冷媒を抜いてから、適正量
の冷媒を入れ直すという作業をすることがなくなり、短
時間にて適正過冷却量とすることができる。
By enclosing the refrigerant in the refrigeration cycle as in the present invention, there is no need to perform the work of re-inserting an appropriate amount of the refrigerant after removing all the refrigerant as in the conventional case, and it is possible to perform proper subcooling in a short time. It can be quantity.

【0023】なお、上記第1実施例においては、膨張弁
6の入口側の冷媒が液相状態から気液二相状態になるま
で冷凍サイクル内の冷媒を冷媒封入器1内に封入し、こ
の冷媒封入器1内に不足分の冷媒をいれてから、この冷
媒を冷媒サイクル内に封入するという工程をとってい
る。しかしながら、これに限らず、液相状態から気液二
相状態になるまで別の容器内に封入しても良い。そし
て、過冷却度に対応する冷媒を冷媒サイクル内から抜い
た冷媒とは別に、新しい冷媒を適正量封入する構成とし
ても良い。
In the first embodiment described above, the refrigerant in the refrigeration cycle is sealed in the refrigerant enclosure 1 until the refrigerant on the inlet side of the expansion valve 6 changes from the liquid phase state to the gas-liquid two phase state. A step of putting a shortage of refrigerant in the refrigerant enclosure 1 and then enclosing this refrigerant in the refrigerant cycle is taken. However, it is not limited to this, and may be sealed in another container from the liquid phase state to the gas-liquid two-phase state. In addition to the refrigerant extracted from the refrigerant cycle, the refrigerant corresponding to the degree of supercooling may be filled with an appropriate amount of new refrigerant.

【0024】上記実施例において、図4に示す第1実施
例の如く過冷却度0℃の冷媒の状態を検知する際に、液
相状態から気液二相状態に切り替わる状態の時と、図5
に示す第2実施例の如く気液二相状態から液相状態に切
り替わる状態の時とでは、多少状態は異なるが、何れの
場合も過冷却度が0℃の場合であり、冷媒封入量におい
ても、誤差となる程度であり問題は無い。
In the above embodiment, when the state of the refrigerant having a supercooling degree of 0 ° C. is detected as in the first embodiment shown in FIG. 4, when the liquid state is switched to the gas-liquid two-phase state, 5
Although the state is slightly different from the state in which the gas-liquid two-phase state is switched to the liquid phase state as in the second embodiment shown in FIG. 2, the degree of supercooling is 0 ° C. in both cases, and the refrigerant charge amount is However, there is no problem as it is an error.

【0025】[0025]

【発明の効果】以上説明したように、本発明の冷媒封入
方法によれば、まず過冷却度0°Cの状態にし、この過
冷却度0°Cの状態から適正な過冷却度に対応する量の
冷媒を冷凍サイクル内に封入する工程をとる。従って、
従来のように前冷媒を抜いてから適正量の冷媒を入れ直
すという作業に比べて短時間にて適正な過冷却度を持つ
冷媒量とすることができ、作業性が良くなる。
As described above, according to the refrigerant enclosing method of the present invention, the supercooling degree of 0 ° C is first set, and the proper supercooling degree is dealt with from the supercooling degree of 0 ° C. Take the step of enclosing a quantity of refrigerant in the refrigeration cycle. Therefore,
Compared with the conventional work of removing the previous refrigerant and then refilling it with an appropriate amount of refrigerant, the amount of refrigerant having an appropriate degree of supercooling can be obtained in a short time, and workability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷媒封入方法に用いる冷媒封入器を示
す正面図である。
FIG. 1 is a front view showing a refrigerant enclosing device used in a refrigerant enclosing method of the present invention.

【図2】本発明の冷媒封入器を冷凍サイクルに接続した
際の全体構成図である。
FIG. 2 is an overall configuration diagram when the refrigerant enclosure of the present invention is connected to a refrigeration cycle.

【図3】冷凍サイクル内の冷媒封入量とサイクル効率と
の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a refrigerant charging amount in a refrigeration cycle and cycle efficiency.

【図4】冷媒封入時の状態を示すモリエル線図である。FIG. 4 is a Mollier diagram showing the state when the refrigerant is charged.

