JPH0828975A - Turbo refrigerator - Google Patents

Turbo refrigerator

Info

Publication number
JPH0828975A
JPH0828975A JP16192094A JP16192094A JPH0828975A JP H0828975 A JPH0828975 A JP H0828975A JP 16192094 A JP16192094 A JP 16192094A JP 16192094 A JP16192094 A JP 16192094A JP H0828975 A JPH0828975 A JP H0828975A
Authority
JP
Japan
Prior art keywords
pressure
temperature
condenser
evaporator
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16192094A
Other languages
Japanese (ja)
Inventor
Masashi Tamagawa
正志 玉川
Naoki Matsumoto
直喜 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16192094A priority Critical patent/JPH0828975A/en
Publication of JPH0828975A publication Critical patent/JPH0828975A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

PURPOSE:To execute an operation with a minimum bypass quantity of hot gas and to conduct the operation at optimum thermal efficiency by detecting the ratio between a condensation pressure and an evaporation pressure and also by controlling the respective openings of an inlet vane and a hot gas bypass control valve on the basis of the result of the detection. CONSTITUTION:Refrigerant vapor generated in an evaporator 1 is compressed to be superheated vapor of high pressure by a turbo compressor 2 and this vapor is cooled down to be a liquid by a condenser 3. The liquid of high pressure is subjected to pressure reduction in an expansion valve 4, the temperature is lowered and the refrigerant of low pressure and low temperature is evaporated to be vapor of low pressure in the evaporator 1 and returned to the turbo compressor 2 again. When the inlet temperature of cooling water in the condenser 3 changes, a condensation pressure changes and also a compression ratio of the turbo compressor 2 changes. In this case, pressure transmitters 9A and 9B are attached to the condenser 3 and the evaporator 1 respectively and the respective pressure transmission signals thereof are made compression ratio signals by an arithmetic unit 10, while an inlet vane 12 and a bypass control valve 6 are controlled when a detected temperature of a temperature sensor 13 lowers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷却水条件と冷凍機負荷
に応じて最小限のホットバイパス量運転を行うようにし
たターボ冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbo refrigerator in which a minimum amount of hot bypass operation is performed according to cooling water conditions and refrigerator load.

【0002】[0002]

【従来の技術】図3は従来のターボ冷凍機の系統図であ
る。図において、1は蒸発器、2はターボ圧縮機、3は
凝縮器、4は膨張弁であり、これらが冷媒配管によって
結合されている。12はターボ圧縮機2の吸込ベーンで
ある。7は冷却対象場所であり、ここで冷凍負荷が発生
する。冷却対象場所7と、蒸発器1との間にはブライン
循環回路が設けられている。8は同循環回路上に設けら
れたブラインポンプである。5は凝縮器3と蒸発器1と
を連通するホットガスバイパス管、6は同バイパス管上
に設けられたバイパス制御弁である。13はブライン循
環回路の、前記蒸発器1の出口側に設けられた温度セン
サ、14は同温度センサに連る制御器であり、ターボ圧
縮機の吸込ベーン12とバイパス制御弁6を制御するた
めのものである。
2. Description of the Related Art FIG. 3 is a system diagram of a conventional turbo refrigerator. In the figure, 1 is an evaporator, 2 is a turbo compressor, 3 is a condenser, 4 is an expansion valve, and these are connected by a refrigerant pipe. Reference numeral 12 is a suction vane of the turbo compressor 2. Reference numeral 7 is a cooling target place, where a refrigerating load is generated. A brine circulation circuit is provided between the cooling target location 7 and the evaporator 1. Reference numeral 8 is a brine pump provided on the circulation circuit. Reference numeral 5 is a hot gas bypass pipe that connects the condenser 3 and the evaporator 1 to each other, and 6 is a bypass control valve provided on the bypass pipe. Reference numeral 13 is a temperature sensor provided on the outlet side of the evaporator 1 in the brine circulation circuit, and 14 is a controller connected to the temperature sensor, for controlling the suction vane 12 and the bypass control valve 6 of the turbo compressor. belongs to.

