JP4532201B2 - How to operate an automatic ice machine - Google Patents

How to operate an automatic ice machine Download PDF

Info

Publication number
JP4532201B2
JP4532201B2 JP2004233787A JP2004233787A JP4532201B2 JP 4532201 B2 JP4532201 B2 JP 4532201B2 JP 2004233787 A JP2004233787 A JP 2004233787A JP 2004233787 A JP2004233787 A JP 2004233787A JP 4532201 B2 JP4532201 B2 JP 4532201B2
Authority
JP
Japan
Prior art keywords
hot gas
ice making
gas valve
evaporator
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004233787A
Other languages
Japanese (ja)
Other versions
JP2006052879A (en
Inventor
賢二 高橋
静馬 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2004233787A priority Critical patent/JP4532201B2/en
Publication of JP2006052879A publication Critical patent/JP2006052879A/en
Application granted granted Critical
Publication of JP4532201B2 publication Critical patent/JP4532201B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、除氷運転に際し、製氷部に配設した蒸発器に供給したホットガスにより氷塊の離脱を図る自動製氷機の運転方法に関するものである。   The present invention relates to an operation method of an automatic ice making machine that removes an ice block with hot gas supplied to an evaporator disposed in an ice making unit during a deicing operation.

下向きに開口する多数の製氷小室に製氷水を下方から噴射供給して、氷塊を連続的に製造する噴射式の自動製氷機が、喫茶店やレストラン等の施設、その他の厨房で好適に使用されている。図5に示すように、前記自動製氷機の製氷機構10は、本体内に水平に配置した製氷室(製氷部)12に、下方に開口する製氷小室12aが碁盤目状に多数画成されると共に、該製氷室12の上面には、圧縮機CM,凝縮器CD,膨張手段EV,ファンモータFM等から構成される冷凍回路24に連通する蒸発器14が密着的に蛇行配置される。また製氷室12の直下には、支軸16aを介して水皿16が傾動可能に枢支されると共に、該水皿16の下部には所定量の製氷水を貯留する製氷水タンク18が一体的に設けられている。   A spray type automatic ice making machine that continuously supplies ice making water by spraying ice making water from below into many ice making chambers that open downwards is suitable for use in facilities such as coffee shops and restaurants, and other kitchens. Yes. As shown in FIG. 5, in the ice making mechanism 10 of the automatic ice making machine, a large number of ice making chambers 12a open downward are defined in an ice making chamber (ice making section) 12 disposed horizontally in the main body. At the same time, an evaporator 14 communicating with a refrigeration circuit 24 including a compressor CM, a condenser CD, an expansion means EV, a fan motor FM and the like is closely and meanderingly arranged on the upper surface of the ice making chamber 12. A water dish 16 is pivotally supported via a support shaft 16a directly below the ice making chamber 12, and an ice making water tank 18 for storing a predetermined amount of ice making water is integrally formed at the lower part of the water dish 16. Provided.

前記製氷機構10では、製氷運転において前記製氷小室12aを下方から閉成する閉成位置に水皿16を保持した状態で、前記蒸発器14に気化冷媒を循環供給して製氷小室12aを強制的に冷却すると共に、製氷水タンク18内の製氷水を、水皿16を介して製氷小室12aに噴射供給することで、該小室12a内に氷塊Mを生成する。そして、氷塊Mの生成を製氷室12に配設した第1温度検知手段TH1が検知すると、製氷運転から除氷運転に移行し、前記蒸発器14にバイパス回路26を介してホットガスを循環供給して製氷室12を加熱すると共に、水皿開閉機構AMにより水皿16を支軸16aを中心として斜め下方の開放位置へ傾動して、製氷小室12aを開放するよう構成される。この除氷運転において、ホットガスの循環供給により製氷小室12aと氷塊Mとの氷結部分が融解し、該氷塊Mは自重により製氷小室12aから離脱落下し、開放位置の水皿16上を滑落してストッカ22に貯蔵される。前記製氷室12からの氷塊Mの離脱の完了を第1温度検知手段TH1で検出することで、除氷運転から製氷運転に移行し、前記水皿開閉機構AMにより水皿16が再び閉成位置に復帰するよう構成されている。   In the ice making mechanism 10, the ice making chamber 12 a is forcedly supplied by circulating and supplying vaporized refrigerant to the evaporator 14 in a state where the water tray 16 is held in a closed position where the ice making chamber 12 a is closed from below during ice making operation. The ice making water in the ice making water tank 18 is sprayed and supplied to the ice making small chamber 12a through the water tray 16 to generate ice blocks M in the small chamber 12a. When the first temperature detecting means TH1 disposed in the ice making chamber 12 detects the formation of the ice mass M, the ice making operation is shifted to the deicing operation, and hot gas is circulated and supplied to the evaporator 14 via the bypass circuit 26. Then, the ice making chamber 12 is heated, and the water tray 16 is tilted to the opening position obliquely downward about the support shaft 16a by the water tray opening / closing mechanism AM to open the ice making chamber 12a. In this deicing operation, the frozen portion of the ice making chamber 12a and the ice block M is melted by circulating supply of hot gas, and the ice block M separates from the ice making chamber 12a by its own weight and slides down on the water tray 16 in the open position. And stored in the stocker 22. The completion of detachment of the ice block M from the ice making chamber 12 is detected by the first temperature detecting means TH1, so that the deicing operation is shifted to the ice making operation, and the water tray 16 is again closed by the water tray opening / closing mechanism AM. It is configured to return to