【図5】冷媒封入時の状態を示すモリエル線図である。FIG. 5 is a Mollier diagram showing the state when the refrigerant is charged.

【図6】冷媒封入時の状態を示すモリエル線図である。FIG. 6 is a Mollier diagram showing a state when the refrigerant is charged.

【図7】冷媒封入時の適正冷媒量を示す図である。FIG. 7 is a diagram showing an appropriate amount of refrigerant when refrigerant is charged.

【図8】冷媒封入器への冷媒の補充方法を示す図であ
る。
FIG. 8 is a diagram showing a method of replenishing the refrigerant in the refrigerant enclosure.

【符号の説明】[Explanation of symbols]

1 冷媒封入器 2、3 バルブ 4 冷媒圧縮機 5 冷媒凝縮器 6 膨張弁 7 冷媒蒸発器 8 サイトグラス 10 低圧側虫バルブ 14 高圧側虫バルブ 1 Refrigerant Encapsulator 2, 3 Valve 4 Refrigerant Compressor 5 Refrigerant Condenser 6 Expansion Valve 7 Refrigerator Evaporator 8 Sight Glass 10 Low Pressure Side Bug Valve 14 High Pressure Side Bug Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス状の冷媒を圧縮する圧縮機と、この
圧縮機で圧縮されたガス状の冷媒を冷却して液冷媒にす
る凝縮器と、この凝縮器で液状になった冷媒を膨張させ
霧状の冷媒にする膨張弁と、及び、この膨張弁で霧状に
なった冷媒を空気と熱交換させる蒸発器とを有し、前記
膨張弁入口側の冷媒が過冷却度を持つサブクールサイク
ル内に冷媒を封入する冷媒封入方法において、 前記サブクールサイクル内の膨張弁入口側の冷媒が、気
液二相状態と液相状態との何れの状態であるのかを検出
し、 前記膨張弁入口側の冷媒が気液二相状態の時には、この
膨張弁入口側の冷媒が液相状態に変わるまで前記サブク
ールサイクル内に冷媒を封入し、 前記膨張弁入口側の冷媒が液相状態の時には、この膨張
弁入口側の冷媒が気液二相状態に変わるまで前記サブク
ールサイクル内の冷媒を排出し、 その後、予め定められた過冷却度に対応する所定量の冷
媒を前記サブクールサイクル内に封入する冷媒封入方
法。
1. A compressor for compressing a gaseous refrigerant, a condenser for cooling the gaseous refrigerant compressed by the compressor to a liquid refrigerant, and an expansion of the liquid refrigerant in the condenser. A subcooler having an expansion valve for turning the atomized refrigerant into an atomized refrigerant and an evaporator for exchanging the atomized refrigerant with the expansion heat with air, and the refrigerant on the inlet side of the expansion valve has a supercooling degree. In a refrigerant enclosing method of enclosing a refrigerant in a cycle, the refrigerant on the expansion valve inlet side in the subcool cycle detects which of a gas-liquid two-phase state and a liquid phase state, the expansion valve inlet When the refrigerant on the side is in a gas-liquid two-phase state, the refrigerant is sealed in the subcool cycle until the refrigerant on the side of the expansion valve inlet changes to the liquid phase state, and when the refrigerant on the side of the expansion valve inlet is in the liquid phase state, Until the refrigerant on the inlet side of this expansion valve changes to a gas-liquid two-phase state A refrigerant enclosing method of discharging a refrigerant in the subcool cycle and then enclosing a predetermined amount of refrigerant corresponding to a predetermined degree of supercooling in the subcool cycle.
JP25280192A 1992-09-22 1992-09-22 Sealing of refrigerant Withdrawn JPH06101940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25280192A JPH06101940A (en) 1992-09-22 1992-09-22 Sealing of refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25280192A JPH06101940A (en) 1992-09-22 1992-09-22 Sealing of refrigerant

Publications (1)

Publication Number Publication Date
JPH06101940A true JPH06101940A (en) 1994-04-12

Family

ID=17242424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25280192A Withdrawn JPH06101940A (en) 1992-09-22 1992-09-22 Sealing of refrigerant

Country Status (1)

