JP2006010181A - Deicing operation method of automatic ice making machine - Google Patents

Deicing operation method of automatic ice making machine Download PDF

Info

Publication number
JP2006010181A
JP2006010181A JP2004186809A JP2004186809A JP2006010181A JP 2006010181 A JP2006010181 A JP 2006010181A JP 2004186809 A JP2004186809 A JP 2004186809A JP 2004186809 A JP2004186809 A JP 2004186809A JP 2006010181 A JP2006010181 A JP 2006010181A
Authority
JP
Japan
Prior art keywords
ice making
evaporator
temperature
ice
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004186809A
Other languages
Japanese (ja)
Inventor
Kazuhiro Mori
和弘 森
Akihiko Hirano
明彦 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2004186809A priority Critical patent/JP2006010181A/en
Publication of JP2006010181A publication Critical patent/JP2006010181A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To save energy by simultaneously using a heater and a high pressure refrigerant supplied to an evaporator in deicing operation. <P>SOLUTION: An ice making part 10 has the evaporator 14 and the heater communicating with and connected to a refrigerating circuit 30. The ice making part 10 is cooled by circulating and supplying the vaporized refrigerant to the evaporator 14 in ice making operation, and an ice mass is generated by supplying ice making water to the ice making part 10. In the deicing operation, the ice mass is melted and separated from the ice making part 10, by heating the heater by carrying an electric current, after a predetermined time passes after supplying a gas-liquid mixed refrigerant having relatively high pressure to a refrigerant pipe 34 connected to the delivery side of the evaporator 14 via a bypass circuit 40 of interposing a bypass valve HV. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電気加熱手段を通電発熱させることにより、製氷部に生成した氷塊を離脱させる自動製氷機の除氷運転方法に関するものである。   The present invention relates to a deicing operation method for an automatic ice making machine that causes an ice lump generated in an ice making part to be detached by energizing and heating an electric heating means.

多量の氷塊を自動的に製造する自動製氷機は、圧縮機や凝縮器等を備える冷凍回路から導出した蒸発器を製氷部に配設し、この蒸発器に循環供給される冷媒により強制冷却された前記製氷部に製氷水を供給して氷塊を生成し、得られた氷塊を剥離して落下放出させるよう構成されている。この自動製氷機は、製氷水を所要量貯留するための製氷水タンクを備え、製氷運転に際して該製氷水タンク中の製氷水を循環ポンプで圧送して製氷部に供給し、氷結するに至らなかった製氷水は前記製氷水タンク中に回収した後に、再び製氷部に向けて送り出すよう構成される。そして、製氷運転が継続して製氷水タンク中の水位が予め設定された所定の下位水位まで減少したことを水位検出装置が検出すると、製氷部での製氷が完了したものと判断して製氷運転から除氷運転に移行し、冷凍回路のバイパス弁の切換えにより圧縮機から吐出されるホットガス(高温高圧の気化冷媒)を前記蒸発器に供給すると共に、外部水道源からの水を製氷部に除氷水として散布供給して、氷塊との氷結面の融解を促進させるようになっている(例えば、特許文献1参照)。   An automatic ice maker that automatically produces a large amount of ice blocks is equipped with an evaporator derived from a refrigeration circuit equipped with a compressor, a condenser, etc., in an ice making unit, and is forcedly cooled by a refrigerant circulated to the evaporator. In addition, ice making water is supplied to the ice making unit to generate ice blocks, and the resulting ice blocks are peeled off and released. This automatic ice making machine is equipped with an ice making water tank for storing a required amount of ice making water, and during ice making operation, the ice making water in the ice making water tank is pumped by a circulation pump and supplied to the ice making unit, so that it does not freeze. The ice making water is collected in the ice making water tank and then sent out again toward the ice making unit. When the water level detection device detects that the ice level has continued to be reduced and the water level in the ice making water tank has decreased to a predetermined lower water level, the ice making operation is judged to have been completed. To deicing operation, supplying hot gas (high-temperature high-pressure vaporized refrigerant) discharged from the compressor by switching the bypass valve of the refrigeration circuit to the evaporator, and water from an external water source to the ice making unit It is sprayed and supplied as deicing water to promote melting of the icing surface with ice blocks (for example, see Patent Document 1).

前述したように、除氷運転に際してホットガスと除氷水とを併用している自動製氷機では、除氷運転が長くなり、単位時間の製氷能力には限界があった。また除氷水を用いるために消費水量が多くなり、ランニングコストが嵩む難点が指摘される。   As described above, in the automatic ice making machine using both hot gas and deicing water during the deicing operation, the deicing operation becomes longer and the ice making capacity per unit time is limited. Moreover, since deicing water is used, the amount of water consumption increases and the running cost increases.

そこで、特許文献2に開示の技術を利用して、除氷運転に要する時間を短くする試みがなされている。すなわち、金属板とヒータ(電気加熱手段)とにより前記製氷部を構成し、製氷運転時にはヒータ上に氷塊を生成し、除氷運転に際して該ヒータに通電して発熱させることで、ヒータと氷塊との氷結面を融解して氷塊を製氷部から離脱させて除氷するものであり、この構成によれば除氷運転を短縮し得ると共に除氷水を不要とし得る。
実公平3−17187号公報 米国特許出願公開第2003−0155467号明細書
Thus, attempts have been made to shorten the time required for the deicing operation using the technique disclosed in Patent Document 2. That is, the ice making part is constituted by a metal plate and a heater (electric heating means), and during the ice making operation, an ice block is generated on the heater, and during the deicing operation, the heater is energized to generate heat so that The icing surface is melted and the ice block is detached from the ice making unit to perform deicing. According to this configuration, deicing operation can be shortened and deicing water can be made unnecessary.
Japanese Utility Model Publication No. 3-17187 US Patent Application Publication No. 2003-0155467

ところで、前記ヒータによる加熱は、短時間で多量の熱エネルギーを氷結面に与え、瞬時に氷結面を融解するものであって、氷点以下の低い温度に冷却されていた製氷部を、氷塊と製氷部との氷結面を融解し得る温度である0℃近傍まで急激に温度変動させることが必要となる。すなわち前記ヒータには、急激な温度変化に伴う負荷がかかるため、ヒータ自体の劣化が比較的早く、連続的な使用に際して問題が指摘される。また、前記ヒータを急激に温度変化させるためには、多量の熱エネルギーを必要とするから、消費電力が大きくなってしまう難点も招来する。   By the way, the heating by the heater gives a large amount of heat energy to the icing surface in a short time, and instantly melts the icing surface, and the ice making part that has been cooled to a low temperature below the freezing point is replaced with ice blocks and ice making. It is necessary to rapidly change the temperature to near 0 ° C., which is a temperature at which the frozen surface with the part can be melted. That is, since the heater is subjected to a load due to a rapid temperature change, the heater itself deteriorates relatively quickly, and problems are pointed out in continuous use. In addition, in order to change the temperature of the heater abruptly, a large amount of heat energy is required, which causes a problem that power consumption increases.

すなわちこの発明は、従来の技術に係る自動製氷機の除氷運転方法に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、除氷運転に際し電気加熱手段と蒸発器に供給した高圧の冷媒とを併用することで、省エネルギー化を図り得る自動製氷機の除氷運転方法を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the deicing operation method of the automatic ice making machine according to the prior art, and the electric heating means and the evaporation are performed during the deicing operation. It aims at providing the deicing operation method of the automatic ice making machine which can aim at energy saving by using together with the high voltage | pressure refrigerant | coolant supplied to the apparatus.

