JP2019190751A - Ice making machine - Google Patents

Ice making machine Download PDF

Info

Publication number
JP2019190751A
JP2019190751A JP2018084748A JP2018084748A JP2019190751A JP 2019190751 A JP2019190751 A JP 2019190751A JP 2018084748 A JP2018084748 A JP 2018084748A JP 2018084748 A JP2018084748 A JP 2018084748A JP 2019190751 A JP2019190751 A JP 2019190751A
Authority
JP
Japan
Prior art keywords
ice making
temperature
ice
expansion valve
electronic expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018084748A
Other languages
Japanese (ja)
Other versions
JP7144963B2 (en
Inventor
門脇 静馬
Shizuma Kadowaki
静馬 門脇
高橋 賢二
Kenji Takahashi
賢二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2018084748A priority Critical patent/JP7144963B2/en
Publication of JP2019190751A publication Critical patent/JP2019190751A/en
Application granted granted Critical
Publication of JP7144963B2 publication Critical patent/JP7144963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

To reduce a difference in size of a recess generating at a lower part of ice growing in each ice making small chamber, while keeping a refrigerant which did not completely evaporate in an evaporator from returning to a compressor, in an ice making machine for producing ice in each ice making small chamber in a state of closing a plurality of ice making small chambers opening downward being closed by a water tray.SOLUTION: An ice making machine 10 recovers, in an ice making water tank 21, unfrozen ice making water while cooling the ice making water jetted and delivered by a water delivery pump 25 into ice making small chambers 13 in the ice making small chambers 13, and manufactures ice by gradually freezing the ice making water while circulating the ice making water between the ice making water tank 21 and ice making small chambers 13. A temperature sensor 38 is provided for detecting the temperature of an ice making part 11. A control device controls an opening of an electronic expansion valve 33 based on the detection temperature of the temperature sensor 38 so that it becomes the opening of the electronic expansion valve 33 set corresponding to the temperature of the ice making part 11.SELECTED DRAWING: Figure 1

Description

本発明は、製氷部の下向きに開口する多数の製氷小室を水皿により閉じた状態で各製氷小室内で氷を製造する製氷機に関する。   The present invention relates to an ice making machine that manufactures ice in each ice making chamber in a state where a number of ice making chambers opening downward in an ice making unit are closed by a water dish.

特許文献1には、下向きに開口する多数の製氷小室を有した製氷部と、製氷部の各製氷小室へ供給する製氷水を貯留する製氷水タンクと、製氷水タンク内の製氷水を製氷小室に噴射送出させる送水ポンプと、製氷部を冷却及び加温する冷凍装置とを備えた製氷機が開示されている。この製氷機の冷凍装置は、冷媒を圧縮する圧縮機と、圧縮機から圧送された冷媒を冷却して液化させる凝縮器と、凝縮器にて液化させた液化冷媒を膨張させる電子膨張弁と、電子膨張弁により膨張させた液化冷媒を気化させて製氷部を冷却する蒸発器と、圧縮機から蒸発器にホットガスを送出するホットガス経路と、ホットガス経路に介装されたホットガス弁とを有している。   Patent Document 1 discloses an ice making section having a large number of ice making chambers that open downward, an ice making water tank that stores ice making water supplied to each ice making chamber of the ice making section, and ice making water in the ice making water tank. There is disclosed an ice making machine including a water supply pump for jetting and feeding and a freezing device for cooling and heating an ice making unit. The ice making machine refrigeration apparatus includes a compressor that compresses the refrigerant, a condenser that cools and liquefies the refrigerant pumped from the compressor, an electronic expansion valve that expands the liquefied refrigerant liquefied by the condenser, An evaporator that evaporates the liquefied refrigerant expanded by the electronic expansion valve and cools the ice making unit, a hot gas path that sends hot gas from the compressor to the evaporator, and a hot gas valve that is interposed in the hot gas path have.

この製氷機で製氷運転をするときには、圧縮機から圧送された冷媒が凝縮器にて冷却されて液化され、液化冷媒は電子膨張弁にて膨張された状態で蒸発器にて気化され、製氷部は蒸発器で気化した冷媒の気化熱によって冷却されている。製氷部の製氷小室内に送水ポンプによって噴射送出された製氷水は製氷小室内で冷却され、未凍結の製氷水が製氷水タンクに回収され、製氷水は製氷水タンクと製氷小室とを循環しながら冷却されて漸次凍結して氷となる。また、冷凍装置の電子膨張弁は、蒸発器の出口部と入口部とに設けた出口部温度センサと入口部温度センサとの温度差に基づいて制御され、温度差が大きくなると開度を大きくし、温度差が小さくなると開度を小さくなるように制御されている。   When the ice making operation is performed with this ice making machine, the refrigerant pumped from the compressor is cooled and liquefied by the condenser, and the liquefied refrigerant is vaporized by the evaporator while being expanded by the electronic expansion valve. Is cooled by the heat of vaporization of the refrigerant vaporized by the evaporator. The ice making water sprayed and delivered by the water pump into the ice making chamber of the ice making unit is cooled in the ice making chamber, unfrozen ice making water is collected in the ice making water tank, and the ice making water circulates between the ice making water tank and the ice making chamber. While cooling, it gradually freezes to become ice. The electronic expansion valve of the refrigeration system is controlled based on the temperature difference between the outlet temperature sensor and the inlet temperature sensor provided at the outlet and inlet of the evaporator, and increases the opening when the temperature difference increases. However, when the temperature difference is small, the opening degree is controlled to be small.

特開平10−339533号公報JP-A-10-339533

上記の特許文献1の製氷機では、冷凍装置の電子膨張弁は蒸発器の出口部と入口部とに設けた出口部温度センサと入口部温度センサとの温度差に基づいて制御され、温度差が大きくなると開度を大きくし、温度差が小さくなると開度を小さくなるように制御されている。出口部温度センサと入口部温度センサとの温度差を例えば5℃〜10℃で一定となるように電子膨張弁の開度を制御したときに、蒸発器の入口部が配置される製氷小室内と蒸発器の出口部が配置される製氷小室内との間で温度差が生じ、製氷小室内で成長する氷の下部に生じる凹みの大きさが蒸発器の入口部と出口部とが配置される位置で異なることがあった。   In the ice making machine of Patent Document 1, the electronic expansion valve of the refrigeration apparatus is controlled based on the temperature difference between the outlet temperature sensor and the inlet temperature sensor provided at the outlet and inlet of the evaporator, and the temperature difference Control is performed such that the opening degree is increased when the temperature difference is increased, and the opening degree is decreased when the temperature difference is decreased. An ice making chamber in which the inlet portion of the evaporator is disposed when the opening of the electronic expansion valve is controlled so that the temperature difference between the outlet portion temperature sensor and the inlet portion temperature sensor is constant, for example, 5 ° C. to 10 ° C. And the ice making chamber where the outlet part of the evaporator is located, and the size of the dent that occurs in the lower part of the ice growing in the ice making chamber is arranged between the inlet part and the outlet part of the evaporator. There was a difference in the position.

特許文献1の製氷機は、製氷部の下向きに開口する多数の製氷小室に製氷水タンク内の製氷水を噴射送出し、製氷小室内で製氷水を凍結させて氷を製造するものであり、この種の製氷機は、製氷小室の下部の開口を開放させた状態で氷を製造する所謂オープンセルタイプの製氷機と、製氷小室の下部の開口を水皿によって閉じた状態で氷を製造する所謂クローズセルタイプの製氷機がある。オープンセルタイプの製氷機であれば、製氷小室の下部の開口が閉止されていないため、図6(a)に示したように製氷小室内で成長した氷の下部の形状が一定でなく、製氷小室内の下部に生じる凹みの大きさの違いが問題とならなかった。   The ice making machine of Patent Document 1 is to inject and send ice making water in an ice making water tank to a large number of ice making chambers opening downward in an ice making unit, and freeze ice making water in the ice making chamber to produce ice. This type of ice making machine is a so-called open cell type ice making machine that produces ice with the lower opening of the ice making chamber open, and ice is produced with the lower opening of the ice making chamber closed by a water dish. There is a so-called closed cell type ice making machine. In the case of an open cell type ice making machine, since the lower opening of the ice making chamber is not closed, the shape of the lower portion of the ice grown in the ice making chamber is not constant as shown in FIG. The difference in the size of the dent generated in the lower part of the small room was not a problem.

これに対し、クローズセルタイプの製氷機では、製氷小室の下部の開口が水皿によって閉止されているため、図6(b)に示したように製氷小室内で成長した氷の下部形状が一定であり、製氷小室内で成長した氷の下部に生じる凹みの大きさの違いが品質上の問題となっていた。出口部温度センサと入口部温度センサとの温度差を例えば5℃より低くなるように電子膨張弁の開度を制御すれば、製氷小室内で成長する氷の下部に生じる凹みの大きさの違いを蒸発器の入口部と出口部とが配置される位置で小さくすることができる。しかし、出口部温度センサと入口部温度センサとの温度差を低く設定して電子膨張弁の開度を制御すると、蒸発器に過剰な冷媒が供給されることがあり、蒸発器で蒸発しきれなかった冷媒が圧縮機に戻る所謂、液バックが生じるおそれがあった。また、出口部温度センサと入口部温度センサとの温度差により電子膨張弁の開度を制御したときには、液バックが生じているか判別しにくく、冷凍装置を循環する冷媒が不足したり、圧縮機が所謂液バックにより故障したりするおそれがあった。本発明は、下向きに開口する多数の製氷小室を水皿により閉じた状態で各製氷小室内で氷を製造する製氷機で、蒸発器で蒸発しきれなかった冷媒が圧縮機に戻らないようにしつつ、各製氷小室内で成長する氷の下部に生じる凹みの大きさの違いを小さくすることを目的とする。   On the other hand, in the closed cell type ice making machine, since the lower opening of the ice making chamber is closed by the water tray, the shape of the lower portion of the ice grown in the ice making chamber is constant as shown in FIG. Therefore, the difference in the size of the dent generated in the lower part of the ice grown in the ice making chamber has become a quality problem. If the opening of the electronic expansion valve is controlled so that the temperature difference between the outlet temperature sensor and the inlet temperature sensor is lower than 5 ° C., for example, the difference in the size of the dent generated in the lower part of the ice growing in the ice making chamber Can be reduced at the position where the inlet and outlet of the evaporator are arranged. However, if the temperature difference between the outlet temperature sensor and the inlet temperature sensor is set low and the opening degree of the electronic expansion valve is controlled, excessive refrigerant may be supplied to the evaporator, and the evaporator can completely evaporate. There was a possibility that a so-called liquid back may occur in which the refrigerant that was not returned returns to the compressor. Also, when the opening of the electronic expansion valve is controlled by the temperature difference between the outlet temperature sensor and the inlet temperature sensor, it is difficult to determine whether a liquid back has occurred, and there is insufficient refrigerant circulating in the refrigeration system, or the compressor However, there is a risk of failure due to so-called liquid back. The present invention is an ice making machine that manufactures ice in each ice making chamber in a state where a number of ice making chambers that open downward are closed by water trays, so that refrigerant that cannot be evaporated by the evaporator does not return to the compressor. On the other hand, the object is to reduce the difference in the size of the dents generated in the lower part of the ice growing in each ice making chamber.

