JP2006183925A - Method of operating automatic ice machine for deicing - Google Patents

Method of operating automatic ice machine for deicing Download PDF

Info

Publication number
JP2006183925A
JP2006183925A JP2004376964A JP2004376964A JP2006183925A JP 2006183925 A JP2006183925 A JP 2006183925A JP 2004376964 A JP2004376964 A JP 2004376964A JP 2004376964 A JP2004376964 A JP 2004376964A JP 2006183925 A JP2006183925 A JP 2006183925A
Authority
JP
Japan
Prior art keywords
evaporator
ice making
pipe
hot gas
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376964A
Other languages
Japanese (ja)
Inventor
Kazunori Matsuo
一則 松尾
Hiroyuki Sugie
宏之 杉江
Yasuoki Mizutani
保起 水谷
Tomohito Nomura
知仁 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2004376964A priority Critical patent/JP2006183925A/en
Publication of JP2006183925A publication Critical patent/JP2006183925A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To evenly heat an ice making part when an automatic ice machine is operated for deicing. <P>SOLUTION: As the automatic ice machine is operated for deicing, a first bypass valve 42 is opened to directly introduce hot gas discharged from the compressor 20 of a refrigerating circuit 30 into the entrance side of the evaporator 14 to heat the portion of the evaporator 14 near its entrance. When a temperature sensing means Th installed in the vicinity of the entrance side of the evaporator 14 senses a preset temperature, a second bypass valve HV2 is opened to directly introduce the hot gas discharged from the compressor 20 into the mid section of the evaporator 14 via a second bypass pipe 44 so as to heat the ice making part 10 entirely and remove chunks of ice. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、製氷部に生成された氷塊を、該製氷部に配設した蒸発器にホットガスを供給することで除氷する自動製氷機の除氷運転方法に関するものである。   The present invention relates to a deicing operation method of an automatic ice maker that deices ice blocks generated in an ice making unit by supplying hot gas to an evaporator disposed in the ice making unit.

多量の氷塊を自動的に製造する自動製氷機は、圧縮機、凝縮器および膨張弁等を備える冷凍回路に接続した蒸発器を製氷部に配設し、この蒸発器に凝縮器および膨張弁の作用下に循環供給される冷媒により強制冷却した製氷部に製氷水を供給して氷塊を生成し、得られた氷塊を剥離して落下放出させるよう構成されている。例えば自動製氷機は、製氷部の下方に製氷水を所要量貯留するための製氷水タンクを備え、製氷運転に際して該製氷水タンク中の製氷水を循環ポンプで圧送して製氷部に供給し、氷結するに至らなかった製氷水は製氷水タンクに回収した後に、再び製氷部に向けて送り出すよう構成される。そして、製氷運転が継続されて所定時間経過すると、製氷が完了したものと判断して製氷運転から除氷運転に移行し、バイパス弁(管路開閉手段)の切換えにより圧縮機から吐出されるホットガス(高温・高圧の気化冷媒)をバイパス管を介して前記蒸発器に直接供給して氷塊との氷結面を加熱して融解させることで、氷塊を製氷部から離脱させるようになっている。   An automatic ice maker that automatically manufactures a large amount of ice blocks has an evaporator connected to a refrigeration circuit including a compressor, a condenser, an expansion valve, and the like arranged in an ice making unit, and the condenser and the expansion valve are connected to the evaporator. Ice-making water is supplied to an ice-making section that is forcibly cooled by a refrigerant that is circulated and supplied under action to generate ice blocks, and the resulting ice blocks are peeled off and dropped and released. For example, an automatic ice making machine includes an ice making water tank for storing a required amount of ice making water below the ice making unit, and supplies ice making water in the ice making water tank with a circulation pump during ice making operation to supply it to the ice making unit. The ice making water that has not been frozen is collected in an ice making water tank and then sent out again toward the ice making unit. When the ice making operation is continued and a predetermined time elapses, it is determined that the ice making is completed, the ice making operation is shifted to the deicing operation, and the hot discharge discharged from the compressor by switching the bypass valve (pipe line opening / closing means). By supplying gas (high-temperature, high-pressure vaporized refrigerant) directly to the evaporator via a bypass pipe and heating and melting the icing surface with the ice block, the ice block is separated from the ice making unit.

ここで、除氷運転に際して製氷部は一様に加熱されるわけでなく、前記蒸発器に供給されるホットガスの供給方向上流側(入口側)から徐々に加熱される。すなわち、除氷運転に切換わって蒸発器にホットガスが供給されると、先ず蒸発器の入口側に対応する製氷部の領域との間で優先的に熱交換が行なわれるため、該蒸発器の出口側に対応する製氷部の領域とは殆ど熱交換することなく蒸発器内を循環して圧縮機に帰還する。そして、蒸発器を循環するホットガスにより入口側に対応する製氷部の領域が加熱され、この領域に生成された氷塊の氷結面が融解すると蒸発器の入口側での負荷が減少するので、蒸発器の中間部以降に対応する製氷部の領域がホットガスにより加熱されるに到る。このため、製氷部における蒸発器の入口側と出口側では、氷塊が離脱するタイミングが異なって、除氷時間が長くなってしまう難点が指摘される。   Here, the ice making section is not uniformly heated during the deicing operation, but gradually heated from the upstream side (inlet side) in the supply direction of the hot gas supplied to the evaporator. That is, when hot gas is supplied to the evaporator after switching to the deicing operation, first, heat exchange is preferentially performed with the ice making region corresponding to the inlet side of the evaporator. Circulates in the evaporator and returns to the compressor with little heat exchange with the area of the ice making section corresponding to the outlet side. Then, the area of the ice making section corresponding to the inlet side is heated by the hot gas circulating in the evaporator, and if the icing surface of the ice block generated in this area melts, the load on the inlet side of the evaporator decreases, The area of the ice making part corresponding to the middle part of the vessel is heated by the hot gas. For this reason, it is pointed out that the deicing time becomes longer because the timing at which the ice blocks separate differs between the inlet side and the outlet side of the evaporator in the ice making unit.