例えば、ホットガスにより除氷を行なう製氷装置としては、蒸発器にホットガスを供給するバイパス回路に並列に一対のホットガス弁を介挿し、除氷運転の開始時には一方のホットガス弁を開き、ホットガスを少量だけ蒸発器に供給して水皿と氷塊の氷結部分を融解させた後、所定時間経過後に他方のホットガス弁を開くことで多量のホットガスを蒸発器に供給し、製氷小室と氷塊との氷結部分を融解するよう構成したものが提案されている(特許文献1参照)。
特開昭61−8579号公報
For example, as an ice making device that performs deicing with hot gas, a pair of hot gas valves are inserted in parallel with a bypass circuit that supplies hot gas to the evaporator, and one of the hot gas valves is opened at the start of the deicing operation, A small amount of hot gas is supplied to the evaporator to melt the frozen part of the water dish and ice block, and then the other hot gas valve is opened after a lapse of time to supply a large amount of hot gas to the evaporator. There has been proposed a structure in which an icing portion between the ice and the ice block is melted (see Patent Document 1).
JP 61-8579 A

ところで除氷運転において、自動製氷機の設置環境によって、前記蒸発器14に供給されるホットガスの温度も変化し、例えば設置環境が35℃程度の高温となった場合、ホットガスは90℃〜100℃程度の高温となる場合がある。すなわち、高温のホットガスが蒸発器14に供給されることで、急激に氷塊Mの融解が進み、製氷小室12aから離脱してストッカ22に貯蔵された氷塊同士が氷結してしまい、ブロック化してしまう虞れがある。また、前記水皿16と氷塊Mとの氷結部分が融解される前に、製氷小室12aと氷塊Mとの氷結部分が融解されることもあり、この場合、氷塊Mが水皿16に氷結したまま該水皿16の傾動に伴って製氷小室12aから離脱することで、異形氷の発生や、完全に除氷されたと誤検出されることから氷塊Mの噛み込み等が発生し、製氷室12、水皿16または水皿開閉機構AM等の破損に繋がる。しかも、氷点下まで冷却された製氷室12は、高温のホットガスの供給に伴い急激に温度上昇するから、該製氷室12の冷熱衝撃による劣化の進行が早い難点も指摘される。また、ホットガスは蒸発器14を流通する過程において、蒸発器14の入口側から製氷室12と熱交換するから、蒸発器14の入口側と出口側とでは流通するホットガスの温度が異なり、高温のホットガスが供給される程、製氷室12における温度分布の偏在が顕著になり、製氷室12を均一に加熱できず氷塊Mの離脱のタイミングが異なって、除氷効率を悪化させる弊害が指摘される。しかし、特許文献1に開示された製氷装置では、高温のホットガスに起因するこれらの弊害に対処できない。   By the way, in the deicing operation, the temperature of the hot gas supplied to the evaporator 14 also changes depending on the installation environment of the automatic ice making machine. For example, when the installation environment becomes a high temperature of about 35 ° C., the hot gas is 90 ° C. to The temperature may be as high as about 100 ° C. That is, by supplying high-temperature hot gas to the evaporator 14, the ice mass M rapidly melts, and the ice mass separated from the ice making chamber 12a and stored in the stocker 22 freezes and blocks. There is a risk of it. In addition, before the frozen portion between the water dish 16 and the ice block M is melted, the frozen portion between the ice making chamber 12a and the ice block M may be melted. In this case, the ice block M is frozen on the water plate 16. By leaving the ice tray 16 as it is tilted, the ice making chamber 12a is detached, and the generation of deformed ice or the erroneous detection that it has been completely deiced causes the ice block M to be caught. This leads to damage to the water pan 16 or the water tray opening / closing mechanism AM. In addition, the ice making chamber 12 cooled to below the freezing point rapidly rises with the supply of high-temperature hot gas, so that it is pointed out that the ice making chamber 12 is rapidly deteriorated due to a thermal shock. Further, since the hot gas exchanges heat with the ice making chamber 12 from the inlet side of the evaporator 14 in the process of flowing through the evaporator 14, the temperature of the hot gas flowing differs between the inlet side and the outlet side of the evaporator 14, The more hot the hot gas is supplied, the more the temperature distribution in the ice making chamber 12 becomes more uneven, the ice making chamber 12 cannot be heated uniformly, and the timing of detachment of the ice mass M is different, resulting in the detrimental effect of deicing efficiency. be pointed out. However, the ice making device disclosed in Patent Document 1 cannot cope with these adverse effects caused by high-temperature hot gas.

