JP2003004316A - Method for controlling refrigeration unit - Google Patents

Method for controlling refrigeration unit

Info

Publication number
JP2003004316A
JP2003004316A JP2001188225A JP2001188225A JP2003004316A JP 2003004316 A JP2003004316 A JP 2003004316A JP 2001188225 A JP2001188225 A JP 2001188225A JP 2001188225 A JP2001188225 A JP 2001188225A JP 2003004316 A JP2003004316 A JP 2003004316A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
temperature
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001188225A
Other languages
Japanese (ja)
Inventor
Yuichi Kusumaru
雄一 薬丸
Sadao Kawahara
定夫 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001188225A priority Critical patent/JP2003004316A/en
Publication of JP2003004316A publication Critical patent/JP2003004316A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle capable of making an adjustment to a pressure for surely obtaining an optimum efficiency, i.e., surely enabling change of refrigerating capacity, and having a high efficiency and a high capacity by employing the steps of detecting pressure and temperature at an inlet of an expansion valve and calculating a specific enthalpy value of a refrigerant as shown in the table of Fig. 5, in a refrigeration unit using the refrigeration cycle wherein a supercritical fluid is used as the refrigerant and the refrigerant is heat-exchanged at an inlet side and an outlet side of a gas cooler. SOLUTION: The refrigeration unit comprises a flow control valve 11 for controlling quantity of internal heat exchange, a pressure detecting means 7 at an inlet of the expansion valve and a temperature detecting means 8. The specific enthalpy of the refrigerant is calculated so that an operation by employing an optimum refrigeration cycle is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機の入口側配
管とガスクーラーの出口側配管とを流れる冷媒を熱交換
させる内部熱交換器を備えて蒸気圧縮サイクルを構成
し、この蒸気圧縮サイクルの高圧側で臨界点を超える流
体を冷媒として用いる冷凍装置の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a vapor compression cycle having an internal heat exchanger for exchanging heat between refrigerant flowing through an inlet side pipe of a compressor and an outlet side pipe of a gas cooler. The present invention relates to a method for controlling a refrigeration system that uses a fluid that exceeds a critical point on the high pressure side as a refrigerant.

【0002】[0002]

【従来の技術】近年、蒸気圧縮式冷凍サイクルに使用さ
れる冷媒の脱フロン対策の一つとして、例えば二酸化炭
素(CO2)を使用した蒸気圧縮式冷凍サイクルが提案
されている。しかし高圧側が臨界点を超えるような二酸
化炭素を使用した蒸気圧縮式冷凍サイクルでは、フロン
サイクルで用いられているような過冷却度制御方法を用
いることはできず、何らかの能力制御方法が必要とな
る。また、CO2サイクルでは、フロンサイクルに比べ
て冷凍能力やCOP(成績係数)が劣ることから、これ
を改善するために、特公平7−294033号公報に示
されるようなサイクル制御方法の例がある。この例につ
いて図11を参照して説明すると、まずガスクーラー出
口の冷媒温度を検出し(S100)、この冷媒温度から
高圧通路を流れる冷媒の最適高圧を演算し(S10
1)、高圧通路の実際の高圧圧力が、最適高圧より大き
いか否かを判定する(S102)。この結果、実際の高
圧圧力が大きいと判定された場合には、前記膨張弁の開
度を大きくする方向に制御して高圧圧力を低下させる
(S103)。また実際の高圧圧力が小さいと判定され
た場合には、前記膨張弁の開度を小さくする方向に制御
して高圧圧力を上昇させるものである。以上のように、
ガスクーラーの圧力が臨界圧力を超えるCO2サイクル
では、冷凍能力やCOPが高圧圧力に左右され、ある圧
力(10〜15MPa)でCOPが最も良くなることが
判っている。例えば、膨張弁入口温度が40度前後とな
る夏場にあっては、図12に示すように、COPが最大
αとなる高圧圧力βが存在する。これは、CO2を冷媒
として使用する場合、この膨張弁入口側の冷媒温度に対
して効率の良い最適な高圧圧力値がある事に着目したも
のである。
2. Description of the Related Art In recent years, a vapor compression refrigeration cycle using, for example, carbon dioxide (CO2) has been proposed as one of the measures for dechlorofluorocarbon removal of the refrigerant used in the vapor compression refrigeration cycle. However, in the vapor compression refrigeration cycle using carbon dioxide whose high pressure side exceeds the critical point, the supercooling degree control method used in the Freon cycle cannot be used, and some kind of capacity control method is required. . Further, in the CO2 cycle, the refrigerating capacity and COP (coefficient of performance) are inferior to those in the Freon cycle. Therefore, in order to improve this, there is an example of a cycle control method as disclosed in Japanese Patent Publication No. 7-294033. . This example will be described with reference to FIG. 11. First, the refrigerant temperature at the gas cooler outlet is detected (S100), and the optimum high pressure of the refrigerant flowing through the high pressure passage is calculated from this refrigerant temperature (S10).
1) It is determined whether the actual high pressure in the high pressure passage is higher than the optimum high pressure (S102). As a result, when it is determined that the actual high pressure is large, the opening of the expansion valve is controlled to be increased to reduce the high pressure (S103). When it is determined that the actual high pressure is small, the high pressure is increased by controlling the opening degree of the expansion valve to a smaller direction. As mentioned above,
In the CO2 cycle in which the pressure of the gas cooler exceeds the critical pressure, the refrigerating capacity and the COP depend on the high pressure, and it is known that the COP becomes the best at a certain pressure (10 to 15 MPa). For example, in the summer when the temperature at the inlet of the expansion valve is around 40 degrees, as shown in FIG. 12, the high pressure β at which the COP becomes maximum α exists. This is because, when CO2 is used as a refrigerant, there is an optimum high pressure value that is efficient and efficient with respect to the refrigerant temperature on the inlet side of the expansion valve.

【0003】[0003]

【発明が解決しようとする課題】ところで、上述のよう
に冷媒温度から最適高圧を計算する方法は簡易的ではあ
るが、圧縮機の吐出圧力と膨張弁の入口圧力は冷媒循環
量が変化すると圧力損失も大きく変化するため、実際に
吐出圧力を最適な効率になるような圧力に合わせるため
には計算式が非常に複雑になる。特に高圧が8MPaか
ら10MPaの範囲においては超臨界域での等温線の勾
配が著しく小さくなるため、複数の検出器で演算を行う
場合の補正などを考慮すると、実際に最適な高圧に制御
することは現実的には困難である。すなわち最適な効率
になるような圧力に合わせることが困難であるので、高
効率かつ高能力な冷凍サイクルを提供することも困難で
ある。
By the way, although the method of calculating the optimum high pressure from the refrigerant temperature is simple as described above, the discharge pressure of the compressor and the inlet pressure of the expansion valve are different when the refrigerant circulation amount changes. Since the loss also greatly changes, the calculation formula becomes very complicated in order to actually adjust the discharge pressure to a pressure that provides optimum efficiency. In particular, when the high pressure is in the range of 8 MPa to 10 MPa, the slope of the isotherm in the supercritical region becomes extremely small. Therefore, in consideration of the correction when performing calculations with multiple detectors, it is necessary to actually control to the optimum high pressure. Is difficult in reality. That is, since it is difficult to adjust the pressure to obtain the optimum efficiency, it is also difficult to provide a refrigeration cycle with high efficiency and high capacity.

【0004】そこで、本発明においては、超臨界流体を
冷媒として用い、ガスクーラーの出口側と圧縮機の入口
側とにおいて冷媒を熱交換する内部熱交換器を設けた冷
凍サイクルを用いるものにおいて、膨張弁入口の温度お
よび圧力を検知し、図5に示すテーブルのように、冷媒
の比エンタルピ値を算出することで、確実に最適な効率
になるような圧力に合わせることができる、すなわち確
実に冷凍能力を増減させることを可能にして、高効率か
つ高能力な冷凍サイクルを提供することを目的とする。
Therefore, in the present invention, in a refrigeration cycle in which a supercritical fluid is used as a refrigerant and an internal heat exchanger for exchanging heat between the gas cooler outlet side and the compressor inlet side is provided, By detecting the temperature and pressure at the inlet of the expansion valve and calculating the specific enthalpy value of the refrigerant as in the table shown in FIG. 5, it is possible to reliably adjust the pressure to the optimum efficiency, that is, reliably. It is an object of the present invention to provide a highly efficient and highly efficient refrigeration cycle by making it possible to increase or decrease the refrigeration capacity.

【0005】[0005]