前記課題を克服し、所期の目的を達成するため、本発明に係る自動製氷機の除氷運転方法は、
製氷部に、冷凍回路に連通する蒸発器と電気加熱手段とを備え、製氷運転時には前記蒸発器に気化冷媒を循環供給すると共に、前記製氷部に製氷水を供給して氷塊を生成し、除氷運転時には前記電気加熱手段に通電して前記製氷部から氷塊を離脱させるよう構成した自動製氷機において、
その除氷運転に際し、前記冷凍回路からの高圧の冷媒をバイパス回路を介して前記蒸発器またはその近傍に分岐供給し、
前記蒸発器における内圧の上昇により前記製氷部を温度上昇させてから、前記電気加熱手段への通電を開始するようにしたことを特徴とする。
In order to overcome the above problems and achieve the intended purpose, the deicing operation method of the automatic ice maker according to the present invention is:
The ice making unit is provided with an evaporator communicating with the refrigeration circuit and an electric heating means, and during ice making operation, vaporized refrigerant is circulated and supplied to the evaporator, and ice making water is supplied to the ice making unit to generate ice blocks. In an automatic ice maker configured to energize the electric heating means during ice operation and remove ice blocks from the ice making unit,
During the deicing operation, the high-pressure refrigerant from the refrigeration circuit is branched and supplied to the evaporator or the vicinity thereof via a bypass circuit,
The temperature of the ice making unit is increased by increasing the internal pressure in the evaporator, and then the energization of the electric heating means is started.

本発明に係る自動製氷機の除氷運転方法によれば、除氷運転に際し、冷凍回路からの高圧の冷媒をバイパス回路を介して蒸発器またはその近傍に分岐供給し、この蒸発器における内圧の上昇により製氷部を温度上昇させてから、電気加熱手段への通電を開始するようにし、電気加熱手段による加熱に先立ち、蒸発器またはその近傍に流通させた高圧の冷媒により氷点以下に低下した製氷部の温度を氷塊の融点近傍まで上昇させることで、電気加熱手段の急激な温度変化が抑制されるから、加熱手段への負荷を軽減することができる。すなわち、電気加熱手段の劣化を抑制し、連続的な使用を許容して電気加熱手段の寿命を向上させることができる。また、電気加熱手段からの加熱と並行して高圧の冷媒による製氷部の加熱を実施することで、除氷時間をより短くすることができ、製氷能力を向上させることができる。更に、電気加熱手段に必要とされる能力を小さくし得ると共に、氷塊の融解に必要とされる熱エネルギーが減少して電力消費量を低減し得るから、省エネルギー化を図ることができる。   According to the deicing operation method of the automatic ice maker according to the present invention, during the deicing operation, the high-pressure refrigerant from the refrigeration circuit is branched and supplied to the evaporator or the vicinity thereof via the bypass circuit, and the internal pressure of the evaporator is reduced. The temperature of the ice making unit is raised by the rise, and then the energization of the electric heating means is started. Prior to heating by the electric heating means, the ice making is lowered below the freezing point by the high-pressure refrigerant circulated in the evaporator or the vicinity thereof. By increasing the temperature of the part to near the melting point of the ice block, a rapid temperature change of the electric heating means is suppressed, so that the load on the heating means can be reduced. That is, deterioration of the electric heating means can be suppressed, continuous use can be allowed, and the life of the electric heating means can be improved. Moreover, by performing the heating of the ice making part with a high-pressure refrigerant in parallel with the heating from the electric heating means, the deicing time can be further shortened and the ice making capacity can be improved. Furthermore, the capacity required for the electric heating means can be reduced, and the heat energy required for melting the ice block can be reduced to reduce the power consumption, so that energy saving can be achieved.

請求項2に係る発明によれば、蒸発器の内圧上昇に伴う製氷部の温度または蒸発器の温度或いは圧力の上昇が所定値に達するタイミングで、電気加熱手段への通電を開始することで、効率的に除氷運転を実施し得る。また請求項3の発明によれば、製氷部の温度または蒸発器の温度或いは圧力が設定値以下であれば、高圧の冷媒を該蒸発器に供給し、設定値より大きい場合は、高圧の冷媒を蒸発器へ供給することなく電気加熱手段の通電を開始することで、製氷部の温度または蒸発器の温度等の状況に見合った除氷運転が実施できる。請求項4に係る発明によれば、バイパス回路に減圧手段を介挿することで、蒸発器に供給する高圧の冷媒の圧力を適度に調節することができる利点がある。更に請求項5の発明によれば、圧縮機の吐出側で得られる高温・高圧の冷媒を供給することで、その高い温度を直接的に使用できる利点を奏する。   According to the invention according to claim 2, by starting energization to the electric heating means at the timing when the temperature of the ice making part or the temperature of the evaporator or the increase of the pressure accompanying the increase in the internal pressure of the evaporator reaches a predetermined value, The deicing operation can be performed efficiently. According to the invention of claim 3, if the temperature of the ice making section or the temperature or pressure of the evaporator is equal to or lower than the set value, the high-pressure refrigerant is supplied to the evaporator, and if higher than the set value, the high-pressure refrigerant is supplied. By starting energization of the electric heating means without supplying to the evaporator, the deicing operation corresponding to the conditions such as the temperature of the ice making unit or the temperature of the evaporator can be performed. According to the invention which concerns on Claim 4, there exists an advantage which can adjust moderately the pressure of the high voltage | pressure refrigerant | coolant supplied to an evaporator by inserting pressure reduction means in a bypass circuit. Furthermore, according to the invention of claim 5, by supplying the high-temperature and high-pressure refrigerant obtained on the discharge side of the compressor, there is an advantage that the high temperature can be used directly.

次に、本発明に係る自動製氷機の除氷運転方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、本発明で云う高圧の冷媒とは、高温・高圧の気化冷媒のみを指すものでなく、製氷運転において氷点以下に冷却された蒸発器を加温し得るものであればよく、製氷運転を経た製氷部または蒸発器より高温またはこの蒸発器の内部の圧力(内圧)より高いものであって、液化冷媒または気液混合冷媒等も含む。   Next, the deicing operation method of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. The high-pressure refrigerant referred to in the present invention does not only indicate a high-temperature / high-pressure vaporized refrigerant, but may be any one that can heat an evaporator cooled to below the freezing point in the ice-making operation. The temperature is higher than the passed ice making unit or the evaporator or higher than the pressure (internal pressure) inside the evaporator, and includes a liquefied refrigerant or a gas-liquid mixed refrigerant.

図1は、実施例に係る自動製氷機としての流下式自動製氷機の概略構成を示すものであって、製氷室内に略垂直に配設した製氷部10の裏面に、後述する冷凍回路30から導出して横方向に蛇行する管状の蒸発器14が密着固定され、製氷運転時に冷媒を循環させて製氷部10を強制冷却するよう構成される。この製氷部10の直下には、除氷運転により該製氷部10から融解離脱する氷塊Mを、斜め下方に配設したストッカ16に案内する案内板18が傾斜姿勢で配設されている。なお、この案内板18には多数の通孔(図示せず)が穿設されており、製氷運転に際し前記製氷部10の製氷面(前面)に供給された製氷水が、該案内板18の通孔を介して下方に位置する製氷水タンク20に回収貯留されるようになっている。   FIG. 1 shows a schematic configuration of a flow-down type automatic ice maker as an automatic ice maker according to an embodiment, and a refrigerating circuit 30 described later is provided on the back surface of an ice making unit 10 arranged substantially vertically in an ice making chamber. A tubular evaporator 14 that is led out and meanders in the lateral direction is closely fixed, and is configured to forcibly cool the ice making unit 10 by circulating a refrigerant during ice making operation. Immediately below the ice making unit 10, a guide plate 18 is provided in an inclined posture for guiding the ice block M, which is melted and separated from the ice making unit 10 by the deicing operation, to the stocker 16 disposed obliquely below. The guide plate 18 has a large number of through holes (not shown), and the ice making water supplied to the ice making surface (front surface) of the ice making unit 10 during the ice making operation is provided on the guide plate 18. It is collected and stored in the ice making water tank 20 located below through the through hole.