【0003】上記系統において、蒸発器1から発生する
冷媒蒸気はターボ圧縮機2で圧縮されて高圧の過熱蒸気
となり凝縮器3で冷却水に熱を奪われて液体となる。こ
の高圧の液を膨張弁4で減圧すると温度が下がる。この
低圧低温の冷媒を蒸発器1で蒸発させると周囲から蒸発
熱をとり低圧の蒸気となって再びターボ圧縮機2に戻
る。
In the above system, the refrigerant vapor generated from the evaporator 1 is compressed by the turbo compressor 2 to become high-pressure superheated vapor, and the condenser 3 removes heat from the cooling water to become a liquid. When the pressure of this high-pressure liquid is reduced by the expansion valve 4, the temperature drops. When this low-pressure low-temperature refrigerant is evaporated in the evaporator 1, the heat of evaporation is taken from the surroundings to form low-pressure vapor, which returns to the turbo compressor 2.

【0004】ターボ圧縮機2の容量制御は同圧縮機に付
属された吸込ベーン12の開度の調節によって行なわれ
る。冷凍機の低負荷運転時においては、蒸発器の蒸発ガ
ス量が少くなるので圧縮機の吸込ガス量も当然少くな
る。蒸発器1のブライン出口側に設けられた温度センサ
13の検出温度が所定値以上の時はターボ圧縮機2の吸
込ベーン12は100%の開度で運転されるが、上記検
出温度が所定値になると、制御器14を介して吸込ベー
ン12の開度を100%から順次減少させて行き、ター
ボ圧縮機の容量を減少させ、ブライン出口温度を所定温
度に保つようにしている。
The capacity of the turbo compressor 2 is controlled by adjusting the opening degree of the suction vane 12 attached to the compressor. During low load operation of the refrigerator, the amount of evaporative gas in the evaporator is small, and therefore the amount of suction gas in the compressor is naturally small. When the temperature detected by the temperature sensor 13 provided on the brine outlet side of the evaporator 1 is equal to or higher than a predetermined value, the suction vane 12 of the turbo compressor 2 is operated at an opening of 100%. Then, the opening degree of the suction vane 12 is sequentially decreased from 100% via the controller 14, the capacity of the turbo compressor is decreased, and the brine outlet temperature is kept at a predetermined temperature.

【0005】ターボ圧縮機には、サージング現象という
固有の現象があり、吸込ガス量がある流量以下に少くな
ると、流体の逆流現象を惹き起し、運転継続に支障を来
す。このサージング現象を回避して、低負荷運転を継続
するために、凝縮器から蒸発器へ冷媒をバイパスさせる
ホットガスバイパス管が設けられている。温度センサの
検出温度がさらに下って、ターボ圧縮機の吸込ベーン1
2の開度が所定開度以下になると、ホットガスバイパス
管のバイパス制御弁6を開き始める。バイパス制御弁の
開度は、制御器14を介して、吸込ベーン12の開度減
少に連動して増加させる。
The turbo compressor has a peculiar phenomenon called a surging phenomenon, and when the amount of suction gas is less than a certain flow rate, it causes a backflow phenomenon of fluid, which hinders continuous operation. In order to avoid this surging phenomenon and continue the low load operation, a hot gas bypass pipe for bypassing the refrigerant from the condenser to the evaporator is provided. The temperature detected by the temperature sensor further decreases, and the suction vane 1 of the turbo compressor
When the opening degree of 2 becomes equal to or smaller than the predetermined opening degree, the bypass control valve 6 of the hot gas bypass pipe starts to open. The opening degree of the bypass control valve is increased via the controller 14 in conjunction with the decrease in the opening degree of the suction vane 12.