【課題を解決するための手段】請求項1記載の本発明の
冷凍装置の制御方法は、圧縮機と、ガスクーラーと、前
記ガスクーラーの出口側配管と前記圧縮機の入口側配管
を流れる流体を熱交換させる内部熱交換器と、膨張弁
と、蒸発器とをそれぞれ配管を介して環状に接続して蒸
気圧縮サイクルを構成し、前記蒸気圧縮サイクルの高圧
側で臨界点を超える前記流体を冷媒として用いる冷凍装
置の制御方法であって、前記膨張弁入口側の冷媒温度を
検出する温度検出手段と、前記膨張弁入口側の冷媒圧力
を検出する圧力検出手段とを有し、前記温度検出手段に
よって検出した検出温度と前記圧力検出手段によって検
出した検出圧力とから前記膨張弁入口の比エンタルピ値
を演算し、前記比エンタルピ値に基づいて、前記膨張弁
の開度を制御することを特徴とする。請求項2記載の本
発明の冷凍装置の制御方法は、圧縮機と、ガスクーラー
と、前記ガスクーラーの出口側配管と前記圧縮機の入口
側配管を流れる流体を熱交換させる内部熱交換器と、膨
張弁と、レシーバと、蒸発器とをそれぞれ配管を介して
環状に接続して蒸気圧縮サイクルを構成し、前記レシー
バの上部と前記蒸発器の出口から前記内部熱交換器の入
口までの配管とを接続するバイパス回路と、前記バイパ
ス回路を流れる冷媒流量を調整する内部熱交換量調節弁
とを有し、前記蒸気圧縮サイクルの高圧側で臨界点を超
える前記流体を冷媒として用いる冷凍装置の制御方法で
あって、前記膨張弁の入口側での冷媒温度を検出する温
度検出手段と、前記蒸気圧縮サイクルの高圧側配管の圧
力を検出する圧力検出手段とを有し、前記温度検出手段
によって検出した温度と前記圧力検出手段によって検出
した圧力とから前記膨張弁入口冷媒の比エンタルピ値を
演算し、前記比エンタルピ値に基づいて、前記内部熱交
換量調節弁の開度を制御することを特徴とする。請求項
3記載の本発明の冷凍装置の制御方法は、圧縮機と、ガ
スクーラーと、前記ガスクーラーの出口側配管と前記圧
縮機の入口側配管を流れる流体を熱交換させる内部熱交
換器と、第1の膨張弁と、レシーバと、第2の膨張弁
と、蒸発器とをそれぞれ配管を介して環状に接続して蒸
気圧縮サイクルを構成し、前記蒸気圧縮サイクルの高圧
側で臨界点を超える流体を冷媒として用いる冷凍装置の
制御方法であって、前記膨張弁の入口側の冷媒温度を検
出する温度検出手段と、前記蒸気圧縮サイクルの高圧側
配管の圧力を検出する圧力検出手段とを有し、前記温度
検出手段によって検出した温度と前記圧力検出手段によ
って検出した圧力とから前記膨張弁入口冷媒の比エンタ
ルピ値を演算し、前記比エンタルピ値に基づいて、前記
第1の膨張弁および前記第2の膨張弁の開度を制御するこ
とを特徴とする。請求項4記載の本発明の冷凍装置の制
御方法は、圧縮機と、油分離器と、ガスクーラーと、前
記ガスクーラーの出口側配管と前記圧縮機の入口側配管
を流れる流体を熱交換させる内部熱交換器と、膨張弁
と、蒸発器とをそれぞれ配管を介して環状に接続して蒸
気圧縮サイクルを構成し、前記油分離器の底部と前記内
部熱交換器の出口から前記圧縮機の入口までの配管とを
接続する油戻し回路と、前記油戻し回路を流れる油戻り
量を調整する油戻り量調節弁とを有し、前記蒸気圧縮サ
イクルの高圧側で臨界点を超える前記流体を冷媒として
用いる冷凍装置の制御方法であって、前記膨張弁の入口
側での冷媒温度を検出する温度検出手段と、前記蒸気圧
縮サイクルの高圧側配管の圧力を検出する圧力検出手段
とを有し、前記温度検出手段によって検出した温度と前
記圧力検出手段によって検出した圧力とから前記膨張弁
入口冷媒の比エンタルピ値を演算し、前記比エンタルピ
値に基づいて、前記油戻り量調節弁の開度を制御するこ
とを特徴とする。請求項5記載の本発明は、請求項1か
ら請求項4のいずれかに記載の冷凍装置の制御方法にお
いて、前記比エンタルピ値に基づいて、前記ガスクーラ
ーの冷却量または前記圧縮機の回転数を制御することを
特徴とする。請求項6記載の本発明は、請求項2又は請
求項4に記載の冷凍装置の制御方法において、前記圧縮
機の冷媒温度を検出する温度検出手段を備え、前記温度
検出手段によって検出した冷媒温度に応じて、前記バイ
パス回路を流れる冷媒流量または前記油戻し回路を流れ
る油戻り量を制御することを特徴とする。請求項7記載
の本発明は、請求項1から請求項4のいずれかに記載の
冷凍装置の制御方法において、前記圧縮機の運転開始か
らの10〜30秒間は、前記膨張弁の開度を口径面積の
5%以下に制御することを特徴とする。請求項8記載の
本発明は、請求項1から請求項4のいずれかに記載の冷
凍装置の制御方法において、前記蒸発器に冷媒温度検出
手段を備え、前記温度検出手段によって検出された値が
0〜3度になる場合に、前記膨張弁の開度を制御するこ
とを特徴とする。請求項9記載の本発明は、請求項1か
ら請求項4のいずれかに記載の冷凍装置の制御方法にお
いて、前記蒸発器に冷媒温度検出手段を備え、前記温度
検出手段によって検出した冷媒温度に応じて、前記膨張
弁の開度、前記ガスクーラーの冷却量、または前記バイ
パス回路を流れる冷媒流量を制御することを特徴とす
る。請求項10記載の本発明は、請求項2又は請求項4
に記載の冷凍装置の制御方法において、前記圧縮機の回
転数を検出する回転数検出手段を備え、前記回転数検出
手段によって検出した回転数に応じて、前記バイパス回
路を流れる冷媒流量または前記油戻し回路を流れる油戻
り量を制御することを特徴とする。請求項11記載の本
発明は、請求項1から請求項4のいずれかに記載の冷凍
装置の制御方法において、前記冷媒として、二酸化炭素
を用いたことを特徴とする。請求項12記載の本発明
は、請求項1から請求項4のいずれかに記載の冷凍装置
の制御方法において、前記冷媒として、二酸化炭素やア
ンモニアなどの自然冷媒を用い、充填する潤滑油量を5
〜10gとし、前記圧縮機としてリニア圧縮機を用いる
ことを特徴とする。
A method for controlling a refrigerating apparatus according to the present invention is a fluid flowing through a compressor, a gas cooler, an outlet side pipe of the gas cooler and an inlet side pipe of the compressor. An internal heat exchanger for exchanging heat, an expansion valve, and an evaporator are annularly connected to each other to form a vapor compression cycle, and the fluid that exceeds the critical point on the high pressure side of the vapor compression cycle A method for controlling a refrigeration apparatus used as a refrigerant, comprising: a temperature detecting means for detecting a refrigerant temperature on the expansion valve inlet side; and a pressure detecting means for detecting a refrigerant pressure on the expansion valve inlet side, wherein the temperature detection Calculating a specific enthalpy value at the expansion valve inlet from the detected temperature detected by the means and the detected pressure detected by the pressure detecting means, and controlling the opening degree of the expansion valve based on the specific enthalpy value. The features. The method for controlling a refrigeration system of the present invention according to claim 2 is a compressor, a gas cooler, and an internal heat exchanger for exchanging heat between fluids flowing through an outlet side pipe of the gas cooler and an inlet side pipe of the compressor. , An expansion valve, a receiver, and an evaporator are annularly connected to each other to form a vapor compression cycle, and a pipe from the receiver and the outlet of the evaporator to the inlet of the internal heat exchanger Of a refrigerating apparatus that has a bypass circuit connecting with and an internal heat exchange amount adjusting valve that adjusts the flow rate of the refrigerant flowing through the bypass circuit, and that uses the fluid that exceeds the critical point on the high pressure side of the vapor compression cycle as the refrigerant. A control method, comprising: temperature detection means for detecting the refrigerant temperature at the inlet side of the expansion valve; and pressure detection means for detecting the pressure in the high pressure side pipe of the vapor compression cycle, the temperature detection means Therefore, the specific enthalpy value of the expansion valve inlet refrigerant is calculated from the detected temperature and the pressure detected by the pressure detection means, and the opening degree of the internal heat exchange amount control valve is controlled based on the specific enthalpy value. Is characterized by. The method for controlling a refrigeration system of the present invention according to claim 3 is a compressor, a gas cooler, and an internal heat exchanger for exchanging heat between fluids flowing through an outlet side pipe of the gas cooler and an inlet side pipe of the compressor. , A first expansion valve, a receiver, a second expansion valve, and an evaporator are connected in an annular shape via pipes to form a vapor compression cycle, and a critical point is set on the high pressure side of the vapor compression cycle. A method of controlling a refrigeration apparatus using a fluid exceeding a refrigerant, comprising temperature detecting means for detecting a refrigerant temperature at an inlet side of the expansion valve, and pressure detecting means for detecting a pressure of a high pressure side pipe of the vapor compression cycle. Comprising, the specific enthalpy value of the expansion valve inlet refrigerant is calculated from the temperature detected by the temperature detection means and the pressure detected by the pressure detection means, and based on the specific enthalpy value, the first expansion valve And controlling the opening degree of the second expansion valve. According to a fourth aspect of the present invention, there is provided a method of controlling a refrigerating apparatus, wherein a compressor, an oil separator, a gas cooler, an outlet side pipe of the gas cooler and an inlet side pipe of the compressor are heat-exchanged. An internal heat exchanger, an expansion valve, and an evaporator are annularly connected to each other to form a vapor compression cycle, and the bottom of the oil separator and the outlet of the internal heat exchanger form the compressor. An oil return circuit that connects a pipe to the inlet and an oil return amount control valve that adjusts the amount of oil return flowing through the oil return circuit are provided, and the fluid that exceeds a critical point on the high pressure side of the vapor compression cycle A method of controlling a refrigerating apparatus used as a refrigerant, comprising: a temperature detecting means for detecting a refrigerant temperature at an inlet side of the expansion valve; and a pressure detecting means for detecting a pressure of a high pressure side pipe of the vapor compression cycle. , By the temperature detecting means The specific enthalpy value of the expansion valve inlet refrigerant is calculated from the temperature that is output and the pressure detected by the pressure detection means, and the opening degree of the oil return amount control valve is controlled based on the specific enthalpy value. And According to a fifth aspect of the present invention, in the method for controlling a refrigerating apparatus according to any of the first to fourth aspects, the cooling amount of the gas cooler or the rotation speed of the compressor is based on the specific enthalpy value. It is characterized by controlling. According to a sixth aspect of the present invention, in the refrigeration apparatus control method according to the second or fourth aspect, a temperature detection unit that detects a refrigerant temperature of the compressor is provided, and the refrigerant temperature detected by the temperature detection unit is included. According to, the flow rate of the refrigerant flowing through the bypass circuit or the oil return amount flowing through the oil return circuit is controlled. According to a seventh aspect of the present invention, in the method for controlling a refrigerating apparatus according to any one of the first to fourth aspects, the opening degree of the expansion valve is set to 10 to 30 seconds from the start of operation of the compressor. The feature is that the diameter is controlled to be 5% or less of the area. The present invention according to claim 8 is the method for controlling a refrigerating apparatus according to any one of claims 1 to 4, wherein the evaporator is provided with a refrigerant temperature detecting means, and a value detected by the temperature detecting means is It is characterized in that the opening degree of the expansion valve is controlled when it becomes 0 to 3 degrees. According to a ninth aspect of the present invention, in the method for controlling a refrigerating apparatus according to any one of the first to fourth aspects, the evaporator is provided with a refrigerant temperature detecting means, and the refrigerant temperature detected by the temperature detecting means is set to the refrigerant temperature. Accordingly, the opening degree of the expansion valve, the cooling amount of the gas cooler, or the flow rate of the refrigerant flowing through the bypass circuit is controlled. The present invention according to claim 10 relates to claim 2 or claim 4.
In the method for controlling a refrigerating apparatus according to item 1, there is provided a rotation speed detection means for detecting the rotation speed of the compressor, and depending on the rotation speed detected by the rotation speed detection means, a refrigerant flow rate or the oil flowing through the bypass circuit. It is characterized by controlling the amount of oil returned to the return circuit. The present invention according to claim 11 is the method for controlling a refrigerating apparatus according to any one of claims 1 to 4, wherein carbon dioxide is used as the refrigerant. According to a twelfth aspect of the present invention, in the refrigerating apparatus control method according to any one of the first to fourth aspects, a natural refrigerant such as carbon dioxide or ammonia is used as the refrigerant, and an amount of lubricating oil to be filled is set. 5
10 to 10 g, and a linear compressor is used as the compressor.

【0006】[0006]

【発明の実施の形態】本発明の第1の実施の形態は、膨
張弁の入口側での冷媒温度と、蒸気圧縮サイクルの高圧
側配管の圧力とを検出し、温度検出手段によって検出し
た温度と圧力検出手段によって検出した圧力とから、膨
張弁入口冷媒の比エンタルピ値を演算し、膨張弁開度を
増減させるものである。本実施の形態によれば、要求負
荷が高いときは熱交換量が高くなるように制御でき、か
つ要求負荷が低いときはCOPが高くなるように制御で
きるので、確実に冷凍サイクルの性能向上が図れる。
BEST MODE FOR CARRYING OUT THE INVENTION In the first embodiment of the present invention, the temperature detected by the temperature detecting means by detecting the refrigerant temperature at the inlet side of the expansion valve and the pressure in the high pressure side pipe of the vapor compression cycle. The specific enthalpy value of the expansion valve inlet refrigerant is calculated from the pressure detected by the pressure detecting means and the expansion valve opening degree. According to the present embodiment, the heat exchange amount can be controlled to be high when the required load is high, and the COP can be controlled to be high when the required load is low, so that the performance of the refrigeration cycle can be surely improved. Can be achieved.

【0007】本発明の第2の実施の形態は、膨張弁の入
口側での冷媒温度と、蒸気圧縮サイクルの高圧側配管の
圧力とを検出し、温度検出手段によって検出した温度と
圧力検出手段によって検出した圧力とから、膨張弁入口
冷媒の比エンタルピを演算し、レシーバの上部と蒸発器
の出口から内部熱交換器の入口までの配管とを接続する
バイパス回路の内部熱交換量調節弁開度を増減させるも
のである。本実施の形態によれば、要求負荷が高いとき
は高圧を低下させながら熱交換量が高くなるように内部
熱交量を制御でき、かつ要求負荷が低いときはCOPが
高くなるように制御できるので、冷凍サイクルのさらな
る性能向上を図ることができる。
In the second embodiment of the present invention, the temperature of the refrigerant at the inlet side of the expansion valve and the pressure of the high-pressure side pipe of the vapor compression cycle are detected, and the temperature and the pressure detecting means are detected by the temperature detecting means. The specific enthalpy of the refrigerant at the inlet of the expansion valve is calculated from the pressure detected by, and the internal heat exchange control valve of the bypass circuit that connects the upper part of the receiver and the pipe from the outlet of the evaporator to the inlet of the internal heat exchanger is opened. It is to increase or decrease the degree. According to the present embodiment, when the required load is high, it is possible to control the internal heat exchange amount so that the heat exchange amount is increased while lowering the high pressure, and when the required load is low, the COP is increased. Therefore, it is possible to further improve the performance of the refrigeration cycle.

【0008】本発明の第3の実施の形態は、膨張弁の入
口側での冷媒温度と、蒸気圧縮サイクルの高圧側配管の
圧力とを検出し、温度検出手段によって検出した温度と
圧力検出手段によって検出した圧力とから、膨張弁入口
冷媒の比エンタルピを演算し、第1の膨張弁と第2の膨
張弁の開度を増減させるものである。本実施の形態によ
れば、要求負荷が高いときは熱交換量が高くなるように
レシーバ内に貯留する冷媒量を制御でき、かつ要求負荷
が低いときはCOPが高くなるように制御できるので、
より低コストで冷凍サイクルの性能向上を図ることがで
きる。
In the third embodiment of the present invention, the temperature of the refrigerant at the inlet side of the expansion valve and the pressure of the high pressure side pipe of the vapor compression cycle are detected, and the temperature and the pressure detecting means are detected by the temperature detecting means. The specific enthalpy of the refrigerant at the inlet of the expansion valve is calculated from the pressure detected by, and the opening degrees of the first expansion valve and the second expansion valve are increased or decreased. According to the present embodiment, the amount of refrigerant stored in the receiver can be controlled so that the heat exchange amount becomes high when the required load is high, and the COP can be controlled so that it becomes high when the required load is low.
The performance of the refrigeration cycle can be improved at a lower cost.

【0009】本発明の第4の実施の形態は、膨張弁の入
口側での冷媒温度と、蒸気圧縮サイクルの高圧側配管の
圧力とを検出し、温度検出手段によって検出した温度と
圧力検出手段によって検出した圧力とから、膨張弁入口
冷媒の比エンタルピを演算し、油分離器の底部と内部熱
交換器の出口から圧縮機の入口までの配管とを接続する
油戻し回路の油戻り量調節弁開度を増減させるものであ
る。本実施の形態によれば、要求負荷が高いときは熱交
換量が高くなるように圧縮機性能を制御でき、かつ要求
負荷が低いときはCOPが高くなるように制御できるの
で、より簡単な制御で冷凍サイクルの性能向上を図るこ
とができる。
The fourth embodiment of the present invention detects the refrigerant temperature at the inlet side of the expansion valve and the pressure of the high pressure side pipe of the vapor compression cycle, and the temperature and pressure detecting means detected by the temperature detecting means. The specific enthalpy of the refrigerant at the inlet of the expansion valve is calculated from the pressure detected by, and the oil return amount of the oil return circuit that connects the bottom of the oil separator and the pipe from the outlet of the internal heat exchanger to the compressor inlet is adjusted. This is to increase or decrease the valve opening. According to the present embodiment, the compressor performance can be controlled to increase the heat exchange amount when the required load is high, and the COP can be controlled to increase when the required load is low. Thus, the performance of the refrigeration cycle can be improved.