また、除氷時間の短縮を図るため、氷塊同士を連結した状態で製氷部に生成する場合において、除氷運転が進行して蒸発器の入口側に位置する氷塊が自重により落下可能な状態となっても、蒸発器の出口側に位置する氷塊は製氷部に未だ氷結しているので、氷塊は全体として製氷部から離脱できず、ホットガスと製氷部の入口側との間での熱交換はその量が減少するものの依然として行なわれる。すなわち、蒸発器の中間部以降に対応する製氷部を加熱するホットガスの熱量は低くなり、製氷部と氷塊との氷結を融解するのに時間が掛かってしまう問題を呈すると共に、入口側に位置する氷塊の融解が更に進行してしまうため、氷塊が変形氷となったり痩せて寸法が不揃いとなる難点が指摘される。更に除氷運転において、製氷部が偏って加熱されるため、製氷部から全ての氷塊が離脱した段階で製氷部における蒸発器の入口側に対応する領域と出口側に対応する領域との間の温度差はかなり大きなものになっている。従って、製氷部は製氷運転と除氷運転との間においてヒートショックが激しくなるから、製氷部自体の材質の劣化や製氷部にめっき等の表面処理が施されている場合は、表面処理の剥離等の不具合が誘発されることになる。   In addition, in order to shorten the deicing time, when the ice block is generated in the ice making unit in a state where the ice blocks are connected to each other, the ice block located on the inlet side of the evaporator can be dropped by its own weight as the deicing operation proceeds. Even so, the ice mass located on the outlet side of the evaporator is still frozen in the ice making section, so the ice mass as a whole cannot be detached from the ice making section, and heat exchange between the hot gas and the ice making section entrance side Is still done, although the amount is reduced. That is, the amount of heat of the hot gas that heats the ice making part corresponding to the middle part of the evaporator becomes low, and it takes time to melt the ice formation between the ice making part and the ice block. Since the melting of the ice block further progresses, it is pointed out that the ice block becomes deformed ice or becomes thin and the dimensions are not uniform. Further, in the deicing operation, since the ice making part is heated unevenly, when all the ice blocks are detached from the ice making part, the area between the area corresponding to the inlet side of the evaporator and the area corresponding to the outlet side in the ice making part. The temperature difference is quite large. Therefore, since the ice making part is subjected to intense heat shock between the ice making operation and the deicing operation, if the material of the ice making part itself deteriorates or the ice making part is subjected to surface treatment such as plating, the surface treatment is peeled off. Etc. will be induced.

そこで、特許文献1に開示されている製氷機の如く、圧縮機から凝縮器および減圧手段をバイパスして蒸発器の入口側に第1の電磁弁を介して接続される第1の側路管と、蒸発器の入口側と出口側の中間に第2の電磁弁を介して接続される第2の側路管を備えた構成が提案されている。すなわち、除氷運転において、第1の電磁弁を開放して蒸発器の入口側から第1の側路管を介してホットガスを供給すると同時に、第2の電磁弁を開放して第2の側路管を介して蒸発管の中間部からもホットガスを供給することで、製氷部の入口側と中間部から同時に氷塊の融解を開始して除氷時間の短縮を図っている。
実開昭55−17200号公報
Therefore, as in the ice making machine disclosed in Patent Document 1, the first bypass pipe connected from the compressor to the inlet side of the evaporator via the first solenoid valve, bypassing the condenser and the pressure reducing means. And the structure provided with the 2nd side pipe connected via the 2nd solenoid valve in the middle of the entrance side and exit side of an evaporator is proposed. That is, in the deicing operation, the first solenoid valve is opened and hot gas is supplied from the inlet side of the evaporator via the first side pipe, and at the same time, the second solenoid valve is opened and the second solenoid valve is opened. By supplying hot gas also from the middle part of the evaporation pipe through the side pipe, melting of the ice block is started simultaneously from the inlet side and the middle part of the ice making part to shorten the deicing time.
Japanese Utility Model Publication No. 55-17200

しかし、特許文献1に開示された製氷機では、除氷運転において入口側および中間部へのホットガスの供給を同時に実施しているので、管路抵抗が低い第2の側路管からホットガスが優先的に供給されてしまい、製氷部の全体をむら無く加熱することができない欠点が指摘される。このため前記製氷機では、第1の側路管と第2の側路管とに平均してホットガスが流れるよう、第2の側路管の管径を第1の側路管より細く形成することで解決を図っているものの、蒸発器の大きさ(管路の入口から出口までの長さ)や第2の側路管を接続する位置等に応じて、異なる管径の第2の側路管が必要となり、コストが増大すると共に、材料管理が煩雑になる不都合を招来する。また、側路管の管径による蒸発器へのホットガスの供給量の平均化は、その調節が難しく、外部温度の変動等に応じて供給のタイミングを適当に制御できない欠点もある。   However, in the ice making machine disclosed in Patent Document 1, since hot gas is simultaneously supplied to the inlet side and the intermediate part in the deicing operation, hot gas is supplied from the second side pipe having low pipe resistance. Is preferentially supplied, and the disadvantage that the entire ice making unit cannot be heated uniformly is pointed out. Therefore, in the ice making machine, the diameter of the second side pipe is made narrower than that of the first side pipe so that the hot gas flows on the first side pipe and the second side pipe on average. However, depending on the size of the evaporator (the length from the inlet to the outlet of the pipe) and the position where the second side pipe is connected, the second pipe with a different pipe diameter is used. A side pipe is required, resulting in an increase in cost and inconvenience of complicated material management. Further, the averaging of the hot gas supply amount to the evaporator by the pipe diameter of the side pipe is difficult to adjust, and there is a drawback that the supply timing cannot be appropriately controlled according to the fluctuation of the external temperature or the like.

すなわちこの発明は、従来の技術に係る自動製氷機の除氷運転方法に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、蒸発器にホットガスを供給して製氷部に生成した氷塊を離脱させる際に、製氷部を均等に加熱し得る自動製氷機の除氷運転方法を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the deicing operation method of the automatic ice making machine according to the prior art, and supplies hot gas to the evaporator. It is an object of the present invention to provide a deicing operation method for an automatic ice maker that can uniformly heat the ice making unit when the ice block generated in the ice making unit is separated.

前記課題を克服し、所期の目的を達成するため、本発明に係る自動製氷機の除氷運転方法は、
製氷部に配設されて、冷凍回路に接続する蒸発器と、冷凍回路の圧縮機からのホットガスを前記蒸発器の入口側へ導く第1バイパス管に介挿した第1管路開閉手段と、圧縮機からのホットガスを蒸発器の中間部へ導く第2バイパス管に介挿した第2管路開閉手段とを備え、除氷運転時に両開閉手段を開放して蒸発器の入口側および中間部にホットガスを供給することで製氷部に生成した氷塊を離脱させるようにした自動製氷機の除氷運転方法において、
前記第1管路開閉手段を開放してから所要時間だけ遅延させた後に、前記第2管路開閉手段を開放することを特徴とする。
In order to overcome the above problems and achieve the intended purpose, the deicing operation method of the automatic ice maker according to the present invention is:
An evaporator disposed in the ice making unit and connected to the refrigeration circuit; and a first pipe opening / closing means interposed in a first bypass pipe for guiding hot gas from the compressor of the refrigeration circuit to the inlet side of the evaporator; And a second pipe opening / closing means interposed in a second bypass pipe for guiding hot gas from the compressor to the middle part of the evaporator, and both opening / closing means are opened during the deicing operation so that the inlet side of the evaporator and In the deicing operation method of the automatic ice maker, in which the ice block generated in the ice making part is released by supplying hot gas to the intermediate part,
The second pipe opening / closing means is opened after the first pipe opening / closing means is delayed by a required time after the first pipe opening / closing means is opened.