【0006】図4は上記の作用における従来の吸込ベー
ン開度とバイパス制御弁開度との関係を示した図であ
る。前記の温度センサ13の検出値が所定値より低くな
ると、吸込ベーン開度はA点からB点へ向って図4の線
上を移動する。吸込ベーン開度がB点に達し、さらに温
度センサ13の検出値が低下すると、図のB−C線の関
係を保ちながら、バイパス制御弁6が開かれる。温度セ
ンサ13の検出値が上昇した時は、上記の逆の方向の制
御がなされる。2個の弁を連動させる制御は制御器14
によって行われる。
FIG. 4 is a diagram showing the relationship between the conventional intake vane opening and the bypass control valve opening in the above operation. When the detected value of the temperature sensor 13 becomes lower than a predetermined value, the suction vane opening moves from the point A to the point B on the line in FIG. When the suction vane opening reaches the point B and the detected value of the temperature sensor 13 further decreases, the bypass control valve 6 is opened while maintaining the relationship of the line B-C in the figure. When the detected value of the temperature sensor 13 rises, control in the opposite direction is performed. The control for interlocking the two valves is the controller 14
Done by

【0007】[0007]

【発明が解決しようとする課題】図4に示したバイパス
制御弁開度と吸込ベーン開度との関係は、従来は、凝縮
器3に流入する冷却水の入口温度は年間を通して一定、
例えば32℃であるという仮定を基に設定されていた。
すなわち図4の関係は年間を通じて固定されていた。
The relationship between the opening degree of the bypass control valve and the opening degree of the suction vane shown in FIG. 4 is that the inlet temperature of the cooling water flowing into the condenser 3 is constant throughout the year.
For example, it was set based on the assumption of 32 ° C.
That is, the relationship in Figure 4 was fixed throughout the year.

【0008】しかし実際には、季節及び負荷変化により
冷却水の入口温度は変化する。それによりターボ圧縮機
2の運転可能域も変化する。図5はその運転特性を示す
もので、各種ベーン開度に対応するターボ圧縮機の吸込
ガス量と圧縮比(=凝縮圧力/蒸発圧力)との関係を示
したもので、凝縮器における冷却水入口温度(CW)が
パラメータとして記載してある。またサージング領域も
記載してある。
However, in reality, the inlet temperature of the cooling water changes depending on the season and load changes. As a result, the operable range of the turbo compressor 2 also changes. FIG. 5 shows the operating characteristics, and shows the relationship between the suction gas amount of the turbo compressor and the compression ratio (= condensing pressure / evaporating pressure) corresponding to various vane openings, and the cooling water in the condenser is shown. The inlet temperature (CW) is listed as a parameter. The surging area is also shown.

【0009】図5を冷却水入口温度毎に見ると、 (1)CW=32℃ではQのみの吸込ガス量となりサー
ジングにより運転不可となる。そのためX量のホットガ
スバイパスにより吸込ガス量を増加することによりサー
ジングは回避され運転は可能となるが、ホットガスバイ
パス量は冷凍機損失となり運転効率は低下する。 (2)またCW=28℃では、そのX’量はCW32℃
に比べ少量となるが同様損失となり運転効率は低下す
る。 (3)CW=24℃では、サージング域より右側の運転
可能域にあるためホットガスバイパスを必要としない。
Looking at FIG. 5 for each cooling water inlet temperature, (1) At CW = 32 ° C., the amount of suction gas is only Q, and operation cannot be performed due to surging. Therefore, by increasing the suction gas amount by the X amount of hot gas bypass, surging can be avoided and operation can be performed, but the hot gas bypass amount causes a refrigerator loss and the operating efficiency decreases. (2) Also, at CW = 28 ° C, the X ′ amount is CW32 ° C.
Although the amount is smaller than that of, the loss is similar and the operating efficiency is reduced. (3) At CW = 24 ° C., the hot gas bypass is not necessary because it is in the operable range on the right side of the surging range.