【0010】本発明の第5の実施の形態は、第1から第
4の実施の形態による冷凍装置の制御方法において、ガ
スクーラーの冷却量(例えば放熱を促進する冷却ファン
の風量)を、膨張弁入口の比エンタルピ値と要求負荷に
応じて最適となるように調整することにより、高効率な
冷凍サイクルの運転が図れる。
The fifth embodiment of the present invention is a method for controlling a refrigeration system according to any one of the first to fourth embodiments, in which a cooling amount of a gas cooler (for example, an air flow amount of a cooling fan for promoting heat dissipation) is expanded. A highly efficient refrigeration cycle operation can be achieved by adjusting the valve enthalpy to be optimum according to the specific enthalpy value and the required load.

【0011】本発明の第6の実施の形態は、第2から第
4の実施の形態による冷凍装置の制御方法において、圧
縮機の冷媒温度を検出し、温度検出手段によって検出し
た値が一定値(例えば150度)以上になった場合に、
バイパス回路を流れる冷媒流量または油戻し回路を流れ
る油戻り量を増減させるものである。本実施の形態によ
れば、過度に圧縮機の吐出温度が上昇するのを抑制し、
圧縮機効率が低下するのを防止することができるととも
に、圧縮機の吐出温度の上がり過ぎを防止しつつ冷凍サ
イクルの性能向上を図ることができる。
The sixth embodiment of the present invention is the method for controlling a refrigerating apparatus according to the second to fourth embodiments, in which the refrigerant temperature of the compressor is detected and the value detected by the temperature detecting means is a constant value. If it exceeds (for example 150 degrees),
The amount of refrigerant flowing through the bypass circuit or the amount of oil returned through the oil return circuit is increased or decreased. According to the present embodiment, it is possible to prevent the discharge temperature of the compressor from rising excessively,
It is possible to prevent the efficiency of the compressor from being lowered, and to improve the performance of the refrigeration cycle while preventing the discharge temperature of the compressor from rising too high.

【0012】本発明の第7の実施の形態は、第1から第
4の実施の形態による冷凍装置の制御方法において、圧
縮機の運転開始からの10〜30秒間は、膨張弁開度を
口径面積の5%以下に制御するものである。本実施の形
態によれば、圧縮機が運転してから早急に高低圧力差を
大きくすることができるので、短時間で冷凍能力を向上
させることができる。
The seventh embodiment of the present invention is the method for controlling a refrigeration system according to any of the first to fourth embodiments, wherein the expansion valve opening is set to the aperture for 10 to 30 seconds from the start of operation of the compressor. The area is controlled to 5% or less. According to the present embodiment, the high-low pressure difference can be increased immediately after the compressor operates, so that the refrigerating capacity can be improved in a short time.

【0013】本発明の第8の実施の形態は、第1から第
4の実施の形態による冷凍装置の制御方法において、蒸
発器の冷媒温度を検出し、温度検出手段によって検出し
た値が0〜3度になる場合に、膨張弁開度を制御させる
ものである。本実施の形態によれば、蒸発器温度が低下
して蒸発器が凍結する恐れのある場合にも、圧縮機を停
止させることなく膨張弁開度を制御させることにより、
冷凍サイクルが大きく変動するのを防ぎつつ運転を継続
し、圧縮機の信頼性向上を図ることができる。
An eighth embodiment of the present invention is the method for controlling a refrigeration system according to any one of the first to fourth embodiments, in which the refrigerant temperature of the evaporator is detected and the value detected by the temperature detecting means is 0 to 0. When it becomes 3 degrees, the expansion valve opening is controlled. According to the present embodiment, even when the evaporator temperature may decrease and the evaporator may freeze, by controlling the expansion valve opening degree without stopping the compressor,
It is possible to improve the reliability of the compressor by continuing the operation while preventing the refrigeration cycle from fluctuating significantly.

【0014】本発明の第9の実施の形態は、第1から第
4の実施の形態による冷凍装置の制御方法において、蒸
発器に冷媒温度検出手段を備え、温度検出手段によって
検出した冷媒温度に応じて、膨張弁の開度、ガスクーラ
ーの冷却量、またはバイパス回路を流れる冷媒流量を制
御するものである。本実施の形態によれば、一定時間あ
たりに変化する蒸発温度に応じて膨張弁開度またはガス
クーラー冷却量またはバイパス回路を流れる冷媒流量の
変化量を制御するので、より安定した冷凍サイクルを構
成することができる。
The ninth embodiment of the present invention is the method for controlling a refrigerating apparatus according to any one of the first to fourth embodiments, wherein the evaporator is provided with a refrigerant temperature detecting means, and the refrigerant temperature detected by the temperature detecting means is adjusted. Accordingly, the opening degree of the expansion valve, the cooling amount of the gas cooler, or the flow rate of the refrigerant flowing through the bypass circuit is controlled. According to the present embodiment, the expansion valve opening degree, the gas cooler cooling amount, or the change amount of the flow rate of the refrigerant flowing through the bypass circuit is controlled according to the evaporation temperature that changes per constant time, so that a more stable refrigeration cycle is configured. can do.

【0015】本発明の第10の実施の形態は、第1から
第4の実施の形態による冷凍装置の制御方法において、
圧縮機の回転数を検出し、回転数検出手段によって検出
した値の変化量が一定値(例えば1000rpm/秒)
以上になった場合、バイパス回路を流れる冷媒流量また
は油戻し回路を流れる油戻り量を増減させるものであ
る。本実施の形態によれば、過度に圧縮機の吐出温度お
よび吐出圧力が上昇するのを抑制し、圧縮機効率が低下
するのを防止することができるとともに、冷凍サイクル
の信頼性確保を図ることができる。
The tenth embodiment of the present invention is the method for controlling a refrigeration system according to any one of the first to fourth embodiments.
The rotation speed of the compressor is detected, and the amount of change in the value detected by the rotation speed detection means is a constant value (for example, 1000 rpm / sec).
In the above case, the flow rate of the refrigerant flowing through the bypass circuit or the oil return amount flowing through the oil return circuit is increased or decreased. According to the present embodiment, it is possible to prevent the discharge temperature and discharge pressure of the compressor from rising excessively, prevent the compressor efficiency from decreasing, and ensure the reliability of the refrigeration cycle. You can

【0016】本発明の第11の実施の形態は、第1から
第4の実施の形態による冷凍装置の制御方法において、
冷媒として二酸化炭素を用いたものであり、第1から第
4の実施の形態によれば二酸化炭素を用いることがで
き、二酸化炭素を用いることで効果的なフロン対策を行
うことができる。
An eleventh embodiment of the present invention is a method for controlling a refrigeration system according to any of the first to fourth embodiments, wherein
Carbon dioxide is used as the refrigerant, and according to the first to fourth embodiments, carbon dioxide can be used, and by using carbon dioxide, effective CFC countermeasures can be taken.

【0017】本発明の第12の実施の形態は、第1から
第4の実施の形態による冷凍装置の制御方法において、
冷媒として二酸化炭素やアンモニアなどの自然冷媒を用
い、充填する潤滑油量を5〜10gとし、圧縮機として
リニア圧縮機を用いたものである。本実施の形態によれ
ば、潤滑油が少ないためガスクーラーや蒸発器の熱伝達
率を向上させるとともに、圧縮機の吐出温度を上昇させ
ることができるため、冷凍能力の向上を図ることができ
る。
The twelfth embodiment of the present invention is the method for controlling a refrigeration system according to any one of the first to fourth embodiments,
A natural refrigerant such as carbon dioxide or ammonia is used as the refrigerant, the amount of lubricating oil filled is 5 to 10 g, and a linear compressor is used as the compressor. According to the present embodiment, since the lubricating oil is small, the heat transfer coefficient of the gas cooler and the evaporator can be improved, and the discharge temperature of the compressor can be raised, so that the refrigerating capacity can be improved.

【0018】[0018]

【実施例】以下、本発明の一実施例について図面を参考
に詳細な説明を行う。 (実施例1)図1は本発明による冷凍装置の実施例1に
おける構成図を示す。1は圧縮機、2はガスクーラー、
3は内部熱交換器、4は膨張弁、5は蒸発器である。こ
れら圧縮機1と、ガスクーラー2と、内部熱交換器3
と、膨張弁4と、蒸発器5とは、それぞれ配管を介して
環状に接続されて蒸気圧縮サイクルを構成している。そ
して、この蒸気圧縮サイクルには、高圧側配管の圧力す
なわち膨張弁4の入口での冷媒圧力を検出する圧力検出
手段(圧力センサー)7と、膨張弁4の入口での冷媒温
度を検出する温度検出手段(温度センサー)8と、蒸発
器5の温度を検出する蒸発器温度検出手段(温度センサ
ー)9とを設けている。なお、図中における調整手段
(コントローラ)10は、温度センサー8(又は温度セ
ンサー8、9)によって検出した温度と、圧力センサー
7によって検出した圧力とから演算した膨張弁入口の比
エンタルピ値に基づいて、膨張弁4の開度を制御するも
のである。ここで、内部熱交換器3は、ガスクーラー2
の出口配管を流れる冷媒と圧縮機1の入口配管を流れる
冷媒とを熱交換させる。この冷凍サイクルにおいては、
流体として、臨界温度が常温付近にあるCO2等の冷媒
が用いられ、圧縮機2によって圧縮された冷媒は、高温
高圧の超臨界状態の冷媒としてガスクーラー2に入り、
ここで放熱して冷却する。その後、内部熱交換器3にお
いて低圧配管の低温冷媒と熱交換してさらに冷やされ、
液化することなく膨張弁4へ送られる。そして、この膨
張弁4において減圧された後、蒸発器6において蒸発気
化し、内部熱交換器3において高圧配管の高温冷媒と熱
交換した後、圧縮機2に戻る。また、膨張弁4は、コン
トローラ10によって開度が自動制御されるようになっ
ている。ここで、コントローラ10は、CPU、RO
M、RAM、入出力ポートを備えるとともに、膨張弁4
のステッピングモータを駆動する駆動回路を有して構成
され、ROMに与えられた所定のプログラムにしたがっ
てサイクル状態に関する各種信号を処理する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. (Embodiment 1) FIG. 1 shows a block diagram of Embodiment 1 of a refrigerating apparatus according to the present invention. 1 is a compressor, 2 is a gas cooler,
3 is an internal heat exchanger, 4 is an expansion valve, and 5 is an evaporator. These compressor 1, gas cooler 2, and internal heat exchanger 3
The expansion valve 4 and the evaporator 5 are annularly connected to each other through pipes to form a vapor compression cycle. In this vapor compression cycle, pressure detection means (pressure sensor) 7 for detecting the pressure of the high-pressure side pipe, that is, refrigerant pressure at the inlet of the expansion valve 4, and temperature for detecting the refrigerant temperature at the inlet of the expansion valve 4. A detection means (temperature sensor) 8 and an evaporator temperature detection means (temperature sensor) 9 for detecting the temperature of the evaporator 5 are provided. The adjusting means (controller) 10 in the figure is based on the specific enthalpy value of the expansion valve inlet calculated from the temperature detected by the temperature sensor 8 (or the temperature sensors 8 and 9) and the pressure detected by the pressure sensor 7. Thus, the opening degree of the expansion valve 4 is controlled. Here, the internal heat exchanger 3 is the gas cooler 2
Of the refrigerant flowing through the outlet pipe of the compressor and the refrigerant flowing through the inlet pipe of the compressor 1 are exchanged with each other. In this refrigeration cycle,
A refrigerant such as CO2 having a critical temperature near room temperature is used as the fluid, and the refrigerant compressed by the compressor 2 enters the gas cooler 2 as a high-temperature and high-pressure supercritical refrigerant.
It radiates heat here and cools. After that, in the internal heat exchanger 3, it is further cooled by exchanging heat with the low temperature refrigerant in the low pressure pipe,
It is sent to the expansion valve 4 without being liquefied. Then, after the pressure is reduced in the expansion valve 4, it is evaporated and vaporized in the evaporator 6, and heat is exchanged with the high-temperature refrigerant in the high-pressure pipe in the internal heat exchanger 3, and then returns to the compressor 2. Further, the opening of the expansion valve 4 is automatically controlled by the controller 10. Here, the controller 10 is a CPU, RO
Expansion valve 4 with M, RAM and input / output ports
It has a drive circuit for driving the stepping motor, and processes various signals related to the cycle state according to a predetermined program given to the ROM.

