JPS6337865B2 - - Google Patents

Info

Publication number
JPS6337865B2
JPS6337865B2 JP56011707A JP1170781A JPS6337865B2 JP S6337865 B2 JPS6337865 B2 JP S6337865B2 JP 56011707 A JP56011707 A JP 56011707A JP 1170781 A JP1170781 A JP 1170781A JP S6337865 B2 JPS6337865 B2 JP S6337865B2
Authority
JP
Japan
Prior art keywords
compressor
cooler
refrigeration
load
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56011707A
Other languages
Japanese (ja)
Other versions
JPS57127757A (en
Inventor
Mitsuo Kudo
Taketoshi Mochizuki
Tooru Arai
Kazuharu Shono
Masaichi Oomori
Genichiro Nishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Shinmaywa Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Shin Meiva Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd, Shin Meiva Industry Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP1170781A priority Critical patent/JPS57127757A/en
Publication of JPS57127757A publication Critical patent/JPS57127757A/en
Publication of JPS6337865B2 publication Critical patent/JPS6337865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は、二温度蒸発冷凍装置の運転効率の高
い制御方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly efficient control system for a two-temperature evaporative refrigeration system.

従来、二温度蒸発冷凍装置としては、第1図に
示すように、圧縮機1、凝縮器2、第1減圧器
3、および第1冷却器4を順次配管接続し、さら
に第2減圧器5、第2冷却器6を配管接続して冷
凍装置が形成され、第2冷却器6は第1冷却器4
より蒸発温度を低く形成されている。このような
装置では、圧縮機の吸入圧力が概略低温側冷却器
の圧力レベルとなるため運転効率が悪くなる欠点
がある。また、二つの蒸発器が直列に接続されて
いるため、それぞれの冷却器には冷却器2個分の
冷媒が流れ冷媒の圧力損失が大きく、このため運
転効率が低下するという欠点もある。
Conventionally, as shown in FIG. 1, a two-temperature evaporative refrigeration system connects a compressor 1, a condenser 2, a first pressure reducer 3, and a first cooler 4 with pipes in sequence, and further connects a second pressure reducer 5 with a second pressure reducer 5. , a refrigeration system is formed by connecting the second cooler 6 with piping, and the second cooler 6 is connected to the first cooler 4.
It is designed to have a lower evaporation temperature. Such a device has the drawback that the suction pressure of the compressor is approximately at the pressure level of the low temperature side cooler, resulting in poor operating efficiency. Furthermore, since the two evaporators are connected in series, the refrigerant for two coolers flows through each cooler, resulting in a large pressure loss of the refrigerant, which also has the disadvantage of reducing operating efficiency.

本発明は上記欠点を除去するためになされたも
ので、運転効率の高い二温度蒸発式冷凍装置の運
転方法を提供することを目的とする。
The present invention was made to eliminate the above-mentioned drawbacks, and an object of the present invention is to provide a method of operating a two-temperature evaporative refrigeration system with high operating efficiency.

以下本発明の一実施例を、第2図にもとずき説
明する。図において、第1圧縮機11、凝縮器1
2、第1電磁弁13、第1減圧器14、第1冷却
器15をそれぞれ環状に接続して主冷媒回路を構
成するとともに、凝縮器12の出口側を分岐し
て、第2電磁弁17、第2減圧器18、第2冷却
器19、第2圧縮機16を順次接続し、さらに第
2圧縮機16の吐出側を第1圧縮機11の吐出側
経路に連結して副冷媒回路を構成する。第2冷却
器19の蒸発温度は第1冷却器15の蒸発温度よ
り高く設定し、冷却運転が行なわれる。当然のこ
とであるが、第1冷却器15および第2冷却器1
9の冷凍能力は、大略その冷凍能力の合計が冷凍
負荷の最大値と等しくなるように選ばれ、冷凍負
荷がある程度小さくなつた場合には、第1冷却器
15または第2冷却器19の一方だけでまかなえ
るようになつている。本実施例では、低負荷時に
は第2圧縮機16を停止し、第1冷却器15のみ
で冷却する構成となつている。また各冷却器の相
対位置としては、被冷却媒体の上流側に第2冷却
器19が下流側に第1冷却器15が配置された構
成となつている。
An embodiment of the present invention will be described below with reference to FIG. In the figure, a first compressor 11, a condenser 1
2. The first solenoid valve 13, the first pressure reducer 14, and the first cooler 15 are connected in a ring to form a main refrigerant circuit, and the outlet side of the condenser 12 is branched to form a second solenoid valve 17. , the second pressure reducer 18, the second cooler 19, and the second compressor 16 are connected in sequence, and the discharge side of the second compressor 16 is further connected to the discharge side path of the first compressor 11 to form a sub-refrigerant circuit. Configure. The evaporation temperature of the second cooler 19 is set higher than the evaporation temperature of the first cooler 15, and cooling operation is performed. As a matter of course, the first cooler 15 and the second cooler 1
The refrigeration capacities of 9 are selected so that the total refrigeration capacity is approximately equal to the maximum value of the refrigeration load, and when the refrigeration load becomes small to a certain extent, one of the first cooler 15 or the second cooler 19 is selected. It has become possible to cover the costs with just that. In this embodiment, when the load is low, the second compressor 16 is stopped and cooling is performed only by the first cooler 15. The relative positions of the respective coolers are such that the second cooler 19 is placed on the upstream side of the medium to be cooled, and the first cooler 15 is placed on the downstream side.