【0010】従来は、年間を通じて、冷却水温度は、例
えばCW=32℃で一定であるとしていたが、図5か
ら、このような仮定は不合理であることがわかる。本発
明は、冷却水温度は変るものであるとの前提に基づき、
凝縮器の冷却水入口温度が変化すると凝縮圧力が変化し
て前記圧縮比が変わることを利用して最小限のホットガ
スバイパス量となる弁開度の制御を行う効率的なターボ
冷凍機を提供しようとするものである。
Conventionally, the cooling water temperature is assumed to be constant at, for example, CW = 32 ° C. throughout the year, but FIG. 5 shows that such an assumption is unreasonable. The present invention is based on the premise that the cooling water temperature is variable,
Provided is an efficient turbo chiller that controls the valve opening that minimizes the hot gas bypass amount by utilizing the fact that the condensation pressure changes and the compression ratio changes when the cooling water inlet temperature of the condenser changes. Is what you are trying to do.

【0011】[0011]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、ターボ圧縮機の吸込ベーン開度とホ
ットガスバイパス制御弁開度とを制御して容量制御運転
をするターボ冷凍機において、次の特徴を有するターボ
冷凍機に関するものである。 (1)凝縮圧力と蒸発圧力との比を検出する手段、及び
同検出手段からの出力信号により前記吸込ベーン開度と
ホットガスバイパス制御弁開度を制御する制御手段を備
えたこと。 (2)前記(1)項のターボ冷凍機において、圧縮比検
出手段が、凝縮器に設けられた凝縮圧力検出器、蒸発器
に設けられた蒸発圧力検出器、及び両検出器で検出した
圧力を演算してその比を算出する演算器から構成される
こと。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems and is a turbo refrigerating system in which a capacity control operation is performed by controlling an opening of a suction vane of a turbo compressor and an opening of a hot gas bypass control valve. The present invention relates to a turbo refrigerator having the following features. (1) A means for detecting the ratio of the condensation pressure and the evaporation pressure, and a control means for controlling the suction vane opening and the hot gas bypass control valve opening by the output signal from the detection means are provided. (2) In the turbo refrigerator according to the above item (1), the compression ratio detecting means has a condensation pressure detector provided in the condenser, an evaporation pressure detector provided in the evaporator, and a pressure detected by both detectors. Comprising a computing unit that computes and calculates the ratio.

【0012】[0012]

【作用】季節及び負荷変化により冷却水入口温度は変化
する。冷却水入口温度の変化により凝縮器の凝縮圧力は
変化するので凝縮圧力と蒸発圧力との比である圧縮比は
変化する。この圧縮比の変化により冷凍機吸込ベーン開
度及びホットガスバイパス制御弁開度を制御することに
より冷却水条件と冷凍負荷に合致したホットガスバイパ
ス量、即ち常時最小限のホットガスバイパス量で運転を
継続することが可能となる。従って最も省エネルギーに
対する効率的な運転となる。
[Operation] The cooling water inlet temperature changes depending on the season and load changes. Since the condensing pressure of the condenser changes with the change of the cooling water inlet temperature, the compression ratio, which is the ratio of the condensing pressure to the evaporating pressure, changes. By controlling the opening of the refrigerator suction vane and the opening of the hot gas bypass control valve by this change in the compression ratio, the hot gas bypass amount that matches the cooling water conditions and the refrigeration load, that is, always operates with the minimum hot gas bypass amount. It is possible to continue. Therefore, the most efficient energy-saving operation is achieved.