【0019】この実施例1の制御方法の概要について説
明する。まず、図5のCO2における比エンタルピ値テ
ーブルにて説明する。実際にコントローラ10に記憶さ
せるテーブルは、膨張弁4の開度を一定量(例えば2パ
ルス)変化させたときの温度および圧力変化値である
が、ここでは、温度圧力とも定間隔にして表記している
(実際にはシステム毎に膨張弁4の開度変化に対する温
度および圧力の変化量は異なるため、それぞれで設定す
る必要がある)。膨張弁4の入口温度および入口圧力か
ら算出される比エンタルピ値をhとする。ここで、膨張
弁4の開度を小さくすると、吐出圧力は上昇し、膨張弁
4の入口温度は低下するため、図5において比エンタル
ピ値hの位置は左下に移動する(このときの値をh1と
し、その差h−h1=Δhとする)。膨張弁4の開度を
大きくすると、吐出圧力は低下し、膨張弁4の入口温度
は増加するため、比エンタルピ値hの位置は右上に移動
する。なお、図5の比エンタルピ値テーブルにおいて、
左下の値の方が、比エンタルピ値が大きくなる部分を
「X1」、小さくなる部分を「Y1」とする。ここで
は、全域が「Y1」の領域であり、すなわち膨張弁開度
を小さくすると左下に移動するので、全域で比エンタル
ピ値は低下し、冷房能力が増加する。
An outline of the control method of the first embodiment will be described. First, the specific enthalpy value table for CO2 in FIG. 5 will be described. The table actually stored in the controller 10 is the temperature and pressure change values when the opening degree of the expansion valve 4 is changed by a fixed amount (for example, 2 pulses). (Actually, the amount of change in temperature and pressure with respect to the change in the opening degree of the expansion valve 4 is different for each system, so it must be set for each). The specific enthalpy value calculated from the inlet temperature and inlet pressure of the expansion valve 4 is h. Here, when the opening degree of the expansion valve 4 is reduced, the discharge pressure rises and the inlet temperature of the expansion valve 4 falls, so the position of the specific enthalpy value h moves to the lower left in FIG. h1 and the difference h−h1 = Δh). When the opening degree of the expansion valve 4 is increased, the discharge pressure is decreased and the inlet temperature of the expansion valve 4 is increased, so that the position of the specific enthalpy value h moves to the upper right. In addition, in the specific enthalpy value table of FIG.
The lower left value is defined as "X1" where the specific enthalpy value is larger and "Y1" where the specific enthalpy value is smaller. Here, the entire area is the area of “Y1”, that is, when the expansion valve opening is made smaller, the area moves to the lower left, so the specific enthalpy value decreases and the cooling capacity increases in the entire area.

【0020】さらに実施例1の制御方法について、図6
に示す制御フローチャートを参照して説明する。つま
り、コントローラ10は、膨張弁入口圧力を検知する圧
力センサー7からの信号、膨張弁4の入口温度を検知す
る温度センサー8からの信号(ステップ21)、蒸発器
出口温度を検知する温度センサー9からの信号を入力し
(ステップ22)、これらの信号に基づいて冷媒の比エ
ンタルピ値を演算する(ステップ23)。そして、比エ
ンタルピ値が「X1」か「Y1」のどちらの領域かを判
定し(ステップ24)、蒸発器5の温度tと設定値t1
(例えば10度)との温度差Δt(=t−t1)が、正か
負を判定して(ステップ25、ステップ26)、能力負
荷を変化させるように膨張弁4の開度を決定し、膨張弁
4を駆動制御する。上記構成において、例えば、能力を
増加させたい場合には、蒸発器の温度差Δtと比エンタ
ルピ値の変化量Δhに応じて膨張弁4の開度が制御さ
れ、確実に要求される冷房能力に増加させることができ
る。このように、膨張弁入口の冷媒の状態に応じて、要
求負荷が高いときは熱交換量が高くなるように制御で
き、かつ要求負荷が低いときはCOPが高くなるように
制御できるので、確実に冷凍サイクルの性能向上が図れ
る。
FIG. 6 shows the control method of the first embodiment.
This will be described with reference to the control flowchart shown in FIG. That is, the controller 10 outputs a signal from the pressure sensor 7 that detects the inlet pressure of the expansion valve, a signal from the temperature sensor 8 that detects the inlet temperature of the expansion valve 4 (step 21), and a temperature sensor 9 that detects the evaporator outlet temperature. Are input (step 22), and the specific enthalpy value of the refrigerant is calculated based on these signals (step 23). Then, it is determined whether the specific enthalpy value is in the region of "X1" or "Y1" (step 24), the temperature t of the evaporator 5 and the set value t1.
The temperature difference Δt (= t−t1) from (for example, 10 degrees) is determined to be positive or negative (step 25, step 26), and the opening degree of the expansion valve 4 is determined so as to change the capacity load, The expansion valve 4 is drive-controlled. In the above-mentioned configuration, for example, when it is desired to increase the capacity, the opening degree of the expansion valve 4 is controlled according to the temperature difference Δt of the evaporator and the change amount Δh of the specific enthalpy value, so that the required cooling capacity can be reliably achieved. Can be increased. In this way, according to the state of the refrigerant at the inlet of the expansion valve, it is possible to control so that the heat exchange amount becomes high when the required load is high and the COP becomes high when the required load is low. In addition, the performance of the refrigeration cycle can be improved.

【0021】(実施例2)図2は本発明による冷凍装置
の実施例2における構成図を示す。実施例2の構成は、
実施例1の構成において、レシーバ6とバイパス回路1
2と内部熱交換量調節弁17とを設けて、レシーバ6を
膨張弁4と蒸発器5の入口との間に配設し、バイパス回
路12の一端をレシーバ6の底部に接続して、内部熱交
換量調節弁17を介してその他端を内部熱交換器3の低
圧配管の入口側に接続したものである。以下、上記実施
例1と異なる点を主として説明し、同一個所について
は、同一符号を付して説明を省略する。実施例2の冷凍
サイクルにおいては、レシーバ6底部から内部熱交換器
3に液冷媒をバイパスさせて内部熱交換量を増加させる
ことを特徴としている。この実施例2の制御方法の概要
について説明する。実際にコントローラ10に記憶させ
るテーブルは、内部熱交換器3の熱交換量を一定量(例
えば100W)変化させたときの温度および圧力変化値
である。なお、圧縮機の吐出温度はある一定値(例えば
110度)で冷凍サイクルが運転されていると仮定す
る。ここで、内部熱交換量を小さくすると、膨張弁入口
温度は上昇し、圧縮機吸入温度が低下するため圧縮機吐
出温度も低下する。したがって、膨張弁4の開度は吐出
温度を一定に保つように制御するため小さくなる。した
がって、冷凍サイクルのバランスとしては吐出圧が上昇
するため、図5において比エンタルピ値hの位置は右下
に移動する。内部熱交換量を大きくすると、吐出圧力は
低下し、比エンタルピ値hの位置は左上に移動する。な
お、図5の比エンタルピ値テーブルにおいて、左上の値
の方が比エンタルピ値が大きくなる部分を「X2」、小
さくなる部分を「Y2」とする。
(Embodiment 2) FIG. 2 is a block diagram of Embodiment 2 of a refrigerating apparatus according to the present invention. The configuration of the second embodiment is
In the configuration of the first embodiment, the receiver 6 and the bypass circuit 1
2 and the internal heat exchange amount control valve 17 are provided, the receiver 6 is disposed between the expansion valve 4 and the inlet of the evaporator 5, and one end of the bypass circuit 12 is connected to the bottom of the receiver 6 to The other end is connected to the inlet side of the low-pressure pipe of the internal heat exchanger 3 via the heat exchange amount control valve 17. Hereinafter, differences from the first embodiment will be mainly described, and the same portions will be denoted by the same reference numerals and description thereof will be omitted. The refrigeration cycle of the second embodiment is characterized by increasing the internal heat exchange amount by bypassing the liquid refrigerant from the bottom of the receiver 6 to the internal heat exchanger 3. An outline of the control method of the second embodiment will be described. The table actually stored in the controller 10 is the temperature and pressure change values when the heat exchange amount of the internal heat exchanger 3 is changed by a constant amount (for example, 100 W). In addition, it is assumed that the discharge temperature of the compressor is operating at a certain constant value (for example, 110 degrees) in the refrigeration cycle. Here, when the internal heat exchange amount is reduced, the inlet temperature of the expansion valve rises and the compressor suction temperature falls, so the compressor discharge temperature also falls. Therefore, the opening degree of the expansion valve 4 is controlled so as to keep the discharge temperature constant, so that it becomes small. Therefore, as the balance of the refrigeration cycle, the discharge pressure rises, and therefore the position of the specific enthalpy value h moves to the lower right in FIG. When the amount of internal heat exchange is increased, the discharge pressure decreases and the position of the specific enthalpy value h moves to the upper left. In the specific enthalpy value table of FIG. 5, a portion where the upper left value has a larger specific enthalpy value is "X2", and a portion where the specific enthalpy value is smaller is "Y2".

【0022】さらに実施例2の制御方法について、図7
に示す制御フローチャートを参照して説明する。すなわ
ち、比エンタルピ値が「X2」か「Y2」かのどちらの
領域であるかを判定し(ステップ34)、蒸発器5の温
度tと設定値t1(例えば10度)との温度差Δtが正
か負を判定し(ステップ35またはステップ36)、能
力負荷を変化させるように内部熱交換量調節弁の開度を
決定して、内部熱交換量調節弁17を駆動制御する。上
記構成において、例えば、能力を増加させたい場合に
は、蒸発器の温度差Δtと比エンタルピ値の変化量Δh
に応じて内部熱交換量調節弁17の開度が制御され、要
求される冷房能力に確実に増加させることができる。こ
のように、膨張弁入口の冷媒の状態に応じて、内部熱交
換量を最適に調整することができるので、要求能力に対
し、さらなる冷凍サイクルの性能向上が図れる。
FIG. 7 shows the control method of the second embodiment.
This will be described with reference to the control flowchart shown in FIG. That is, it is determined whether the specific enthalpy value is in the region of "X2" or "Y2" (step 34), and the temperature difference Δt between the temperature t of the evaporator 5 and the set value t1 (for example, 10 degrees) is determined. Whether it is positive or negative is determined (step 35 or step 36), the opening degree of the internal heat exchange amount control valve is determined so as to change the capacity load, and the internal heat exchange amount control valve 17 is drive-controlled. In the above configuration, for example, when it is desired to increase the capacity, the temperature difference Δt of the evaporator and the change amount Δh of the specific enthalpy value.
Accordingly, the opening degree of the internal heat exchange amount control valve 17 is controlled, and the required cooling capacity can be reliably increased. Thus, the internal heat exchange amount can be optimally adjusted according to the state of the refrigerant at the inlet of the expansion valve, so that the performance of the refrigeration cycle can be further improved with respect to the required capacity.

【0023】(実施例3)図3は本発明による冷凍装置
の実施例3における構成図を示す。実施例3の構成は、
実施例2の構成において、バイパス回路12と内部熱交
換量調節弁17とを廃止し、代わりに第1の膨張弁13
と第2の膨張弁14とを設けて、第1の膨張弁13を内
部熱交換器3とレシーバ6との間に配設し、かつ第2の
膨張弁14をレシーバ6と蒸発器5との間に配設したも
のである。以下、上記実施例2と異なる点を主として説
明し、同一構成については、同一符号を付して説明を省
略する。実施例3の冷凍サイクルにおいては、第1の膨
張弁13および第2の膨張弁14の開度を制御すること
により、レシーバ6内に貯留する冷媒量を変化させるこ
とを特徴としている。貯留量を大きくしたい場合は、第
1の膨張弁13の開度を大きくして、第2の膨張弁の開
度を小さくする。この実施例3の制御方法の概要につい
て説明する。実際にコントローラ10に記憶させるテー
ブルは、レシーバ6内の冷媒量を一定量(例えば100
g)変化させたときの温度および圧力変化値である。な
お、圧縮機の吐出温度はある一定値(例えば110度)
で冷凍サイクルが運転されていると仮定する。ここで、
貯留量を小さくすると、冷凍サイクルを流れる冷媒量が
増加するため、吐出圧力が上昇し、圧縮機吸入温度が低
下するため圧縮機吐出温度も低下する。第1の膨張弁1
3および第2の膨張弁14の開度は吐出温度を一定に保
つように制御するが、システムによってそれぞれの開度
の増減は断定できないので、ここでは第1の膨張弁13
の開度は大きくなり、第2の膨張弁14の開度は小さく
なって貯留量を増やすように制御すると仮定する。すな
わち、図5において比エンタルピ値hの位置は右下に移
動する。また、貯留量を大きくすると、吐出圧力は低下
し、比エンタルピ値hの位置は左上に移動する。なお、
図5の比エンタルピ値テーブルにおいて、左上の値の方
が比エンタルピ値が大きくなる部分を「X2」、小さく
なる部分を「Y2」とする。
(Embodiment 3) FIG. 3 is a block diagram of a refrigeration apparatus according to Embodiment 3 of the present invention. The configuration of the third embodiment is
In the configuration of the second embodiment, the bypass circuit 12 and the internal heat exchange amount control valve 17 are eliminated, and instead the first expansion valve 13 is used.
And a second expansion valve 14 are provided, the first expansion valve 13 is arranged between the internal heat exchanger 3 and the receiver 6, and the second expansion valve 14 is connected to the receiver 6 and the evaporator 5. It is arranged between. Hereinafter, differences from the second embodiment will be mainly described, and the same configurations will be denoted by the same reference numerals and description thereof will be omitted. The refrigeration cycle of the third embodiment is characterized in that the opening amounts of the first expansion valve 13 and the second expansion valve 14 are controlled to change the amount of refrigerant stored in the receiver 6. When it is desired to increase the storage amount, the opening degree of the first expansion valve 13 is increased and the opening degree of the second expansion valve is decreased. An outline of the control method of the third embodiment will be described. The table actually stored in the controller 10 is such that the amount of refrigerant in the receiver 6 is constant (for example, 100
g) Temperature and pressure change values when changed. The discharge temperature of the compressor is a certain constant value (for example, 110 degrees).
Assume that the refrigeration cycle is operating at. here,
When the storage amount is reduced, the amount of refrigerant flowing through the refrigeration cycle increases, so the discharge pressure rises and the compressor suction temperature drops, so the compressor discharge temperature also drops. First expansion valve 1
The opening degrees of the third and second expansion valves 14 are controlled so as to keep the discharge temperature constant, but since the increase and decrease of the respective opening degrees cannot be determined by the system, the first expansion valve 13 is used here.
It is assumed that the opening of the second expansion valve 14 is increased and the opening of the second expansion valve 14 is decreased to control the storage amount. That is, in FIG. 5, the position of the specific enthalpy value h moves to the lower right. Further, when the storage amount is increased, the discharge pressure is decreased and the position of the specific enthalpy value h moves to the upper left. In addition,
In the specific enthalpy value table of FIG. 5, a portion where the upper left value has a larger specific enthalpy value is "X2", and a portion where the specific enthalpy value is smaller is "Y2".