Country Link
JP (1) JPH06101940A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194016A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
WO2002023100A1 (en) * 2000-09-11 2002-03-21 Daikin Industries, Ltd. Multiple refrigerating device
WO2010116496A1 (en) * 2009-04-08 2010-10-14 三菱電機株式会社 Refrigeration air-conditioner and refrigerant charging method for the same
CN112797680A (en) * 2020-12-31 2021-05-14 珠海格力电器股份有限公司 Control device, method and system for automatically filling refrigerant and air conditioning equipment
WO2023188789A1 (en) * 2022-03-29 2023-10-05 Phcホールディングス株式会社 Refrigerant charge method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223389B1 (en) * 1999-10-18 2016-12-07 Daikin Industries, Ltd. Refrigerating device
US6591631B1 (en) 1999-10-18 2003-07-15 Daiken Industries, Ltd. Refrigerating device
EP1223389A4 (en) * 1999-10-18 2005-05-25 Daikin Ind Ltd Refrigerating device
JP2001194016A (en) * 1999-10-18 2001-07-17 Daikin Ind Ltd Freezing apparatus
WO2002023100A1 (en) * 2000-09-11 2002-03-21 Daikin Industries, Ltd. Multiple refrigerating device
JP2002089978A (en) * 2000-09-11 2002-03-27 Daikin Ind Ltd Paired refrigerating device and multiple refrigerating device
EP1326057A4 (en) * 2000-09-11 2005-06-08 Daikin Ind Ltd Multiple refrigerating device
US7021069B2 (en) 2000-09-11 2006-04-04 Daikin Industries, Ltd. Multiple refrigerating device
AU2001284508B2 (en) * 2000-09-11 2006-10-05 Daikin Industries, Ltd. Multiple refrigerating device
WO2010116496A1 (en) * 2009-04-08 2010-10-14 三菱電機株式会社 Refrigeration air-conditioner and refrigerant charging method for the same
JPWO2010116496A1 (en) * 2009-04-08 2012-10-11 三菱電機株式会社 Refrigeration air conditioner and refrigerant filling method thereof
JP5306450B2 (en) * 2009-04-08 2013-10-02 三菱電機株式会社 Refrigeration air conditioner and refrigerant filling method thereof
GB2481128B (en) * 2009-04-08 2015-04-29 Mitsubishi Electric Corp Refrigeration air-conditioning apparatus and refrigerant charging method therefor
GB2481128A (en) * 2009-04-08 2011-12-14 Mitsubishi Electric Corp Refrigeration air-conditioner and refrigerant charging method for the same
CN112797680A (en) * 2020-12-31 2021-05-14 珠海格力电器股份有限公司 Control device, method and system for automatically filling refrigerant and air conditioning equipment
WO2023188789A1 (en) * 2022-03-29 2023-10-05 Phcホールディングス株式会社 Refrigerant charge method

Similar Documents

Publication Publication Date Title
EP0961086B1 (en) Method for taking custody of, transporting and installing air conditioner
KR20100095576A (en) Refrigeration device
JPH06101940A (en) Sealing of refrigerant
JP2003148838A (en) Air conditioner, refrigerating cycle device, and refrigerant charging method
JPH10238872A (en) Carbon-dioxide refrigerating cycle
JPH094932A (en) Deep freezer
WO1999002928A1 (en) Freezer
JP4789891B2 (en) refrigerator
CA1052112A (en) Combination motor cooler and storage coil for heat pump
JP2003106688A (en) Refrigerating cycle
JPH03164673A (en) Refrigerant recovering and charging device for air conditioner
KR940010584B1 (en) Refrigerator
JP3751985B2 (en) Refrigeration cycle
JPH0282057A (en) Heat pump type air conditioner
JPH04281168A (en) Refrigerant recovery device
JP3326998B2 (en) Refrigerant recovery device
JPH09250849A (en) Bomb for temporary storage of refrigerant gas and its application method
JPH02225953A (en) Freezing system with double vaporizer for domestic refrigerator
KR200371465Y1 (en) Recovering apparatus for refrigerant
JPH1026441A (en) Air conditioner
JP2002243321A (en) Refrigerating device
JPS6342288Y2 (en)
JPH074754A (en) Refrigerating device
JP3738168B2 (en) Receiver
JPH08271093A (en) Refrigeration machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130