【0013】[0013]

【実施例】図1は本発明の一実施例に係るターボ冷凍機
の系統図である。図において、9Aは凝縮器3に設けら
れた圧力発信器、9Bは蒸発器1に設けられた圧力発信
器、10は上記両圧力発信器の信号を受け、圧縮比を算
出する演算器、11は温度センサ13の温度検出信号と
前記演算器10からの圧縮比信号を受けて、ターボ圧縮
機の吸込ベーン12とホットガスバイパス管のバイパス
制御弁6との開度を制御する制御器である。上記以外の
部分の構成は従来技術と同じである。また冷媒の循環お
よびブラインの循環による冷凍作用は従来技術と同じで
ある。
1 is a system diagram of a turbo refrigerator according to an embodiment of the present invention. In the figure, 9A is a pressure transmitter provided in the condenser 3, 9B is a pressure transmitter provided in the evaporator 1, 10 is an arithmetic unit for receiving signals from both pressure transmitters, and calculating a compression ratio, 11 Is a controller that receives the temperature detection signal of the temperature sensor 13 and the compression ratio signal from the arithmetic unit 10 and controls the opening degree of the suction vane 12 of the turbo compressor and the bypass control valve 6 of the hot gas bypass pipe. . The configuration other than the above is the same as the conventional technique. Further, the refrigerating action by the circulation of the refrigerant and the circulation of the brine is the same as that of the conventional technique.

【0014】凝縮器3に送られる冷却水の入口温度が季
節、負荷の変化により変化すると凝縮圧力は変化する。
凝縮圧力が変化するとターボ圧縮機2の圧縮比は変化す
る。本実施例のターボ冷凍機においては、凝縮器3と蒸
発器1とに圧力発信器9を取付け両発信器の信号を演算
器10にかけ圧縮比信号とし、制御器11に同信号を入
力し制御器11の出力信号により、低負荷域、すなわち
温度センサ13の検出温度が低下した時に吸込ベーン1
2及びバイパス制御弁6を制御して、最小限のホットガ
スバイパス量で運転を継続しようとするものである。
When the inlet temperature of the cooling water sent to the condenser 3 changes due to changes in season and load, the condensing pressure changes.
When the condensing pressure changes, the compression ratio of the turbo compressor 2 changes. In the turbo chiller of the present embodiment, the pressure transmitters 9 are attached to the condenser 3 and the evaporator 1, and the signals of both transmitters are applied to the arithmetic unit 10 to obtain a compression ratio signal, which is input to the controller 11 for control. The output signal of the container 11 causes the suction vane 1 to operate in a low load range, that is, when the temperature detected by the temperature sensor 13 decreases.
2 and the bypass control valve 6 are controlled to continue the operation with the minimum amount of hot gas bypass.

【0015】図2は上記低負荷域における上記両弁の開
度関係を示す図である。温度センサ13の検出温度が所
定値より低下した時に吸込ベーン開度を図のA点からB
点へ向けて減少させる点は従来技術と同じである。上記
検出温度がさらに低下して吸込ベーン開度がB点より小
さくなった時、従来はバイパス制御弁開度と吸込ベーン
開度との相関関係は、図4のように一定であったが、本
発明では、図2に示すように、凝縮器入口冷却水温度に
よって吸込ベーン開度とバイパス制御弁開度との関係が
変化するようにしている。すなわち、吸込ベーン開度が
B点以下では凝縮器入口冷却水温度の変化によって変わ
る圧縮比によってバイパス制御弁開度がB−C線、B−
D線、又はB−E線等のいずれかで制御されるようにな
っており、選択された線上で、どの一に対応するバイパ
ス制御弁開度の制御を行うかは前述の温度センサ13の
検出温度で決まる吸込ベーン開度によって決まる。従っ
て、ホットガスバイパス量を最小限として効率のよい運
転を行うことができる。
FIG. 2 is a diagram showing the relationship between the opening degrees of the both valves in the low load range. When the temperature detected by the temperature sensor 13 falls below a predetermined value, the suction vane opening is changed from point A to point B in the figure.
The point of decreasing toward the point is the same as in the prior art. When the detected temperature further decreases and the suction vane opening becomes smaller than point B, the correlation between the bypass control valve opening and the suction vane opening is conventionally constant as shown in FIG. In the present invention, as shown in FIG. 2, the relationship between the suction vane opening and the bypass control valve opening changes depending on the condenser inlet cooling water temperature. That is, when the opening of the intake vane is less than the point B, the opening of the bypass control valve is line B-C, line B-
It is designed to be controlled by either the D line, the B-E line, or the like, and which one of the bypass control valve openings is controlled on the selected line is determined by the temperature sensor 13 described above. Determined by the suction vane opening, which is determined by the detected temperature. Therefore, the amount of hot gas bypass can be minimized for efficient operation.