【0024】さらに実施例3の制御方法について、図8
に示す制御フローチャートを参照して説明する。すなわ
ち、比エンタルピ値が「X2」か「Y2」かのどちらの
領域であるかを判定し(ステップ44)、蒸発器5の温
度tと設定値t1(例えば10度)との温度差Δtが正
か負を判定し(ステップ45または46)、能力負荷を
変化させるように第1の膨張弁13および第2の膨張弁
14の開度を決定して、第1の膨張弁13および第2の
膨張弁14を駆動制御する。このように、膨張弁入口の
冷媒の状態に応じて、レシーバ内に貯留する冷媒量を最
適に調整することで要求能力に対応することができるの
で、冷凍サイクルの性能向上が図れる。なお、実施例3
の構成は、実施例2に比べてバイパス回路が不要であ
り、より低コストで実現できる。
FIG. 8 shows the control method of the third embodiment.
This will be described with reference to the control flowchart shown in FIG. That is, it is determined whether the specific enthalpy value is in the region of "X2" or "Y2" (step 44), and the temperature difference Δt between the temperature t of the evaporator 5 and the set value t1 (for example, 10 degrees) is determined. Whether it is positive or negative is determined (step 45 or 46), the opening degrees of the first expansion valve 13 and the second expansion valve 14 are determined so as to change the capacity load, and the first expansion valve 13 and the second expansion valve 14 are opened. The expansion valve 14 is driven and controlled. In this way, the required capacity can be met by optimally adjusting the amount of refrigerant stored in the receiver according to the state of the refrigerant at the inlet of the expansion valve, so that the performance of the refrigeration cycle can be improved. In addition, Example 3
This configuration does not require a bypass circuit as compared with the second embodiment and can be realized at a lower cost.

【0025】(実施例4)図4は本発明による冷凍装置
の実施例4における構成図を示す。実施例4の構成は、
実施例1の構成において、油分離器15と油戻し回路1
6と油戻り量調節弁18とを設けて、油分離器15を圧
縮機1とガスクーラー2との間に配設し、油戻し回路1
6の一端を油分離器15の底部に接続して、油戻り量調
節弁18を介してその他端を圧縮機1の入口に接続した
ものである。以下、上記実施例1と異なる点を主として
説明し、同一構成については、同一符号を付して説明を
省略する。実施例4の冷凍サイクルにおいては、油分離
器15底部から圧縮機1の入口に油をバイパスさせて圧
縮機性能を増加させることを特徴としている。この実施
例4の制御方法の概要について説明する。実際にコント
ローラ10に記憶させるテーブルは、油戻し量を一定量
(例えば1wt%)変化させたときの温度および圧力変
化値である。なお、圧縮機の吐出温度はある一定値(例
えば110度)で冷凍サイクルが運転されていると仮定
する。ここで、油戻し量を大きくすると、圧縮機内の漏
れが低減されるので体積効率が向上し、循環量が増加す
るため冷房能力は増加するが、圧縮機吸入温度が増加す
るため圧縮機吐出温度も増加する。したがって、膨張弁
4の開度は吐出温度を一定に保つように制御するため大
きくなる。したがって、冷凍サイクルのバランスとして
は吐出圧力が低下するため、図5において比エンタルピ
値hの位置は左上に移動する。
(Embodiment 4) FIG. 4 is a block diagram of a refrigerating apparatus according to Embodiment 4 of the present invention. The configuration of the fourth embodiment is
In the configuration of the first embodiment, the oil separator 15 and the oil return circuit 1
6 and the oil return amount control valve 18, the oil separator 15 is disposed between the compressor 1 and the gas cooler 2, and the oil return circuit 1 is provided.
One end of 6 is connected to the bottom of the oil separator 15, and the other end is connected to the inlet of the compressor 1 via the oil return amount control valve 18. Hereinafter, the points different from the first embodiment will be mainly described, and the same components will be denoted by the same reference numerals and the description thereof will be omitted. The refrigeration cycle of the fourth embodiment is characterized by increasing the compressor performance by bypassing the oil from the bottom of the oil separator 15 to the inlet of the compressor 1. The outline of the control method of the fourth embodiment will be described. The table actually stored in the controller 10 shows temperature and pressure change values when the oil return amount is changed by a fixed amount (for example, 1 wt%). In addition, it is assumed that the discharge temperature of the compressor is operating at a certain constant value (for example, 110 degrees) in the refrigeration cycle. Here, if the oil return amount is increased, the leakage in the compressor is reduced, so the volumetric efficiency is improved and the cooling amount is increased because the circulation amount is increased, but the compressor discharge temperature is increased because the compressor suction temperature is increased. Also increases. Therefore, the opening degree of the expansion valve 4 is increased to control the discharge temperature to be constant. Therefore, as the balance of the refrigeration cycle, the discharge pressure decreases, so that the position of the specific enthalpy value h moves to the upper left in FIG.

【0026】さらに実施例4の制御方法について、図9
に示す制御フローチャートを参照して説明する。すなわ
ち、比エンタルピ値が「X2」か「Y2」かのどちらの
領域であるかを判定し(ステップ54)、蒸発器5の温
度tと設定値t1(例えば10度)との温度差Δtが正
か負を判定し(ステップ55またはステップ56)、能
力負荷を変化させるように油戻り量調節弁18の開度を
決定して、油戻り量調節弁18を駆動制御する。上記構
成において、例えば、能力を増加させたい場合には、蒸
発器の温度差Δtと比エンタルピ値の変化量Δhに応じ
て油戻り量調節弁18の開度が制御され、要求される冷
房能力に確実に増加させることができる。このように、
膨張弁入口の冷媒の状態に応じて、油戻し量を最適に調
整して圧縮機の循環量を大きく変化させることができる
ので、要求能力に対し、より幅広く冷凍サイクルの性能
向上が図れる。
FIG. 9 shows the control method of the fourth embodiment.
This will be described with reference to the control flowchart shown in FIG. That is, it is determined whether the specific enthalpy value is in the region of "X2" or "Y2" (step 54), and the temperature difference Δt between the temperature t of the evaporator 5 and the set value t1 (for example, 10 degrees) is determined. Whether it is positive or negative is determined (step 55 or step 56), the opening degree of the oil return amount control valve 18 is determined so as to change the capacity load, and the oil return amount control valve 18 is drive-controlled. In the above configuration, for example, when it is desired to increase the capacity, the opening degree of the oil return amount control valve 18 is controlled according to the temperature difference Δt of the evaporator and the change amount Δh of the specific enthalpy value, and the required cooling capacity is obtained. Can be surely increased. in this way,
According to the state of the refrigerant at the inlet of the expansion valve, the oil return amount can be optimally adjusted to greatly change the circulation amount of the compressor, so that the performance of the refrigeration cycle can be broadly improved with respect to the required capacity.

【0027】(実施例5)実施例5の構成(図示しない
構成)は、実施例1ないし実施例4におけるガスクーラ
ー2の放熱を促進するガスクーラー冷却量調整手段とし
て、例えばガスクーラー用冷却ファンの風量を調整する
手段を有するものである。そして、このガスクーラー冷
却量調整手段を用いて、膨張弁入口の比エンタルピ値に
基づいて、要求負荷に応じて最適となるようにガスクー
ラー冷却量を調整する制御方法により、より高効率な冷
凍サイクルの運転を得るものである。なお、実施例5の
制御方法について、図10の制御フローチャートで示し
たが、その制御方法の内容は実施例1から実施例4に示
す通りであり説明を省略する。一方、圧縮機の回転数を
増減する手段を設けて、膨張弁入口の比エンタルピ値に
基づいて、要求負荷に応じて最適となるように圧縮機回
転数を増減する制御方法により、同様により高効率な冷
凍サイクルの運転を得ることができる。本実施例5であ
れば、特に、車載型冷凍装置のアイドリングといった低
回転数の場合の、高効率な冷凍サイクル運転に有効であ
る。
(Fifth Embodiment) The configuration (not shown) of the fifth embodiment is, for example, a cooling fan for a gas cooler as a gas cooler cooling amount adjusting means for promoting heat dissipation of the gas cooler 2 in the first to fourth embodiments. It has a means for adjusting the air flow rate. Then, by using this gas cooler cooling amount adjusting means, based on the specific enthalpy value of the expansion valve inlet, a control method of adjusting the gas cooler cooling amount to be optimal according to the required load, a more efficient refrigeration You get the operation of a cycle. Although the control method of the fifth embodiment is shown in the control flowchart of FIG. 10, the content of the control method is the same as that of the first to fourth embodiments, and the description thereof will be omitted. On the other hand, a means for increasing / decreasing the rotation speed of the compressor is provided, and the control method for increasing / decreasing the rotation speed of the compressor based on the specific enthalpy value at the inlet of the expansion valve so as to be optimal according to the required load is also used. An efficient refrigeration cycle operation can be obtained. The fifth embodiment is particularly effective for highly efficient refrigeration cycle operation when the number of revolutions is low such as idling of a vehicle-mounted refrigeration system.

【0028】(実施例6)実施例6の構成(図示しない
構成)は、実施例2および実施例4における圧縮機1の
冷媒温度を検出する温度検出手段を設けて、その検出温
度の値が一定値(例えば150度)以上になった場合
に、実施例2のバイパス回路12を流れる冷媒流量を制
御して内部熱交換量を低下させることで、吸入温度が低
下するので圧縮機1の吐出温度を低下させる制御方法で
ある。または、実施例4の油戻し回路16を流れる油戻
り量を制御して低下させることで、圧縮機1の吐出温度
を低下させる制御方法である。膨張弁開度を制御するこ
とのみでなく、この実施例6のように、バイパス回路1
2を流れる冷媒流量または油戻し回路16を流れる油戻
り量を制御することにより、圧縮機1の吐出温度を低下
させることができるので、圧縮機1のさらなる信頼性確
保を図ることができる。実施例6であれば、特に、CO
2やアンモニアといった、吐出温度が高くなる冷媒を用
いる場合の、高信頼性な冷凍サイクル運転に有効であ
る。
(Embodiment 6) The configuration of Embodiment 6 (configuration not shown) is provided with temperature detecting means for detecting the refrigerant temperature of the compressor 1 in Embodiments 2 and 4, and the value of the detected temperature is When it becomes a certain value (for example, 150 degrees) or more, the suction temperature is lowered by controlling the flow rate of the refrigerant flowing through the bypass circuit 12 of the second embodiment to reduce the internal heat exchange amount. This is a control method that lowers the temperature. Alternatively, it is a control method of lowering the discharge temperature of the compressor 1 by controlling and reducing the amount of oil returned to the oil return circuit 16 of the fourth embodiment. Not only is the expansion valve opening controlled, but the bypass circuit 1
Since the discharge temperature of the compressor 1 can be lowered by controlling the flow rate of the refrigerant flowing through 2 or the amount of oil returned through the oil return circuit 16, the reliability of the compressor 1 can be further ensured. In the case of Example 6, especially CO
This is effective for highly reliable refrigeration cycle operation when using a refrigerant whose discharge temperature is high, such as 2 or ammonia.

