JPS6342288Y2 - - Google Patents

Info

Publication number
JPS6342288Y2
JPS6342288Y2 JP4744382U JP4744382U JPS6342288Y2 JP S6342288 Y2 JPS6342288 Y2 JP S6342288Y2 JP 4744382 U JP4744382 U JP 4744382U JP 4744382 U JP4744382 U JP 4744382U JP S6342288 Y2 JPS6342288 Y2 JP S6342288Y2
Authority
JP
Japan
Prior art keywords
air
cooled condenser
refrigerant
liquid receiver
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4744382U
Other languages
Japanese (ja)
Other versions
JPS58148570U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4744382U priority Critical patent/JPS58148570U/en
Publication of JPS58148570U publication Critical patent/JPS58148570U/en
Application granted granted Critical
Publication of JPS6342288Y2 publication Critical patent/JPS6342288Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressor (AREA)

Description

【考案の詳細な説明】 この考案は空冷式冷凍機の高圧低下に関するも
のである。
[Detailed description of the invention] This invention relates to high pressure reduction in an air-cooled refrigerator.

第1図は従来の冷凍装置を示す冷媒系統図であ
る。第1図において、1は圧縮機、2は空冷式凝
縮器、3は吐出配管、4は液配管、5は上記液配
管4に設けた逆止弁、6は受液器、7は受液器6
上部と空冷式凝縮器2の入口配管とを結ぶ均圧配
管、8は均圧配管7途上に設けた受液器6から空
冷式凝縮器2の方向へのみ流す逆止弁である。
FIG. 1 is a refrigerant system diagram showing a conventional refrigeration system. In Fig. 1, 1 is a compressor, 2 is an air-cooled condenser, 3 is a discharge pipe, 4 is a liquid pipe, 5 is a check valve provided in the liquid pipe 4, 6 is a liquid receiver, and 7 is a liquid receiver. vessel 6
The pressure equalizing pipe 8 connecting the upper part and the inlet pipe of the air-cooled condenser 2 is a check valve that allows liquid to flow only in the direction of the air-cooled condenser 2 from the receiver 6 provided in the middle of the pressure equalizing pipe 7 .

次に動作について説明する。 Next, the operation will be explained.

蒸発器(図示せず)で蒸発した冷媒は圧縮機1
で圧縮され吐出配管3を通つて空冷式凝縮器2で
液化する。液化した冷媒は液配管4を通り受液器
6へ貯溜される。受液器6の冷媒は蒸発器(図示
せず)で蒸発し圧縮機1へ戻る。さて、空冷式凝
縮器2から出た冷媒は液冷媒と気体冷媒の混合で
受液器6内へ入り、気体ガスは受液器6の上部へ
滞溜する。空冷式凝縮器2が受液器6より上部へ
設置された場合、空冷式凝縮器2と受液器6のヘ
ツド差圧力が受液器6内へかかり、受液器6内上
部の気体冷媒を圧縮し、受液器6圧力が空冷式凝
縮器2内圧力も上昇することになる。このため、
空冷式凝縮器2内の冷媒は滞溜することになり、
空冷式凝縮器2内の伝熱面積が減少して圧力が上
昇し、受液器6圧力よりも高くなつて、はじめて
液配管4を通り、受液器6へ流入する。これによ
り再び空冷式凝縮器2内圧力は一時的に低下する
が、逆に冷媒は滞溜しだして圧力を上昇する方向
になり、この状態を繰り返えすことになる。
The refrigerant evaporated in the evaporator (not shown) is transferred to the compressor 1.
It is compressed in the air, passes through the discharge pipe 3, and is liquefied in the air-cooled condenser 2. The liquefied refrigerant passes through the liquid pipe 4 and is stored in the liquid receiver 6. The refrigerant in the liquid receiver 6 is evaporated in an evaporator (not shown) and returned to the compressor 1. Now, the refrigerant discharged from the air-cooled condenser 2 enters the liquid receiver 6 as a mixture of liquid refrigerant and gaseous refrigerant, and the gaseous gas accumulates in the upper part of the liquid receiver 6. When the air-cooled condenser 2 is installed above the liquid receiver 6, the pressure difference between the heads of the air-cooled condenser 2 and the liquid receiver 6 is applied to the liquid receiver 6, and the gas refrigerant in the upper part of the liquid receiver 6 is As a result, the pressure in the liquid receiver 6 and the pressure inside the air-cooled condenser 2 will also rise. For this reason,
The refrigerant in the air-cooled condenser 2 will accumulate,
The heat transfer area in the air-cooled condenser 2 decreases and the pressure rises, and only when it becomes higher than the liquid receiver 6 pressure does the liquid flow through the liquid pipe 4 and into the liquid receiver 6. As a result, the pressure inside the air-cooled condenser 2 temporarily decreases again, but on the contrary, the refrigerant begins to accumulate and the pressure increases, and this state will be repeated.