本発明は上記課題を解決するため、下向きに開口する多数の製氷小室を有した製氷部と、製氷部の下側に配設されて、製氷小室の下部の開口を開閉自在に閉じる水皿と、製氷部の各製氷小室へ供給する製氷水を貯留する製氷水タンクと、製氷水タンク内の製氷水を製氷小室に噴射送出させる送水ポンプと、製氷部を冷却及び加温する冷凍装置と、送水ポンプ及び冷凍装置の作動を制御する制御装置とを備え、冷凍装置は、冷媒を圧縮する圧縮機と、圧縮機から圧送された冷媒を冷却して液化させる凝縮器と、凝縮器にて液化させた液化冷媒を膨張させる電子膨張弁と、電子膨張弁により膨張させた液化冷媒を気化させて製氷部を冷却する蒸発器とを有し、製氷部で氷を製造する製氷運転では、圧縮機から圧送されて凝縮器にて液化させた液化冷媒を、制御装置によって開度を制御した電子膨張弁にて膨張させ、膨張させた液化冷媒を蒸発器にて気化させた気化熱により製氷部を冷却し、製氷小室内に送水ポンプによって噴射送出された製氷水を製氷小室内で冷却させつつ未凍結の製氷水を製氷水タンクで回収し、製氷水を製氷小室内で漸次凍結させて氷を製造する製氷機であって、製氷部の温度を検出する温度センサを設け、制御装置は、製氷部の温度に対応して設定された電子膨張弁の開度となるように、温度センサの検出温度に基づいて電子膨張弁の開度を制御したことを特徴とする製氷機を提供するものである。   In order to solve the above-mentioned problems, the present invention provides an ice making unit having a large number of ice making chambers that open downward, and a water dish that is disposed below the ice making unit and closes the lower opening of the ice making chamber so as to be openable and closable. An ice making water tank for storing ice making water to be supplied to each ice making chamber of the ice making unit, a water supply pump for injecting and sending the ice making water in the ice making water tank to the ice making chamber, a freezing device for cooling and heating the ice making unit, The refrigeration apparatus includes a compressor that compresses the refrigerant, a condenser that cools and liquefies the refrigerant pumped from the compressor, and a liquefaction by the condenser. In an ice making operation that has an electronic expansion valve that expands the liquefied refrigerant and an evaporator that evaporates the liquefied refrigerant expanded by the electronic expansion valve and cools the ice making unit, Liquefaction that was pumped from and liquefied with a condenser The medium is expanded by an electronic expansion valve whose opening degree is controlled by a control device, the ice making part is cooled by the heat of vaporization of the expanded liquefied refrigerant vaporized by an evaporator, and the water is pumped into the ice making chamber The ice making machine collects unfrozen ice making water in an ice making water tank while cooling the ice making water in the ice making room, and gradually freezes the ice making water in the ice making room to produce ice, the temperature of the ice making unit The control device controls the opening degree of the electronic expansion valve based on the temperature detected by the temperature sensor so that the opening degree of the electronic expansion valve is set corresponding to the temperature of the ice making unit. An ice making machine characterized by the above is provided.

上記のように構成した製氷機においては、製氷部の温度を検出する温度センサを設け、制御装置は、製氷部の温度に対応して設定された電子膨張弁の開度となるように、温度センサの検出温度に基づいて電子膨張弁の開度を制御した。蒸発器から圧縮機に冷媒が液化状態で戻らないようにするとともに、製氷小室内で成長する氷の下部に生じる凹みの大きさの違いを蒸発器の入口部と出口部とが配置される位置で小さくなるように、電子膨張弁の開度を製氷部の温度に対応して予め設定しておいて、製氷部の温度に基づいて電子膨張弁の開度を制御することにより、凝縮器から圧縮機に冷媒が液化状態で戻らないようにするとともに、製氷小室内で成長する氷の下部に生じる凹みの大きさの違いを蒸発器の入口部と出口部とが配置される位置で小さくすることができた。特に、製氷部における蒸発器の出口部と入口部との温度差に基づいて電子膨張弁の開度を制御するものでないので、蒸発器の出口部と入口部との温度を検出するときのタイムラグによる影響を受けることなく、圧縮機に冷媒が液化状態で戻るのと各製氷小室で成長する氷の下部に生じる凹みの大きさの違いを小さくする効果を確実に防ぐことができた。上記のように構成した製氷機においては、温度センサは製氷部における蒸発器の冷媒の出口部の温度を検出するのが好ましい。   In the ice making machine configured as described above, a temperature sensor that detects the temperature of the ice making unit is provided, and the control device sets the temperature of the electronic expansion valve so as to correspond to the temperature of the ice making unit. The opening degree of the electronic expansion valve was controlled based on the temperature detected by the sensor. The position where the inlet and outlet of the evaporator are arranged to prevent the refrigerant from returning from the evaporator to the compressor in a liquefied state, and the difference in the size of the dent generated in the lower part of the ice growing in the ice making chamber The opening of the electronic expansion valve is set in advance corresponding to the temperature of the ice making unit, and the opening of the electronic expansion valve is controlled based on the temperature of the ice making unit so that the The refrigerant is prevented from returning to the compressor in a liquefied state, and the difference in the size of the dent generated at the bottom of the ice growing in the ice making chamber is reduced at the position where the inlet and outlet portions of the evaporator are arranged. I was able to. In particular, since the opening degree of the electronic expansion valve is not controlled based on the temperature difference between the outlet and inlet of the evaporator in the ice making unit, the time lag when detecting the temperature between the outlet and inlet of the evaporator The effect of reducing the difference in the size of the dent generated at the bottom of the ice growing in each ice making chamber can be reliably prevented without being influenced by the above. In the ice making machine configured as described above, the temperature sensor preferably detects the temperature of the outlet of the refrigerant in the evaporator in the ice making unit.

上記のように構成した製氷機においては、設定された電子膨張弁の開度は、製氷部の温度低下に応じた開度減少率となるように設定され、開度減少率は製氷部の温度範囲に応じて3段階以上で変わるように設定されているのが好ましい。この場合において、製氷部の温度範囲は、製氷小室内に噴射送出される製氷水を製氷小室内で凍結前に冷却する冷却段階の温度範囲と、製氷小室内で製氷水が凍結し始める凍結開始段階での温度範囲と、製氷小室内で氷を成長させていく氷成長段階での温度範囲とを含むようにするのが好ましい。製氷部の温度低下に応じた開度減少率を、製氷水の状態に応じて変えるようにしているので、製氷部に製氷水の状態に応じた冷媒を送るようにすることができた。   In the ice making machine configured as described above, the set opening degree of the electronic expansion valve is set to be an opening degree reduction rate corresponding to a temperature drop of the ice making part, and the opening degree reduction rate is the temperature of the ice making part. It is preferably set so as to change in three steps or more depending on the range. In this case, the temperature range of the ice making unit includes the temperature range of the cooling stage in which the ice making water jetted and sent into the ice making chamber is cooled before freezing in the ice making chamber, and the start of freezing in which the ice making water starts to freeze in the ice making chamber It is preferable to include the temperature range in the stage and the temperature range in the ice growth stage in which ice is grown in the ice making chamber. Since the opening reduction rate according to the temperature drop of the ice making part is changed according to the state of the ice making water, the refrigerant according to the state of the ice making water can be sent to the ice making part.

また、製氷水は製氷小室内で凍結し始めるときに過冷却等の現象を伴うため、製氷部の温度が一時的に上昇することがある。製氷部の温度が一時的に上昇することで、蒸発器の出口部と入口部の温度差も大きくなり、電子膨張弁の開度を大きくするように制御したときに、蒸発器の出口部と入口部の温度差が小さくなり、電子膨張弁の開度を再び小さくするように制御しても、蒸発器の出口部の温度が電子膨張弁の開度を小さくしたことによって変わるまでに時間がかかっているので、冷媒が蒸発器から圧縮機に液化状態で戻ることになる。冷媒が圧縮機に液化状態で戻ったことで冷却能力が低下するとともに、電子膨張弁の開度を再び小さくするように制御しているために、蒸発器の出口部と入口部の温度差が再び大きくなる。このように、電子膨張弁の開度を大きくするのと小さくするのを繰り返すことで、蒸発器の出口部と入口部との温度差の上下動が徐々に大きくなり、製氷部を冷却できなくなるおそれがあった。   In addition, since ice making water is accompanied by a phenomenon such as supercooling when it begins to freeze in the ice making chamber, the temperature of the ice making part may rise temporarily. When the temperature of the ice making part rises temporarily, the temperature difference between the outlet part and the inlet part of the evaporator also increases, and when the opening of the electronic expansion valve is controlled to increase, the outlet part of the evaporator Even if the temperature difference at the inlet is reduced and the opening of the electronic expansion valve is controlled to be reduced again, it takes time for the temperature at the outlet of the evaporator to change as the opening of the electronic expansion valve is reduced. As a result, the refrigerant returns from the evaporator to the compressor in a liquefied state. Since the cooling capacity is reduced by returning the refrigerant to the compressor in the liquefied state, and the opening of the electronic expansion valve is controlled to be reduced again, the temperature difference between the outlet portion and the inlet portion of the evaporator is reduced. It grows again. In this way, by repeatedly increasing and decreasing the opening of the electronic expansion valve, the vertical movement of the temperature difference between the outlet portion and the inlet portion of the evaporator gradually increases and the ice making portion cannot be cooled. There was a fear.

これに対し、上記のように構成した製氷機においては、制御装置は、温度センサの検出温度が上昇したときには電子膨張弁の開度を変更せずに維持し、温度センサの検出温度が開度を変更せずに維持したときの電子膨張弁の開度と対応する温度まで再び低下したときに、製氷部の温度に対応して設定された電子膨張弁の開度となる制御を再開するのが好ましい。このようにしたときには、製氷水が製氷小室内で凍結し始めるときのように、製氷部の温度が上昇するのを伴って温度変動が始まると、電子膨張弁の開度を変更せずに維持することで、無用な電子膨張弁の開度の調整を防ぐことができ、冷媒が蒸発器から圧縮機に液化状態で戻るのを防ぐことができるようになった。また、温度センサの検出温度が開度を変更せずに維持したときの電子膨張弁の開度と対応する温度となったときに、温度センサの検出温度に対応して設定された電子膨張弁の開度となる制御を再開しているので、製氷部の温度変動が終わった後で、製氷部の温度に対応して設定された電子膨張弁の開度となるように、温度センサの検出温度に基づいて電子膨張弁の開度を制御することができるようなった。   On the other hand, in the ice making machine configured as described above, the control device maintains the opening degree of the electronic expansion valve without changing when the temperature detected by the temperature sensor rises, and the temperature detected by the temperature sensor is not changed. When the temperature drops again to the temperature corresponding to the opening of the electronic expansion valve when maintained without change, the control to the opening of the electronic expansion valve set corresponding to the temperature of the ice making part is resumed. Is preferred. When this is done, the temperature of the electronic expansion valve is maintained without change when the temperature fluctuation starts as the temperature of the ice making unit rises, such as when ice making water begins to freeze in the ice making chamber. By doing so, it is possible to prevent unnecessary adjustment of the opening of the electronic expansion valve, and it is possible to prevent the refrigerant from returning from the evaporator to the compressor in a liquefied state. In addition, when the detected temperature of the temperature sensor reaches a temperature corresponding to the opening of the electronic expansion valve when the opening is maintained without changing the opening, the electronic expansion valve set corresponding to the detected temperature of the temperature sensor The temperature sensor detection is performed so that the opening of the electronic expansion valve is set according to the temperature of the ice making part after the temperature fluctuation of the ice making part is finished. The opening degree of the electronic expansion valve can be controlled based on the temperature.