請求項1の発明に係る自動製氷機の除氷運転方法によれば、除氷運転において第1管路開閉手段を開放して蒸発器の入口側へホットガスを供給してから所要時間だけ遅延させた後に、第2管路開閉手段を開放して蒸発器の中間部にホットガスを供給することで、製氷部全体をむらなく昇温することができ、製氷部における何れの領域に生成された氷塊も略同一のタイミングで放出し得るから、変形氷等の発生を抑制し得ると共に、除氷時間を短縮して製氷能力を向上し得る。また製氷部は、蒸発器の入口側近傍に対応する領域が蒸発器の出口側近傍に対応する領域に比べて過剰に温度上昇することはないから、ヒートショックを軽減でき、製氷部自体の材質の劣化や製氷部の表面に施されためっき等の表面処理の剥離を回避して、製氷部の寿命を向上し得る。更に、除氷運転において蒸発器の入口側と中間部との間の管路抵抗を利用して、第2バイパス管から中間部に優先的にホットガスを供給することができるから、両バイパス管を共通の管から形成することができる。更にまた、遅延させる時間を変更することで、除氷運転を開始してから第2管路開閉手段を開放するまでの時間差を容易に調節し得るから、外部温度の変動に対応し得ると共に、異なる機種等であっても適用し得る。請求項2に係る発明によれば、第2管路開閉手段の開放するタイミングを判断する指標として、蒸発器の入口側近傍に設置した温度検知手段で検知される蒸発器の温度を用いることで、良好なレスポンスが得られ、第2バイパス管を介して蒸発器の中間部からホットガスのタイムリーな供給を行なうことができ、除氷運転において製氷部をより均等に昇温し得る。   According to the deicing operation method of the automatic ice maker according to the first aspect of the present invention, in the deicing operation, the first pipe opening / closing means is opened and hot gas is supplied to the inlet side of the evaporator, and the delay is a required time. Then, by opening the second pipe opening / closing means and supplying hot gas to the middle part of the evaporator, the temperature of the entire ice making part can be raised uniformly, and it is generated in any region in the ice making part. Since the ice blocks can be discharged at substantially the same timing, the generation of deformed ice and the like can be suppressed, and the ice making capacity can be improved by shortening the deicing time. In addition, the ice making part does not excessively increase the temperature in the area corresponding to the vicinity of the evaporator inlet side compared to the area corresponding to the vicinity of the outlet side of the evaporator. It is possible to improve the life of the ice making part by avoiding deterioration of the surface and peeling of the surface treatment such as plating applied to the surface of the ice making part. Furthermore, in the deicing operation, hot gas can be preferentially supplied from the second bypass pipe to the intermediate section by utilizing the pipe resistance between the inlet side of the evaporator and the intermediate section. Can be formed from a common tube. Furthermore, by changing the delay time, the time difference from the start of the deicing operation to the opening of the second pipe opening / closing means can be easily adjusted, so that it can cope with fluctuations in the external temperature, Even different models can be applied. According to the invention according to claim 2, by using the temperature of the evaporator detected by the temperature detecting means installed in the vicinity of the inlet side of the evaporator as an index for determining the opening timing of the second pipe opening / closing means. A good response can be obtained, timely supply of hot gas can be performed from the middle part of the evaporator via the second bypass pipe, and the ice making part can be heated more evenly in the deicing operation.

次に、本発明に係る自動製氷機の除氷運転方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、自動製氷機において氷塊を生成する製氷機構としては、所謂オープンセルタイプ、クローズドセルタイプ、流下式、その他の何れのものであっても本願の除氷運転方法を適用し得る。   Next, the deicing operation method of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. In addition, as an ice making mechanism for generating ice blocks in an automatic ice making machine, the deicing operation method of the present application can be applied to any of so-called open cell type, closed cell type, flow-down type, and the like.

図1は、実施例に係る自動製氷機の除氷運転を好適に実施し得る冷凍回路を示す概略図である。実施例の自動製氷機は、図示しない製氷室内に配設した製氷部10の裏面に、冷凍回路30から導出して蛇行形成した蒸発管14aからなる蒸発器14が密着固定され、製氷運転時に冷媒を循環させて製氷部10を強制冷却するよう構成される。また製氷運転に際して、前記蒸発器14により冷却された製氷部10に画成した製氷小室(図示せず)に対して、図示しない循環ポンプにより製氷水を供給することで、各製氷小室内に所定形状の氷塊を夫々生成するようになっている。前記蒸発器14は、その入口側が後述する膨張弁(減圧手段)24の吐出側に連通する冷媒配管34に接続すると共に、出口側が後述する圧縮機20の吸込み側に連通する冷媒配管34に接続されている。前記蒸発器14を構成する蒸発管14aは、前記製氷部10の各製氷小室に対応して延在するように蛇行配置され、該蒸発管14aを流通する冷媒(ホットガス)と製氷部10とがむら無く熱交換し得るように配置されている。   FIG. 1 is a schematic diagram illustrating a refrigeration circuit that can suitably perform the deicing operation of the automatic ice maker according to the embodiment. In the automatic ice making machine of the embodiment, an evaporator 14 composed of an evaporation pipe 14a led out of a refrigeration circuit 30 and formed in a meandering manner is closely fixed to the back surface of an ice making unit 10 disposed in an ice making chamber (not shown), and a refrigerant is used during ice making operation. The ice making unit 10 is forcibly cooled by circulating the air. In addition, during ice making operation, ice making water is supplied by a circulation pump (not shown) to an ice making chamber (not shown) defined in the ice making section 10 cooled by the evaporator 14, so that each ice making chamber has a predetermined value. Each shape ice block is generated. The evaporator 14 has an inlet side connected to a refrigerant pipe 34 communicating with a discharge side of an expansion valve (decompression means) 24 described later, and an outlet side connected to a refrigerant pipe 34 connected with a suction side of a compressor 20 described later. Has been. The evaporator tubes 14a constituting the evaporator 14 are meandering so as to extend corresponding to the ice making chambers of the ice making unit 10, and the refrigerant (hot gas) flowing through the evaporator tubes 14a, the ice making unit 10 and the like. Is arranged so that heat can be exchanged evenly.

前記製氷部10を冷却する冷凍回路30は、図示しない機械室に配設された、圧縮機20、凝縮器22、ファンモータFMおよび膨張弁24等と、該製氷部10の裏面に配設された蒸発器14とから主回路32が基本的に構成される。前記主回路32は圧縮機20、凝縮器22、膨張弁24および蒸発器14の順番で冷媒が循環するよう各機器が配置され、各機器は冷媒配管34で連通接続されている。すなわち、前記圧縮機20で圧縮された気化冷媒は、冷媒配管34を経て前記凝縮器22で凝縮液化した後、前記膨張弁24で減圧され、前記蒸発器14に流入してここで一挙に膨張して蒸発し、前記製氷部10と熱交換を行なって該製氷部10を氷点下にまで強制冷却させるようになっている。そして前記蒸発器14で蒸発し、熱交換した気化冷媒は、冷媒配管34を経て圧縮機20に帰還するサイクルを反復するよう構成される。なお、前記ファンモータFMは、前記凝縮器22を冷却するべく機能する。また実施例では、減圧手段として膨張弁24を採用したが、キャピラリーチューブ等その他の適宜の手段であってもよい。 The refrigeration circuit 30 for cooling the ice making unit 10 is disposed on the back surface of the ice making unit 10, such as a compressor 20, a condenser 22, a fan motor FM and an expansion valve 24, which are disposed in a machine room (not shown). The main circuit 32 is basically composed of the evaporator 14. In the main circuit 32, devices are arranged so that the refrigerant circulates in the order of the compressor 20, the condenser 22, the expansion valve 24, and the evaporator 14, and the devices are connected in communication by a refrigerant pipe 34. That is, the vaporized refrigerant compressed by the compressor 20 is condensed and liquefied by the condenser 22 through the refrigerant pipe 34, then depressurized by the expansion valve 24, flows into the evaporator 14 and expands at once. Then, it evaporates and exchanges heat with the ice making unit 10 to forcibly cool the ice making unit 10 to below the freezing point. The vaporized refrigerant evaporated and heat-exchanged in the evaporator 14 is configured to repeat a cycle of returning to the compressor 20 via the refrigerant pipe 34. The fan motor FM functions to cool the condenser 22. In the embodiment, the expansion valve 24 is used as the pressure reducing means, but other appropriate means such as a capillary tube may be used.