前記製氷水タンク20から循環ポンプPMを介して導出した製氷水供給管22は、前記製氷部10の上方に設けた製氷水散布器24に接続している。この製氷水散布器24には多数の散水孔(図示せず)が穿設され、製氷運転時に製氷水タンク20からポンプ圧送される製氷水を、前記散水孔から前記製氷部10の氷結温度にまで冷却されている製氷面に散布流下させ、該製氷面に所要形状の氷塊Mを生成するようになっている。図1に示すように前記製氷水タンク20の上方には、外部水源に接続された給水管26が臨んでおり、製氷運転に際して減少する製氷水タンク20内の水量に応じて給水管26の給水バルブWVを適宜開放し、当該製氷水タンク20に所定量の製氷水を貯留するよう構成される。また、前記製氷水タンク20には、貯留された製氷水の量を監視する水位検出装置28が配設される。   An ice making water supply pipe 22 led out from the ice making water tank 20 via a circulation pump PM is connected to an ice making water spreader 24 provided above the ice making unit 10. A large number of sprinkling holes (not shown) are formed in the ice making water spreader 24, and the ice making water pumped from the ice making water tank 20 during the ice making operation is transferred to the freezing temperature of the ice making unit 10 from the water sprinkling holes. The ice making surface that has been cooled down is sprayed down to produce an ice block M having a required shape on the ice making surface. As shown in FIG. 1, a water supply pipe 26 connected to an external water source faces above the ice making water tank 20, and the water supply of the water supply pipe 26 is in accordance with the amount of water in the ice making water tank 20 that decreases during the ice making operation. The valve WV is opened as appropriate, and a predetermined amount of ice making water is stored in the ice making water tank 20. The ice making water tank 20 is provided with a water level detecting device 28 for monitoring the amount of stored ice making water.

前記製氷部10は、複数の製氷部材11を左右方向に隣接するよう配置されて構成されている。各製氷部材11は、図2または図3に示す如く、上下方向に所定長さで延在して前記蒸発器14に固定される板状本体11aと、該板状本体11aの幅方向の両側において前方(蒸発器14から離間する方向)に折曲形成された一対の側板11b,11bとから横断面において略コ字状に形成されている。すなわち、前記板状本体11aと側板11b,11bとにより、氷塊Mを生成する製氷領域Aが画成される。ここで、前記各製氷部材11は、下方から上方に向かうにつれて前方に所定角度で傾斜するようになっている。前記各製氷部材11は、金属板12a、絶縁層12bおよび金属シートからなるヒータ(電気加熱手段)Hが層状に重ね合わせられて構成され、該ヒータHが製氷面を形成している。製氷運転時には前記蒸発器14により強制冷却されて、前記製氷面における蒸発器14の配設位置に対応して氷塊Mが生成されると共に、各ヒータHを通電発熱させることで、製氷された氷塊Mとの氷結面を融解させて自重により落下させるよう構成されている。   The ice making unit 10 is configured by arranging a plurality of ice making members 11 adjacent to each other in the left-right direction. As shown in FIG. 2 or FIG. 3, each ice making member 11 includes a plate-like main body 11a extending in a vertical direction and fixed to the evaporator 14, and both sides of the plate-like main body 11a in the width direction. Are formed in a substantially U shape in cross section from a pair of side plates 11b, 11b bent forward (in a direction away from the evaporator 14). That is, the plate-shaped main body 11a and the side plates 11b and 11b define an ice making region A in which the ice block M is generated. Here, each of the ice making members 11 is inclined forward at a predetermined angle from the bottom to the top. Each of the ice making members 11 is constituted by layering a heater (electric heating means) H made of a metal plate 12a, an insulating layer 12b and a metal sheet, and the heater H forms an ice making surface. During ice making operation, the ice 14 is forcibly cooled by the evaporator 14 to generate ice blocks M corresponding to the position of the evaporator 14 on the ice making surface, and the heaters H are energized to generate heat, thereby generating ice blocks. The iced surface with M is melted and dropped by its own weight.

図4に示すように、前記製氷部10を冷却する冷凍回路30は、図示しない機械室に配設された、圧縮機CM、凝縮器CD、ファンモータFMおよび膨張手段EV等と、該製氷部10の裏面に配設された蒸発器14とから主回路32が基本的に構成される。前記主回路32は圧縮機CM、凝縮器CD、膨張手段EVおよび蒸発器14の順番で冷媒が循環するよう各機器が配置され、各機器は冷媒配管34で連通接続されている。すなわち、前記圧縮機CMで圧縮された気化冷媒は、冷媒配管34を経て前記凝縮器CDで凝縮液化した後、前記膨張手段EVで減圧され、前記蒸発器14に流入してここで一挙に膨張して蒸発し、前記製氷部10と熱交換を行なって該製氷部10を氷点下にまで強制冷却させるようになっている。そして前記蒸発器14で蒸発し、熱交換した気化冷媒は、冷媒配管34を経て圧縮機CMに帰還するサイクルを反復するようになっている。なお、前記ファンモータFMは、前記凝縮器CDを冷却するべく機能する。ここで本発明で云う前記蒸発器14の近傍とは、前記製氷部10に近接配置された蒸発器14において、その吐出側から圧縮機CMの流入側を接続する冷媒配管34(蒸発器14の吐出側)および膨張手段EVの吐出側から蒸発器14の流入側を接続する冷媒配管34(蒸発器14の流入側)を指す。   As shown in FIG. 4, the refrigeration circuit 30 for cooling the ice making unit 10 includes a compressor CM, a condenser CD, a fan motor FM, an expansion means EV, and the like disposed in a machine room (not shown), and the ice making unit. The main circuit 32 is basically composed of the evaporator 14 disposed on the back surface of the main body 10. In the main circuit 32, devices are arranged so that the refrigerant circulates in the order of the compressor CM, the condenser CD, the expansion means EV, and the evaporator 14, and the devices are connected in communication by a refrigerant pipe 34. That is, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD via the refrigerant pipe 34, then depressurized by the expansion means EV, flows into the evaporator 14 and expands at once. Then, it evaporates and exchanges heat with the ice making unit 10 to forcibly cool the ice making unit 10 to below the freezing point. The vaporized refrigerant evaporated and heat-exchanged by the evaporator 14 repeats a cycle of returning to the compressor CM via the refrigerant pipe 34. The fan motor FM functions to cool the condenser CD. Here, the vicinity of the evaporator 14 referred to in the present invention refers to the refrigerant pipe 34 (the evaporator 14 of the evaporator 14) connecting the discharge side to the inflow side of the compressor CM in the evaporator 14 disposed close to the ice making unit 10. The refrigerant pipe 34 (the inflow side of the evaporator 14) connecting the discharge side) and the inflow side of the evaporator 14 from the discharge side of the expansion means EV.