本発明の他の実施形態においては、下向きに開口する多数の製氷小室を有した製氷部と、製氷部の下側に配設されて、製氷小室の下部の開口を開閉自在に閉じる水皿と、製氷部の各製氷小室へ供給する製氷水を貯留する製氷水タンクと、製氷水タンク内の製氷水を製氷小室に下側から噴射送出させる送水ポンプと、製氷部を冷却する冷凍装置と、送水ポンプ及び冷凍装置の作動を制御する制御装置とを備え、冷凍装置は、冷媒を圧縮する圧縮機と、圧縮機から圧送された冷媒を冷却して液化させる凝縮器と、凝縮器にて液化させた液化冷媒を膨張させる電子膨張弁と、電子膨張弁により膨張させた液化冷媒を気化させて製氷部を冷却する蒸発器とを有し、製氷部で氷を製造する製氷運転では、圧縮機から圧送されて凝縮器にて液化させた液化冷媒を、制御装置によって開度を制御した電子膨張弁にて膨張させ、膨張させた液化冷媒を蒸発器にて気化させた気化熱により製氷部を冷却し、製氷小室内に送水ポンプによって噴射送出された製氷水を製氷小室内で冷却させつつ未凍結の製氷水を製氷水タンクで回収し、製氷水を製氷水タンクと製氷小室との間で循環させながら漸次凍結させて氷を製造する製氷機であって、冷凍装置は、凝縮器と電子膨張弁とを接続する第1接続管路と、蒸発器と圧縮機とを接続する第2接続管路とを有し、第1接続管路と第2接続管路とを互いに熱交換可能な状態で配置し、電子膨張弁の入口部温度を検出する電子膨張弁温度センサを設け、制御装置は、電子膨張弁温度センサの検出温度に基づいて電子膨張弁の開度を制御したことを特徴とする製氷機を提供するものである。   In another embodiment of the present invention, an ice making unit having a large number of ice making chambers that open downward, and a water dish that is disposed below the ice making unit and closes an opening at the bottom of the ice making chamber so as to be freely opened and closed. An ice making water tank for storing ice making water to be supplied to each ice making chamber of the ice making unit, a water supply pump for injecting and sending ice making water in the ice making water tank from below into the ice making chamber, a refrigeration apparatus for cooling the ice making unit, The refrigeration apparatus includes a compressor that compresses the refrigerant, a condenser that cools and liquefies the refrigerant pumped from the compressor, and a liquefaction by the condenser. In an ice making operation that has an electronic expansion valve that expands the liquefied refrigerant and an evaporator that evaporates the liquefied refrigerant expanded by the electronic expansion valve and cools the ice making unit, Liquefaction that was pumped from and liquefied with a condenser The medium is expanded by an electronic expansion valve whose opening degree is controlled by a control device, the ice making part is cooled by the heat of vaporization of the expanded liquefied refrigerant vaporized by an evaporator, and the water is pumped into the ice making chamber The ice making water is cooled in the ice making chamber while unfrozen ice making water is collected in the ice making water tank, and the ice making water is circulated between the ice making water tank and the ice making chamber to gradually freeze to produce ice. The refrigeration apparatus has a first connection line that connects the condenser and the electronic expansion valve, and a second connection line that connects the evaporator and the compressor, and the first connection line And an electronic expansion valve temperature sensor for detecting the inlet temperature of the electronic expansion valve, and the control device is based on the detected temperature of the electronic expansion valve temperature sensor. Ice making machine characterized by controlling the opening of the electronic expansion valve It is intended to provide.

上記のように構成した製氷機においては、冷凍装置は、凝縮器と電子膨張弁とを接続する第1接続管路と、蒸発器と圧縮機とを接続する第2接続管路とを有し、第1接続管路と第2接続管路とを互いに熱交換可能な状態で配置し、電子膨張弁の入口部温度を検出する電子膨張弁温度センサを設け、制御装置は、電子膨張弁温度センサの検出温度に基づいて電子膨張弁の開度を制御した。冷媒が蒸発器から圧縮機に戻る第2接続管の熱は、冷媒を凝縮器から電子膨張弁に送る第1接続管に伝えられる。蒸発器で蒸発しきらない冷媒は第2接続管を通って圧縮機に液化状態で戻り、第2接続管を通過する液化冷媒は第1接続管を通って電子膨張弁に送られる冷媒を冷却することになる。電子膨張弁の入口部温度を検出する電子膨張弁温度センサの検出温度に基づいて電子膨張弁の開度を制御することで、冷媒が蒸発器から圧縮機に液化状態で戻らないように電子膨張弁の開度を制御することができるようになった。また、この製氷機においては、製氷部の温度を検出する温度センサを設け、制御装置は、電子膨張弁温度センサの検出温度と温度センサの検出温度とに基づいて電子膨張弁の開度を制御するのが好ましく、このようにしたときには、冷媒が蒸発器から圧縮機に液化状態で戻らないように電子膨張弁の開度を精度高く制御することができるようになった。   In the ice making machine configured as described above, the refrigeration apparatus has a first connection line that connects the condenser and the electronic expansion valve, and a second connection line that connects the evaporator and the compressor. The first connection pipe line and the second connection pipe line are arranged in a state in which heat exchange is possible with each other, and an electronic expansion valve temperature sensor for detecting an inlet temperature of the electronic expansion valve is provided. The opening degree of the electronic expansion valve was controlled based on the temperature detected by the sensor. The heat of the second connecting pipe from which the refrigerant returns from the evaporator to the compressor is transferred to the first connecting pipe that sends the refrigerant from the condenser to the electronic expansion valve. The refrigerant that does not evaporate in the evaporator returns to the compressor in a liquefied state through the second connection pipe, and the liquefied refrigerant that passes through the second connection pipe cools the refrigerant sent to the electronic expansion valve through the first connection pipe. Will do. Electronic expansion is controlled so that the refrigerant does not return from the evaporator to the compressor in a liquefied state by controlling the opening of the electronic expansion valve based on the temperature detected by the electronic expansion valve temperature sensor that detects the temperature of the inlet of the electronic expansion valve. The valve opening can now be controlled. In addition, the ice making machine is provided with a temperature sensor that detects the temperature of the ice making unit, and the control device controls the opening degree of the electronic expansion valve based on the detected temperature of the electronic expansion valve temperature sensor and the detected temperature of the temperature sensor. In this case, the opening degree of the electronic expansion valve can be accurately controlled so that the refrigerant does not return from the evaporator to the compressor in a liquefied state.

本発明による製氷機の概略図である。1 is a schematic view of an ice making machine according to the present invention. 制御装置のブロック図である。It is a block diagram of a control apparatus. 製氷部の温度と電子膨張弁の開度の関係を示したグラフである。It is the graph which showed the relationship between the temperature of an ice making part, and the opening degree of an electronic expansion valve. 製氷運転を実行しているときの製氷部の温度変化を示すグラフである。It is a graph which shows the temperature change of the ice making part when performing the ice making operation. 他の実施形態の製氷機の概略図である。It is the schematic of the ice maker of other embodiment. オープンセルタイプの製氷小室で製造される氷の形状の概略図(a)と、クローズセルタイプの製氷小室で製造される氷の形状の概略図(b)である。It is the schematic (a) of the shape of the ice manufactured in an open cell type ice making chamber, and the schematic view (b) of the shape of the ice manufactured in a closed cell type ice making chamber.

以下に、本発明の製氷機の一実施形態を図面を用いて説明する。図1に示したように、製氷機10は、製氷部11に設けた下向きに開口する多数の製氷小室13を水皿22により開閉自在に閉成し、水皿22から各製氷小室13へ製氷水を噴射供給して氷を製造する所謂クローズドセルタイプの製氷機である。この製氷機10は、製氷部11にて製氷水を凍結させる製氷運転と、製氷部11にて凍結させた氷を製氷部11から除く除氷運転を交互に実行して氷を製造するものである。この製氷機10は、冷凍装置30の膨張弁には制御装置40の制御によって開度を調整可能にした電子膨張弁33を採用したものであり、電子膨張弁33の開度を適切に制御することで、蒸発器34で蒸発しきれなかった冷媒が圧縮機31に戻らないようにしつつ、各製氷小室13内で成長する氷の下部に生じる凹みの大きさの違いをできるだけ小さくするようにしたものである。   Hereinafter, an embodiment of an ice making machine of the present invention will be described with reference to the drawings. As shown in FIG. 1, the ice making machine 10 closes a number of ice making chambers 13 provided in the ice making unit 11 that open downward by a water tray 22 so that the ice making chambers 13 can be opened and closed. This is a so-called closed cell type ice making machine that produces ice by jetting water. The ice making machine 10 produces ice by alternately executing an ice making operation in which ice making water is frozen in the ice making unit 11 and an ice removing operation in which the ice frozen in the ice making unit 11 is removed from the ice making unit 11. is there. The ice making machine 10 employs an electronic expansion valve 33 whose opening can be adjusted by the control of the control device 40 as an expansion valve of the refrigeration apparatus 30, and appropriately controls the opening of the electronic expansion valve 33. Thus, while preventing the refrigerant that could not be evaporated by the evaporator 34 from returning to the compressor 31, the difference in the size of the dent generated in the lower part of the ice growing in each ice making chamber 13 was made as small as possible. Is.

製氷部11は、水平に配置されて下側が開口した浅い箱形をし、仕切部材12によって下向きに開口する多数の製氷小室13が形成されている。また、製氷部11の下方には各製氷小室13にて製造した氷を貯える貯氷庫14が設けられている。   The ice making unit 11 has a shallow box shape that is horizontally arranged and opened on the lower side, and a plurality of ice making chambers 13 opened downward by the partitioning member 12 are formed. Further, below the ice making unit 11, an ice storage 14 for storing ice produced in each ice making chamber 13 is provided.

製氷機10は製氷部11に製氷水を送出する送水部20を備えている。送水部20は製氷水タンク21を下部に一体的に備えた水皿22を備えている。水皿22は製氷部11の下側に接近して製氷小室13の下部の開口を閉止する閉止位置と、製氷部11の下側から離間して製氷小室13の下部の開口を開放する開放位置との間で傾動可能に支持されている。水皿22には閉止位置と開放位置との間で傾動させる開閉機構23が設けられており、水皿22は開閉機構23によって製氷部11の製氷小室13の下部の開口を開閉している。開閉機構23はアクチュエータモータ23aを備え、アクチュエータモータ23aの駆動により水皿22を閉止位置と開放位置との間で傾動させるものである。   The ice making machine 10 includes a water supply unit 20 that sends ice making water to the ice making unit 11. The water supply unit 20 includes a water tray 22 integrally provided with an ice making water tank 21 at a lower portion. The water tray 22 approaches the lower side of the ice making unit 11 and closes the lower opening of the ice making chamber 13, and the open position that opens away from the lower side of the ice making unit 11 and opens the lower opening of the ice making chamber 13. It is supported so that it can tilt between. The water tray 22 is provided with an open / close mechanism 23 that tilts between a closed position and an open position, and the water tray 22 opens and closes the lower opening of the ice making chamber 13 of the ice making unit 11 by the open / close mechanism 23. The opening / closing mechanism 23 includes an actuator motor 23a, and tilts the water tray 22 between a closed position and an open position by driving the actuator motor 23a.

送水部20には製氷水タンク21に製氷水を供給する給水手段24と、製氷水タンク21内の製氷水を製氷小室13に噴射送出させる送水ポンプ25が設けられている。給水手段24は製氷水タンク21に接続された給水管24aと、給水管24aに介装された給水弁24bとを備え、給水管24aから送られる製氷水は給水弁24bの開放によって製氷水タンク21に供給される。また、製氷水タンク21に供給された製氷水は送水ポンプ25により製氷小室13に噴射送出される。   The water supply section 20 is provided with a water supply means 24 for supplying ice making water to the ice making water tank 21 and a water supply pump 25 for injecting and sending the ice making water in the ice making water tank 21 to the ice making chamber 13. The water supply means 24 includes a water supply pipe 24a connected to the ice-making water tank 21, and a water supply valve 24b interposed in the water supply pipe 24a. The ice-making water sent from the water supply pipe 24a is opened by opening the water supply valve 24b. 21 is supplied. The ice making water supplied to the ice making water tank 21 is jetted out to the ice making chamber 13 by the water pump 25.