【0016】[0016]

【発明の効果】本発明のターボ冷凍機においては、凝縮
圧力と蒸発圧力との比を検出する手段、及び同検出手段
からの出力信号により前記吸込ベーン開度とホットガス
バイパス制御弁開度を制御する制御手段を備えているの
で、最小限のホットガスバイパス量で運転が可能とな
る。従って最適熱効率運転とすることができる。
In the turbo refrigerator according to the present invention, the suction vane opening and the hot gas bypass control valve opening are controlled by means for detecting the ratio between the condensation pressure and the evaporation pressure, and the output signal from the detection means. Since the control means for controlling is provided, the operation can be performed with the minimum hot gas bypass amount. Therefore, optimal thermal efficiency operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るターボ冷凍機の系統
図。
FIG. 1 is a system diagram of a turbo refrigerator according to an embodiment of the present invention.

【図2】上記実施例に係る吸込ベーン開度とバイパス制
御弁開度との関係図。
FIG. 2 is a relationship diagram between the intake vane opening and the bypass control valve opening according to the above embodiment.

【図3】従来のターボ冷凍機の系統図。FIG. 3 is a system diagram of a conventional turbo refrigerator.

【図4】従来の吸込ベーン開度とバイパス制御弁開度と
の関係図。
FIG. 4 is a relational diagram of a conventional suction vane opening and a bypass control valve opening.

【図5】ターボ圧縮機の吸込ガス量と圧縮比の関係図。FIG. 5 is a relationship diagram of a suction gas amount and a compression ratio of a turbo compressor.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 ターボ圧縮機 3 凝縮器 4 膨張弁 5 ホットガスバイパス管 6 バイパス制御弁 7 冷却対象場所 8 ブラインポンプ 9A 圧力発信器 9B 圧力発信器 10 演算器 11 制御器 12 吸込ベーン 13 温度センサ 14 制御器 1 Evaporator 2 Turbo Compressor 3 Condenser 4 Expansion Valve 5 Hot Gas Bypass Pipe 6 Bypass Control Valve 7 Cooling Target Place 8 Brine Pump 9A Pressure Transmitter 9B Pressure Transmitter 10 Computing Unit 11 Controller 12 Suction Vane 13 Temperature Sensor 14 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ターボ圧縮機の吸込ベーン開度とホット
ガスバイパス制御弁開度とを制御して容量制御運転をす
るターボ冷凍機において、凝縮圧力と蒸発圧力との比を
検出する手段、及び同検出手段からの出力信号により前
記吸込ベーン開度とホットガスバイパス制御弁開度を制
御する制御手段を備えたことを特徴とするターボ冷凍
機。
1. A turbo chiller which controls a suction vane opening and a hot gas bypass control valve opening of a turbo compressor to perform a capacity control operation, and means for detecting a ratio between a condensation pressure and an evaporation pressure, and A turbo chiller comprising control means for controlling the opening of the suction vane and the opening of the hot gas bypass control valve according to an output signal from the detection means.
【請求項2】 上記検出手段が、凝縮器に設けられた凝
縮圧力検出器、蒸発器に設けられた蒸発圧力検出器、及
び両検出器で検出した圧力を演算してその比を算出する
演算器から構成されることを特徴とする請求項1に記載
のターボ冷凍機。
2. The calculating means calculates the ratio by calculating the pressures detected by the condensation pressure detector provided in the condenser, the evaporation pressure detector provided in the evaporator, and both detectors. The turbo chiller according to claim 1, wherein the turbo chiller is configured with a refrigerator.
JP16192094A 1994-07-14 1994-07-14 Turbo refrigerator Withdrawn JPH0828975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16192094A JPH0828975A (en) 1994-07-14 1994-07-14 Turbo refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16192094A JPH0828975A (en) 1994-07-14 1994-07-14 Turbo refrigerator