次に、本冷凍サイクルの作用について説明す
る。冷凍負荷が大きく、冷凍機の冷凍能力に等し
いか、またはそれ以上の場合には、第1圧縮機1
1および第2圧縮機16は両方とも連続運転され
るが、第2圧縮機16の吸入圧力が高い分だけ運
転効率が高い運転となる。しかし、冷凍機の冷凍
能力に余裕がある場合や被冷却媒体が冷却されて
温度が下がり負荷が見掛け上減少したような場合
には、運転切換センサ(図示せず)等の動作指令
により、第2圧縮機16は連続運転するが、第1
圧縮機11は負荷の大きさに応じた断続運転とな
る。この場合も、蒸発温度が高く成績係数の良い
第2圧縮機16は連続運転されるが、蒸発温度が
低く成績係数の悪い第1圧縮機11は断続運転し
て運転割合が少くなる結果、冷凍機は全体として
より効率の高い運転が行われる。これには本冷凍
装置が2台の圧縮機から吐出される冷媒を1台の
凝縮器12で液化する構成となつているので第1
圧縮機11が停止している間は、凝縮器12を通
過する冷媒量が第1圧縮機11からの吐出分だけ
減少し、凝縮器12の凝縮圧力が低下するので、
それだけ第2圧縮機16の圧縮仕事が減つて、第
2圧縮機16の成績係数が向上するという効果も
大きく影響している。次に、被冷却媒体と第2冷
却器の蒸発温度との温度差が減る、いわゆる冷凍
負荷が軽減した場合には、第2圧縮機16の運転
を停止し、第1圧縮機11のみを運転する。この
場合も凝縮器12を通過する冷媒量が第2圧縮機
16からの吐出分だけ減少するので、凝縮圧力、
すなわち吐出圧力が低下して第1圧縮機11の成
績係数を向上させることができる。また、負荷と
冷凍能力の比率が適正となるため、第1圧縮機1
1の断続運転による運転効率も向上させることが
できる。
Next, the operation of this refrigeration cycle will be explained. If the refrigeration load is large and equal to or greater than the refrigeration capacity of the refrigerator, the first compressor 1
Both the first and second compressors 16 are operated continuously, but the operation efficiency is higher due to the higher suction pressure of the second compressor 16. However, if the chiller has sufficient refrigeration capacity, or if the medium to be cooled is cooled and the temperature drops and the load appears to decrease, an operation command from an operation switching sensor (not shown), etc. The second compressor 16 operates continuously, but the first
The compressor 11 operates intermittently depending on the magnitude of the load. In this case as well, the second compressor 16, which has a high evaporation temperature and a good coefficient of performance, is operated continuously, but the first compressor 11, which has a low evaporation temperature and a poor coefficient of performance, operates intermittently, resulting in a lower operating ratio. The machine operates more efficiently overall. This is because this refrigeration system is configured to liquefy the refrigerant discharged from two compressors in one condenser 12.
While the compressor 11 is stopped, the amount of refrigerant passing through the condenser 12 decreases by the amount discharged from the first compressor 11, and the condensation pressure of the condenser 12 decreases.
The compression work of the second compressor 16 is reduced to that extent, and the coefficient of performance of the second compressor 16 is improved, which has a large influence. Next, when the temperature difference between the medium to be cooled and the evaporation temperature of the second cooler decreases, that is, the so-called refrigeration load is reduced, the operation of the second compressor 16 is stopped and only the first compressor 11 is operated. do. In this case as well, the amount of refrigerant passing through the condenser 12 is reduced by the amount discharged from the second compressor 16, so the condensing pressure
That is, the discharge pressure is reduced, and the coefficient of performance of the first compressor 11 can be improved. In addition, since the ratio of load and refrigerating capacity is appropriate, the first compressor 1
Operation efficiency can also be improved by intermittent operation in step 1.