図1に示したように、製氷機10は、製氷部11を冷却及び加温する冷凍装置30を備えている。冷凍装置30は、冷媒を圧縮する圧縮機31と、圧縮機31から圧送された冷媒を冷却して液化させる凝縮器32と、凝縮器32にて液化させた液化冷媒を膨張させて低圧の液化冷媒とする電子膨張弁33と、電子膨張弁33により膨張させた液化冷媒を気化させて製氷部11を冷却する蒸発器34とを備えている。冷凍装置30は圧縮機31、凝縮器32、電子膨張弁33及び蒸発器34を接続管35(35a〜35d)によって環状に接続させて冷凍回路を構成させている。電子膨張弁33は後述する制御装置40の制御信号によって開度を調整可能としたものである。蒸発器34は銅管等の熱導電性の高い管材を用いたものであり、製氷部11の上面に蛇行配置されている。製氷部11は蒸発器34を通過する液化冷媒が気化するときの気化熱によって冷却される。接続管35は、圧縮機31と凝縮器32とを接続する接続管路35aと、凝縮器32と電子膨張弁33とを接続する接続管路(第1接続管路)35bと、電子膨張弁33と蒸発器34とを接続する接続管路35cと、蒸発器34と圧縮機31とを接続する接続管路(第2接続管路)35dとから構成されている。凝縮器32と電子膨張弁33とを接続する接続管路(第1接続管路)35bの熱交換部35b1と蒸発器34と圧縮機31とを接続する接続管路(第2接続管路)35dの熱交換部35d1とは接触させることで熱交換可能な状態で配置されている。   As shown in FIG. 1, the ice making machine 10 includes a refrigeration apparatus 30 that cools and heats the ice making unit 11. The refrigeration apparatus 30 includes a compressor 31 that compresses the refrigerant, a condenser 32 that cools and liquefies the refrigerant pumped from the compressor 31, and expands the liquefied refrigerant liquefied by the condenser 32 to liquefy the refrigerant at a low pressure. An electronic expansion valve 33 serving as a refrigerant, and an evaporator 34 that evaporates the liquefied refrigerant expanded by the electronic expansion valve 33 and cools the ice making unit 11 are provided. In the refrigeration apparatus 30, a compressor 31, a condenser 32, an electronic expansion valve 33, and an evaporator 34 are annularly connected by a connecting pipe 35 (35a to 35d) to constitute a refrigeration circuit. The electronic expansion valve 33 can be adjusted in opening degree by a control signal of the control device 40 described later. The evaporator 34 uses a pipe material having high thermal conductivity such as a copper pipe, and is meanderingly arranged on the upper surface of the ice making unit 11. The ice making unit 11 is cooled by the heat of vaporization when the liquefied refrigerant passing through the evaporator 34 is vaporized. The connecting pipe 35 includes a connecting pipe 35 a that connects the compressor 31 and the condenser 32, a connecting pipe (first connecting pipe) 35 b that connects the condenser 32 and the electronic expansion valve 33, and an electronic expansion valve. 33 and a connection pipe 35 c that connects the evaporator 34 and a connection pipe (second connection pipe) 35 d that connects the evaporator 34 and the compressor 31. A connection line (second connection line) for connecting the heat exchanger 35b1 of the connection line (first connection line) 35b connecting the condenser 32 and the electronic expansion valve 33, the evaporator 34, and the compressor 31. The heat exchange part 35d1 of 35d is arrange | positioned in the state which can be heat-exchanged by making it contact.

また、冷凍装置30は除氷運転をするときに蒸発器34にホットガスを供給するホットガス管(ホットガス経路)36を備えている。ホットガス管36は圧縮機31の下流と蒸発器34の上流とを接続して、圧縮機31からのホットガスを蒸発器34に導くようにしている。ホットガス管36にはホットガス弁37が介装されており、圧縮機31から送られるホットガスはホットガス弁37の開放によってホットガス管36を通って蒸発器34に導かれる。除氷運転時に、ホットガスがホットガス弁37の開放によって蒸発器34に導かれると、製氷部11の製氷小室13内はホットガスにより加温され、製氷小室13内で凍結した氷が除氷される。   The refrigeration apparatus 30 includes a hot gas pipe (hot gas path) 36 that supplies hot gas to the evaporator 34 during the deicing operation. The hot gas pipe 36 connects the downstream of the compressor 31 and the upstream of the evaporator 34 so as to guide the hot gas from the compressor 31 to the evaporator 34. A hot gas valve 37 is interposed in the hot gas pipe 36, and hot gas sent from the compressor 31 is guided to the evaporator 34 through the hot gas pipe 36 when the hot gas valve 37 is opened. When the hot gas is guided to the evaporator 34 by opening the hot gas valve 37 during the deicing operation, the ice making chamber 13 of the ice making unit 11 is heated by the hot gas, and the ice frozen in the ice making chamber 13 is deiced. Is done.

製氷部11には蒸発器34の冷媒の出口部34aに出口部温度センサ(温度センサ)38が設けられており、出口部温度センサ38は製氷部11における蒸発器34の冷媒の出口部34aの温度を検出する。出口部温度センサ38は主として製氷運転をするときに電子膨張弁33の開度を調整する制御に用いられるだけでなく、製氷運転をするときの製氷の完了及び除氷運転をするときの除氷の完了を検知するのに用いられる。
製氷機10は制御装置40を備えており、図2に示したように、この制御装置40は、開閉機構23のアクチュエータモータ23a、給水弁24b、送水ポンプ25、冷凍装置30の圧縮機31と、ホットガス弁37と、出口部温度センサ38に接続されている。制御装置40はマイクロコンピュータ(図示省略)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続されたCPU、RAM、ROM及びタイマ(いずれも図示省略)を備えている。制御装置40は製氷部11にて製氷水を凍結させて氷を製造する製氷運転と、製氷運転により製氷部11にて凍結させた氷を除氷する除氷運転とを繰り返し実行する製氷プログラムを有している。
The ice making section 11 is provided with an outlet temperature sensor (temperature sensor) 38 at the refrigerant outlet 34 a of the evaporator 34, and the outlet temperature sensor 38 is connected to the refrigerant outlet section 34 a of the evaporator 34 in the ice making section 11. Detect temperature. The outlet temperature sensor 38 is not only used for controlling the opening degree of the electronic expansion valve 33 during ice making operation, but also completes ice making during ice making operation and deicing when performing ice removal operation. Used to detect completion of
The ice making machine 10 includes a control device 40. As shown in FIG. 2, the control device 40 includes an actuator motor 23a of the opening / closing mechanism 23, a water supply valve 24b, a water supply pump 25, and a compressor 31 of the refrigeration device 30. The hot gas valve 37 and the outlet temperature sensor 38 are connected. The control device 40 includes a microcomputer (not shown), and the microcomputer includes a CPU, a RAM, a ROM, and a timer (all not shown) connected via a bus. The control device 40 executes an ice making program for repeatedly executing an ice making operation for producing ice by freezing ice making water in the ice making unit 11 and an ice removing operation for removing ice frozen in the ice making unit 11 by the ice making operation. Have.

図3に示したように、製氷プログラムの製氷運転をするときには、制御装置40は、蒸発器34の冷媒の出口部34a(製氷部11の温度)の温度に対応して設定された電子膨張弁33の開度となるように、出口部温度センサ38の検出温度に基づいて電子膨張弁33の開度を制御している。蒸発器34の冷媒の出口部34aの温度に対応して予め設定されている電子膨張弁33の開度は、蒸発器34の冷媒の出口部34aの温度低下に応じた開度減少率となるように設定されている。この実施形態では、蒸発器34の冷媒の出口部34aの温度低下に応じた開度減少率は蒸発器34の冷媒の出口部34aの温度範囲に応じて3段階で変わるように設定されている。   As shown in FIG. 3, when the ice making operation of the ice making program is performed, the control device 40 sets the electronic expansion valve set corresponding to the temperature of the refrigerant outlet portion 34 a (the temperature of the ice making portion 11) of the evaporator 34. The opening degree of the electronic expansion valve 33 is controlled based on the temperature detected by the outlet temperature sensor 38 so that the opening degree becomes 33. The opening degree of the electronic expansion valve 33 set in advance corresponding to the temperature of the refrigerant outlet part 34a of the evaporator 34 is an opening degree reduction rate corresponding to the temperature drop of the refrigerant outlet part 34a of the evaporator 34. Is set to In this embodiment, the degree of opening reduction according to the temperature drop of the refrigerant outlet 34 a of the evaporator 34 is set to change in three stages according to the temperature range of the refrigerant outlet 34 a of the evaporator 34. .

設定されている温度範囲は、製氷水の冷却段階に応じて変わるようになっている。この実施形態では、温度範囲は第1〜第3温度範囲に分けられ、第1温度範囲は、製氷小室13内に噴射送出される製氷水を製氷小室13内で凍結前に冷却する冷却段階の温度範囲であり、第2温度範囲は、製氷小室13内で製氷水が凍結し始める凍結開始段階での温度範囲であり、第3温度範囲は、製氷小室13内で氷が成長していく氷成長段階での温度範囲となっている。   The set temperature range changes according to the cooling stage of the ice making water. In this embodiment, the temperature range is divided into first to third temperature ranges, and the first temperature range is a cooling stage in which the ice making water sprayed into the ice making chamber 13 is cooled in the ice making chamber 13 before freezing. The second temperature range is a temperature range at the start of freezing in which ice making water begins to freeze in the ice making chamber 13, and the third temperature range is ice in which ice grows in the ice making chamber 13. The temperature range is in the growth stage.

第1温度範囲は、製氷水タンク21内に供給された常温の水を製氷小室13内で凍結できるように冷却するときの温度範囲であり、第1温度範囲のときには製氷水の温度を低下させるために多量の冷媒を必要とする。このため、第1温度範囲は、蒸発器34の出口部34aの温度がt1℃以上の範囲と設定され、第1温度範囲のときには電子膨張弁33の開度をa1として高い状態(例えば70〜90%)で一定に維持するようにしている。   The first temperature range is a temperature range for cooling normal temperature water supplied into the ice making water tank 21 so that it can be frozen in the ice making chamber 13. When the temperature is within the first temperature range, the temperature of the ice making water is lowered. Therefore, a large amount of refrigerant is required. For this reason, the first temperature range is set so that the temperature of the outlet 34a of the evaporator 34 is not less than t1 ° C. When the temperature is within the first temperature range, the opening degree of the electronic expansion valve 33 is set to a1 (for example, 70 to 70). 90%).

第2温度範囲は、冷却段階で冷却した製氷水が製氷小室13内で凍結し始めるときの温度範囲であり、第2温度範囲のときには第1温度範囲のときよりは多量の冷媒を必要としないものの、製氷水が凍結し始めると冷媒の流量を少なくする必要がある。このため、第2温度範囲は、蒸発器34の出口部34aの温度がt2〜t1℃の範囲と設定され、第2温度範囲のときには電子膨張弁33の開度をa1からa2に徐々に小さくなるようにしている。   The second temperature range is a temperature range when the ice making water cooled in the cooling stage starts to freeze in the ice making chamber 13, and a larger amount of refrigerant is not required in the second temperature range than in the first temperature range. However, when the ice making water begins to freeze, it is necessary to reduce the flow rate of the refrigerant. For this reason, the second temperature range is set such that the temperature of the outlet 34a of the evaporator 34 is in the range of t2 to t1 ° C. When the temperature is within the second temperature range, the opening degree of the electronic expansion valve 33 is gradually decreased from a1 to a2. It is trying to become.

第3温度範囲は、製氷小室13内で凍結し始めた氷を成長させるときの温度範囲であり、第3温度範囲のときには第2温度範囲のときよりも冷媒の流量を穏やかに少なくしていく必要がある。このため、第3温度範囲は、蒸発器34の出口部34aの温度がt3〜t2℃の範囲と設定され、第3温度範囲のときには第2温度範囲のときよりも電子膨張弁33の開度a2からa3に穏やかに小さくなるようにしている。   The third temperature range is a temperature range when growing ice that has started to freeze in the ice making chamber 13, and the flow rate of the refrigerant is gently reduced in the third temperature range than in the second temperature range. There is a need. For this reason, the third temperature range is set so that the temperature of the outlet 34a of the evaporator 34 is in the range of t3 to t2 ° C., and the opening degree of the electronic expansion valve 33 is more in the third temperature range than in the second temperature range. It is made to become small gently from a2 to a3.