すなわちこの発明は、従来の技術に係る自動製氷機の運転方法に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、製氷部を均一に加熱し、効率のよい除氷運転を実施し得る自動製氷機の運転方法を提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the operation method of the automatic ice making machine according to the prior art, and the ice making unit is heated uniformly and efficiently. An object of the present invention is to provide an operation method of an automatic ice making machine capable of performing the deicing operation.

前記課題を克服し、所期の目的を達成するため、本発明に係る自動製氷機の運転方法は、
冷凍回路に連通する蒸発器を有する製氷部と、この製氷部を開閉可能に設けられた水皿とを備え、製氷運転時には蒸発器に気化冷媒を循環供給すると共に、前記製氷部を閉じた水皿から該製氷部に製氷水を供給して氷塊を生成し、除氷運転時には冷凍回路のバイパス回路に介挿したホットガス弁を開放してホットガスを蒸発器に供給すると共に前記水皿を傾動することで、開放された前記製氷部から氷塊を離脱させるようにした自動製氷機の運転方法において、
タイマ手段が予め設定されたホットガス弁の閉成時間を除氷運転の開始からカウントしたときに、前記ホットガス弁を閉成することで前記蒸発器へのホットガス供給を停止して気化冷媒を供給する工程と、前記タイマ手段が前記ホットガス弁の閉成から予め設定したホットガス弁の開放時間をカウントすると、該ホットガス弁を再び開放して蒸発器へのホットガス供給を行なう工程とを有し、
前記前記ホットガス弁を閉成して前記蒸発器へ気化冷媒を供給する工程は、前記水皿を傾動開始してから完全に開放するまでの間に少なくとも開始されることを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, an operation method of the automatic ice making machine according to the present invention is as follows.
An ice making unit having an evaporator communicating with a refrigeration circuit, and a water tray provided so that the ice making unit can be opened and closed . During ice making operation, a vaporized refrigerant is circulated and supplied to the evaporator, and the ice making unit is closed Ice making water is supplied from the pan to the ice making section to generate ice blocks. During the deicing operation, the hot gas valve inserted in the bypass circuit of the refrigeration circuit is opened to supply hot gas to the evaporator and the water pan is In the operation method of the automatic ice maker, in which the ice blocks are detached from the opened ice making unit by tilting ,
When the timer means has counted the closing time of the preset hot gas valve from the start of the deicing operation, vaporized by stopping the hot gas supply to the front Symbol evaporator by closing the hot gas valve performing a step of supplying a refrigerant, when the timer means counts an open time of the hot gas valve that is set in advance from closing of the hot gas valve, the hot gas supply to the evaporator by opening the hot gas valve once again A process,
The step of closing the hot gas valve and supplying the vaporized refrigerant to the evaporator is started at least between the start of tilting the water pan and the complete opening thereof.