実施例の前記主回路32は、前記凝縮器22の吐出側と膨張弁24の吸込み側との間に、該凝縮器22で凝縮された液化冷媒を一時的に貯留するレシーバRが配設されると共に、該レシーバRの吐出側と膨張弁24の吸込み側との間に液化冷媒から余分な水分を除去するドライヤDが配設されている。また、前記レシーバRとドライヤDとの間に介挿された符号26は、製氷バルブを示し、前記主回路32を流通する冷媒の流れを制御するものであって、製氷運転時には開放され、運転終了時には閉成して前記蒸発器14への冷媒の供給を停止するようになっている。   In the main circuit 32 of the embodiment, a receiver R that temporarily stores the liquefied refrigerant condensed in the condenser 22 is disposed between the discharge side of the condenser 22 and the suction side of the expansion valve 24. In addition, a dryer D for removing excess water from the liquefied refrigerant is disposed between the discharge side of the receiver R and the suction side of the expansion valve 24. Reference numeral 26 inserted between the receiver R and the dryer D denotes an ice making valve, which controls the flow of refrigerant flowing through the main circuit 32 and is opened during ice making operation. At the end, it is closed and the supply of the refrigerant to the evaporator 14 is stopped.

前記冷凍回路30は、前述した主回路32に加えて、除氷運転時において前記蒸発器14に対して第1バイパス管42および該第1バイパス管42から分岐した第2バイパス管44を介してホットガス(高温・高圧の気化冷媒)を供給するバイパス回路40を備えている。前記第1バイパス管42は、その始端が前記圧縮機20の吐出側から凝縮器22の吸込み側の間で冷媒配管34に接続され、終端は前記蒸発器14の入口側に接続する冷媒配管34に膨張弁24の吐出側で連結されている。すなわち前記第1バイパス管42は、圧縮機20から吐出されたホットガスを凝縮器22および膨張弁24による冷凍作用を経ることなく、蒸発器14の入口側に直接供給し得るように構成される。また前記第1バイパス管42の途中には、管路を開閉自在に閉成する第1バイパス弁(第1管路開閉手段)HV1が介挿されている。この第1バイパス弁HV1は、図示しない制御手段により製氷運転中は閉成されると共に、除氷運転の開始に伴って開放され、除氷運転が終了すると再び閉成するように制御される。   In addition to the main circuit 32 described above, the refrigeration circuit 30 includes a first bypass pipe 42 and a second bypass pipe 44 branched from the first bypass pipe 42 with respect to the evaporator 14 during the deicing operation. A bypass circuit 40 for supplying hot gas (high-temperature, high-pressure vaporized refrigerant) is provided. The first bypass pipe 42 has a start end connected to the refrigerant pipe 34 between the discharge side of the compressor 20 and the suction side of the condenser 22, and a terminal end connected to the inlet side of the evaporator 14. Connected to the discharge side of the expansion valve 24. That is, the first bypass pipe 42 is configured to be able to directly supply the hot gas discharged from the compressor 20 to the inlet side of the evaporator 14 without passing through the refrigeration action by the condenser 22 and the expansion valve 24. . In the middle of the first bypass pipe 42, a first bypass valve (first pipe opening / closing means) HV1 for closing the pipe is opened and closed. The first bypass valve HV1 is controlled by a control unit (not shown) to be closed during the ice making operation, opened along with the start of the deicing operation, and closed again when the deicing operation is completed.

前記第2バイパス管44は、前記第1バイパス管42における第1バイパス弁HV1の下流側から分岐して、前記蒸発器14の中間部に連通接続されている。ここで、前記第2バイパス管44が接続する蒸発器14の中間部とは、製氷部10に対して蛇行状に延在する蒸発管14aにおける膨張弁24に連通する入口側と圧縮機20に連通する出口側との間の経路全体において、製氷部10の大きさや蒸発器14の長さ等を勘案して適宜設定され、実施例では蒸発管経路の長さ方向の略中央に第2バイパス管44が接続されている。すなわちホットガスは、前記蒸発器14に対して入口側から供給するだけでなく、製氷部10に蛇行配置した蒸発管14aの途中からも供給し得るように構成されている。また前記第2バイパス管44の途中には、管路を開閉自在に閉成する第2バイパス弁(第2管路開閉手段)HV2が介挿されている。この第2バイパス弁HV2は、製氷運転中は閉成されると共に、除氷運転において後述する遅延手段である温度検知手段Thに連動して開放するように構成され、除氷運転において第1バイパス弁HV1を開放してから、温度検知手段Thが予め設定した設定温度(所要の条件)を検知した際に開放するようになっている。従って、第2バイパス弁HV2の開放については、温度検知手段Thにより第1バイパス弁HV1の開放とは独立して制御され、これに対し、第1バイパス弁HV1および第2バイパス弁HV2の閉成は、同一のタイミングで実施するように設定される。ここで、前記第1バイパス弁HV1および第2バイパス弁HV2は、電磁弁や電動弁等が好適に採用されるが、図示しない制御手段等またはその他に機器による制御によって任意に動作(介挿した管路の開閉)するものであれば特に限定されず、製氷運転時には第1バイパス管42および第2バイパス管44の管路を閉成してホットガスの循環を遮断し、除氷運転時には制御手段等の制御に基づき第1バイパス管42および第2バイパス管44の管路を開放してホットガスの供給を許容するようになっていればよい。   The second bypass pipe 44 is branched from the downstream side of the first bypass valve HV1 in the first bypass pipe 42 and is connected to the intermediate portion of the evaporator 14. Here, the intermediate portion of the evaporator 14 connected to the second bypass pipe 44 is connected to the compressor 20 and the inlet side communicating with the expansion valve 24 in the evaporation pipe 14 a extending in a meandering manner with respect to the ice making section 10. In the entire route between the outlet side and the communicating side, the size of the ice making unit 10 and the length of the evaporator 14 are appropriately set in consideration of the size of the ice making unit 10, the length of the evaporator 14, and the like. A tube 44 is connected. That is, the hot gas is configured to be supplied not only from the inlet side to the evaporator 14 but also from the middle of the evaporation pipe 14 a meanderingly arranged in the ice making unit 10. In the middle of the second bypass pipe 44, a second bypass valve (second pipe opening / closing means) HV2 for closing and opening the pipe is freely inserted. The second bypass valve HV2 is closed during the ice making operation, and is configured to open in conjunction with temperature detecting means Th that is a delay means described later in the deicing operation. After the valve HV1 is opened, the valve is opened when the temperature detecting means Th detects a preset temperature (required condition) set in advance. Therefore, the opening of the second bypass valve HV2 is controlled independently of the opening of the first bypass valve HV1 by the temperature detecting means Th, whereas the opening of the first bypass valve HV1 and the second bypass valve HV2 is closed. Are set to be executed at the same timing. Here, the first bypass valve HV1 and the second bypass valve HV2 are preferably electromagnetic valves, electric valves, etc., but can be arbitrarily operated (inserted) by control means (not shown) or other control by equipment. The pipes of the first bypass pipe 42 and the second bypass pipe 44 are closed during ice making operation to block the circulation of hot gas, and controlled during deicing operation. The supply of hot gas may be permitted by opening the pipelines of the first bypass pipe 42 and the second bypass pipe 44 based on the control of the means and the like.