【0029】(実施例7)CO2のような分子径の小さ
い冷媒では、膨張弁の開度を低下させても高低圧力差が
つきにくい。したがって、実施例7の構成(図示しない
構成)は、実施例1ないし実施例4における膨張弁の開
度を制御する手段を有するものであって、圧縮機1の運
転開始から10〜30秒間は、膨張弁開度を口径面積の
5%以下に制御する方法によって、高低圧力差を早急に
高低圧力差を大きくすることができるので、短時間で冷
凍能力を向上させることができる。
(Embodiment 7) With a refrigerant having a small molecular diameter such as CO2, it is difficult for a high-low pressure difference to occur even if the opening of the expansion valve is reduced. Therefore, the configuration (configuration not shown) of the seventh embodiment has a means for controlling the opening degree of the expansion valve in the first to fourth embodiments, and is 10 to 30 seconds from the start of operation of the compressor 1. By controlling the expansion valve opening to 5% or less of the aperture area, it is possible to quickly increase the high-low pressure difference, so that the refrigerating capacity can be improved in a short time.

【0030】(実施例8)CO2のような従来のフロン
に比べて圧力が非常に高い冷媒を用いる場合、運転と停
止を繰り返した場合、圧力変動などにより圧縮機メカに
対する衝撃が非常に高いことが考えられる。実施例8の
構成(図示しない構成)は、実施例1ないし実施例4にお
いて、膨張弁の開度を制御する手段と、蒸発器の冷媒温
度を検出する手段とを有するものであり、検出した温度
が0〜3度になる場合に、蒸発器5の温度が低下して蒸
発器5が凍結する恐れのある場合にも、圧縮機1を停止
させることなく膨張弁4の開度を大きくするように制御
する方法によって、冷凍サイクルが大きく変動するのを
防ぎつつ運転を継続し、圧縮機1の信頼性向上を図るこ
とができる。
(Embodiment 8) When a refrigerant such as CO2 having a pressure much higher than that of a conventional CFC is used, and when the operation and stop are repeated, the impact on the compressor mechanism is very high due to pressure fluctuation and the like. Can be considered. The configuration (configuration not shown) of the eighth embodiment is the same as that of the first to fourth embodiments, having the means for controlling the opening of the expansion valve and the means for detecting the refrigerant temperature of the evaporator. When the temperature becomes 0 to 3 degrees and the temperature of the evaporator 5 decreases and the evaporator 5 may freeze, the opening degree of the expansion valve 4 is increased without stopping the compressor 1. With such a control method, it is possible to continue the operation while preventing the refrigeration cycle from fluctuating significantly and improve the reliability of the compressor 1.

【0031】(実施例9)実施例9の構成(図示しない
構成)は、実施例1ないし実施例4における膨張弁の開
度量、またはガスクーラー2の冷却量、またはバイパス
回路12を流れる冷媒流量を増減する手段を有するもの
であって、これらの量を増減させた場合の一定時間あた
りに変化する蒸発温度がある一定値を超えた場合(例え
ば3deg)は、冷凍サイクルや周辺の空調(環境)に
大きな異常が生じていると判定し、膨張弁1の開度また
はガスクーラー2の冷却量またはバイパス回路12を流
れる冷媒流量の変化量を0(ゼロ)に制御する方法を採用
するものである。このことによって、より信頼性の高い
安定した冷凍サイクルを構成することができる。
(Embodiment 9) The configuration (configuration not shown) of Embodiment 9 is the opening amount of the expansion valve in Embodiments 1 to 4, the cooling amount of the gas cooler 2, or the flow rate of the refrigerant flowing in the bypass circuit 12. When the evaporation temperature that changes per fixed time when these amounts are increased or decreased exceeds a certain value (for example, 3 deg), the refrigeration cycle or the surrounding air conditioning (environment) ), It is determined that a large abnormality has occurred, and the change amount of the opening amount of the expansion valve 1, the cooling amount of the gas cooler 2, or the flow rate of the refrigerant flowing through the bypass circuit 12 is controlled to 0 (zero). is there. As a result, a more reliable and stable refrigeration cycle can be configured.

【0032】(実施例10)実施例10の構成(図示し
ない構成)は、実施例2および実施例4における圧縮機
1の回転数を検出する手段を有するものであって、検出
した値の変化量が一定値(例えば1000rpm/秒)
以上になった場合、内部熱交換器3で交換される内部熱
交換量を小さくするようにバイパス回路12を流れる流
量を制御して吐出温度が上がりすぎるのを防止すること
によって、または、油分離器15からの油戻り量を小さ
くするように制御して吐出温度が上がりすぎるのを防止
することによって、過度に圧縮機1の吐出温度および吐
出圧力が上昇するのを抑制し、冷凍サイクルの信頼性確
保を図ることができる。
(Embodiment 10) The configuration (configuration not shown) of the tenth embodiment has means for detecting the rotation speed of the compressor 1 in the second and fourth embodiments, and changes in the detected value. A fixed amount (eg 1000 rpm / sec)
In the case above, by controlling the flow rate of the bypass circuit 12 so as to reduce the internal heat exchange amount exchanged in the internal heat exchanger 3 to prevent the discharge temperature from rising too much, or By controlling the amount of oil returned from the compressor 15 to be small and preventing the discharge temperature from rising too high, it is possible to suppress the discharge temperature and discharge pressure of the compressor 1 from rising excessively, and to improve the reliability of the refrigeration cycle. The security can be secured.

【0033】(実施例11)実施例1ないし実施例4に
示す冷凍装置の制御方法であれば、冷媒として二酸化炭
素のように油吐出が多い冷媒を用いても、油分離器など
の対策を必要とすることなく、安価なシステムで非常に
高性能な冷凍サイクルを実現することができるととも
に、潤滑油の劣化をほとんど考慮する必要がないので、
吐出温度の最大値(例えば150度)を従来のフロンサ
イクルよりも大きくすることができ、さらなる信頼性の
向上を図ることができる。
(Embodiment 11) With the control method of the refrigeration system shown in Embodiments 1 to 4, even if a refrigerant having a large amount of oil discharge such as carbon dioxide is used as a refrigerant, measures such as an oil separator are taken. It is possible to realize a very high-performance refrigeration cycle with an inexpensive system without needing it, and since it is almost unnecessary to consider deterioration of the lubricating oil,
The maximum value of the discharge temperature (for example, 150 degrees) can be made larger than that of the conventional CFC cycle, and the reliability can be further improved.

【0034】(実施例12)また、実施例1ないし実施
例4に示す冷凍装置の制御方法であれば、冷媒として二
酸化炭素やアンモニアなどの自然冷媒において、充填す
る潤滑油は5〜10gであるリニア圧縮機を用いること
によって、潤滑油が滞留または冷媒とともに流れること
による熱交換器の冷媒熱伝達率低下を防ぐことができ
る。
(Embodiment 12) According to the refrigerating apparatus control methods shown in Embodiments 1 to 4, the natural oil such as carbon dioxide or ammonia is used as the refrigerant, and the lubricating oil to be filled is 5 to 10 g. By using the linear compressor, it is possible to prevent the refrigerant heat transfer coefficient of the heat exchanger from being lowered due to the lubricating oil staying or flowing together with the refrigerant.

【0035】[0035]

【発明の効果】本発明によれば、膨張弁の入口側での冷
媒温度と、蒸気圧縮サイクルの高圧側配管の圧力とを検
出し、温度検出手段によって検出した温度と圧力検出手
段によって検出した圧力とから、膨張弁入口冷媒の比エ
ンタルピ値を演算し、膨張弁開度を増減させるものであ
るので、要求負荷が高いときは熱交換量が高くなるよう
に制御でき、かつ要求負荷が低いときはCOPが高くな
るように制御できるので、確実に冷凍サイクルの性能向
上が図れる。また本発明によれば、膨張弁の入口側での
冷媒温度と、蒸気圧縮サイクルの高圧側配管の圧力とを
検出し、温度検出手段によって検出した温度と圧力検出
手段によって検出した圧力とから、膨張弁入口冷媒の比
エンタルピを演算し、レシーバの上部と蒸発器の出口か
ら内部熱交換器の入口までの配管とを接続するバイパス
回路の内部熱交換量調節弁開度を増減させるものである
ので、要求負荷が高いときは高圧を低下させながら熱交
換量が高くなるように内部熱交量を制御でき、かつ要求
負荷が低いときはCOPが高くなるように制御できるの
で、冷凍サイクルのさらなる性能向上を図ることができ
る。また本発明によれば、膨張弁の入口側での冷媒温度
と、蒸気圧縮サイクルの高圧側配管の圧力とを検出し、
温度検出手段によって検出した温度と圧力検出手段によ
って検出した圧力とから、膨張弁入口冷媒の比エンタル
ピを演算し、第1の膨張弁と第2の膨張弁の開度を増減
させるものであるので、要求負荷が高いときは熱交換量
が高くなるようにレシーバ内に貯留する冷媒量を制御で
き、かつ要求負荷が低いときはCOPが高くなるように
制御できるので、より低コストで冷凍サイクルの性能向
上を図ることができる。また本発明によれば、膨張弁の
入口側での冷媒温度と、蒸気圧縮サイクルの高圧側配管
の圧力とを検出し、温度検出手段によって検出した温度
と圧力検出手段によって検出した圧力とから、膨張弁入
口冷媒の比エンタルピを演算し、油分離器の底部と内部
熱交換器の出口から圧縮機の入口までの配管とを接続す
る油戻し回路の油戻り量調節弁開度を増減させるもので
あるので、要求負荷が高いときは熱交換量が高くなるよ
うに圧縮機性能を制御でき、かつ要求負荷が低いときは
COPが高くなるように制御できるので、より簡単な制
御で冷凍サイクルの性能向上を図ることができる。また
本発明によれば、ガスクーラーの冷却量(例えば放熱を
促進する冷却ファンの風量)を、膨張弁入口の比エンタ
ルピ値と要求負荷に応じて最適となるように調整するこ
とにより、高効率な冷凍サイクルの運転が図れる。また
本発明によれば、圧縮機の冷媒温度を検出し、温度検出
手段によって検出した値が一定値(例えば150度)以
上になった場合に、バイパス回路を流れる冷媒流量また
は油戻し回路を流れる油戻り量を増減させるものである
ので、過度に圧縮機の吐出温度が上昇するのを抑制し、
圧縮機効率が低下するのを防止することができるととも
に、圧縮機の吐出温度の上がり過ぎを防止しつつ冷凍サ
イクルの性能向上を図ることができる。また本発明によ
れば、圧縮機の運転開始からの10〜30秒間は、膨張
弁開度を口径面積の5%以下に制御するものである。本
実施の形態によれば、圧縮機が運転してから早急に高低
圧力差を大きくすることができるので、短時間で冷凍能
力を向上させることができる。また本発明によれば、蒸
発器の冷媒温度を検出し、温度検出手段によって検出し
た値が0〜3度になる場合に、膨張弁開度を制御させる
ものであるので、蒸発器温度が低下して蒸発器が凍結す
る恐れのある場合にも、圧縮機を停止させることなく膨
張弁開度を制御させることにより、冷凍サイクルが大き
く変動するのを防ぎつつ運転を継続し、圧縮機の信頼性
向上を図ることができる。また本発明によれば、第1か
ら第4の実施の形態による冷凍装置において、膨張弁の
入口での冷媒温度と、蒸気圧縮サイクルの高圧側配管の
圧力と、蒸発器の冷媒温度を検出し、温度検出手段によ
って検出した温度と圧力検出手段によって検出した圧力
とから、膨張弁入口冷媒の比エンタルピを演算し、膨張
弁開度またはガスクーラー冷却量またはバイパス回路を
流れる冷媒流量を増減させるものであるので、一定時間
あたりに変化する蒸発温度に応じて膨張弁開度またはガ
スクーラー冷却量またはバイパス回路を流れる冷媒流量
の変化量を制御するので、より安定した冷凍サイクルを
構成することができる。また本発明によれば、圧縮機の
回転数を検出し、回転数検出手段によって検出した値の
変化量が一定値(例えば1000rpm/秒)以上にな
った場合、バイパス回路を流れる冷媒流量または油戻し
回路を流れる油戻り量を増減させるものであるので、過
度に圧縮機の吐出温度および吐出圧力が上昇するのを抑
制し、圧縮機効率が低下するのを防止することができる
とともに、冷凍サイクルの信頼性確保を図ることができ
る。また本発明によれば、冷媒として二酸化炭素を用い
たものであり、二酸化炭素を用いることができ、二酸化
炭素を用いることで効果的なフロン対策を行うことがで
きる。前記冷媒として、二酸化炭素を用いたことを特徴
とする。また本発明によれば、冷媒として二酸化炭やア
ンモニアなどの自然冷媒を用い、充填する潤滑油を5〜
10gとし、圧縮機としてリニア圧縮機を用いたもので
あるので、潤滑油が少ないためガスクーラーや蒸発器の
熱伝達率を向上させるとともに、圧縮機の吐出温度を上
昇させることができるため、冷凍能力の向上を図ること
ができる。
According to the present invention, the refrigerant temperature at the inlet side of the expansion valve and the pressure in the high pressure side pipe of the vapor compression cycle are detected, and the temperature detected by the temperature detecting means and the pressure detecting means are detected. Since the specific enthalpy value of the expansion valve inlet refrigerant is calculated from the pressure and the expansion valve opening is increased / decreased, the heat exchange amount can be controlled to be high when the required load is high, and the required load is low. At this time, the COP can be controlled so as to be high, so that the performance of the refrigeration cycle can be surely improved. Further, according to the present invention, the refrigerant temperature at the inlet side of the expansion valve, the pressure of the high pressure side pipe of the vapor compression cycle is detected, from the temperature detected by the temperature detecting means and the pressure detected by the pressure detecting means, The specific enthalpy of the refrigerant at the inlet of the expansion valve is calculated, and the opening degree of the internal heat exchange control valve of the bypass circuit connecting the upper part of the receiver and the pipe from the outlet of the evaporator to the inlet of the internal heat exchanger is increased or decreased. Therefore, when the required load is high, the internal heat exchange amount can be controlled so as to increase the heat exchange amount while lowering the high pressure, and when the required load is low, the COP can be controlled so as to be increased. Performance can be improved. Further, according to the present invention, the refrigerant temperature at the inlet side of the expansion valve and the pressure of the high pressure side pipe of the vapor compression cycle are detected,
Since the specific enthalpy of the expansion valve inlet refrigerant is calculated from the temperature detected by the temperature detecting means and the pressure detected by the pressure detecting means, the opening degrees of the first expansion valve and the second expansion valve are increased or decreased. The amount of refrigerant stored in the receiver can be controlled to increase the heat exchange amount when the required load is high, and the COP can be controlled to increase when the required load is low. Performance can be improved. Further, according to the present invention, the refrigerant temperature at the inlet side of the expansion valve, the pressure of the high pressure side pipe of the vapor compression cycle is detected, from the temperature detected by the temperature detecting means and the pressure detected by the pressure detecting means, A valve that calculates the specific enthalpy of the refrigerant at the inlet of the expansion valve and increases or decreases the oil return amount control valve opening of the oil return circuit that connects the bottom of the oil separator and the pipe from the outlet of the internal heat exchanger to the inlet of the compressor. Therefore, when the required load is high, the compressor performance can be controlled so that the heat exchange amount becomes high, and when the required load is low, the COP can be controlled so that the COP becomes high. Performance can be improved. Further, according to the present invention, by adjusting the cooling amount of the gas cooler (for example, the air flow amount of the cooling fan that promotes heat dissipation) to be optimum according to the specific enthalpy value of the expansion valve inlet and the required load, high efficiency can be obtained. The operation of various refrigeration cycles can be achieved. Further, according to the present invention, the refrigerant temperature of the compressor is detected, and when the value detected by the temperature detecting means becomes a constant value (for example, 150 degrees) or more, the refrigerant flow rate flowing through the bypass circuit or the oil return circuit flows. Since it increases or decreases the amount of oil returned, it suppresses the discharge temperature of the compressor from rising excessively,
It is possible to prevent the efficiency of the compressor from being lowered, and to improve the performance of the refrigeration cycle while preventing the discharge temperature of the compressor from rising too high. Further, according to the present invention, the opening degree of the expansion valve is controlled to 5% or less of the aperture area for 10 to 30 seconds after the start of operation of the compressor. According to the present embodiment, the high-low pressure difference can be increased immediately after the compressor operates, so that the refrigerating capacity can be improved in a short time. Further, according to the present invention, since the refrigerant temperature of the evaporator is detected and the expansion valve opening degree is controlled when the value detected by the temperature detecting means is 0 to 3 degrees, the evaporator temperature is lowered. Even if there is a risk that the evaporator will freeze, the expansion valve opening is controlled without stopping the compressor to prevent the refrigeration cycle from fluctuating significantly and continue operation, thereby ensuring reliability of the compressor. It is possible to improve the property. Further, according to the present invention, in the refrigerating apparatus according to the first to fourth embodiments, the refrigerant temperature at the inlet of the expansion valve, the pressure of the high pressure side pipe of the vapor compression cycle, and the refrigerant temperature of the evaporator are detected. A specific enthalpy of the expansion valve inlet refrigerant is calculated from the temperature detected by the temperature detecting means and the pressure detected by the pressure detecting means to increase or decrease the expansion valve opening degree or the gas cooler cooling amount or the refrigerant flow rate flowing through the bypass circuit. Therefore, the expansion valve opening degree, the gas cooler cooling amount, or the change amount of the flow rate of the refrigerant flowing through the bypass circuit is controlled according to the evaporation temperature that changes per certain time, so that a more stable refrigeration cycle can be configured. . Further, according to the present invention, when the number of revolutions of the compressor is detected and the amount of change in the value detected by the number-of-revolutions detection means becomes a certain value (for example, 1000 rpm / sec) or more, the flow rate of the refrigerant or the oil flowing through the bypass circuit. Since the amount of oil returned through the return circuit is increased or decreased, it is possible to prevent the discharge temperature and discharge pressure of the compressor from rising excessively and prevent the compressor efficiency from decreasing, and at the same time, the refrigeration cycle The reliability of can be secured. Further, according to the present invention, carbon dioxide is used as the refrigerant, and carbon dioxide can be used. By using carbon dioxide, an effective measure against CFCs can be taken. Carbon dioxide is used as the refrigerant. Further, according to the present invention, a natural refrigerant such as carbon dioxide or ammonia is used as the refrigerant, and the lubricating oil to be filled is 5 to 5 times.
Since it is 10 g and a linear compressor is used as a compressor, since the amount of lubricating oil is small, the heat transfer coefficient of the gas cooler and the evaporator can be improved, and the discharge temperature of the compressor can be raised, so that the refrigeration The ability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による冷凍装置の実施例1における冷
凍サイクル構成図
FIG. 1 is a configuration diagram of a refrigeration cycle in a first embodiment of a refrigeration apparatus according to the present invention.