このように空冷式凝縮器2内圧力すなわち圧縮
機1吐出圧力が上昇することになり、効率が悪く
不経済なばかりでなく、夏期の外気温上昇時には
高圧カツトするおそれが大になるなどの不具合点
があつた。また、本不具合点を改良する方法とし
て、受液器6と空冷式凝縮器2を均圧配管7に接
続する方法がとられているが、この場合、空冷式
凝縮器2の周囲温度が低下した場合において、圧
縮機1が停止すると受液器6の冷媒は均圧配管7
を通つて空冷式凝縮器2へ移動し、受液器6内の
圧力は周囲温度に相当する飽和圧力まで低下す
る。
In this way, the internal pressure of the air-cooled condenser 2, that is, the discharge pressure of the compressor 1, increases, which is not only inefficient and uneconomical, but also causes problems such as a high risk of high pressure being cut when the outside temperature rises in the summer. The dot was hot. In addition, as a method to improve this problem, a method has been taken in which the liquid receiver 6 and the air-cooled condenser 2 are connected to the pressure equalization pipe 7, but in this case, the ambient temperature of the air-cooled condenser 2 decreases. In this case, when the compressor 1 stops, the refrigerant in the liquid receiver 6 flows through the pressure equalization pipe 7.
through the air-cooled condenser 2, and the pressure in the receiver 6 is reduced to a saturation pressure corresponding to ambient temperature.

なお、逆止弁8は吐出圧力が高い場合、受液器
6に吐出ガスが流入するのを防止している。圧縮
機1が次に始動する場合には、受液器6圧力が低
いため、蒸発器(図示せず)圧力が低下し、低圧
カツトにより始動不良となるおそれがあつた。
Note that the check valve 8 prevents the discharge gas from flowing into the liquid receiver 6 when the discharge pressure is high. When the compressor 1 is started next time, since the pressure in the liquid receiver 6 is low, the pressure in the evaporator (not shown) is lowered, and there is a possibility that the compressor 1 will have a startup failure due to a low pressure cut.

本考案は上記の欠点を除去するためになされた
ものである。
The present invention has been made to eliminate the above-mentioned drawbacks.

以下、第2図に示すこの考案の一実施例につい
て説明する。第2図において、第1図と異なると
ころは、均圧配管7へ圧縮機1と連動し圧縮機1
の運転時のみ弁を開く電磁弁9を逆止弁8に直列
に設けた点である。
An embodiment of this invention shown in FIG. 2 will be described below. In Fig. 2, the difference from Fig. 1 is that the pressure equalizing pipe 7 is connected to the compressor 1.
The point is that a solenoid valve 9 is provided in series with the check valve 8, which opens the valve only during operation.

次に動作について説明する。受液器6内の気体
冷媒は均圧配管7を通つて空冷式凝縮器2へ行く
ため、受液器6と空冷式凝縮器2は均圧され、空
冷式凝縮器2内の冷媒は滞溜することなく受液器
6へ行く。また、空冷式凝縮器2の周囲温度が低
下した場合において、圧縮機1が停止した時には
電磁弁6が閉になるため、受液器6内の冷媒の移
動はなく、受液器6内の圧力は保持されることに
より、圧縮機1が次に移動する場合においても蒸
発器(図示せず)圧力は低下せずに安定した運転
ができる。
Next, the operation will be explained. Since the gaseous refrigerant in the liquid receiver 6 passes through the pressure equalization pipe 7 to the air-cooled condenser 2, the pressure in the liquid receiver 6 and the air-cooled condenser 2 is equalized, and the refrigerant in the air-cooled condenser 2 is not stagnated. The liquid goes to the receiver 6 without being accumulated. In addition, when the ambient temperature of the air-cooled condenser 2 decreases, the solenoid valve 6 closes when the compressor 1 stops, so there is no movement of refrigerant in the liquid receiver 6, and the By maintaining the pressure, even when the compressor 1 is moved next time, the evaporator (not shown) pressure does not decrease and stable operation is possible.