前記温度検知手段Thは前記蒸発器14の入口側近傍に配設され、該蒸発器14の入口側近傍の温度を検知することで、前記第2バイパス弁HV2の開放のタイミングを制御するものであって、製氷運転から除氷運転に移行して第1バイパス弁HV1を開放した後、所要のタイミング(所要時間)だけ遅延させて第2バイパス弁HVを開放するよう直接または制御手段を介して間接的に制御している。すなわち、除氷運転を開始して第1ホットガス弁HV1の開放に伴って蒸発器14の入口側から供給したホットガスによって加熱が進行しても、前記温度検知手段Thで検知した蒸発器14の温度が、予め設定した設定温度より低い場合は第2バイパス弁HV2の閉成状態は保持される。そして、前記蒸発器14の入口側から供給したホットガスによって加熱が更に進行して、前記温度検知手段Thで検知した蒸発器14の温度が、予め設定した設定温度以上になると、前記第2バイパス弁HV2を開放して第2バイパス管44を介して蒸発器14の中間部にホットガスを供給するよう構成される。例えば設定温度は、蒸発器14の入口側から供給したホットガスに加熱されて、蒸発器14の入口側近傍に対応する製氷部10に氷結した氷塊が、その氷結状態がある程度進行して製氷小室からまもなく離脱し得る温度に設定される。   The temperature detecting means Th is disposed in the vicinity of the inlet side of the evaporator 14, and controls the opening timing of the second bypass valve HV2 by detecting the temperature in the vicinity of the inlet side of the evaporator 14. Then, after shifting from the ice making operation to the deicing operation and opening the first bypass valve HV1, the second bypass valve HV is opened directly or through control means so as to be delayed by a required timing (required time). Indirect control. That is, even if heating progresses by hot gas supplied from the inlet side of the evaporator 14 with the opening of the first hot gas valve HV1 after starting the deicing operation, the evaporator 14 detected by the temperature detecting means Th. When the temperature of the second bypass valve HV2 is lower than a preset temperature, the closed state of the second bypass valve HV2 is maintained. When the heating further proceeds by the hot gas supplied from the inlet side of the evaporator 14 and the temperature of the evaporator 14 detected by the temperature detecting means Th becomes equal to or higher than a preset temperature, the second bypass The valve HV2 is opened and hot gas is supplied to the middle part of the evaporator 14 via the second bypass pipe 44. For example, the set temperature is heated by the hot gas supplied from the inlet side of the evaporator 14, and ice blocks that have frozen in the ice making unit 10 corresponding to the vicinity of the inlet side of the evaporator 14 have progressed to a certain extent, and the ice making chamber has progressed to some extent. It is set to a temperature at which it can be released soon.

なお、前記温度検知手段Thの配設位置は、蒸発器14の入口側近傍に限られず、該蒸発器14の入口側近傍に対応する製氷部10に配置して、該製氷部10の温度変化を検知する構成も採用し得る。すなわち、蒸発器14の入口側近傍の温度を直接検知する態様でなく、間接的に検知する態様であってもよい。また、製氷運転から除氷運転への移行および除氷運転から製氷運転への移行を判断する運転切換手段としてサーミスタ等の温度検知手段が用いられる場合は、それを前記温度検知手段Thとして兼用してもよく、該温度検知手段Thの温度検知結果に基づいて、製氷運転および除氷運転の完了を判断すると共に、前記第2バイパス弁HVの開放を判断するよう構成することができる。   The location of the temperature detecting means Th is not limited to the vicinity of the inlet side of the evaporator 14, but is disposed in the ice making unit 10 corresponding to the vicinity of the inlet side of the evaporator 14, so that the temperature change of the ice making unit 10 is changed. It is also possible to adopt a configuration for detecting the above. That is, an aspect in which the temperature in the vicinity of the inlet side of the evaporator 14 is not directly detected but may be indirectly detected. Further, when a temperature detecting means such as a thermistor is used as an operation switching means for judging the transition from the ice making operation to the deicing operation and the transition from the deicing operation to the ice making operation, it is also used as the temperature detecting means Th. Alternatively, it is possible to determine whether the ice making operation and the deicing operation are completed based on the temperature detection result of the temperature detecting means Th, and to determine whether the second bypass valve HV is opened.

〔実施例の作用〕
次に、実施例に係る自動製氷機の除氷運転方法の作用について説明する。先ず製氷運転において、前記第1バイパス弁HV1および第2バイパス弁HV2を閉成し、前記バイパス回路40への冷媒の流通を遮断すると共に、前記製氷バルブ26を開放したもとで、前記圧縮機20およびファンモータFMを駆動すると、冷媒が冷凍回路30のうち主回路32を循環し、前記製氷部10が、前記蒸発器14に供給された気化冷媒により強制冷却される(図1における実線矢印)。また、前記循環ポンプが駆動されて製氷水が製氷部10に供給され、製氷水は次第に層状に氷結して各製氷小室に氷塊が生成される。そして前記製氷運転は、予め規定していた時間を経過すると終了され、除氷運転に移行する。
(Effects of Example)
Next, the operation of the deicing operation method of the automatic ice maker according to the embodiment will be described. First, in the ice making operation, the first bypass valve HV1 and the second bypass valve HV2 are closed, the refrigerant flow to the bypass circuit 40 is shut off, and the ice making valve 26 is opened. When the motor 20 and the fan motor FM are driven, the refrigerant circulates through the main circuit 32 of the refrigeration circuit 30, and the ice making unit 10 is forcibly cooled by the vaporized refrigerant supplied to the evaporator 14 (solid arrow in FIG. 1). ). The circulation pump is driven to supply ice making water to the ice making unit 10, and the ice making water gradually freezes in layers to generate ice blocks in each ice making chamber. The ice making operation is terminated when a predetermined time elapses, and the operation moves to the deicing operation.