第2及び第3温度範囲で設定されている蒸発器34の出口部34aの温度t2のときの電子膨張弁33の開度a2を基準としたときに、第1及び2温度範囲で設定されている蒸発器34の出口部34aの温度t1のときの電子膨張弁33の開度a1はa2の1.5倍以上であり、第3温度範囲で設定されている蒸発器34の出口部34aの温度t3のときの電子膨張弁33の開度a3はa2の0.5倍以下に設定されている。   When the opening a2 of the electronic expansion valve 33 at the temperature t2 of the outlet 34a of the evaporator 34 set in the second and third temperature ranges is used as a reference, the temperature is set in the first and second temperature ranges. The opening a1 of the electronic expansion valve 33 at the temperature t1 of the outlet portion 34a of the evaporator 34 is 1.5 times or more of a2, and the outlet portion 34a of the evaporator 34 set in the third temperature range. The opening degree a3 of the electronic expansion valve 33 at the temperature t3 is set to 0.5 times or less of a2.

次に、製氷機10の製氷プログラムについて説明する。製氷機10の始動時には予備的に除氷運転を実行し、製氷部11の製氷小室13内に氷が必ず残っていない状態とする。除氷運転では、圧縮機31を作動させた状態でホットガス弁37を開放するとともに、開閉機構23のアクチュエータモータ23aにより水皿22を開放位置に傾動させる。圧縮機31から送出されるホットガスはホットガス管36を通って蒸発器34に導かれて製氷部11の各製氷小室13を加温する。出口部温度センサ38の検出温度が除氷が完了したことを検知する所定温度として5℃以上となると、制御装置40は、製氷部11の製氷小室13に氷が残ってない、即ち除氷が完了していると検知して、ホットガス弁37を閉止して除氷運転を終了する。   Next, an ice making program of the ice making machine 10 will be described. When the ice making machine 10 is started, a deicing operation is preliminarily executed to make sure that no ice remains in the ice making chamber 13 of the ice making unit 11. In the deicing operation, the hot gas valve 37 is opened while the compressor 31 is operated, and the water dish 22 is tilted to the open position by the actuator motor 23 a of the opening / closing mechanism 23. The hot gas delivered from the compressor 31 is guided to the evaporator 34 through the hot gas pipe 36 to heat each ice making chamber 13 of the ice making unit 11. When the detected temperature of the outlet temperature sensor 38 reaches 5 ° C. or more as a predetermined temperature for detecting that the deicing is completed, the control device 40 indicates that no ice remains in the ice making chamber 13 of the ice making unit 11, that is, deicing is not performed. When it is detected that it is completed, the hot gas valve 37 is closed and the deicing operation is terminated.

製氷部11にて予め除氷運転を実行した後で、制御装置40は、製氷部11にて製氷運転と除氷運転を繰り返し実行する。製氷運転では、制御装置40は、開閉機構23のアクチュエータモータ23aにより水皿22を閉止位置に傾動させるとともに、給水弁24bを所定時間開放することで製氷水タンク21に製氷水を供給する。次に、制御装置40は所定時間経過後に給水弁24bを閉止して給水を終了し、送水ポンプ25を駆動させて製氷水タンク21内の製氷水を製氷部11の各製氷小室13に噴射送出させる。   After executing the deicing operation in advance in the ice making unit 11, the control device 40 repeatedly executes the ice making operation and the deicing operation in the ice making unit 11. In the ice making operation, the control device 40 tilts the water tray 22 to the closed position by the actuator motor 23a of the opening / closing mechanism 23 and supplies the ice making water to the ice making water tank 21 by opening the water supply valve 24b for a predetermined time. Next, the control device 40 closes the water supply valve 24b after a predetermined time has elapsed to end the water supply, and drives the water supply pump 25 to inject and send the ice making water in the ice making water tank 21 to each ice making chamber 13 of the ice making unit 11. Let

また、給水管24aから製氷水タンク21への給水とともに、除氷運転の終了の際にホットガス弁37を閉止させたことにより、製氷部11は冷凍装置30により冷却される。具体的には、圧縮機31から圧送された冷媒が凝縮器32により液化されて液化冷媒となり、液化冷媒は出口部温度センサ38の検出温度に基づいて制御装置40によって開度が調整された電子膨張弁33により膨張して低圧の液化冷媒となり、低圧の液化冷媒は蒸発器34で気化することにより製氷部11を冷却する。送水ポンプ25により製氷小室13に噴射送出される製氷水は製氷小室13内で冷却されるとともに凍結し、製氷水タンク21内の製氷水が徐々に減少する。製氷運転をするときには、制御装置40は上述したように、蒸発器34の冷媒の出口部34aの温度に対応して設定された電子膨張弁33の開度となるように、出口部温度センサ38の検出温度に基づいて電子膨張弁33の開度を制御している。   The ice making unit 11 is cooled by the refrigeration apparatus 30 by closing the hot gas valve 37 at the end of the deicing operation as well as supplying water from the water supply pipe 24 a to the ice making water tank 21. Specifically, the refrigerant pumped from the compressor 31 is liquefied by the condenser 32 to become a liquefied refrigerant, and the liquefied refrigerant is an electron whose opening degree is adjusted by the control device 40 based on the temperature detected by the outlet temperature sensor 38. The low pressure liquefied refrigerant expands by the expansion valve 33 and is vaporized by the evaporator 34 to cool the ice making unit 11. The ice making water sprayed and delivered to the ice making chamber 13 by the water pump 25 is cooled and frozen in the ice making chamber 13, and the ice making water in the ice making water tank 21 gradually decreases. When the ice making operation is performed, the control device 40, as described above, the outlet temperature sensor 38 so that the opening degree of the electronic expansion valve 33 is set corresponding to the temperature of the outlet 34a of the refrigerant of the evaporator 34. The opening degree of the electronic expansion valve 33 is controlled based on the detected temperature.

製氷運転後の除氷運転では、制御装置40は、圧縮機31を作動させた状態でホットガス弁37を開放するとともに、開閉機構23のアクチュエータモータ23aにより水皿22を開放位置に傾動させる。圧縮機31から送出されるホットガスはホットガス管36を通って蒸発器34に導かれて製氷部11の各製氷小室13を加温する。製氷完了時の製氷部11の温度は約−20℃となっているが、製氷部11の温度が徐々に上昇しながら、製氷小室13内から氷が離脱する。出口部温度センサ38の検出温度が除氷が完了したことを検知する所定温度として5℃以上となると、制御装置40は、製氷部11の製氷小室13に氷が残ってない、即ち除氷が完了していると検知して、ホットガス弁37を閉止して除氷運転を終了して再び上述したように製氷運転を実行する。この製氷機10ではこのような制御装置40による製氷運転と除氷運転を繰り返し実行させることで製氷部11にてブロック形の氷を製造される。   In the deicing operation after the ice making operation, the control device 40 opens the hot gas valve 37 with the compressor 31 operated, and tilts the water tray 22 to the open position by the actuator motor 23a of the opening / closing mechanism 23. The hot gas delivered from the compressor 31 is guided to the evaporator 34 through the hot gas pipe 36 to heat each ice making chamber 13 of the ice making unit 11. Although the temperature of the ice making unit 11 at the time of completion of ice making is about −20 ° C., the ice is detached from the ice making chamber 13 while the temperature of the ice making unit 11 gradually increases. When the detected temperature of the outlet temperature sensor 38 reaches 5 ° C. or more as a predetermined temperature for detecting that the deicing is completed, the control device 40 indicates that no ice remains in the ice making chamber 13 of the ice making unit 11, that is, deicing is not performed. When it is detected that it has been completed, the hot gas valve 37 is closed, the deicing operation is terminated, and the ice making operation is executed again as described above. In the ice making machine 10, block-type ice is manufactured in the ice making unit 11 by repeatedly executing the ice making operation and the deicing operation by the control device 40.

上記のように構成した製氷機10においては、製氷部11の温度、特に製氷部11における蒸発器34の冷媒の出口部34aの温度を検出する出口部温度センサ38を設け、制御装置40は、製氷部11における蒸発器34の冷媒の出口部34aの温度に対応して設定された電子膨張弁33の開度となるように、出口部温度センサ38の検出温度に基づいて電子膨張弁33の開度を制御した。   The ice making machine 10 configured as described above is provided with an outlet temperature sensor 38 that detects the temperature of the ice making unit 11, particularly the temperature of the outlet 34a of the refrigerant of the evaporator 34 in the ice making unit 11, and the control device 40 includes: Based on the temperature detected by the outlet temperature sensor 38, the electronic expansion valve 33 is adjusted so that the opening of the electronic expansion valve 33 is set in accordance with the temperature of the refrigerant outlet 34 a of the evaporator 34 in the ice making unit 11. The opening was controlled.

冷媒の出口部34aの温度に対応して設定された電子膨張弁33の開度は、蒸発器34から圧縮機31に冷媒が液化状態で戻らないようにしつつ、蒸発器34の出口部34aで液化冷媒が不足しないようにして、蒸発器34の出口部34aが配置される製氷小室13も十分に冷却するようにし、製氷小室13で成長する氷の下部に生じる凹みの大きさの違いを蒸発器34の入口部と出口部34aとが配置される位置で小さくするようにしている。このように予め設定した開度となるように、出口部温度センサ38の検出温度に基づいて電子膨張弁33の開度を制御することで、蒸発器34から圧縮機31に冷媒が液化状態で戻るのを確実に防ぎつつ、各製氷小室13で成長する氷の下部形状をできるだけ均一とすることができた。特に、製氷部11における蒸発器34の入口部と出口部34aとの温度差に基づいて電子膨張弁33の開度を制御するものでないので、蒸発器34の入口部と出口部34aとで温度を検出するときのタイムラグによる影響を受けることなく、圧縮機31に冷媒が液化状態で戻るのを防ぐのと、各製氷小室13で成長する氷の下部形状を均一にする効果を確実に得ることができた。   The degree of opening of the electronic expansion valve 33 set corresponding to the temperature of the refrigerant outlet 34a is such that the refrigerant does not return from the evaporator 34 to the compressor 31 in a liquefied state, while the outlet 34a of the evaporator 34 The ice making chamber 13 in which the outlet 34a of the evaporator 34 is disposed is sufficiently cooled so that the liquefied refrigerant is not insufficient, and the difference in the size of the dent generated in the lower part of the ice growing in the ice making chamber 13 is evaporated. The inlet 34 and the outlet 34a of the container 34 are made small at the position where they are arranged. The refrigerant is liquefied from the evaporator 34 to the compressor 31 by controlling the opening of the electronic expansion valve 33 based on the temperature detected by the outlet temperature sensor 38 so that the opening is set in advance. It was possible to make the lower shape of the ice growing in each ice making chamber 13 as uniform as possible while preventing the return. In particular, since the opening degree of the electronic expansion valve 33 is not controlled based on the temperature difference between the inlet portion and the outlet portion 34a of the evaporator 34 in the ice making unit 11, the temperature at the inlet portion and the outlet portion 34a of the evaporator 34 is not controlled. The refrigerant is prevented from returning to the compressor 31 in the liquefied state without being affected by the time lag when detecting the ice, and the effect of making the shape of the lower part of the ice growing in each ice making chamber 13 uniform can be reliably obtained. I was able to.