実施例では、前記主回路32に付加して、前記凝縮器CDの吐出側と膨張手段EVの吸込み側との間に、該凝縮器CDで凝縮された液化冷媒を一時的に貯留するレシーバRが配設されると共に、該レシーバRの吐出側と膨張手段EVの吸込み側との間に液化冷媒から余分な水分を除去するドライヤDが配設されている。また前記膨張手段EVは、膨張弁またはキャピラリーチューブ等が使用され、実施例では温度式自動膨張弁が採用されて気化冷媒の過熱度を一定に保って、前記蒸発器14の圧力を調整することがなされている。   In an embodiment, a receiver R which is added to the main circuit 32 and temporarily stores the liquefied refrigerant condensed in the condenser CD between the discharge side of the condenser CD and the suction side of the expansion means EV. And a dryer D for removing excess water from the liquefied refrigerant is disposed between the discharge side of the receiver R and the suction side of the expansion means EV. The expansion means EV uses an expansion valve, a capillary tube or the like. In the embodiment, a temperature type automatic expansion valve is employed to keep the degree of superheat of the vaporized refrigerant constant and adjust the pressure of the evaporator 14. Has been made.

また前記主回路32には各所にバルブ類が配設され、該バルブ類を開閉することで、冷媒の循環を許容または遮断し得ると共に、機器の点検や取替え等を容易に実施し得るようになっている。その一つとして、前記凝縮器CDの下流側であって前記レシーバRとドライヤDとの間に、製氷バルブVが介挿されている。この製氷バルブVは、前記主回路32を流通する冷媒の流れを制御するものであって、製氷運転時には開放され、運転終了時には閉成して前記蒸発器14への冷媒の供給を停止するようになっている。また、前記圧縮機CMの流入側には、第1サービスバルブSV1が介挿されると共に、凝縮器CDの下流側には第2サービスバルブSV2が介挿されている。この第1サービスバルブSV1および第2サービスバルブSV2は、常には開放されて機器のメンテナンス等において必要に応じて閉成される。   The main circuit 32 is provided with valves at various locations. By opening and closing the valves, the circulation of the refrigerant can be allowed or blocked, and the inspection and replacement of the equipment can be easily performed. It has become. As one of them, an ice making valve V is interposed between the receiver R and the dryer D on the downstream side of the condenser CD. The ice making valve V controls the flow of the refrigerant flowing through the main circuit 32 and is opened during the ice making operation and closed at the end of the operation to stop the supply of the refrigerant to the evaporator 14. It has become. A first service valve SV1 is inserted on the inflow side of the compressor CM, and a second service valve SV2 is inserted on the downstream side of the condenser CD. The first service valve SV1 and the second service valve SV2 are always opened, and are closed as necessary in equipment maintenance or the like.

前記冷凍回路30は、前述した主回路32に加えて除氷運転時に前記蒸発器14の近傍へ比較的圧力の高い(低圧側より高い)気液混合冷媒を供給するバイパス回路40を備えている。前記バイパス回路40のバイパス管42は、その始端が前記圧縮機CMの吐出側から膨張手段EVの吸込み側の間で冷媒配管34に接続され、終端は前記蒸発器14の吐出側の冷媒配管34(近傍)に接続されている。すなわち、前記蒸発器14に供給される高圧冷媒としては、製氷運転時の製氷部10の温度または蒸発器14の温度或いは内圧を上昇し得るものであればよく、少なくとも蒸発器14の内圧を上昇させることで、該蒸発器14およびこの蒸発器14を介して製氷部10を温度上昇し得る。従って、前記蒸発器14の内圧と比較して高圧である冷媒が流通する圧縮機CMの吐出側の冷媒配管34から取得されるのが好適とされる。実施例のバイパス管42では、前記凝縮器CDとこの凝縮器CDの下流側に配設されたレシーバRとを接続する冷媒配管34の中途から分岐接続され、その終端は前記蒸発器14の吐出側に接続され、除氷運転時に該凝縮器CDで凝縮液化された後、減圧手段GVを介して比較的圧力の高い気液混合冷媒が圧縮機CMに供給されるため、蒸発器14の吐出側の冷媒圧力も上昇し、蒸発器14内の温度も上昇する。前記バイパス回路40には、バイパス弁(管路開閉手段)HVと減圧手段GVとが、冷媒の流通方向上流側からこの順番で介挿されている。前記バイパス弁HVは、電磁弁や電動弁等が好適に採用されるが、図示しない制御手段等またはその他に機器による制御によって任意の動作(バイパス管42の開閉)するものであれば特に限定されず、製氷運転時にはバイパス管42の管路を閉成して冷媒の循環を遮断し、除氷運転時には制御手段等の制御に基づきバイパス管42の管路を開放するようになっている。また前記減圧手段GVは、膨張弁やキャピラリーチューブ等が使用され、実施例としては定圧膨張弁が採用されて前記蒸発器14の吐出側に供給される冷媒の圧力を適度に調節している。   In addition to the main circuit 32 described above, the refrigeration circuit 30 includes a bypass circuit 40 that supplies a relatively high pressure (higher than the low pressure side) gas-liquid mixed refrigerant to the vicinity of the evaporator 14 during the deicing operation. . The bypass pipe 42 of the bypass circuit 40 has a start end connected to the refrigerant pipe 34 between the discharge side of the compressor CM and the suction side of the expansion means EV, and the end thereof is a refrigerant pipe 34 on the discharge side of the evaporator 14. Connected to (near). That is, the high-pressure refrigerant supplied to the evaporator 14 may be any refrigerant that can increase the temperature of the ice making unit 10 or the temperature or internal pressure of the evaporator 14 during the ice making operation, and at least increase the internal pressure of the evaporator 14. As a result, the temperature of the ice making unit 10 can be increased via the evaporator 14 and the evaporator 14. Therefore, it is preferable that the refrigerant is obtained from the refrigerant pipe 34 on the discharge side of the compressor CM through which the refrigerant having a pressure higher than the internal pressure of the evaporator 14 flows. In the bypass pipe 42 of the embodiment, the condenser CD is branched and connected from the middle of the refrigerant pipe 34 connecting the receiver R disposed on the downstream side of the condenser CD, and the end thereof is discharged from the evaporator 14. Since the gas-liquid mixed refrigerant having a relatively high pressure is supplied to the compressor CM through the decompression means GV after being condensed and liquefied by the condenser CD during the deicing operation, the discharge of the evaporator 14 The refrigerant pressure on the side also rises, and the temperature in the evaporator 14 also rises. A bypass valve (pipe opening / closing means) HV and a pressure reducing means GV are inserted in the bypass circuit 40 in this order from the upstream side in the refrigerant flow direction. As the bypass valve HV, an electromagnetic valve, an electric valve or the like is preferably employed, but is not particularly limited as long as it can be arbitrarily operated (opening and closing of the bypass pipe 42) by a control means (not shown) or other control by equipment. In the ice making operation, the bypass pipe 42 is closed to interrupt the circulation of the refrigerant, and in the deicing operation, the bypass pipe 42 is opened based on the control of the control means or the like. The decompression means GV uses an expansion valve, a capillary tube or the like. As an example, a constant pressure expansion valve is used to moderately adjust the pressure of the refrigerant supplied to the discharge side of the evaporator 14.