除氷運転が開始されると、前記第1バイパス弁HV1が制御手段の制御下に開放されることで、圧縮機20から吐出したホットガスが、膨張弁24に接続する蒸発器14の入口側に第1バイパス管42を介して直接供給される(図1における点線矢印)。製氷運転において氷点下まで冷却されていた製氷部10は、除氷運転の開始と共に蒸発器14の入口側から供給されたホットガスによって、該蒸発器14の入口側近傍に対応する領域が優先的に加熱される。このとき、前記温度検知手段Thは設定温度まで達していないから、前記第2バイパス弁HV2は閉成した状態が保持され、第2バイパス管44を介して蒸発器14の中間部にホットガスが供給されることはない。   When the deicing operation is started, the first bypass valve HV1 is opened under the control of the control means, so that the hot gas discharged from the compressor 20 is on the inlet side of the evaporator 14 connected to the expansion valve 24. Directly through the first bypass pipe 42 (dotted arrow in FIG. 1). The ice making unit 10 that has been cooled to below the freezing point in the ice making operation preferentially has a region corresponding to the vicinity of the inlet side of the evaporator 14 by the hot gas supplied from the inlet side of the evaporator 14 at the start of the deicing operation. Heated. At this time, since the temperature detecting means Th has not reached the set temperature, the second bypass valve HV2 is maintained in a closed state, and hot gas is supplied to the intermediate portion of the evaporator 14 via the second bypass pipe 44. It is never supplied.

前記第1ホットガス管42を介して供給されるホットガスによって、製氷部10における該蒸発器14の入口側近傍に対応する領域の加熱が進行して、蒸発器14の温度が設定温度に到達したことを温度検知手段Thが検知すると、第2バイパス弁HV2が開放されて、第2バイパス管44を介して蒸発器14の中間部にもホットガスが直接供給される(図1における点線矢印)。すなわち、製氷部10における蒸発器14の中間部以降に対応する領域が、該蒸発器14の中間部に供給されるホットガスにより優先的に加熱される。このとき、前記第2バイパス弁HV2が開放されても、蒸発器14の入口側にホットガスが供給されるものの、蒸発器14において入口側から出口側への蒸発管14aの経路が中間部から出口側への蒸発管14aの経路より当然長いので管路抵抗の関係上、第2バイパス管44を介して蒸発器14の中間部に優先的にホットガスが供給される。すなわち、先にホットガスが供給された蒸発器14の入口側近傍に対応する製氷部10の領域に生成した氷塊の氷結面の融解状態と比較して、氷結面の融解があまり進行していない製氷部10における蒸発器14の中間部以降に対応する領域を優先的に加熱して、氷結面の融解を進行させることができる。そして、第2バイパス弁HV2の開放に伴って蒸発器14の中間部以降の領域が優先的にホットガスにより加熱されると共に、蒸発器14の入口側領域もホットガスが少量供給されて徐々に加熱されるから、先に加熱されて氷結面の融解がある程度進行していた蒸発器14の入口側近傍領域に対応する氷塊と、後から優先的に加熱されて氷結面の融解が急速に進行する蒸発器14の中間部以降の領域に対応する氷塊とが、結果的に製氷部10から離脱するタイミングは略同一となる。   The hot gas supplied through the first hot gas pipe 42 heats the region corresponding to the vicinity of the inlet side of the evaporator 14 in the ice making unit 10, and the temperature of the evaporator 14 reaches the set temperature. When the temperature detecting means Th detects this, the second bypass valve HV2 is opened, and hot gas is directly supplied to the intermediate portion of the evaporator 14 via the second bypass pipe 44 (dotted line arrow in FIG. 1). ). That is, the area corresponding to the intermediate part of the evaporator 14 in the ice making unit 10 is preferentially heated by the hot gas supplied to the intermediate part of the evaporator 14. At this time, even if the second bypass valve HV2 is opened, the hot gas is supplied to the inlet side of the evaporator 14, but in the evaporator 14, the path of the evaporation pipe 14a from the inlet side to the outlet side is from the intermediate portion. Since it is naturally longer than the path of the evaporation pipe 14 a to the outlet side, hot gas is preferentially supplied to the middle part of the evaporator 14 via the second bypass pipe 44 in terms of pipe resistance. That is, the melting of the icing surface has not progressed much compared to the melting state of the icing surface of the ice block generated in the region of the ice making unit 10 corresponding to the vicinity of the inlet side of the evaporator 14 to which the hot gas has been previously supplied. It is possible to preferentially heat the region corresponding to the intermediate portion of the evaporator 14 in the ice making unit 10 and the melting of the frozen surface. As the second bypass valve HV2 is opened, the region after the intermediate portion of the evaporator 14 is preferentially heated by hot gas, and a small amount of hot gas is supplied to the inlet side region of the evaporator 14 gradually. Since it is heated, the ice block corresponding to the vicinity of the inlet side of the evaporator 14 where the melting of the icing surface has been progressed to some extent by heating first, and the melting of the icing surface proceeds rapidly by preferential heating later. As a result, the timing at which the ice blocks corresponding to the regions after the intermediate portion of the evaporator 14 are separated from the ice making unit 10 is substantially the same.

そして前記除氷運転は、製氷部10から氷塊が全て放出され、予め規定していた時間を経過すると終了して製氷運転に再び移行する。すなわち、前記第1バイパス弁HV1および第2バイパス弁HV2を同時に閉成することで、蒸発器14へのホットガスの供給が停止され、圧縮機20から吐出した冷媒が主回路32を介して蒸発器14に供給される。   The deicing operation is completed when the ice block is completely discharged from the ice making unit 10 and a predetermined time has elapsed, and the operation is shifted to the ice making operation again. That is, by simultaneously closing the first bypass valve HV1 and the second bypass valve HV2, the supply of hot gas to the evaporator 14 is stopped, and the refrigerant discharged from the compressor 20 evaporates via the main circuit 32. Is supplied to the container 14.