また、蒸発器34の出口部34aの温度に対応して設定された電子膨張弁33の開度は、蒸発器34の出口部34aの温度低下に応じた開度減少率となるように設定され、開度減少率は蒸発器34の出口部34aの温度範囲に応じて3段階(3段階以上)で変わるように設定されている。開度減少率を変えるよう設定されている温度範囲は、製氷小室13内に噴射送出される製氷水を製氷小室13内で凍結前に冷却する冷却段階の第1温度範囲と、製氷小室13内で製氷水が凍結し始める凍結開始段階での第2温度範囲と、製氷小室13内で氷を成長させていく氷成長段階での第3温度範囲とに分けられている。   Further, the opening degree of the electronic expansion valve 33 set corresponding to the temperature of the outlet portion 34a of the evaporator 34 is set to be an opening degree reduction rate corresponding to the temperature drop of the outlet portion 34a of the evaporator 34. The opening reduction rate is set to change in three steps (three steps or more) according to the temperature range of the outlet 34a of the evaporator 34. The temperature range set to change the opening reduction rate includes the first temperature range in the cooling stage in which the ice making water jetted and sent into the ice making chamber 13 is cooled in the ice making chamber 13 before freezing, and the ice making chamber 13 The ice making water is divided into a second temperature range at the freezing start stage and a third temperature range at the ice growing stage in which ice is grown in the ice making chamber 13.

第1温度範囲のときには製氷水の温度を低下させるために多量の冷媒を必要とするので、電子膨張弁33の開度は高い状態で一定に維持されている。なお、この場合には開度減少率は0となっているが、これに限られるものでなく、きわめて低い開度減少率で開度を低くさせるようにしてもよい。第2温度範囲のときには製氷小室13内で製氷水が凍結し始めるときであるので徐々に冷媒の流量を少なくする必要があり、電子膨張弁33の開度を徐々に低くしている。第3温度範囲のときには製氷小室13内で氷を成長させるときであるので、時間をかけて電子膨張弁33の開度を小さくしていく必要があり、電子膨張弁33の開度を第2温度範囲のときよりも穏やかに低くするようにしている。この実施形態では、第3温度範囲のときの開度減少率は第2温度範囲のときの開度減少率の1/5(製氷機の機種に応じて1/3〜1/6とするのが好ましい)に設定されている。蒸発器34の出口部34a(製氷部11)の温度低下に応じた電子膨張弁33の開度減少率を、製氷水の状態(製氷水が凍結する前、製氷水が凍結開始するとき、製氷水が氷となって成長するとき等)によって変えるようにしているので、製氷部11に製氷水の状態に応じた冷媒を送るようにすることができた。この実施形態では、開度減少率を蒸発器34の出口部34aの温度範囲に応じて3段階で変わるように設定しているが、これに限られるものでなく、開度減少率を蒸発器34の出口部34aの温度範囲に応じて3段階以上で変わるように設定したものであってもよい。   In the first temperature range, a large amount of refrigerant is required to lower the temperature of the ice making water, so that the opening degree of the electronic expansion valve 33 is kept constant at a high level. In this case, the opening reduction rate is 0, but the present invention is not limited to this, and the opening may be lowered with a very low opening reduction rate. In the second temperature range, since the ice making water starts to freeze in the ice making chamber 13, it is necessary to gradually reduce the flow rate of the refrigerant, and the opening degree of the electronic expansion valve 33 is gradually lowered. Since the ice temperature grows in the ice making chamber 13 in the third temperature range, it is necessary to reduce the opening degree of the electronic expansion valve 33 over time, and the opening degree of the electronic expansion valve 33 is set to the second temperature range. The temperature is made lower than that in the temperature range. In this embodiment, the degree of decrease in the opening degree in the third temperature range is 1/5 of the opening degree reduction ratio in the second temperature range (1/3 to 1/6 depending on the type of ice machine). Is preferable). The rate of decrease in the degree of opening of the electronic expansion valve 33 according to the temperature drop at the outlet 34a (ice making part 11) of the evaporator 34 is determined based on the state of the ice making water (when the ice making water starts to freeze before the ice making water freezes) Therefore, it is possible to send the refrigerant according to the state of the ice making water to the ice making unit 11. In this embodiment, the opening reduction rate is set to change in three stages according to the temperature range of the outlet 34a of the evaporator 34. However, the present invention is not limited to this, and the opening reduction rate is set to the evaporator. It may be set so as to change in three or more steps according to the temperature range of the 34 outlet portions 34a.

また、図4の2点鎖線に示したように、製氷水は製氷小室13内で凍結しはじめるときに過冷却等の現象を伴うため、製氷部11の温度が一時的に上昇することがある。製氷部11の温度が一時的に上昇することで、蒸発器34の出口部34aと入口部との温度差も一時的に大きくなり、電子膨張弁33の開度を大きくするように制御したときに、蒸発器34の出口部34aと入口部の温度差が小さくなる。このとき、電子膨張弁33の開度を再び小さくするように制御しても、蒸発器34の出口部34aの温度が電子膨張弁33の開度を小さくしたことによって変わるまでに時間がかかっているので、冷媒が蒸発器34から圧縮機31に液化状態で戻ることがある。冷媒が圧縮機31に液化状態で戻ったことで冷却能力が低下するとともに、電子膨張弁33の開度を再び小さくするように制御しているために、蒸発器34の出口部34aと入口部の温度差が大きくなる。電子膨張弁33の開度を大きくするのと小さくするのを繰り返すことで、蒸発器34の出口部34aと入口部との温度差の上下動が徐々に大きくなり、製氷部11を冷却できなくなるおそれがあった。   Further, as shown by a two-dot chain line in FIG. 4, since the ice making water is accompanied by a phenomenon such as supercooling when it begins to freeze in the ice making chamber 13, the temperature of the ice making unit 11 may rise temporarily. . When the temperature of the ice making unit 11 temporarily rises, the temperature difference between the outlet 34a and the inlet of the evaporator 34 also temporarily increases, and the opening degree of the electronic expansion valve 33 is controlled to be increased. In addition, the temperature difference between the outlet 34a and the inlet of the evaporator 34 is reduced. At this time, even if the opening degree of the electronic expansion valve 33 is controlled to be reduced again, it takes time until the temperature of the outlet portion 34a of the evaporator 34 is changed by reducing the opening degree of the electronic expansion valve 33. Therefore, the refrigerant may return from the evaporator 34 to the compressor 31 in a liquefied state. Since the cooling capacity is reduced by returning the refrigerant to the compressor 31 in the liquefied state, and the opening degree of the electronic expansion valve 33 is controlled to be reduced again, the outlet portion 34a and the inlet portion of the evaporator 34 are controlled. The temperature difference increases. By repeatedly increasing and decreasing the opening of the electronic expansion valve 33, the vertical movement of the temperature difference between the outlet 34a and the inlet of the evaporator 34 gradually increases, and the ice making unit 11 cannot be cooled. There was a fear.

これに対し、この製氷機10においては、図4の実線に示したように、制御装置40は、出口部温度センサ38の検出温度が上昇したときには電子膨張弁33の開度を変更せずに維持し、出口部温度センサ38の検出温度が開度を変更せずに維持したときの電子膨張弁33の開度と対応する温度まで再び低下したときに、上述した蒸発器34の出口部34a(製氷部11)の温度に対応して設定された電子膨張弁33の開度となるように制御した。これによって、製氷水が製氷小室13内で凍結し始めるときのように、製氷部11の温度が上昇するのを伴って温度変動が始まると、電子膨張弁33の開度を変更せずに維持することで、無用な電子膨張弁33の開度の調整を防ぐことで、冷媒が蒸発器34から圧縮機31に液化状態で戻るのを防ぐことができるようになる。また、出口部温度センサ38の検出温度が変更せずに維持したときの電子膨張弁33の開度と対応する温度となったときに、蒸発器34の出口部34a(製氷部11)の温度に対応して設定された電子膨張弁33の開度となる制御を再開しているので、製氷部11の温度変動が終わった後でも、圧縮機31に冷媒が液化状態で戻るのを防ぐのと、各製氷小室13で成長する氷の下部形状を均一にする効果を得ることができた。   On the other hand, in the ice making machine 10, as shown by the solid line in FIG. 4, the control device 40 does not change the opening degree of the electronic expansion valve 33 when the detected temperature of the outlet temperature sensor 38 increases. When the temperature detected by the outlet temperature sensor 38 is again lowered to a temperature corresponding to the opening of the electronic expansion valve 33 when the opening is maintained without changing the opening, the outlet 34a of the evaporator 34 described above. Control was performed so that the opening degree of the electronic expansion valve 33 was set corresponding to the temperature of the (ice-making unit 11). As a result, when the temperature fluctuation starts as the temperature of the ice making unit 11 rises as when the ice making water starts to freeze in the ice making chamber 13, the opening degree of the electronic expansion valve 33 is maintained without being changed. By doing so, it is possible to prevent the refrigerant from returning from the evaporator 34 to the compressor 31 in a liquefied state by preventing unnecessary adjustment of the opening of the electronic expansion valve 33. Further, when the temperature detected by the outlet temperature sensor 38 is not changed, the temperature of the outlet 34a (ice making unit 11) of the evaporator 34 is reached when the temperature corresponds to the opening of the electronic expansion valve 33. Since the control for resuming the opening of the electronic expansion valve 33 set corresponding to the above is resumed, the refrigerant is prevented from returning to the compressor 31 in the liquefied state even after the temperature fluctuation of the ice making unit 11 is finished. And the effect which makes uniform the lower shape of the ice which grows in each ice making chamber 13 was able to be acquired.

上記の実施形態の製氷機10は、製氷部11として蒸発器34の出口部34aの温度を検出する出口部温度センサ38を設け、制御装置40は、製氷部11の温度に対応して設定された電子膨張弁33の開度となるように、出口部温度センサ38の検出温度に基づいて電子膨張弁33の開度を制御したものである。次に説明する図5に示した実施形態の製氷機10Aは、電子膨張弁33の入口部温度を検出する電子膨張弁温度センサ39を設け、制御装置40は、電子膨張弁温度センサ39の検出温度に基づいて電子膨張弁33の開度を制御するようにしている。   The ice making machine 10 of the above embodiment is provided with an outlet temperature sensor 38 that detects the temperature of the outlet 34 a of the evaporator 34 as the ice making unit 11, and the control device 40 is set corresponding to the temperature of the ice making unit 11. The opening degree of the electronic expansion valve 33 is controlled based on the temperature detected by the outlet temperature sensor 38 so that the opening degree of the electronic expansion valve 33 becomes the same. The ice making machine 10A of the embodiment shown in FIG. 5 to be described next is provided with an electronic expansion valve temperature sensor 39 that detects the inlet temperature of the electronic expansion valve 33, and the control device 40 detects the electronic expansion valve temperature sensor 39. The opening degree of the electronic expansion valve 33 is controlled based on the temperature.

上述したように、凝縮器32と電子膨張弁33とを接続する接続管路(第1接続管路)35bの熱交換部35b1と蒸発器34と圧縮機31とを接続する接続管路(第2接続管路)35dの熱交換部35d1とは接触させることで熱交換可能な状態で配置されている。製氷機10の製氷運転を実行しているときに、冷媒が蒸発器34で蒸発しきらないときに、冷媒は接続管路(第2接続管路)35dを通って液化状態で圧縮機31に戻る。接続管路(第2接続管路)35dを通る液化状態の冷媒は接続管路(第1接続管路)35bを通過する冷媒を冷却し、電子膨張弁温度センサ39の検出温度が低下する。   As described above, the connection line (first connection line) that connects the heat exchanger 35b1 of the connection line (first connection line) 35b that connects the condenser 32 and the electronic expansion valve 33, the evaporator 34, and the compressor 31 (first connection line). (2 connecting pipes) are arranged in a state where heat exchange is possible by bringing them into contact with the heat exchange part 35d1 of the 35d. When the ice making operation of the ice making machine 10 is being executed, when the refrigerant does not evaporate in the evaporator 34, the refrigerant passes through the connection line (second connection line) 35d and is liquefied to the compressor 31. Return. The liquefied refrigerant passing through the connection pipe (second connection pipe) 35d cools the refrigerant passing through the connection pipe (first connection pipe) 35b, and the temperature detected by the electronic expansion valve temperature sensor 39 is lowered.