前記自動製氷機は、除氷運転に際し、前記冷凍回路30の圧縮機CMで圧縮されて該圧縮機CMと膨張手段EVとの間を流通する高圧冷媒を、前記バイパス弁HVと減圧手段GVとが介挿されたバイパス回路40を介して前記蒸発器14の吐出側にに分岐供給し、該蒸発器14における温度上昇により製氷部10を温度上昇させてから、前記ヒータHへの通電を開始するよう構成される。前記ヒータHへの通電開始は、前記蒸発器14の内圧上昇に伴う前記製氷部10の温度または蒸発器14の温度或いは圧力が所定値に達するタイミングで実施するようになっている。実施例の前記自動製氷機には、前記蒸発器14の吐出側へ比較的圧力の高い気液混合冷媒を供給を開始してから、設定された時間をカウントし、この設定時間を計時した後、前記ヒータHに通電するよう制御する第1計時手段が設けられている。すなわち、前記第1計時手段の設定時間は、前記蒸発器14の内圧上昇に伴う前記製氷部10の温度または蒸発器14の温度或いは圧力が、充分にヒータHへの負荷を軽減し得る0℃近傍の値(所定値)に達し得る時間に設定される。なお、前記ヒータHへの通電開始は、前記製氷部10の温度上昇または蒸発器14の温度或いは圧力を検出する温度または圧力検出手段を設け、この温度または圧力検出手段の検出値が予め設定した値に達したタイミングで実施する構成でもよい。   In the deicing operation, the automatic ice making machine compresses the high-pressure refrigerant that is compressed by the compressor CM of the refrigeration circuit 30 and flows between the compressor CM and the expansion means EV, the bypass valve HV, and the pressure reduction means GV. Is branched and supplied to the discharge side of the evaporator 14 via the bypass circuit 40 inserted therein, and the ice making unit 10 is heated by the temperature rise in the evaporator 14, and then the heater H is energized. Configured to do. The energization of the heater H is started when the temperature of the ice making unit 10 or the temperature or pressure of the evaporator 14 reaches a predetermined value as the internal pressure of the evaporator 14 increases. In the automatic ice making machine of the embodiment, after a gas-liquid mixed refrigerant having a relatively high pressure is started to be supplied to the discharge side of the evaporator 14, the set time is counted, and the set time is counted. A first timing means for controlling the heater H to be energized is provided. That is, the set time of the first time measuring means is 0 ° C. at which the temperature of the ice making unit 10 or the temperature or pressure of the evaporator 14 accompanying the increase in the internal pressure of the evaporator 14 can sufficiently reduce the load on the heater H. It is set to a time that can reach a nearby value (predetermined value). In order to start energization of the heater H, a temperature or pressure detecting means for detecting the temperature rise of the ice making unit 10 or the temperature or pressure of the evaporator 14 is provided, and the detected value of the temperature or pressure detecting means is set in advance. The configuration may be performed at the timing when the value is reached.

また前記自動製氷機には、製氷運転から除氷運転に移行した際に、前記製氷部10の温度または蒸発器14の温度或いは圧力を検知する温度等検知手段が設置されている。そして、前記温度等検知手段で検知した前記製氷部10の温度または前記蒸発器14の温度或いは圧力が、予め制御手段等に設定された設定値以下である場合は、前記バイパス弁HVが開放されて比較的圧力の高い気液混合冷媒が該蒸発器14の吐出側に供給され、設定値より大きい場合は、該バイパス弁HVを閉止したまま蒸発器14の吐出側へ比較的圧力の高い気液混合冷媒を供給することなく前記ヒータHに通電されるようになっている。実施例では、前記蒸発器14に温度等検知手段としてのサーモThが配設され、該蒸発器14の温度が設定温度以下であることを該サーモThが検知した場合、前記バイパス弁HVを開放して蒸発器14の加熱を実施するよう構成される。これに対し、前記蒸発器14の温度が設定温度より高いことをサーモThが検知した場合は、前記バイパス弁HVは閉成されたままでヒータHによる加熱のみで、氷塊Mの離脱が図られるようになっている。なお、前記製氷完了検知手段としてサーモ等の温度検知手段が用いられた場合、前記温度等検知手段とを兼用してもよく、該サーモの温度検知結果に基づいて製氷運転の完了が判断されると共に、該サーモの温度に応じて前記バイパス弁HVの開閉が制御されるよう構成される。   The automatic ice making machine is provided with detection means for detecting the temperature of the ice making unit 10 or the temperature or pressure of the evaporator 14 when the ice making operation is shifted to the deicing operation. When the temperature of the ice making unit 10 or the temperature or pressure of the evaporator 14 detected by the temperature detection means is equal to or lower than a preset value set in the control means or the like, the bypass valve HV is opened. If the gas-liquid mixed refrigerant having a relatively high pressure is supplied to the discharge side of the evaporator 14 and is larger than the set value, the gas having a relatively high pressure is supplied to the discharge side of the evaporator 14 with the bypass valve HV closed. The heater H is energized without supplying the liquid mixed refrigerant. In an embodiment, the evaporator 14 is provided with a thermo-thr as a temperature detecting means, and when the thermo-thr detects that the temperature of the evaporator 14 is equal to or lower than a set temperature, the bypass valve HV is opened. Thus, the evaporator 14 is heated. On the other hand, when the thermo-Th detects that the temperature of the evaporator 14 is higher than the set temperature, the ice block M can be detached only by heating with the heater H while the bypass valve HV is closed. It has become. When temperature detecting means such as a thermo is used as the ice making completion detecting means, the temperature detecting means may also be used, and the completion of the ice making operation is determined based on the temperature detection result of the thermo. At the same time, the opening and closing of the bypass valve HV is controlled according to the temperature of the thermo.

〔実施例の作用〕
次に、実施例に係る自動製氷機の除氷運転方法の作用について、図5に示したフローチャート図を参照して説明する。先ず製氷運転において、前記製氷バルブVを開放したもとで、前記圧縮機CMおよびファンモータFMを駆動すると、冷媒が冷凍回路30のうち主回路32を循環し、前記製氷部10が前記蒸発器14に供給された気化冷媒により強制冷却される(図3における実線矢印)。また、前記循環ポンプPMが駆動されて前記製氷水散布器24から製氷水が製氷部10に供給され、該製氷部10を流下する製氷水は、次第に層状に氷結して氷塊Mが生成される(ステップS1)。このとき、前記バイパス弁HVは閉成され、前記バイパス回路40への冷媒の流通を遮断している。前記製氷運転は、予め規定していた時間を経過すると、除氷運転に移行する(ステップS2)。
(Effects of Example)
Next, the operation of the deicing operation method of the automatic ice maker according to the embodiment will be described with reference to the flowchart shown in FIG. First, in the ice making operation, when the compressor CM and the fan motor FM are driven with the ice making valve V opened, the refrigerant circulates through the main circuit 32 in the refrigeration circuit 30, and the ice making unit 10 is connected to the evaporator. Forcibly cooled by the vaporized refrigerant supplied to 14 (solid arrow in FIG. 3). Further, the circulation pump PM is driven and ice making water is supplied from the ice making water spreader 24 to the ice making unit 10, and the ice making water flowing down the ice making unit 10 is gradually frozen in layers to generate ice blocks M. (Step S1). At this time, the bypass valve HV is closed and the flow of the refrigerant to the bypass circuit 40 is blocked. The ice making operation shifts to the deicing operation after a predetermined time has elapsed (step S2).