なお、上記実施例では冷凍負荷が小さい時には
第2圧縮機16の運転を止め、第1圧縮機11の
みを運転するようにしているが、第2圧縮機16
のみを運転するようにしても同様の効果が得られ
る。この場合には、第1圧縮機11に比べて第2
圧縮機16の成績係数が高い分だけさらに高い運
転効率が得られる。ただし、この場合には被冷却
媒体と蒸発温度の差が小さくなるため、第2冷却
器の伝熱面積の増加等大巾な伝熱性能の改善が必
要となる。
In the above embodiment, when the refrigeration load is small, the operation of the second compressor 16 is stopped and only the first compressor 11 is operated.
A similar effect can be obtained by driving only the vehicle. In this case, compared to the first compressor 11, the second
The higher the coefficient of performance of the compressor 16, the higher the operating efficiency can be obtained. However, in this case, since the difference between the medium to be cooled and the evaporation temperature becomes small, it is necessary to significantly improve the heat transfer performance, such as increasing the heat transfer area of the second cooler.

以上説明したように本発明によれば、蒸発温度
の異る2台の冷却器、2台の圧縮機を有する冷凍
サイクルを凝縮器を共通にして二温度蒸発冷凍装
置を構成し、負荷が大きい場合には吸入圧力レベ
ルの高い第2圧縮機を連続運転し、吸入圧力レベ
ルの低い第1圧縮機を負荷に応じて断続運転し、
負荷が少さい場合には2台のうち、どちらか1台
の圧縮機を停止し、他の1台を負荷に応じて断続
運転したことにより、高い運転効率が得られると
いう利点がある。また冷却器を2分し、これを並
列に配置したため、圧力損失が減り運転効率が向
上するという利点もある。
As explained above, according to the present invention, a refrigeration cycle having two coolers and two compressors with different evaporation temperatures uses a common condenser to configure a two-temperature evaporative refrigeration system, which has a large load. In some cases, the second compressor with a high suction pressure level is operated continuously, and the first compressor with a low suction pressure level is operated intermittently depending on the load,
When the load is small, one of the two compressors is stopped and the other compressor is operated intermittently depending on the load, which has the advantage that high operating efficiency can be obtained. Furthermore, since the cooler is divided into two parts and arranged in parallel, there is also the advantage that pressure loss is reduced and operational efficiency is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二温度蒸発冷凍装置の一例を示
す冷凍サイクル構成図。第2図は本発明の一実施
例を示す冷凍サイクル構成図である。 11……第1圧縮機、12……凝縮器、13,
17……電磁弁、14,18……減圧器、15…
…第1冷却器、16……第2圧縮機、19……第
2冷却器、20……被冷却媒体流れ方向。
FIG. 1 is a refrigeration cycle configuration diagram showing an example of a conventional two-temperature evaporative refrigeration system. FIG. 2 is a refrigeration cycle configuration diagram showing an embodiment of the present invention. 11...first compressor, 12...condenser, 13,
17... Solenoid valve, 14, 18... Pressure reducer, 15...
...First cooler, 16... Second compressor, 19... Second cooler, 20... Cooling medium flow direction.