この実施形態では、制御装置40は、電子膨張弁温度センサ39の検出温度に基づいて電子膨張弁33の開度を制御するようにしている。電子膨張弁33の開度X(%)は一例として次式により算出される。
X(%)=T1×K1+K2
T1:電子膨張弁温度センサ39の検出温度(℃)
K1:定数(製氷機の機種ごとに異なり、この実施形態では0.05である)
K2:定数(製氷機の機種ごとに異なり、この実施形態では5である)
製氷運転を開始したときのように、蒸発器34で温度の高い製氷水を冷却したときには、接続管路(第2接続管路)35dを通って圧縮機31に戻る冷媒の温度も高く、接続管路(第1接続管路)35bを通る冷媒の温度も高くなる。この場合に、電子膨張弁温度センサ39の検出温度が40℃であれば、電子膨張弁33の開度は85%と算出される。
これに対し、製氷運転の終わりに近づいたときのように、蒸発器34での冷却負荷も低下したときには、接続管路(第2接続管路)35dを通って圧縮機31に戻る冷媒の温度も低く、接続管路(第1接続管路)35bを通る冷媒の温度も低くなる。この場合に、電子膨張弁温度センサ39の検出温度が10℃であれば、電子膨張弁33の開度は10%と算出される。
In this embodiment, the control device 40 controls the opening degree of the electronic expansion valve 33 based on the temperature detected by the electronic expansion valve temperature sensor 39. The opening degree X (%) of the electronic expansion valve 33 is calculated by the following equation as an example.
X (%) = T1 2 × K1 + K2
T1: Temperature detected by the electronic expansion valve temperature sensor 39 (° C.)
K1: Constant (different for each type of ice making machine, 0.05 in this embodiment)
K2: Constant (different for each ice machine model, 5 in this embodiment)
When the ice making water having a high temperature is cooled by the evaporator 34 as when the ice making operation is started, the temperature of the refrigerant returning to the compressor 31 through the connection line (second connection line) 35d is also high. The temperature of the refrigerant passing through the pipe line (first connection pipe line) 35b also increases. In this case, if the detected temperature of the electronic expansion valve temperature sensor 39 is 40 ° C., the opening degree of the electronic expansion valve 33 is calculated as 85%.
On the other hand, when the cooling load in the evaporator 34 is reduced as when the end of the ice making operation is approached, the temperature of the refrigerant returning to the compressor 31 through the connection line (second connection line) 35d. The temperature of the refrigerant passing through the connection pipe line (first connection pipe line) 35b is also low. In this case, if the detected temperature of the electronic expansion valve temperature sensor 39 is 10 ° C., the opening degree of the electronic expansion valve 33 is calculated as 10%.

製氷運転を実行しているときに、冷媒が蒸発器34から圧縮機31に液化状態で戻ると、接続管路(第1接続管路)35bを通る冷媒は接続管路(第2接続管路)35dを通って圧縮機31に戻る液化冷媒により急激に冷却される。この場合に、電子膨張弁温度センサ39の検出温度が例えば20℃に低下すると、上記の式から電子膨張弁33の開度は25%と算出される。電子膨張弁33の開度を25%と絞ることにより、蒸発器34に供給される液化冷媒の量が減少し、蒸発器34に供給された液化冷媒が製氷水と熱交換されずに圧縮機31に戻らないようになり、冷媒が蒸発器34から圧縮機31に液化状態で戻るのを解消することができるようになった。   When the refrigerant returns from the evaporator 34 to the compressor 31 in a liquefied state during the ice making operation, the refrigerant passing through the connection line (first connection line) 35b is connected to the connection line (second connection line). ) It is cooled rapidly by the liquefied refrigerant returning to the compressor 31 through 35d. In this case, when the temperature detected by the electronic expansion valve temperature sensor 39 is lowered to, for example, 20 ° C., the opening degree of the electronic expansion valve 33 is calculated as 25% from the above formula. By restricting the opening of the electronic expansion valve 33 to 25%, the amount of liquefied refrigerant supplied to the evaporator 34 is reduced, and the liquefied refrigerant supplied to the evaporator 34 is not subjected to heat exchange with ice-making water, and the compressor. Therefore, the refrigerant can be prevented from returning from the evaporator 34 to the compressor 31 in a liquefied state.

また、この実施形態では、制御装置40は、電子膨張弁温度センサ39の検出温度と出口部温度センサ38の検出温度とに基づいて電子膨張弁33の開度を制御するようにしてもよい。この場合の電子膨張弁33の開度X(%)は一例として次式により算出される。
X(%)=T1×(T2+K3)×K4+K5
T1:電子膨張弁温度センサ39の検出温度(℃)
T2:出口部温度センサ38の検出温度(℃)
K3:定数(製氷機の機種ごとに異なり、この実施形態では20である)
K4:定数(製氷機の機種ごとに異なり、この実施形態では0.04である)
K5:定数(製氷機の機種ごとに異なり、この実施形態では20である)
製氷運転を開始したときのように、蒸発器34で温度の高い製氷水を冷却したときには、接続管路(第2接続管路)35dを通って圧縮機31に戻る冷媒の温度も高く、接続管路(第1接続管路)35bを通る冷媒の温度も高くなる。この場合に、電子膨張弁温度センサ39の検出温度が40℃であり、出口部温度センサ38の検出温度が20℃であれば、電子膨張弁33の開度は84%と算出される。
In this embodiment, the control device 40 may control the opening degree of the electronic expansion valve 33 based on the detected temperature of the electronic expansion valve temperature sensor 39 and the detected temperature of the outlet portion temperature sensor 38. The opening degree X (%) of the electronic expansion valve 33 in this case is calculated by the following equation as an example.
X (%) = T1 × (T2 + K3) × K4 + K5
T1: Temperature detected by the electronic expansion valve temperature sensor 39 (° C.)
T2: Temperature detected by the outlet temperature sensor 38 (° C.)
K3: Constant (different for each ice machine model, 20 in this embodiment)
K4: Constant (varies depending on the type of ice machine, and is 0.04 in this embodiment)
K5: Constant (varies depending on the type of ice making machine, 20 in this embodiment)
When the ice making water having a high temperature is cooled by the evaporator 34 as when the ice making operation is started, the temperature of the refrigerant returning to the compressor 31 through the connection line (second connection line) 35d is also high. The temperature of the refrigerant passing through the pipe line (first connection pipe line) 35b also increases. In this case, if the detected temperature of the electronic expansion valve temperature sensor 39 is 40 ° C. and the detected temperature of the outlet temperature sensor 38 is 20 ° C., the opening degree of the electronic expansion valve 33 is calculated as 84%.

これに対し、製氷運転の終わりに近づいたときのように、蒸発器34での冷却負荷も低下したときには、接続管路(第2接続管路)35dを通って圧縮機31に戻る冷媒の温度も低く、接続管路(第1接続管路)35bを通る冷媒の温度も低くなる。この場合に、電子膨張弁温度センサ39の検出温度が10℃であり、出口部温度センサ38の検出温度が−20℃であれば、電子膨張弁33の開度は20%と算出される。この電子膨張弁温度センサ39の検出温度と出口部温度センサ38の検出温度とに基づいて電子膨張弁33の開度を制御するようにしたときには、電子膨張弁温度センサ39の検出温度だけに基づいて電子膨張弁33の開度を制御したときよりも穏やかな電子膨張弁33の開度となるよう制御することができる。   On the other hand, when the cooling load in the evaporator 34 is reduced as when the end of the ice making operation is approached, the temperature of the refrigerant returning to the compressor 31 through the connection line (second connection line) 35d. The temperature of the refrigerant passing through the connection pipe line (first connection pipe line) 35b is also low. In this case, if the detected temperature of the electronic expansion valve temperature sensor 39 is 10 ° C. and the detected temperature of the outlet temperature sensor 38 is −20 ° C., the opening degree of the electronic expansion valve 33 is calculated as 20%. When the opening degree of the electronic expansion valve 33 is controlled based on the detected temperature of the electronic expansion valve temperature sensor 39 and the detected temperature of the outlet temperature sensor 38, it is based only on the detected temperature of the electronic expansion valve temperature sensor 39. Thus, the opening degree of the electronic expansion valve 33 can be controlled more gently than when the opening degree of the electronic expansion valve 33 is controlled.

また、製氷運転で電子膨張弁温度センサ39の検出温度と出口部温度センサ38の検出温度とに基づいて電子膨張弁33の開度を制御しているときでも、電子膨張弁33の開度を絞るようにして、蒸発器34に供給される液化冷媒の量を減少させ、蒸発器34に供給された液化冷媒が製氷水と熱交換されずに圧縮機31に戻らないようにして、冷媒が蒸発器34から圧縮機31に液化状態で戻るのを解消することができるようになった。   Further, even when the opening degree of the electronic expansion valve 33 is controlled based on the detected temperature of the electronic expansion valve temperature sensor 39 and the detected temperature of the outlet temperature sensor 38 in the ice making operation, the opening degree of the electronic expansion valve 33 is set. The amount of liquefied refrigerant supplied to the evaporator 34 is reduced so as to reduce the amount of liquefied refrigerant supplied to the evaporator 34 so that the liquefied refrigerant supplied to the evaporator 34 does not exchange heat with ice-making water and return to the compressor 31. Returning from the evaporator 34 to the compressor 31 in a liquefied state can be eliminated.

上記のように構成した製氷機においては、製氷部11の温度を検出する温度センサとして蒸発器34の出口部34aの温度を検出する出口部温度センサ38を採用したが、本発明はこれに限られるものでなく、製氷部11の中央部の温度を検出するようにしたものであったり、蒸発器34の入口部の温度を検出するようにしたものであってもよい。   In the ice making machine configured as described above, the outlet temperature sensor 38 for detecting the temperature of the outlet 34a of the evaporator 34 is adopted as the temperature sensor for detecting the temperature of the ice making section 11. However, the present invention is not limited to this. Instead, the temperature at the center of the ice making unit 11 may be detected, or the temperature at the inlet of the evaporator 34 may be detected.

10…製氷機、11…製氷部、13…製氷小室、21…製氷水タンク、22…水皿、25…送水ポンプ、30…冷凍装置、31…圧縮機、32…凝縮器、33…電子膨張弁、34…蒸発器、38…温度センサ(出口部温度センサ)、39…電子膨張弁温度センサ、40…制御装置。   DESCRIPTION OF SYMBOLS 10 ... Ice maker, 11 ... Ice making part, 13 ... Ice making chamber, 21 ... Ice making water tank, 22 ... Water tray, 25 ... Water pump, 30 ... Refrigerating device, 31 ... Compressor, 32 ... Condenser, 33 ... Electronic expansion Valve, 34 ... Evaporator, 38 ... Temperature sensor (outlet temperature sensor), 39 ... Electronic expansion valve temperature sensor, 40 ... Control device.