【図2】 本発明による冷凍装置の実施例2における冷
凍サイクル構成図
FIG. 2 is a configuration diagram of a refrigeration cycle in a second embodiment of the refrigeration apparatus according to the present invention

【図3】 本発明による冷凍装置の実施例3における冷
凍サイクル構成図
FIG. 3 is a configuration diagram of a refrigeration cycle in a third embodiment of the refrigeration apparatus according to the present invention

【図4】 本発明による冷凍装置の実施例4における冷
凍サイクル構成図
FIG. 4 is a configuration diagram of a refrigeration cycle in a fourth embodiment of the refrigeration apparatus according to the present invention.

【図5】 冷媒CO2の比エンタルピ値テーブルFIG. 5: Specific enthalpy value table of refrigerant CO2

【図6】 本発明による冷凍装置の実施例1における膨
張弁制御のフローチャート
FIG. 6 is a flowchart of expansion valve control in Embodiment 1 of the refrigeration system according to the present invention.

【図7】 本発明による冷凍装置の実施例2における膨
張弁制御のフローチャート
FIG. 7 is a flowchart of expansion valve control in Embodiment 2 of the refrigeration system according to the present invention.

【図8】 本発明による冷凍装置の実施例3における膨
張弁制御のフローチャート
FIG. 8 is a flowchart of expansion valve control in Embodiment 3 of the refrigeration system according to the present invention.

【図9】 本発明による冷凍装置の実施例4における膨
張弁制御のフローチャート
FIG. 9 is a flowchart of expansion valve control in Embodiment 4 of the refrigeration system according to the present invention.

【図10】 本発明による冷凍装置の実施例5における
膨張弁制御のフローチャート
FIG. 10 is a flowchart of expansion valve control in Embodiment 5 of the refrigeration system according to the present invention.

【図11】 従来例による冷凍装置の膨張弁制御のフロ
ーチャート
FIG. 11 is a flowchart of expansion valve control of a refrigeration system according to a conventional example.

【図12】 従来例による冷凍サイクルの高圧圧力とC
OPとの関係を示す特性線図
FIG. 12: High pressure and C of refrigeration cycle according to conventional example
Characteristic diagram showing the relationship with OP

【符号の説明】[Explanation of symbols]

1 圧縮機 2 ガスクーラー 3 内部熱交換器 4 膨張弁 5 蒸発器 6 レシーバ 7 圧力センサー(圧力検出手段) 8 温度センサー(温度検出手段) 9 温度センサー(蒸発器温度検出手段) 10 コントローラ 12 バイパス回路 13 第1の膨張弁 14 第2の膨張弁 15 油分離器 16 油戻し回路 17 内部熱交換量調節弁 18 油戻り量調節弁 1 compressor 2 gas cooler 3 Internal heat exchanger 4 expansion valve 5 evaporator 6 receiver 7 Pressure sensor (pressure detection means) 8 Temperature sensor (temperature detection means) 9 Temperature sensor (evaporator temperature detection means) 10 controller 12 Bypass circuit 13 First expansion valve 14 Second expansion valve 15 Oil separator 16 Oil return circuit 17 Internal heat exchange amount control valve 18 Oil return amount control valve