除氷運転では、先ず前記蒸発器14に配設された温度等検知手段であるサーモThによって、該蒸発器14の温度を測定し、この測定値が予め設定した設定値以下の場合、前記バイパス弁HVが開放されると共に、前記バイパス回路40を介して蒸発器14の吐出側に比較的圧力の高い気液混合冷媒が供給される(ステップS3)。前記蒸発器14の吐出側に比較的圧力の高い気液混合冷媒が供給されると、この冷媒が有する比較的高い圧力による蒸発器14の内圧上昇によって該蒸発器14が加温され、氷点下まで温度低下した前記製氷部10の温度を徐々に上昇させる。そして、ステップS3に移行してから所定時間経過したことを、制御手段等に設けたタイマ等の第1計時手段がカウントすると、前記ヒータHに通電して該ヒータHが発熱する(ステップS4)。前記第1計時手段の設定時間を調節することによって、季節変動等に応じて前記ヒータHの加熱前における製氷部10の効率的な加温を実施でき、該ヒータHへの負荷をより好適に軽減し得る。前記ヒータHが発熱すると、該ヒータHは製氷部10の製氷面を構成しているので、氷塊Mとの氷結面が融解されて、該氷塊Mは製氷部10から離脱して案内板18に導かれてストッカ16に貯蔵される。また、前記サーモThによる検出の結果、前記蒸発器14の温度等が設定値より大きい場合は、ステップS3を介さずに直接ステップS4に移行する。すなわち、前記ヒータHによる加熱を開始する前の時点で、前記蒸発器14の温度または圧力が高い状態にあれば、比較的圧力の高い気液混合冷媒を該蒸発器14の吐出側に流通させるまでもなく、この蒸発器14が現在保持している温度により製氷部10の除氷を充分補助し得ると共に、該ヒータHに対する負荷も軽減し得るからである。なお、前記第1計時手段の設定時間を0秒としておくことで、ステップS3とステップS4は同時に実施するようにしてもよい(図5の点線参照)。   In the deicing operation, first, the temperature of the evaporator 14 is measured by a thermo-electric device Th that is a temperature detecting means disposed in the evaporator 14, and if the measured value is equal to or lower than a preset value, the bypass While the valve HV is opened, a relatively high pressure gas-liquid mixed refrigerant is supplied to the discharge side of the evaporator 14 via the bypass circuit 40 (step S3). When a relatively high pressure gas-liquid mixed refrigerant is supplied to the discharge side of the evaporator 14, the evaporator 14 is heated by the increase in the internal pressure of the evaporator 14 due to the relatively high pressure of the refrigerant, so that it reaches below freezing point. The temperature of the ice making part 10 whose temperature has been lowered is gradually raised. Then, when the first time measuring means such as a timer provided in the control means counts that the predetermined time has passed since the transition to step S3, the heater H is energized and the heater H generates heat (step S4). . By adjusting the setting time of the first time measuring means, it is possible to efficiently heat the ice making unit 10 before heating the heater H according to seasonal fluctuations, etc., and more appropriately load the heater H. Can be reduced. When the heater H generates heat, the heater H constitutes the ice making surface of the ice making unit 10, so that the icing surface with the ice block M is melted, and the ice block M is detached from the ice making unit 10 to the guide plate 18. It is guided and stored in the stocker 16. If the temperature of the evaporator 14 is larger than the set value as a result of detection by the thermo-Th, the process proceeds directly to step S4 without going through step S3. That is, if the temperature or pressure of the evaporator 14 is high before the heating by the heater H is started, a relatively high pressure gas-liquid mixed refrigerant is circulated to the discharge side of the evaporator 14. Needless to say, the temperature currently held by the evaporator 14 can sufficiently assist deicing of the ice making unit 10 and can also reduce the load on the heater H. Note that step S3 and step S4 may be performed simultaneously by setting the set time of the first time measuring means to 0 second (see the dotted line in FIG. 5).

このように除氷運転において、前記ヒータHによる製氷部10の加熱に先立ち、前記蒸発器14の吐出側に流通させた比較的圧力の高い気液混合冷媒により該製氷部10を加温して、氷点以下に低下した製氷部10の温度を氷塊の融点(0℃)近傍まで上昇しておくことで、該ヒータHの急激な温度変化が抑制されるから、ヒータHへの負荷を軽減することができる。すなわち、前記ヒータHの劣化を抑制し、連続的な使用を許容してヒータHの寿命を向上させることができる。また、前記ヒータHからの加熱と並行して比較的圧力の高い気液混合冷媒による前記製氷部10の加熱を実施することで、除氷時間をより短くすることができ、製氷能力を向上させることができる。更に、前記ヒータHに必要とされる能力を小さくし得ると共に、氷塊Mの融解に必要とされるエネルギーが減少して電力消費量を低減し得るから、省エネルギー化を図ることができる。   Thus, in the deicing operation, prior to heating the ice making unit 10 by the heater H, the ice making unit 10 is heated by the relatively high pressure gas-liquid mixed refrigerant circulated to the discharge side of the evaporator 14. By increasing the temperature of the ice making unit 10 that has dropped below the freezing point to near the melting point (0 ° C.) of the ice block, the rapid temperature change of the heater H is suppressed, so the load on the heater H is reduced. be able to. That is, deterioration of the heater H can be suppressed, continuous use can be permitted, and the life of the heater H can be improved. Further, by performing heating of the ice making unit 10 with a gas-liquid mixed refrigerant having a relatively high pressure in parallel with the heating from the heater H, the deicing time can be further shortened, and the ice making capacity is improved. be able to. Furthermore, the capacity required for the heater H can be reduced, and the energy required for melting the ice mass M can be reduced to reduce the power consumption, so that energy saving can be achieved.

前記ヒータHによる加熱を開始してから(ステップS4)、所要時間経過したことを第2計時手段がカウントすると、該ヒータHへの通電を遮断してヒータHによる加熱が停止される(ステップS5)。ここで第2計時手段には、前記ヒータHによる加熱で前記製氷部10から氷塊Mが充分に離脱し得る時間を予め設定してある。氷塊Mの離脱判断の確実性を増すため、前記製氷部10の温度検知を実施したり、または氷塊Mの有無を検知する機械的なスイッチを併用してもよい。前記ヒータHをOFFしてから、所要時間経過したことを第3計時手段がカウントすると、前記バイパス弁HVを閉止して蒸発器14の吐出側への比較的圧力の高い気液混合冷媒の供給を停止し(ステップS6)、除氷運転が完了する。そして、前記ストッカ16に所定量の氷塊Mが貯留されるまで、S1〜S6が繰り返し実施され、所定量の氷塊Mが貯留されると図示しない貯氷検知スイッチにより製氷運転が停止される。なお、ステップS5とステップS6は同時に実施してもよい(図5の点線参照)。すなわち、前記第3計時手段の設定時間を0秒に設定することで、前記ヒータHによる加熱の停止と同時に、比較的圧力の高い気液混合冷媒による前記製氷部10に対する加温が停止することになる。   After the heating by the heater H is started (step S4), when the second timing means counts that the required time has elapsed, the energization to the heater H is cut off and the heating by the heater H is stopped (step S5). ). Here, in the second time measuring means, a time during which the ice block M can be sufficiently detached from the ice making unit 10 by heating with the heater H is set in advance. In order to increase the reliability of the determination of the removal of the ice block M, the temperature of the ice making unit 10 may be detected, or a mechanical switch for detecting the presence or absence of the ice block M may be used in combination. When the third timing means counts that the required time has elapsed since the heater H was turned off, the bypass valve HV is closed and the relatively high pressure gas-liquid mixed refrigerant is supplied to the discharge side of the evaporator 14. Is stopped (step S6), and the deicing operation is completed. Then, S1 to S6 are repeatedly performed until a predetermined amount of ice block M is stored in the stocker 16, and when a predetermined amount of ice block M is stored, the ice storage operation is stopped by an ice storage detection switch (not shown). Note that step S5 and step S6 may be performed simultaneously (see the dotted line in FIG. 5). That is, by setting the setting time of the third time measuring means to 0 second, heating to the ice making unit 10 by the gas-liquid mixed refrigerant having a relatively high pressure is stopped simultaneously with the stop of heating by the heater H. become.