Claims (7)

下向きに開口する多数の製氷小室を有した製氷部と、
前記製氷部の下側に配設されて、前記製氷小室の下部の開口を開閉自在に閉じる水皿と、
前記製氷小室へ供給する製氷水を貯留する製氷水タンクと、
前記製氷水タンク内の製氷水を前記製氷小室に下側から噴射送出させる送水ポンプと、
前記製氷部を冷却する冷凍装置と、
前記送水ポンプ及び前記冷凍装置の作動を制御する制御装置とを備え、
前記冷凍装置は、冷媒を圧縮する圧縮機と、前記圧縮機から圧送された冷媒を冷却して液化させる凝縮器と、前記凝縮器にて液化させた液化冷媒を膨張させる電子膨張弁と、前記電子膨張弁により膨張させた液化冷媒を気化させて前記製氷部を冷却する蒸発器とを有し、
前記製氷部で氷を製造する製氷運転では、前記圧縮機から圧送されて前記凝縮器にて液化させた液化冷媒を、前記制御装置によって開度を制御した前記電子膨張弁にて膨張させ、膨張させた液化冷媒を前記蒸発器にて気化させた気化熱により前記製氷部を冷却し、
前記製氷小室内に前記送水ポンプによって噴射送出された製氷水を前記製氷小室内で冷却させつつ未凍結の製氷水を前記製氷水タンクで回収し、製氷水を前記製氷水タンクと前記製氷小室との間で循環させながら漸次凍結させて氷を製造する製氷機であって、
前記製氷部の温度を検出する温度センサを設け、
前記制御装置は、前記製氷部の温度に対応して設定された前記電子膨張弁の開度となるように、前記温度センサの検出温度に基づいて前記電子膨張弁の開度を制御したことを特徴とする製氷機。
An ice making section having a number of ice making chambers opening downward;
A water dish disposed on the lower side of the ice making unit, and capable of opening and closing a lower opening of the ice making chamber;
An ice making water tank for storing ice making water to be supplied to the ice making chamber;
A water supply pump for injecting and sending ice making water in the ice making water tank from below into the ice making chamber;
A refrigeration apparatus for cooling the ice making unit;
A control device for controlling the operation of the water pump and the refrigeration apparatus,
The refrigeration apparatus includes a compressor that compresses a refrigerant, a condenser that cools and liquefies the refrigerant pumped from the compressor, an electronic expansion valve that expands the liquefied refrigerant liquefied by the condenser, An evaporator that evaporates the liquefied refrigerant expanded by the electronic expansion valve and cools the ice making unit;
In the ice making operation for producing ice in the ice making section, the liquefied refrigerant pumped from the compressor and liquefied by the condenser is expanded by the electronic expansion valve whose opening degree is controlled by the control device. Cooling the ice making part with the heat of vaporization of the vaporized liquefied refrigerant in the evaporator,
While the ice making water sprayed and delivered by the water pump into the ice making chamber is cooled in the ice making chamber, unfrozen ice making water is collected in the ice making water tank, and the ice making water is collected in the ice making water tank, the ice making chamber, An ice making machine that produces ice by gradually freezing while circulating between
A temperature sensor for detecting the temperature of the ice making part is provided,
The control device controls the opening degree of the electronic expansion valve based on the temperature detected by the temperature sensor so that the opening degree of the electronic expansion valve is set corresponding to the temperature of the ice making unit. A featured ice machine.
請求項1に記載の製氷機において
前記温度センサは前記製氷部における前記蒸発器の冷媒の出口部の温度を検出するようにしたことを特徴とする製氷機。
The ice maker according to claim 1, wherein the temperature sensor detects a temperature of an outlet of a refrigerant of the evaporator in the ice making unit.
請求項1または2に記載の製氷機において、
前記設定された電子膨張弁の開度は、前記製氷部の温度低下に応じた開度減少率となるように設定され、前記開度減少率は前記製氷部の温度範囲に応じて3段階以上で変わるように設定されていることを特徴とする製氷機。
The ice making machine according to claim 1 or 2,
The opening degree of the set electronic expansion valve is set to be an opening degree reduction rate according to a temperature drop of the ice making part, and the opening degree reduction rate is three or more steps according to the temperature range of the ice making part. An ice machine characterized by being set to change with.
請求項3に記載の製氷機において、
前記製氷部の温度範囲は、前記製氷小室内に噴射送出される製氷水を前記製氷小室内で凍結前に冷却する冷却段階の温度範囲と、前記製氷小室内で製氷水が凍結し始める凍結開始段階での温度範囲と、前記製氷小室内で氷を成長させていく氷成長段階での温度範囲とを含むことを特徴とする製氷機。
The ice making machine according to claim 3,
The temperature range of the ice making unit includes a temperature range of a cooling stage in which the ice making water sprayed and delivered into the ice making chamber is cooled before freezing in the ice making chamber, and a freezing start in which the ice making water starts to freeze in the ice making chamber An ice making machine comprising: a temperature range in a stage; and a temperature range in an ice growth stage in which ice is grown in the ice making chamber.
請求項3または4に記載の製氷機において、
前記制御装置は、前記温度センサの検出温度が上昇したときには前記電子膨張弁の開度を変更せずに維持し、前記温度センサの検出温度が開度を変更せずに維持したときの前記電子膨張弁の開度と対応する温度まで再び低下したときに、前記製氷部の温度に対応して設定された電子膨張弁の開度となる制御を再開するようにしたことを特徴とする製氷機。
The ice making machine according to claim 3 or 4,
The control device maintains the opening of the electronic expansion valve without changing when the temperature detected by the temperature sensor rises, and the electronic when the temperature detected by the temperature sensor maintains without changing the opening. An ice making machine characterized in that when the temperature drops again to a temperature corresponding to the opening degree of the expansion valve, the control to resume the opening degree of the electronic expansion valve corresponding to the temperature of the ice making part is resumed. .
下向きに開口する多数の製氷小室を有した製氷部と、
前記製氷部の下側に配設されて、前記製氷小室の下部の開口を開閉自在に閉じる水皿と、
前記製氷小室へ供給する製氷水を貯留する製氷水タンクと、
前記製氷水タンク内の製氷水を前記製氷小室に下側から噴射送出させる送水ポンプと、 前記製氷部を冷却する冷凍装置と、
前記送水ポンプ及び前記冷凍装置の作動を制御する制御装置とを備え、
前記冷凍装置は、冷媒を圧縮する圧縮機と、前記圧縮機から圧送された冷媒を冷却して液化させる凝縮器と、前記凝縮器にて液化させた液化冷媒を膨張させる電子膨張弁と、前記電子膨張弁により膨張させた液化冷媒を気化させて前記製氷部を冷却する蒸発器とを有し、
前記製氷部で氷を製造する製氷運転では、前記圧縮機から圧送されて前記凝縮器にて液化させた液化冷媒を、前記制御装置によって開度を制御した前記電子膨張弁にて膨張させ、膨張させた液化冷媒を前記蒸発器にて気化させた気化熱により前記製氷部を冷却し、
前記製氷小室内に前記送水ポンプによって噴射送出された製氷水を前記製氷小室内で冷却させつつ未凍結の製氷水を前記製氷水タンクで回収し、製氷水を前記製氷水タンクと前記製氷小室との間で循環させながら漸次凍結させて氷を製造する製氷機であって、
前記冷凍装置は、前記凝縮器と前記電子膨張弁とを接続する第1接続管路と、前記蒸発器と前記圧縮機とを接続する第2接続管路とを有し、前記第1接続管路と前記第2接続管路とを互いに熱交換可能な状態で配置し、
前記電子膨張弁の入口部温度を検出する電子膨張弁温度センサを設け、
前記制御装置は、前記電子膨張弁温度センサの検出温度に基づいて前記電子膨張弁の開度を制御したことを特徴とする製氷機。
An ice making section having a number of ice making chambers opening downward;
A water dish disposed on the lower side of the ice making unit, and capable of opening and closing a lower opening of the ice making chamber;
An ice making water tank for storing ice making water to be supplied to the ice making chamber;
A water supply pump for injecting and sending ice-making water in the ice-making water tank from below to the ice-making chamber, and a refrigeration apparatus for cooling the ice-making unit;
A control device for controlling the operation of the water pump and the refrigeration apparatus,
The refrigeration apparatus includes a compressor that compresses a refrigerant, a condenser that cools and liquefies the refrigerant pumped from the compressor, an electronic expansion valve that expands the liquefied refrigerant liquefied by the condenser, An evaporator that evaporates the liquefied refrigerant expanded by the electronic expansion valve and cools the ice making unit;
In the ice making operation for producing ice in the ice making section, the liquefied refrigerant pumped from the compressor and liquefied by the condenser is expanded by the electronic expansion valve whose opening degree is controlled by the control device. Cooling the ice making part with the heat of vaporization of the vaporized liquefied refrigerant in the evaporator,
While the ice making water sprayed and delivered by the water pump into the ice making chamber is cooled in the ice making chamber, unfrozen ice making water is collected in the ice making water tank, and the ice making water is collected in the ice making water tank, the ice making chamber, An ice making machine that produces ice by gradually freezing while circulating between
The refrigeration apparatus includes a first connection pipe connecting the condenser and the electronic expansion valve, and a second connection pipe connecting the evaporator and the compressor, and the first connection pipe. A path and the second connection pipe line are arranged in a state in which heat exchange is possible with each other,
An electronic expansion valve temperature sensor for detecting the inlet temperature of the electronic expansion valve is provided,
The ice making machine, wherein the control device controls an opening degree of the electronic expansion valve based on a temperature detected by the electronic expansion valve temperature sensor.
請求項6に記載の製氷機において、
前記製氷部の温度を検出する温度センサを設け、
前記制御装置は、前記電子膨張弁温度センサの検出温度と前記温度センサの検出温度とに基づいて前記電子膨張弁の開度を制御したことを特徴とする製氷機。
The ice making machine according to claim 6,
A temperature sensor for detecting the temperature of the ice making part is provided,
The said control apparatus controlled the opening degree of the said electronic expansion valve based on the detection temperature of the said electronic expansion valve temperature sensor, and the detection temperature of the said temperature sensor, The ice making machine characterized by the above-mentioned.
JP2018084748A 2018-04-26 2018-04-26 ice machine Active JP7144963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084748A JP7144963B2 (en) 2018-04-26 2018-04-26 ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084748A JP7144963B2 (en) 2018-04-26 2018-04-26 ice machine

Publications (2)

Publication Number Publication Date
JP2019190751A true JP2019190751A (en) 2019-10-31
JP7144963B2 JP7144963B2 (en) 2022-09-30

Family

ID=68389549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084748A Active JP7144963B2 (en) 2018-04-26 2018-04-26 ice machine

Country Status (1)

Country Link
JP (1) JP7144963B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275858A (en) * 1988-09-12 1990-03-15 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003004316A (en) * 2001-06-21 2003-01-08 Matsushita Electric Ind Co Ltd Method for controlling refrigeration unit
JP2012063085A (en) * 2010-09-16 2012-03-29 Sanyo Electric Co Ltd Reverse cell type ice maker
JP2013174396A (en) * 2012-02-27 2013-09-05 Fuji Electric Co Ltd Auger type ice maker and cooling device
JP2017141985A (en) * 2016-02-08 2017-08-17 ホシザキ株式会社 Ice maker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275858A (en) * 1988-09-12 1990-03-15 Mitsubishi Electric Corp Refrigerating air conditioner
JP2003004316A (en) * 2001-06-21 2003-01-08 Matsushita Electric Ind Co Ltd Method for controlling refrigeration unit
JP2012063085A (en) * 2010-09-16 2012-03-29 Sanyo Electric Co Ltd Reverse cell type ice maker
JP2013174396A (en) * 2012-02-27 2013-09-05 Fuji Electric Co Ltd Auger type ice maker and cooling device
JP2017141985A (en) * 2016-02-08 2017-08-17 ホシザキ株式会社 Ice maker

Also Published As

Publication number Publication date
JP7144963B2 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP7002281B2 (en) Ice machine
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP5027685B2 (en) How to operate a jet ice maker
JP2019190751A (en) Ice making machine
JP5173272B2 (en) How to operate an ice machine
JP6934326B2 (en) Ice machine
JP2010121802A (en) Method of operating automatic ice-making machine
JP6993841B2 (en) Ice machine
JP2008057862A (en) Ice making machine
JP5448482B2 (en) Automatic ice machine
JP5469935B2 (en) Ice machine
JP6966924B2 (en) Ice machine
JP6946147B2 (en) Ice machine
JP2019078466A (en) Ice-maker
JP6966923B2 (en) Ice machine
JP6966925B2 (en) Ice machine
JP5695592B2 (en) Ice machine
JP5253863B2 (en) Automatic ice machine
JP2020106212A (en) Method for controlling operation of ice making machine
KR102603491B1 (en) Cooling apparatus for ice maker and ice maker having the same
JP2019078472A (en) Ice-maker
JP2018159483A (en) Flow-down type ice machine
JP2024054944A (en) Ice maker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220916

R150 Certificate of patent or registration of utility model

Ref document number: 7144963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150