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、ガスクーラーと、前記ガスク
ーラーの出口側配管と前記圧縮機の入口側配管を流れる
流体を熱交換させる内部熱交換器と、膨張弁と、蒸発器
とをそれぞれ配管を介して環状に接続して蒸気圧縮サイ
クルを構成し、前記蒸気圧縮サイクルの高圧側で臨界点
を超える前記流体を冷媒として用いる冷凍装置の制御方
法であって、前記膨張弁入口側の冷媒温度を検出する温
度検出手段と、前記膨張弁入口側の冷媒圧力を検出する
圧力検出手段とを有し、前記温度検出手段によって検出
した検出温度と前記圧力検出手段によって検出した検出
圧力とから前記膨張弁入口の比エンタルピ値を演算し、
前記比エンタルピ値に基づいて、前記膨張弁の開度を制
御することを特徴とする冷凍装置の制御方法。
1. A compressor, a gas cooler, an internal heat exchanger for exchanging heat between fluids flowing through an outlet side pipe of the gas cooler and an inlet side pipe of the compressor, an expansion valve, and an evaporator, respectively. A method for controlling a refrigerating apparatus that uses a fluid that exceeds a critical point as a refrigerant on a high pressure side of the vapor compression cycle to form a vapor compression cycle by annularly connecting the refrigerant through the expansion valve inlet side refrigerant. It has a temperature detecting means for detecting a temperature and a pressure detecting means for detecting a refrigerant pressure on the inlet side of the expansion valve, and from the detected temperature detected by the temperature detecting means and the detected pressure detected by the pressure detecting means, Calculate the specific enthalpy value at the inlet of the expansion valve,
A method for controlling a refrigerating apparatus, comprising controlling an opening of the expansion valve based on the specific enthalpy value.
【請求項2】 圧縮機と、ガスクーラーと、前記ガスク
ーラーの出口側配管と前記圧縮機の入口側配管を流れる
流体を熱交換させる内部熱交換器と、膨張弁と、レシー
バと、蒸発器とをそれぞれ配管を介して環状に接続して
蒸気圧縮サイクルを構成し、前記レシーバの上部と前記
蒸発器の出口から前記内部熱交換器の入口までの配管と
を接続するバイパス回路と、前記バイパス回路を流れる
冷媒流量を調整する内部熱交換量調節弁とを有し、前記
蒸気圧縮サイクルの高圧側で臨界点を超える前記流体を
冷媒として用いる冷凍装置の制御方法であって、前記膨
張弁の入口側での冷媒温度を検出する温度検出手段と、
前記蒸気圧縮サイクルの高圧側配管の圧力を検出する圧
力検出手段とを有し、前記温度検出手段によって検出し
た温度と前記圧力検出手段によって検出した圧力とから
前記膨張弁入口冷媒の比エンタルピ値を演算し、前記比
エンタルピ値に基づいて、前記内部熱交換量調節弁の開
度を制御することを特徴とする冷凍装置の制御方法。
2. A compressor, a gas cooler, an internal heat exchanger for exchanging heat between fluids flowing through an outlet side pipe of the gas cooler and an inlet side pipe of the compressor, an expansion valve, a receiver, and an evaporator. A bypass circuit connecting the upper part of the receiver and the pipe from the outlet of the evaporator to the inlet of the internal heat exchanger by forming a vapor compression cycle by annularly connecting and with each other, and the bypass. A method for controlling a refrigerating device having an internal heat exchange amount control valve for adjusting the flow rate of a refrigerant flowing through a circuit, wherein the fluid exceeding a critical point on the high-pressure side of the vapor compression cycle is used as a refrigerant, comprising: Temperature detection means for detecting the refrigerant temperature at the inlet side,
It has a pressure detection means for detecting the pressure of the high pressure side pipe of the vapor compression cycle, the specific enthalpy value of the expansion valve inlet refrigerant from the temperature detected by the temperature detection means and the pressure detected by the pressure detection means. A method of controlling a refrigerating apparatus, which calculates and controls the opening degree of the internal heat exchange amount control valve based on the specific enthalpy value.
【請求項3】 圧縮機と、ガスクーラーと、前記ガスク
ーラーの出口側配管と前記圧縮機の入口側配管を流れる
流体を熱交換させる内部熱交換器と、第1の膨張弁と、
レシーバと、第2の膨張弁と、蒸発器とをそれぞれ配管
を介して環状に接続して蒸気圧縮サイクルを構成し、前
記蒸気圧縮サイクルの高圧側で臨界点を超える流体を冷
媒として用いる冷凍装置の制御方法であって、前記膨張
弁の入口側の冷媒温度を検出する温度検出手段と、前記
蒸気圧縮サイクルの高圧側配管の圧力を検出する圧力検
出手段とを有し、前記温度検出手段によって検出した温
度と前記圧力検出手段によって検出した圧力とから前記
膨張弁入口冷媒の比エンタルピ値を演算し、前記比エン
タルピ値に基づいて、前記第1の膨張弁および前記第2
の膨張弁の開度を制御することを特徴とする冷凍装置の
制御方法。
3. A compressor, a gas cooler, an internal heat exchanger for exchanging heat between fluids flowing through an outlet side pipe of the gas cooler and an inlet side pipe of the compressor, and a first expansion valve,
A receiver, a second expansion valve, and an evaporator are connected to each other in an annular shape through pipes to form a vapor compression cycle, and a refrigeration apparatus that uses a fluid exceeding a critical point as a refrigerant on the high pressure side of the vapor compression cycle. The control method of, the temperature detection means for detecting the refrigerant temperature of the inlet side of the expansion valve, and a pressure detection means for detecting the pressure of the high-pressure side pipe of the vapor compression cycle, by the temperature detection means A specific enthalpy value of the expansion valve inlet refrigerant is calculated from the detected temperature and the pressure detected by the pressure detection means, and based on the specific enthalpy value, the first expansion valve and the second
A method for controlling a refrigerating apparatus, comprising controlling the opening of the expansion valve.
【請求項4】 圧縮機と、油分離器と、ガスクーラー
と、前記ガスクーラーの出口側配管と前記圧縮機の入口
側配管を流れる流体を熱交換させる内部熱交換器と、膨
張弁と、蒸発器とをそれぞれ配管を介して環状に接続し
て蒸気圧縮サイクルを構成し、前記油分離器の底部と前
記内部熱交換器の出口から前記圧縮機の入口までの配管
とを接続する油戻し回路と、前記油戻し回路を流れる油
戻り量を調整する油戻り量調節弁とを有し、前記蒸気圧
縮サイクルの高圧側で臨界点を超える前記流体を冷媒と
して用いる冷凍装置の制御方法であって、前記膨張弁の
入口側での冷媒温度を検出する温度検出手段と、前記蒸
気圧縮サイクルの高圧側配管の圧力を検出する圧力検出
手段とを有し、前記温度検出手段によって検出した温度
と前記圧力検出手段によって検出した圧力とから前記膨
張弁入口冷媒の比エンタルピ値を演算し、前記比エンタ
ルピ値に基づいて、前記油戻り量調節弁の開度を制御す
ることを特徴とする冷凍装置の制御方法。
4. A compressor, an oil separator, a gas cooler, an internal heat exchanger for exchanging heat between fluids flowing through an outlet side pipe of the gas cooler and an inlet side pipe of the compressor, an expansion valve, An oil return that connects the evaporator and the ring to each other through a pipe to form a vapor compression cycle, and connects the bottom of the oil separator and the pipe from the outlet of the internal heat exchanger to the inlet of the compressor. A control method for a refrigerating device having a circuit and an oil return amount control valve for adjusting the amount of oil return flowing through the oil return circuit, and using the fluid above the critical point on the high pressure side of the vapor compression cycle as a refrigerant. A temperature detecting means for detecting the refrigerant temperature at the inlet side of the expansion valve, and a pressure detecting means for detecting the pressure of the high pressure side pipe of the vapor compression cycle, and the temperature detected by the temperature detecting means. In the pressure detection means Therefore, the specific enthalpy value of the expansion valve inlet refrigerant is calculated from the detected pressure, and the opening degree of the oil return amount control valve is controlled based on the specific enthalpy value.
【請求項5】 前記比エンタルピ値に基づいて、前記ガ
スクーラーの冷却量または前記圧縮機の回転数を制御す
ることを特徴とする請求項1から請求項4のいずれかに
記載の冷凍装置の制御方法。
5. The refrigerating apparatus according to claim 1, wherein the cooling amount of the gas cooler or the rotation speed of the compressor is controlled based on the specific enthalpy value. Control method.
【請求項6】 前記圧縮機の冷媒温度を検出する温度検
出手段を備え、前記温度検出手段によって検出した冷媒
温度に応じて、前記バイパス回路を流れる冷媒流量また
は前記油戻し回路を流れる油戻り量を制御することを特
徴とする請求項2又は請求項4に記載の冷凍装置の制御
方法。
6. A temperature detecting means for detecting a refrigerant temperature of the compressor, wherein a flow rate of a refrigerant flowing through the bypass circuit or an oil return amount flowing through the oil return circuit is provided in accordance with a refrigerant temperature detected by the temperature detecting means. The method for controlling a refrigerating apparatus according to claim 2 or 4, further comprising:
【請求項7】 前記圧縮機の運転開始からの10〜30
秒間は、前記膨張弁の開度を口径面積の5%以下に制御
することを特徴とする請求項1から請求項4のいずれか
に記載の冷凍装置の制御方法。
7. 10 to 30 from the start of operation of the compressor
The control method of the refrigerating apparatus according to any one of claims 1 to 4, wherein the opening degree of the expansion valve is controlled to 5% or less of the aperture area for a second.
【請求項8】 前記蒸発器に冷媒温度検出手段を備え、
前記温度検出手段によって検出された値が0〜3度にな
る場合に、前記膨張弁の開度を制御することを特徴とす
る請求項1から請求項4のいずれかに記載の冷凍装置の
制御方法。
8. The evaporator is provided with a refrigerant temperature detecting means,
The opening degree of the said expansion valve is controlled when the value detected by the said temperature detection means becomes 0 to 3 degrees, Control of the refrigerating apparatus in any one of Claim 1 to 4 characterized by the above-mentioned. Method.
【請求項9】 前記蒸発器に冷媒温度検出手段を備え、
前記温度検出手段によって検出した冷媒温度に応じて、
前記膨張弁の開度、前記ガスクーラーの冷却量、または
前記バイパス回路を流れる冷媒流量を制御することを特
徴とする請求項1から請求項4のいずれかに記載の冷凍
装置の制御方法。
9. The evaporator is provided with a refrigerant temperature detecting means,
According to the refrigerant temperature detected by the temperature detecting means,
The control method of the refrigerating apparatus according to any one of claims 1 to 4, wherein the opening degree of the expansion valve, the cooling amount of the gas cooler, or the flow rate of the refrigerant flowing through the bypass circuit is controlled.
【請求項10】 前記圧縮機の回転数を検出する回転数
検出手段を備え、前記回転数検出手段によって検出した
回転数に応じて、前記バイパス回路を流れる冷媒流量ま
たは前記油戻し回路を流れる油戻り量を制御することを
特徴とする請求項2又は請求項4に記載の冷凍装置の制
御方法。
10. A rotation speed detection means for detecting the rotation speed of the compressor is provided, and according to the rotation speed detected by the rotation speed detection means, the flow rate of the refrigerant flowing through the bypass circuit or the oil flowing through the oil return circuit. The method for controlling a refrigerating apparatus according to claim 2 or 4, wherein the return amount is controlled.
【請求項11】 前記冷媒として、二酸化炭素を用いた
ことを特徴とする請求項1から請求項4のいずれかに記
載の冷凍装置の制御方法。
11. The method for controlling a refrigerating apparatus according to claim 1, wherein carbon dioxide is used as the refrigerant.
【請求項12】 前記冷媒として、二酸化炭素やアンモ
ニアなどの自然冷媒を用い、充填する潤滑油量を5〜1
0gとし、前記圧縮機としてリニア圧縮機を用いること
を特徴とする請求項1から請求項4のいずれかに記載の
冷凍装置の制御方法。
12. A natural refrigerant such as carbon dioxide or ammonia is used as the refrigerant, and the amount of lubricating oil filled is 5 to 1
The refrigeration apparatus control method according to any one of claims 1 to 4, wherein the compressor is set to 0 g, and a linear compressor is used as the compressor.
JP2001188225A 2001-06-21 2001-06-21 Method for controlling refrigeration unit Withdrawn JP2003004316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188225A JP2003004316A (en) 2001-06-21 2001-06-21 Method for controlling refrigeration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001188225A JP2003004316A (en) 2001-06-21 2001-06-21 Method for controlling refrigeration unit

Publications (1)

Publication Number Publication Date
JP2003004316A true JP2003004316A (en) 2003-01-08

Family

ID=19027368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188225A Withdrawn JP2003004316A (en) 2001-06-21 2001-06-21 Method for controlling refrigeration unit

Country Status (1)

Country Link
JP (1) JP2003004316A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074996A (en) * 2001-08-30 2003-03-12 Japan Climate Systems Corp Air conditioner for vehicle
WO2004109200A1 (en) * 2003-06-09 2004-12-16 Matsushita Electric Industrial Co., Ltd. Thermal storage-type heat pump system
JP2005121359A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Method of controlling air conditioner
JP2006213345A (en) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd Beverage feeding apparatus
JP2006336893A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Refrigerator
US7216498B2 (en) 2003-09-25 2007-05-15 Tecumseh Products Company Method and apparatus for determining supercritical pressure in a heat exchanger
WO2007119372A1 (en) * 2006-03-29 2007-10-25 Sanyo Electric Co., Ltd. Freezing apparatus
WO2008032558A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
CN100410598C (en) * 2003-06-09 2008-08-13 松下电器产业株式会社 Regenerative heat pump system
JP2009526197A (en) * 2006-02-07 2009-07-16 ブルックス オートメーション インコーポレイテッド Freezing prevention and temperature control method for cryogenic mixed refrigerant system
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
CN102434991A (en) * 2010-09-23 2012-05-02 热之王公司 Control of a transcritical vapor compression system
JP2019190751A (en) * 2018-04-26 2019-10-31 ホシザキ株式会社 Ice making machine

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074996A (en) * 2001-08-30 2003-03-12 Japan Climate Systems Corp Air conditioner for vehicle
JP4688369B2 (en) * 2001-08-30 2011-05-25 株式会社日本クライメイトシステムズ Air conditioner for vehicles
CN100410598C (en) * 2003-06-09 2008-08-13 松下电器产业株式会社 Regenerative heat pump system
WO2004109200A1 (en) * 2003-06-09 2004-12-16 Matsushita Electric Industrial Co., Ltd. Thermal storage-type heat pump system
JP2005024231A (en) * 2003-06-09 2005-01-27 Matsushita Electric Ind Co Ltd Heat storage type heat pump system
US6997010B2 (en) 2003-06-09 2006-02-14 Matsushita Electric Industrial Co., Ltd. Regenerative heat pump system
JP4567996B2 (en) * 2003-06-09 2010-10-27 パナソニック株式会社 Thermal storage heat pump system
US7216498B2 (en) 2003-09-25 2007-05-15 Tecumseh Products Company Method and apparatus for determining supercritical pressure in a heat exchanger
JP2005121359A (en) * 2003-10-16 2005-05-12 Lg Electronics Inc Method of controlling air conditioner
JP2006213345A (en) * 2005-02-02 2006-08-17 Sanyo Electric Co Ltd Beverage feeding apparatus
JP2006336893A (en) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd Refrigerator
JP2009526197A (en) * 2006-02-07 2009-07-16 ブルックス オートメーション インコーポレイテッド Freezing prevention and temperature control method for cryogenic mixed refrigerant system
WO2007119372A1 (en) * 2006-03-29 2007-10-25 Sanyo Electric Co., Ltd. Freezing apparatus
US8887524B2 (en) 2006-03-29 2014-11-18 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP2008064435A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
WO2008032558A1 (en) * 2006-09-11 2008-03-20 Daikin Industries, Ltd. Refrigeration device
US8176743B2 (en) 2006-09-11 2012-05-15 Daikin Industries, Ltd. Refrigeration device
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device
CN102434991A (en) * 2010-09-23 2012-05-02 热之王公司 Control of a transcritical vapor compression system
JP2019190751A (en) * 2018-04-26 2019-10-31 ホシザキ株式会社 Ice making machine
JP7144963B2 (en) 2018-04-26 2022-09-30 ホシザキ株式会社 ice machine

Similar Documents

Publication Publication Date Title
EP2329206B1 (en) Flash tank economizer cycle control
AU2004254589B2 (en) Control of refrigeration system
JP3679323B2 (en) Refrigeration cycle apparatus and control method thereof
JPH11193967A (en) Refrigerating cycle
EP1367344A2 (en) Method for operating a transcritical refrigeration system
US20040255603A1 (en) Refrigeration system having variable speed fan
US6739141B1 (en) Supercritical pressure regulation of vapor compression system by use of gas cooler fluid pumping device
EP1538405A2 (en) Refrigeration cycle apparatus
JP2005249384A (en) Refrigerating cycle device
JP2003004316A (en) Method for controlling refrigeration unit
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
JP4859480B2 (en) Turbo chiller, control device thereof, and control method of turbo chiller
JP5034066B2 (en) Air conditioner
JP2005226950A (en) Refrigerating air conditioner
JP2002228282A (en) Refrigerating device
JP2000346466A (en) Vapor compression type refrigerating cycle
JP2009186033A (en) Two-stage compression type refrigerating device
CN112325494A (en) Refrigerant circulation system and control method thereof
JP5227919B2 (en) Turbo refrigerator
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2008096072A (en) Refrigerating cycle device
JP2006145144A (en) Refrigerating cycle device
JP2003148814A (en) Refrigerating machine
JP6698312B2 (en) Control device, control method, and heat source system
JPH0651756U (en) Cooling system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902