このように、除氷運転においてホットガスを蒸発器14の入口側と中間部の双方から供給し得るよう構成することで、蒸発器14の入口側からのホットガスの供給だけでは昇温し難い中間部以降の領域についても、直接的にホットガスを供給して昇温させ得る。また、実施例の自動製氷機は、前記蒸発器14の入口側に接続した第1バイパス管42および中間部に接続した第2バイパス管44を介して同時に蒸発器全体にホットガスを供給するのではなく、蒸発器14の入口側へのホットガスの供給から所要のタイミングだけ遅延させて中間部にホットガスを供給することで、第1バイパス管42および第2バイパス管44の夫々より蒸発器14の領域毎に時間差を設けて集中的にホットガスを夫々供給し得る。すなわち、除氷運転を開始すると、先に蒸発器14の入口側近傍が優先的に加熱されて製氷部10における蒸発器14の入口側近傍に対応する領域が急激に温度上昇するものの、前記第2バイパス弁HV2の開放に伴って、蒸発器14の中間部以降に対応する領域が急激に温度上昇すると共に、入口側近傍に対応する領域の温度上昇が緩やかになるから、除氷運転の終了時点では製氷部全体をむらなく昇温することができる。このように製氷部10をむらなく加熱することで、製氷部10における何れの領域に生成された氷塊も、略同一のタイミングで放出し得るから、氷塊を過度に融解することに起因する変形氷等の発生を抑制し得ると共に、除氷時間を短縮して製氷能力を向上し得る。しかも製氷部10は、蒸発器14の入口側近傍に対応する領域が蒸発器14の出口側近傍に対応する領域に比べて過剰に温度上昇することはないから、製氷運転における冷却温度との差(ヒートショック)が軽減でき、製氷部10自体の材質の劣化や製氷部10の表面に施されためっき等の表面処理の剥離を回避して、製氷部10の寿命を向上し得る。   As described above, in the deicing operation, the hot gas can be supplied from both the inlet side and the intermediate portion of the evaporator 14, so that it is difficult to raise the temperature only by supplying the hot gas from the inlet side of the evaporator 14. Also in the region after the intermediate portion, the temperature can be raised by supplying hot gas directly. In addition, the automatic ice making machine of the embodiment supplies hot gas to the entire evaporator at the same time via the first bypass pipe 42 connected to the inlet side of the evaporator 14 and the second bypass pipe 44 connected to the intermediate portion. Instead of supplying the hot gas to the intermediate portion with a delay from the supply of the hot gas to the inlet side of the evaporator 14 by a required timing, the evaporators are respectively connected to the first bypass pipe 42 and the second bypass pipe 44. Hot gas can be supplied intensively with a time difference for each of the 14 regions. That is, when the deicing operation is started, the vicinity of the inlet side of the evaporator 14 is preferentially heated first, and the region corresponding to the vicinity of the inlet side of the evaporator 14 in the ice making unit 10 rapidly increases in temperature. As the bypass valve HV2 is opened, the temperature of the region corresponding to the middle portion of the evaporator 14 increases rapidly, and the temperature increase of the region corresponding to the vicinity of the inlet side becomes moderate. At that time, the temperature of the entire ice making unit can be raised uniformly. By thus heating the ice making unit 10 evenly, ice blocks generated in any region of the ice making unit 10 can be released at substantially the same timing, so that deformed ice resulting from excessive melting of the ice blocks And the like, and the ice making ability can be improved by shortening the deicing time. Moreover, the ice making unit 10 does not excessively increase in temperature in the region corresponding to the vicinity of the inlet side of the evaporator 14 as compared with the region corresponding to the vicinity of the outlet side of the evaporator 14, so the difference from the cooling temperature in the ice making operation. (Heat shock) can be reduced, and the life of the ice making unit 10 can be improved by avoiding deterioration of the material of the ice making unit 10 itself and peeling of surface treatment such as plating applied to the surface of the ice making unit 10.

前記自動製氷機は、除氷運転において蒸発器14の入口側と中間部との間の管路抵抗を利用して、第2バイパス管44から中間部に優先的にホットガスを供給する構成であるから、ホットガスの供給位置による蒸発器14の管路抵抗の差に応じて第1バイパス管42に対して第2バイパス管44の管径を細くする等の管路抵抗を調整する別段の措置が必要なく、第1バイパス管42および第2バイパス管44を共通の管で形成することができ、実施例の除氷運転方法を実施する上でコストがかかることがない。また実施例の除氷運転方法は、前記温度検知手段Thの設定温度(所要の条件)を変更して、除氷運転を開始してから第2バイパス弁HV2を開放するまでの時間差を調節するだけで蒸発器14の中間部に対するホットガス供給のタイミングを容易に変更し得るから、蒸発器14(製氷部10)の大きさや蒸発器14の配管経路(例えば、蛇行状や渦巻き状等の形状的な差異)等の種々条件にかかわらず設定温度を任意に設定し得るので、異なる機種であっても別段の構成を付加せずに共通的に採用することができる。更に、自動製氷機の設置環境の変化(例えば、季節による温度変動や設置場所の寒暖)に対応させて、温度検知手段Thの設定温度を適当な値に予め調節しておくことができるから、より除氷時間の短縮を図ることができる。   The automatic ice maker is configured to preferentially supply hot gas from the second bypass pipe 44 to the intermediate part by utilizing the pipe resistance between the inlet side of the evaporator 14 and the intermediate part in the deicing operation. Therefore, the pipe resistance of the second bypass pipe 44 is adjusted to be different from that of the first bypass pipe 42 according to the difference in the pipe resistance of the evaporator 14 depending on the hot gas supply position. No measures are required, and the first bypass pipe 42 and the second bypass pipe 44 can be formed of a common pipe, and there is no cost in carrying out the deicing operation method of the embodiment. In the deicing operation method of the embodiment, the set temperature (required condition) of the temperature detecting means Th is changed to adjust the time difference from the start of the deicing operation to the opening of the second bypass valve HV2. Therefore, the timing of supplying hot gas to the intermediate portion of the evaporator 14 can be easily changed. Therefore, the size of the evaporator 14 (ice making unit 10) and the piping path of the evaporator 14 (for example, a meandering shape or a spiral shape) The set temperature can be arbitrarily set regardless of various conditions (such as a difference). Therefore, even different models can be commonly used without adding a separate configuration. Furthermore, the set temperature of the temperature detection means Th can be adjusted in advance to an appropriate value in response to changes in the installation environment of the automatic ice making machine (for example, temperature fluctuations depending on the season and the temperature of the installation location) The deicing time can be further shortened.

そして、遅延手段として前記蒸発器14の入口側近傍に温度検知手段Thを設置し、第2バイパス弁HV2の開放するタイミングを判断する指標として蒸発器14の温度を用いることで、良好なレスポンスが得られて第2バイパス管44を介して蒸発器14の中間部からホットガスのタイムリーな供給を行なうことができる。   Then, a temperature detection means Th is installed in the vicinity of the inlet side of the evaporator 14 as a delay means, and the temperature of the evaporator 14 is used as an index for judging the opening timing of the second bypass valve HV2. As a result, the hot gas can be supplied in a timely manner from the intermediate portion of the evaporator 14 via the second bypass pipe 44.

実施例では、遅延手段として蒸発器14の温度を直接または間接的に検知する温度検知手段Thを採用したが、これに限定されず、除氷運転に際して第1バイパス弁HV1を開放してから所要時間だけ遅延させて第2バイパス弁HV2を開放するものであれば、例えば除氷運転の開始から所定時間だけ計時するタイマやカウンタ等のカウント手段等を採用することができる。このカウント手段は、第1バイパス弁HV1を開放してから計時を開始して、予め外部温度等を勘案して設定した設定時間(所定の条件)をカウントアップすると、第2バイパス弁HV2を開放するように設定されている。また、前記第1バイパス管42から複数の第2バイパス管44を分岐し、各第2バイパス管44を蒸発器14の中間部における適宜位置に夫々接続する構成も採用し得る。このとき、複数の第2バイパス管44において、その接続箇所が蒸発器14の出口側に向かうにつれて対応の弁HV2の開放のタイミングを遅延手段により遅延させることで、蒸発器14における各第2バイパス管44を接続した近傍を入口側から出口側に向けて順番に加熱することができる。   In the embodiment, the temperature detecting means Th for directly or indirectly detecting the temperature of the evaporator 14 is adopted as the delay means, but the present invention is not limited to this, and it is necessary after opening the first bypass valve HV1 in the deicing operation. As long as the second bypass valve HV2 is opened after being delayed by a time, for example, a counting unit such as a timer or a counter that counts a predetermined time from the start of the deicing operation can be employed. This counting means starts timing after opening the first bypass valve HV1, and opens the second bypass valve HV2 when a preset time (predetermined condition) set in consideration of the external temperature or the like is counted up. It is set to be. In addition, a configuration in which a plurality of second bypass pipes 44 are branched from the first bypass pipe 42 and each second bypass pipe 44 is connected to an appropriate position in an intermediate portion of the evaporator 14 may be employed. At this time, in each of the plurality of second bypass pipes 44, the timing of opening of the corresponding valve HV2 is delayed by the delay means as the connection point goes to the outlet side of the evaporator 14, whereby each second bypass in the evaporator 14 is delayed. The vicinity where the pipe 44 is connected can be heated in order from the inlet side to the outlet side.