実施例のバイパス回路40では、前記凝縮器CDの吐出側の冷媒配管34からバイパス管42を分岐して、このバイパス管42の終端を前記蒸発器14の吐出側に接続する態様について説明したが、(1)凝縮器CDから取出して蒸発器14の吐出側へ高圧冷媒を供給する態様、(2)圧縮機CMの吐出側と凝縮器CDの吸込み側との間で分岐して蒸発器14の吐出側へ高圧冷媒を供給する態様の何れも採用し得る。すなわち、本発明では除氷運転において氷塊Mを融解離脱させるのは主にヒータHで実施され、前記蒸発器14に供給される高圧冷媒は、該ヒータHの負荷を低減する補助的な手段であって、製氷運転完了時の蒸発器14の温度または圧力より温度等を上昇できればよいので、バイパス回路40をフレキシブルに設定することができ、システムに合致した冷凍回路を柔軟に構成することができる。   In the bypass circuit 40 of the embodiment, the bypass pipe 42 is branched from the refrigerant pipe 34 on the discharge side of the condenser CD, and the end of the bypass pipe 42 is connected to the discharge side of the evaporator 14. (1) A mode in which high-pressure refrigerant is taken out from the condenser CD and supplied to the discharge side of the evaporator 14; (2) The evaporator 14 is branched between the discharge side of the compressor CM and the suction side of the condenser CD. Any of the modes for supplying the high-pressure refrigerant to the discharge side can be employed. That is, in the present invention, the ice block M is melted and separated in the deicing operation mainly by the heater H, and the high-pressure refrigerant supplied to the evaporator 14 is an auxiliary means for reducing the load on the heater H. Since it is sufficient that the temperature or the like can be raised from the temperature or pressure of the evaporator 14 when the ice making operation is completed, the bypass circuit 40 can be set flexibly, and a refrigeration circuit that matches the system can be flexibly configured. .

図6は変更例に係る冷凍回路48を示す概略図である。この冷凍回路48には、その始端を圧縮機CMの吐出側の冷媒配管34に接続すると共に、終端を蒸発器14の流入側の冷媒配管に接続したバイパス回路50が構成されている。すなわち、製氷運転が完了し、除氷運転に移行した際に、前記バイパス回路50に介挿されたバイパス弁HVを開放することで、ヒータHへの通電に先立って、圧縮機CMから吐出する高温・高圧の冷媒(所謂、ホットガス)を蒸発器14に供給するようになっている。従って、供給されるホットガスによる蒸発器14の内圧の上昇だけでなく、このホットガスの有する温度によって直接的に蒸発器14を昇温させることができる。なお、ホットガスの供給の判断やタイミング、その他の構成は実施例と同様であって、実施例と同様の作用効果を奏する。   FIG. 6 is a schematic diagram showing a refrigeration circuit 48 according to a modified example. The refrigeration circuit 48 includes a bypass circuit 50 having a start end connected to a refrigerant pipe 34 on the discharge side of the compressor CM and a terminal end connected to a refrigerant pipe on the inflow side of the evaporator 14. That is, when the ice making operation is completed and the deicing operation is started, the bypass valve HV inserted in the bypass circuit 50 is opened to discharge from the compressor CM prior to energization of the heater H. A high-temperature and high-pressure refrigerant (so-called hot gas) is supplied to the evaporator 14. Accordingly, not only the internal pressure of the evaporator 14 increases due to the supplied hot gas, but also the evaporator 14 can be directly heated by the temperature of the hot gas. Note that the determination and timing of the supply of hot gas, and other configurations are the same as in the embodiment, and the same effects as the embodiment are achieved.

なお実施例では、温度等検知手段として、前記蒸発器14に配設したサーモThで該蒸発器14の温度を測定する構成について説明したが、該蒸発器14の内部の圧力を測定する圧力検知手段を設ける構成や、前記製氷部10に温度検知手段を設けて該製氷部10の温度を測定する構成であってもよい。   In the embodiment, the temperature measurement of the evaporator 14 has been described as the temperature detection means by using the thermo-Th disposed in the evaporator 14. However, the pressure detection for measuring the pressure inside the evaporator 14 has been described. The structure which provides a means and the structure which provides a temperature detection means in the said ice making part 10 and measures the temperature of this ice making part 10 may be sufficient.

本発明の好適な実施例に係る自動製氷機の製氷機構を示す概略図である。1 is a schematic view showing an ice making mechanism of an automatic ice making machine according to a preferred embodiment of the present invention. 実施例の製氷部を示す側断面図である。It is a sectional side view which shows the ice making part of an Example. 実施例の製氷部を示す平断面図である。It is a plane sectional view showing the ice making part of an example. 実施例の冷凍回路を示す概略図である。It is the schematic which shows the freezing circuit of an Example. 実施例の自動製氷機の除氷運転を示すフローチャート図である。It is a flowchart figure which shows the deicing operation | movement of the automatic ice maker of an Example. 変更例の冷凍回路を示す概略図である。It is the schematic which shows the freezing circuit of the example of a change.

符号の説明Explanation of symbols

10 製氷部,14 蒸発器,30 冷凍回路,40 バイパス回路,48 冷凍回路,
50 バイパス回路,H ヒータ(電気加熱手段),M 氷塊,CM 圧縮機,
GV 減圧手段
10 ice making units, 14 evaporators, 30 refrigeration circuits, 40 bypass circuits, 48 refrigeration circuits,
50 Bypass circuit, H heater (electric heating means), M ice block, CM compressor,
GV decompression means

Claims (5)