以上のように本考案によれば、吐出圧力の上昇
を防止できるばかりでなく、空冷式凝縮器周囲温
度が低下した場合においても、再始動時に低圧カ
ツトすることなく運転でき、冷却不良を防止でき
る等の実用的効果が得られるものである。
As described above, according to the present invention, not only can an increase in discharge pressure be prevented, but even if the ambient temperature of the air-cooled condenser drops, it can be operated without having to cut off the low pressure when restarting, and cooling failure can be prevented. Practical effects such as these can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものの冷媒系統図、第2図は本
考案の一実施例を示す冷媒系統図である。 図において、1は圧縮機、2は空冷式凝縮器、
3は吐出配管、4は液配管、5は逆止弁、6は受
液器、7は均圧配管、8は逆止弁、9は電磁弁で
ある。なお、図中、同一符号は同一または相当部
分を示す。
FIG. 1 is a conventional refrigerant system diagram, and FIG. 2 is a refrigerant system diagram showing an embodiment of the present invention. In the figure, 1 is a compressor, 2 is an air-cooled condenser,
3 is a discharge pipe, 4 is a liquid pipe, 5 is a check valve, 6 is a liquid receiver, 7 is a pressure equalizing pipe, 8 is a check valve, and 9 is a solenoid valve. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒を圧縮する圧縮機と、この圧縮機で圧縮さ
れた冷媒を凝縮する空冷式凝縮器と、この空冷式
凝縮器で凝縮され液化した冷媒を貯溜する受液器
と、上記空冷式凝縮器の出口と上記受液器を連接
する配管途上に空冷式凝縮器から受液器の方向へ
のみ流す弁を設けた冷凍装置において、上記受液
器の上部と上記空冷式凝縮器の冷媒入口とを接続
する配管を設け、上記配管途上に受液器から空冷
式凝縮器の冷媒入口方向にのみ流す弁と、上記圧
縮機と連動し圧縮機の運転時のみ弁を開く電磁弁
を直列に設けたことを特長とする冷凍装置。
A compressor that compresses a refrigerant, an air-cooled condenser that condenses the refrigerant compressed by the compressor, a liquid receiver that stores the refrigerant condensed and liquefied in the air-cooled condenser, and the air-cooled condenser. In a refrigeration system that is provided with a valve that allows flow only from the air-cooled condenser to the liquid receiver in the piping connecting the outlet and the liquid receiver, the upper part of the liquid receiver and the refrigerant inlet of the air-cooled condenser are connected. Connecting piping was provided, and a valve was installed in series in the piping to allow the refrigerant to flow only from the receiver to the inlet of the air-cooled condenser, and a solenoid valve that was linked to the compressor and opened only when the compressor was operating. A refrigeration device characterized by:
JP4744382U 1982-03-30 1982-03-30 Refrigeration equipment Granted JPS58148570U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4744382U JPS58148570U (en) 1982-03-30 1982-03-30 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4744382U JPS58148570U (en) 1982-03-30 1982-03-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS58148570U JPS58148570U (en) 1983-10-05
JPS6342288Y2 true JPS6342288Y2 (en) 1988-11-07

Family

ID=30058401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4744382U Granted JPS58148570U (en) 1982-03-30 1982-03-30 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS58148570U (en)

Also Published As

Publication number Publication date
JPS58148570U (en) 1983-10-05

Similar Documents

Publication Publication Date Title
US5157931A (en) Refrigeration method and apparatus utilizing an expansion engine
JPS61143659A (en) Refrigeration cycle device
CA2298373A1 (en) Cooling system with enhanced free cooling
JPH0330795B2 (en)
JPS6342288Y2 (en)
US2145692A (en) Refrigerating method and apparatus
US2801528A (en) Compressor in air conditioning system
JPH0828975A (en) Turbo refrigerator
JPH0784955B2 (en) Screw refrigerator
JPS6340760Y2 (en)
JPS5912515Y2 (en) Refrigeration equipment
JPH01314857A (en) Refrigerating cycle
JPS61191835A (en) Gas-liquid separator of chilling unit for automobile
JPS6130129Y2 (en)
JPS6185218A (en) Automotive air conditioner
JPH0247419Y2 (en)
JPS6337865B2 (en)
JPS5865Y2 (en) Refrigeration equipment
JPH025338Y2 (en)
JPH08159579A (en) Refrigerator
JPS6045337B2 (en) Refrigeration equipment
JPH086974B2 (en) Air conditioner
JPS5918362A (en) Turbo refrigerator with air cooling type condenser
JPS5878069A (en) Refrigerating method and refrigerator
JPS5974465A (en) Cascade type refrigerator