本発明に係る自動製氷機の運転方法によれば、除氷運転の開始と同時に、ホットガス弁を開放すると共に、タイマ手段による閉成時間のカウントを開始し、タイマ手段が閉成時間をカウントしたときに、ホットガス弁を閉成することで、蒸発器へのホットガス供給を停止して気化冷媒を供給し、タイマ手段がホットガス弁の閉成から開放時間をカウントすると、ホットガス弁を再び開放して蒸発器へのホットガス供給を行なうよう設定することで、製氷の過剰な温度上昇を抑制し得ると共に、製氷全体を均一に温度上昇させ得るから、異形氷の発生を回避して、除氷効率を向上し得る。ホットガス弁の開閉を制御手段により複数回実施するように設定することで、圧縮機に対する負荷を軽減し得る。また、ホットガス弁の閉成に連動してファンモータを駆動することで、製氷を効率的に冷却して該製氷の過剰な温度上昇を効果的に抑制し、より除氷効率を向上させることができる。更に、バイパス回路に温度検知手段を設け、この温度検知手段が設定値以上を検出した場合にのみ、除氷運転中の冷却運転を行なうように構成することで、ホットガスの高温時だけでなく、ホットガスの低温時に該ホットガスの温度を有効に利用して効率のよい除氷運転を実施し得る。 According to the operation method of the automatic ice maker according to the present invention, simultaneously with the start of the deicing operation, the hot gas valve is opened and the closing time by the timer means is started, and the timer means counts the closing time. When the hot gas valve is closed, the hot gas supply to the evaporator is stopped and vaporized refrigerant is supplied. When the timer means counts the open time from the closing of the hot gas valve, the hot gas valve the by setting to again perform the hot gas supply to open to the evaporator, with can suppress excessive temperature rise of the ice making unit, because can evenly temperature rise across ice making unit, the generation of deformed ice By avoiding, the deicing efficiency can be improved. By setting the control unit to open and close the hot gas valve a plurality of times, the load on the compressor can be reduced. Further, by driving the fan motor in conjunction with the closing of the hot gas valve, the ice making unit to efficiently cool effectively suppress an excessive temperature rise of the ice portion, more improved deicing efficiency Can be made. Furthermore, a temperature detection means is provided in the bypass circuit, and the cooling operation during the deicing operation is performed only when the temperature detection means detects a set value or more, so that not only when the hot gas is at a high temperature. In addition, an efficient deicing operation can be performed by effectively using the temperature of the hot gas at a low temperature of the hot gas.

次に、本発明に係る自動製氷機の運転方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、説明の便宜上、図5に示した自動製氷機の構成要素と同一の要素については、同一の符号を使用して詳細な説明は省略する。   Next, the operation method of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. For convenience of explanation, the same reference numerals are used for the same elements as those of the automatic ice making machine shown in FIG.

図1は、実施例に係る自動製氷機の製氷機構10と該製氷機構10の製氷室(製氷部)12を冷却・加熱する蒸発器14に連通する冷凍回路30とを示す概略図である。実施例に係る製氷機構10は、所謂クローズドセルタイプであって、本体内部に水平に配置し、下方に開口する多数の製氷小室12aを備えた製氷室12と、該製氷小室12aを開閉自在に閉成し、製氷水を貯留する製氷水タンク18を下方に一体的に備えた水皿16とから基本的に構成されている。前記製氷室12の上面には、冷凍回路30に連通する蒸発器14が密着的に蛇行配置され、製氷運転時に気化冷媒を循環させて前記製氷小室12aを強制冷却すると共に、除氷運転時にはホットガス(高温・高圧の冷媒)が供給されて氷塊Mの離脱を促すようになっている。前記水皿16は、支軸16aにより傾動可能に枢支され、この水皿16および製氷水タンク18は、製氷運転時には水平に位置して前記製氷室12と平行に保持され、除氷運転時には水皿開閉機構AMにより付勢されて、前記支軸16aを中心として下方へ傾動して前記製氷小室12aを開放するようになっている。また前記製氷水タンク18には、給水弁WVが介挿された給水管20から製氷水が供給され、製氷運転に際し、該製氷水タンク18に連通したポンプモータPMを駆動することで、製氷小室12aを閉成する水皿16から製氷水が各製氷小室12aに供給される。   FIG. 1 is a schematic diagram showing an ice making mechanism 10 of an automatic ice making machine according to an embodiment and a refrigeration circuit 30 communicating with an evaporator 14 for cooling and heating an ice making chamber (ice making part) 12 of the ice making mechanism 10. The ice making mechanism 10 according to the embodiment is a so-called closed cell type, and is arranged horizontally inside the main body and includes an ice making chamber 12 having a large number of ice making chambers 12a opened downward, and the ice making chamber 12a can be opened and closed. It is basically composed of a water tray 16 that is closed and integrally includes an ice making water tank 18 that stores ice making water. On the upper surface of the ice making chamber 12, an evaporator 14 communicating closely with the refrigeration circuit 30 is closely arranged to circulate the vaporized refrigerant during ice making operation to forcibly cool the ice making chamber 12a and hot during deicing operation. Gas (high-temperature, high-pressure refrigerant) is supplied to promote the removal of the ice block M. The water tray 16 is pivotally supported by a support shaft 16a. The water tray 16 and the ice making water tank 18 are horizontally positioned during ice making operation and are held in parallel with the ice making chamber 12, and during ice removing operation. It is urged by a water tray opening / closing mechanism AM and tilts downward about the support shaft 16a to open the ice making chamber 12a. Further, ice making water is supplied to the ice making water tank 18 from a water supply pipe 20 having a water supply valve WV inserted therein, and during ice making operation, a pump motor PM communicated with the ice making water tank 18 is driven, thereby making an ice making chamber. Ice making water is supplied to each ice making chamber 12a from a water tray 16 that closes 12a.