本発明の好適な実施例に係る自動製氷機の除氷運転方法を好適に実施し得る自動製氷機の冷凍回路を示す概略図である。It is the schematic which shows the freezing circuit of the automatic ice maker which can implement suitably the deicing operation method of the automatic ice maker which concerns on the preferable Example of this invention.

符号の説明Explanation of symbols

10 製氷部,14 蒸発器,20 圧縮機,30 冷凍回路,42 第1バイパス管,
44 第2バイパス管,HV1 第1バイパス弁(第1管路開閉手段),
HV2 第2バイパス弁(第2管路開閉手段),Th 温度検知手段(遅延手段)
10 ice making unit, 14 evaporator, 20 compressor, 30 refrigeration circuit, 42 first bypass pipe,
44 second bypass pipe, HV1 first bypass valve (first pipe opening / closing means),
HV2 Second bypass valve (second pipe opening / closing means), Th temperature detection means (delay means)

Claims (2)

製氷部(10)に配設されて、冷凍回路(30)に接続する蒸発器(14)と、冷凍回路(30)の圧縮機(20)からのホットガスを前記蒸発器(14)の入口側へ導く第1バイパス管(42)に介挿した第1管路開閉手段(HV1)と、圧縮機(20)からのホットガスを蒸発器(14)の中間部へ導く第2バイパス管(44)に介挿した第2管路開閉手段(HV2)とを備え、除氷運転時に両開閉手段(HV1,HV2)を開放して蒸発器(14)の入口側および中間部にホットガスを供給することで製氷部(10)に生成した氷塊を離脱させるようにした自動製氷機の除氷運転方法において、
前記第1管路開閉手段(HV1)を開放してから所要時間だけ遅延させた後に、前記第2管路開閉手段(HV2)を開放する
ことを特徴とする自動製氷機の除氷運転方法。
An evaporator (14) disposed in the ice making unit (10) and connected to the refrigeration circuit (30), and hot gas from the compressor (20) of the refrigeration circuit (30) is supplied to the inlet of the evaporator (14). The first bypass opening / closing means (HV1) inserted in the first bypass pipe (42) leading to the side and the second bypass pipe (hot gas from the compressor (20) leading to the middle part of the evaporator (14) ( 44) with a second pipe opening / closing means (HV2) inserted in the degassing operation. During deicing operation, both opening / closing means (HV1, HV2) are opened to supply hot gas to the inlet side and the middle of the evaporator (14). In the deicing operation method of the automatic ice maker that is designed to release the ice block generated in the ice making unit (10) by supplying,
A deicing operation method for an automatic ice making machine, wherein the second pipe opening / closing means (HV2) is opened after the first pipe opening / closing means (HV1) is delayed by a required time after being opened.
前記蒸発器(14)の入口側近傍に設置した温度検知手段(Th)が予め設定した設定温度を検知したことを条件として、前記第2管路開閉手段(HV2)を遅延的に開放する請求項1記載の自動製氷機の除氷運転方法。
The second pipe opening / closing means (HV2) is opened in a delayed manner on condition that the temperature detecting means (Th) installed in the vicinity of the inlet side of the evaporator (14) has detected a preset set temperature. Item 2. The deicing operation method of the automatic ice maker according to Item 1.
JP2004376964A 2004-12-27 2004-12-27 Method of operating automatic ice machine for deicing Pending JP2006183925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376964A JP2006183925A (en) 2004-12-27 2004-12-27 Method of operating automatic ice machine for deicing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376964A JP2006183925A (en) 2004-12-27 2004-12-27 Method of operating automatic ice machine for deicing

Publications (1)

Publication Number Publication Date
JP2006183925A true JP2006183925A (en) 2006-07-13

Family

ID=36737168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376964A Pending JP2006183925A (en) 2004-12-27 2004-12-27 Method of operating automatic ice machine for deicing

Country Status (1)

Country Link
JP (1) JP2006183925A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830189B1 (en) * 2015-04-12 2015-12-09 稲森 總一郎 Flow-down type ice maker and its operating method
CN114364935A (en) * 2019-09-12 2022-04-15 青岛海尔电冰箱有限公司 Evaporator assembly for ice making apparatus
CN114719479A (en) * 2022-04-28 2022-07-08 深圳市和生创新技术有限公司 Ice making method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830189B1 (en) * 2015-04-12 2015-12-09 稲森 總一郎 Flow-down type ice maker and its operating method
CN114364935A (en) * 2019-09-12 2022-04-15 青岛海尔电冰箱有限公司 Evaporator assembly for ice making apparatus
CN114719479A (en) * 2022-04-28 2022-07-08 深圳市和生创新技术有限公司 Ice making method
CN114719479B (en) * 2022-04-28 2024-04-02 深圳市和生创新技术有限公司 Ice making method

Similar Documents

Publication Publication Date Title
JP4831247B2 (en) Container refrigeration equipment
JP5008675B2 (en) Automatic ice maker and its operating method
JP2011252702A5 (en)
JP5178771B2 (en) Freezer refrigerator
CN105135772B (en) Water refrigerating plant and its control method for preventing cold water from freezing
JP2008224189A (en) Refrigerating cycle device
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
KR20030075802A (en) Refrigerator
KR101588205B1 (en) Air conditioner and Defrosting driving method of the same
JP4954684B2 (en) How to operate an automatic ice machine
CN105042853A (en) Heat pump water heater
JP2009121768A (en) Automatic ice making machine and control method for it
JP5031045B2 (en) Freezer refrigerator
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP4532201B2 (en) How to operate an automatic ice machine
JP2006183925A (en) Method of operating automatic ice machine for deicing
JP5448482B2 (en) Automatic ice machine
JP2014031930A (en) Refrigeration cycle device
KR101677635B1 (en) Device for defrosting of refrigerator and method for defrosting thereof
JP5253863B2 (en) Automatic ice machine
KR100794815B1 (en) Air conditioning system
JP2013024435A (en) Ice making machine
JP6327499B2 (en) Heat pump water heater
JP4518875B2 (en) Deicing operation method of automatic ice maker
JP2013036650A (en) Refrigerator