Claims (1)

【特許請求の範囲】[Claims] 1 第1圧縮機、凝縮器、第1減圧器、第1冷却
器を環状に接続して主冷媒回路を構成するととも
に、上記凝縮器の出口側経路を分岐し、第2減圧
器、第2冷却器、第2圧縮機を直列に接続、さら
に第2圧縮機の吐出側を第1圧縮機の吐出側経路
に連結して副冷媒回路を形成し、第2冷却器の蒸
発温度を第1冷却器より高く設定して二温度蒸発
式冷凍装置を形成し、冷凍負荷が大きく、冷凍能
力と同等かそれ以上の場合は、第1圧縮機、第2
圧縮機とも連続運転し、冷凍能力に余裕があるか
負荷が見掛け上減少したような場合は、第2圧縮
機は負荷の変化に関係なく連続運転させ、第1圧
縮機を冷凍負荷に応じて断続運転させ、冷凍負荷
が軽減したときには、第1圧縮機または第2圧縮
機のうちどちらか1台を停止し、他の圧縮機を負
荷に応じて断続運転させるように運転制御するこ
とを特徴とする冷凍装置の運転方法。
1 A first compressor, a condenser, a first pressure reducer, and a first cooler are connected in an annular manner to constitute a main refrigerant circuit, and the outlet side path of the condenser is branched, and a second pressure reducer, a second The cooler and the second compressor are connected in series, and the discharge side of the second compressor is connected to the discharge side path of the first compressor to form a sub-refrigerant circuit, and the evaporation temperature of the second cooler is set to the first compressor. If the setting is higher than the cooler to form a two-temperature evaporative refrigeration system, and the refrigeration load is large and the refrigeration capacity is equal to or greater than the refrigeration capacity, the first compressor and the second
Both compressors are operated continuously, and if there is sufficient refrigeration capacity or the load has apparently decreased, the second compressor is operated continuously regardless of changes in load, and the first compressor is operated in accordance with the refrigeration load. The compressor is operated intermittently, and when the refrigeration load is reduced, either one of the first compressor or the second compressor is stopped, and the other compressor is controlled intermittently in accordance with the load. How to operate refrigeration equipment.
JP1170781A 1981-01-30 1981-01-30 Refrigerating plant Granted JPS57127757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170781A JPS57127757A (en) 1981-01-30 1981-01-30 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170781A JPS57127757A (en) 1981-01-30 1981-01-30 Refrigerating plant

Publications (2)

Publication Number Publication Date
JPS57127757A JPS57127757A (en) 1982-08-09
JPS6337865B2 true JPS6337865B2 (en) 1988-07-27

Family

ID=11785509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170781A Granted JPS57127757A (en) 1981-01-30 1981-01-30 Refrigerating plant

Country Status (1)

Country Link
JP (1) JPS57127757A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127456A (en) * 1984-07-16 1986-02-06 新明和工業株式会社 Two step refrigerator
JP4647399B2 (en) * 2005-06-03 2011-03-09 高砂熱学工業株式会社 Ventilation air conditioner
JP6218659B2 (en) * 2014-03-28 2017-10-25 三菱電機株式会社 Refrigeration air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724428B2 (en) * 1973-11-12 1982-05-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602505Y2 (en) * 1980-07-17 1985-01-24 ダイキン工業株式会社 air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724428B2 (en) * 1973-11-12 1982-05-24

Also Published As

Publication number Publication date
JPS57127757A (en) 1982-08-09

Similar Documents

Publication Publication Date Title
US4173865A (en) Auxiliary coil arrangement
US3675441A (en) Two stage refrigeration plant having a plurality of first stage refrigeration systems
US4201065A (en) Variable capacity vapor compression refrigeration system
US2938361A (en) Reversible refrigerating system
US4240269A (en) Heat pump system
JPH0333985B2 (en)
US4220011A (en) Air cooled centrifugal refrigeration system with water heat recovery
US6338254B1 (en) Refrigeration sub-cooler and air conditioning dehumidifier
JPH0593550A (en) Freezing system
US4057977A (en) Reverse cycle heat pump circuit
US20220049886A1 (en) Methods and systems for controlling working fluid in hvacr systems
JPS6337865B2 (en)
CN110411047A (en) Refrigeration system
JPS5824764A (en) Heat pump device
JP2001033110A (en) Refrigerator
JPH02192559A (en) Dual refrigerator
JPH03294750A (en) Freezing apparatus
JPH0828975A (en) Turbo refrigerator
JPS6124950A (en) Two-element refrigerator
JPH0332904Y2 (en)
US2351700A (en) Refrigeration
JP2833339B2 (en) Thermal storage type air conditioner
JPH0338592Y2 (en)
JPH0228368Y2 (en)
SU1402779A1 (en) Refrigerating plant