Publications (1)

Publication Number Publication Date
JPH0828975A true JPH0828975A (en) 1996-02-02

Family

ID=15744548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16192094A Withdrawn JPH0828975A (en) 1994-07-14 1994-07-14 Turbo refrigerator

Country Status (1)

Country Link
JP (1) JPH0828975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002635A (en) * 2007-06-25 2009-01-08 Mitsubishi Heavy Ind Ltd Heat source machine, its control method, heat source system and its operating method
JP2011002186A (en) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2011017455A (en) * 2009-07-07 2011-01-27 Mitsubishi Heavy Ind Ltd Turbo refrigerator
CN108431521A (en) * 2016-01-12 2018-08-21 大金应用美国股份有限公司 Centrifugal compressor with hot gas injection
TWI691651B (en) * 2019-06-06 2020-04-21 國立臺北科技大學 Screw compression system with real-time variable built-in volume ratio and method of operating the same
CN114413548A (en) * 2021-12-21 2022-04-29 珠海格力电器股份有限公司 Variable-frequency centrifugal water chilling unit and control method and storage medium thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002635A (en) * 2007-06-25 2009-01-08 Mitsubishi Heavy Ind Ltd Heat source machine, its control method, heat source system and its operating method
JP2011002186A (en) * 2009-06-19 2011-01-06 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
JP2011017455A (en) * 2009-07-07 2011-01-27 Mitsubishi Heavy Ind Ltd Turbo refrigerator
CN108431521A (en) * 2016-01-12 2018-08-21 大金应用美国股份有限公司 Centrifugal compressor with hot gas injection
CN108431521B (en) * 2016-01-12 2020-09-29 大金应用美国股份有限公司 Centrifugal compressor with hot gas injection
TWI691651B (en) * 2019-06-06 2020-04-21 國立臺北科技大學 Screw compression system with real-time variable built-in volume ratio and method of operating the same
CN114413548A (en) * 2021-12-21 2022-04-29 珠海格力电器股份有限公司 Variable-frequency centrifugal water chilling unit and control method and storage medium thereof

Similar Documents

Publication Publication Date Title
US6923016B2 (en) Refrigeration cycle apparatus
USRE40499E1 (en) Pulsed flow for capacity control
US5435148A (en) Apparatus for maximizing air conditioning and/or refrigeration system efficiency
IE42343B1 (en) "improved refrigeration systems"
CN101122436A (en) Constant speed hot pump unit with logic control throttle style and its control method
AU2005327828A1 (en) Control of a refrigeration circuit with an internal heat exchanger
US20230106363A1 (en) Systems and Methods for Implementing Ejector Refrigeration Cycles with Cascaded Evaporation Stages
CN108895694A (en) A kind of improvement self-cascade refrigeration system system and its control method
US5086624A (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
JPH05172429A (en) Air conditioner
JP2003004316A (en) Method for controlling refrigeration unit
JPH11344265A (en) Turbo freezer of multistage compression system
JPH0828975A (en) Turbo refrigerator
CN117329745A (en) Refrigerating control device and method for environment test box
JP2002228282A (en) Refrigerating device
JP7496817B2 (en) Cooling System
CN115560496A (en) Enhanced vapor injection heat pump cold water system and control method
JP2660485B2 (en) Heat pump type crystal product manufacturing method and apparatus
JPH0651756U (en) Cooling system
JPH06294551A (en) Airconditioning apparatus
JPH0833245B2 (en) Refrigeration system operation controller
JP3661014B2 (en) Refrigeration equipment
JP2009236430A (en) Compression type refrigerating machine and its capacity control method
JPH04214153A (en) Refrigerating cycle device
JPH0252955A (en) Cooling device and control method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002