製氷部(10)に、冷凍回路(30,48)に連通する蒸発器(14)と電気加熱手段(H)とを備え、製氷運転時には前記蒸発器(14)に気化冷媒を循環供給すると共に、前記製氷部(10)に製氷水を供給して氷塊(M)を生成し、除氷運転時には前記電気加熱手段(H)に通電して前記製氷部(10)から氷塊(M)を離脱させるよう構成した自動製氷機において、
その除氷運転に際し、前記冷凍回路(30)からの高圧の冷媒をバイパス回路(40,50)を介して前記蒸発器(14)またはその近傍に分岐供給し、
前記蒸発器(14)における内圧の上昇により前記製氷部(10)を温度上昇させてから、前記電気加熱手段(H)への通電を開始するようにした
ことを特徴とする自動製氷機の除氷運転方法。
The ice making unit (10) is provided with an evaporator (14) communicating with the refrigeration circuit (30, 48) and an electric heating means (H), and during the ice making operation, the vaporized refrigerant is circulated and supplied to the evaporator (14). The ice making unit (10) is supplied with ice making water to generate ice blocks (M), and during the deicing operation, the electric heating means (H) is energized to remove the ice blocks (M) from the ice making unit (10). In an automatic ice maker configured to let
During the deicing operation, the high-pressure refrigerant from the refrigeration circuit (30) is branched and supplied to the evaporator (14) or its vicinity via the bypass circuit (40, 50),
The automatic ice making machine is characterized in that energization of the electric heating means (H) is started after the temperature of the ice making section (10) is increased due to an increase in internal pressure in the evaporator (14). Ice driving method.
前記蒸発器(14)の内圧上昇に伴う前記製氷部(10)の温度または蒸発器(14)の温度或いは圧力が所定値に達するタイミングで、前記電気加熱手段(H)への通電を開始する請求項1記載の自動製氷機の除氷運転方法。   When the temperature of the ice making unit (10) or the temperature or pressure of the evaporator (14) reaches a predetermined value as the internal pressure of the evaporator (14) increases, energization of the electric heating means (H) is started. The deicing operation method of the automatic ice maker according to claim 1. 前記製氷部(10)の温度または蒸発器(14)の温度或いは圧力が設定値以下であれば、高圧の冷媒を該蒸発器(14)に供給し、設定値より大きい場合は、高圧の冷媒を蒸発器(14)へ供給することなく前記電気加熱手段(H)の通電を開始する請求項1記載の自動製氷機の除氷運転方法。   If the temperature of the ice making section (10) or the temperature or pressure of the evaporator (14) is equal to or lower than a set value, a high-pressure refrigerant is supplied to the evaporator (14). The deicing operation method for an automatic ice making machine according to claim 1, wherein energization of the electric heating means (H) is started without supplying to the evaporator (14). 前記バイパス回路(40)には、流通する高圧の冷媒を減圧する減圧手段(GV)が介挿されている請求項1〜3の何れかに記載の自動製氷機の除氷運転方法。   The deicing operation method for an automatic ice making machine according to any one of claims 1 to 3, wherein a decompression means (GV) for decompressing a circulating high-pressure refrigerant is interposed in the bypass circuit (40). 前記バイパス回路(50)は、その始端を圧縮機(CM)の吐出側に接続すると共に、終端を前記蒸発器(14)の流入側に接続することで、高温・高圧の冷媒を該蒸発器(14)に供給するようにした請求項1記載の自動製氷機の除氷運転方法。
The bypass circuit (50) has a start end connected to the discharge side of the compressor (CM) and a terminal end connected to the inflow side of the evaporator (14), whereby high-temperature and high-pressure refrigerant is supplied to the evaporator. The deicing operation method for an automatic ice maker according to claim 1, wherein the deicing operation method is supplied to (14).
JP2004186809A 2004-06-24 2004-06-24 Deicing operation method of automatic ice making machine Pending JP2006010181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186809A JP2006010181A (en) 2004-06-24 2004-06-24 Deicing operation method of automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186809A JP2006010181A (en) 2004-06-24 2004-06-24 Deicing operation method of automatic ice making machine

Publications (1)

Publication Number Publication Date
JP2006010181A true JP2006010181A (en) 2006-01-12

Family

ID=35777627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186809A Pending JP2006010181A (en) 2004-06-24 2004-06-24 Deicing operation method of automatic ice making machine

Country Status (1)

Country Link
JP (1) JP2006010181A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542258A (en) * 2018-05-29 2019-12-06 佛山市顺德区美的饮水机制造有限公司 Deicing control method, household appliance and computer storage medium
US11255589B2 (en) 2020-01-18 2022-02-22 True Manufacturing Co., Inc. Ice maker
US11391500B2 (en) 2020-01-18 2022-07-19 True Manufacturing Co., Inc. Ice maker
US11519652B2 (en) 2020-03-18 2022-12-06 True Manufacturing Co., Inc. Ice maker
US11578905B2 (en) 2020-01-18 2023-02-14 True Manufacturing Co., Inc. Ice maker, ice dispensing assembly, and method of deploying ice maker
US11602059B2 (en) 2020-01-18 2023-03-07 True Manufacturing Co., Inc. Refrigeration appliance with detachable electronics module
US11656017B2 (en) 2020-01-18 2023-05-23 True Manufacturing Co., Inc. Ice maker
US11674731B2 (en) 2021-01-13 2023-06-13 True Manufacturing Co., Inc. Ice maker
US11686519B2 (en) 2021-07-19 2023-06-27 True Manufacturing Co., Inc. Ice maker with pulsed fill routine
US11802727B2 (en) 2020-01-18 2023-10-31 True Manufacturing Co., Inc. Ice maker
US11913699B2 (en) 2020-01-18 2024-02-27 True Manufacturing Co., Inc. Ice maker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832059Y1 (en) * 1970-12-18 1973-10-01
JPS63254368A (en) * 1987-04-13 1988-10-21 松下冷機株式会社 Ice machine
JPH0229575A (en) * 1989-06-05 1990-01-31 Fuji Electric Co Ltd Flowing water type ice making machine
JPH07120114A (en) * 1993-10-28 1995-05-12 Matsushita Refrig Co Ltd Refrigeration cold storage box

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832059Y1 (en) * 1970-12-18 1973-10-01
JPS63254368A (en) * 1987-04-13 1988-10-21 松下冷機株式会社 Ice machine
JPH0229575A (en) * 1989-06-05 1990-01-31 Fuji Electric Co Ltd Flowing water type ice making machine
JPH07120114A (en) * 1993-10-28 1995-05-12 Matsushita Refrig Co Ltd Refrigeration cold storage box

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542258A (en) * 2018-05-29 2019-12-06 佛山市顺德区美的饮水机制造有限公司 Deicing control method, household appliance and computer storage medium
US11255589B2 (en) 2020-01-18 2022-02-22 True Manufacturing Co., Inc. Ice maker
US11391500B2 (en) 2020-01-18 2022-07-19 True Manufacturing Co., Inc. Ice maker
US11578905B2 (en) 2020-01-18 2023-02-14 True Manufacturing Co., Inc. Ice maker, ice dispensing assembly, and method of deploying ice maker
US11602059B2 (en) 2020-01-18 2023-03-07 True Manufacturing Co., Inc. Refrigeration appliance with detachable electronics module
US11656017B2 (en) 2020-01-18 2023-05-23 True Manufacturing Co., Inc. Ice maker
US11802727B2 (en) 2020-01-18 2023-10-31 True Manufacturing Co., Inc. Ice maker
US11913699B2 (en) 2020-01-18 2024-02-27 True Manufacturing Co., Inc. Ice maker
US11519652B2 (en) 2020-03-18 2022-12-06 True Manufacturing Co., Inc. Ice maker
US11674731B2 (en) 2021-01-13 2023-06-13 True Manufacturing Co., Inc. Ice maker
US11686519B2 (en) 2021-07-19 2023-06-27 True Manufacturing Co., Inc. Ice maker with pulsed fill routine

Similar Documents

Publication Publication Date Title
JP5008675B2 (en) Automatic ice maker and its operating method
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP4954684B2 (en) How to operate an automatic ice machine
US20080216490A1 (en) Operation method for automatic ice maker
JP2009121768A (en) Automatic ice making machine and control method for it
JP4532201B2 (en) How to operate an automatic ice machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP5781836B2 (en) Method and apparatus for defrosting air refrigerant refrigeration system
JP5448618B2 (en) Ice machine
JP2005180823A (en) Automatic ice making machine
JP5027685B2 (en) How to operate a jet ice maker
JP5469935B2 (en) Ice machine
JP2008057862A (en) Ice making machine
JP2005043014A (en) Operation method of automatic ice making machine
JP2006090691A (en) Operating method for flow down type ice maker
KR101470958B1 (en) An ice machine with an integrated water-air cooling system
JP2005180824A (en) Automatic ice making machine
JP5253863B2 (en) Automatic ice machine
JP2009204297A (en) Automatic ice maker
JP4518875B2 (en) Deicing operation method of automatic ice maker
JPH10281607A (en) Control device for ice making machine
JP2019078470A (en) Ice-maker
JP2006183925A (en) Method of operating automatic ice machine for deicing
JP4545425B2 (en) Automatic ice machine
JP4644513B2 (en) Automatic ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070531

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091210

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A02 Decision of refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A02