前記冷凍回路30は、図示しない機械室に配設された圧縮機CM、凝縮器CD、ファンモータFMおよび膨張手段EV等と、製氷室12の裏面に配設された蒸発器14とから主回路32が基本的に構成される。前記主回路32は圧縮機CM、凝縮器CD、膨張手段EVおよび蒸発器14の順番で冷媒が循環するよう各機器が配置され、各機器は冷媒配管34で連通接続されている。すなわち、前記圧縮機CMで圧縮された気化冷媒は、冷媒配管34を経て前記凝縮器CDで凝縮液化した後、前記膨張手段EVで減圧され、前記蒸発器14に流入してここで一挙に膨張して蒸発し、前記製氷室12と熱交換を行なって該製氷室12を氷点下にまで強制冷却させるようになっている。そして前記蒸発器14で蒸発し、熱交換した気化冷媒は、冷媒配管34を経て圧縮機CMに帰還するサイクルを反復するようになっている。なお、前記ファンモータFMは、前記凝縮器CDを冷却するべく機能する。   The refrigeration circuit 30 includes a compressor CM, a condenser CD, a fan motor FM, an expansion means EV, and the like disposed in a machine room (not shown) and an evaporator 14 disposed on the back surface of the ice making chamber 12. 32 is basically constructed. In the main circuit 32, devices are arranged so that the refrigerant circulates in the order of the compressor CM, the condenser CD, the expansion means EV, and the evaporator 14, and the devices are connected in communication by a refrigerant pipe 34. That is, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD via the refrigerant pipe 34, then depressurized by the expansion means EV, flows into the evaporator 14 and expands at once. Then, it evaporates and exchanges heat with the ice making chamber 12 to forcibly cool the ice making chamber 12 to below the freezing point. The vaporized refrigerant evaporated and heat-exchanged by the evaporator 14 repeats a cycle of returning to the compressor CM via the refrigerant pipe 34. The fan motor FM functions to cool the condenser CD.

前記冷凍回路30は、前述した主回路32に加えて除氷運転時に前記蒸発器14へホットガスを供給するバイパス回路40を備えている。前記バイパス回路40のバイパス管42は、その始端が前記圧縮機CMの吐出側から凝縮器CDの吸込み側の間で冷媒配管34に接続され、終端は前記蒸発器14の吸込み側の冷媒配管34に接続されている。また、前記バイパス回路40にはホットガス弁HVが介挿されて、該バイパス回路40を開閉し得るよう構成される。このホットガス弁HVは、電磁弁や電動弁等が好適に採用されるが、制御手段C(図2参照)の制御によって任意に動作(バイパス管42の開閉)するものであれば特に限定されず、製氷運転時にはバイパス管42の管路を閉成して冷媒の循環を遮断し、除氷運転時には制御手段Cの制御に基づきバイパス管42の管路を開放するようになっている。また、前記バイパス管42におけるホットガス弁HVの吐出側の近傍には、該バイパス管42の温度を検出する第2温度検知手段(温度検知手段)TH2が設置されている。   In addition to the main circuit 32 described above, the refrigeration circuit 30 includes a bypass circuit 40 that supplies hot gas to the evaporator 14 during the deicing operation. The bypass pipe 42 of the bypass circuit 40 has a start end connected to the refrigerant pipe 34 between the discharge side of the compressor CM and the suction side of the condenser CD, and the end thereof is a refrigerant pipe 34 on the suction side of the evaporator 14. It is connected to the. Further, a hot gas valve HV is inserted in the bypass circuit 40 so that the bypass circuit 40 can be opened and closed. As the hot gas valve HV, an electromagnetic valve, an electric valve or the like is preferably employed, but it is particularly limited as long as it can be arbitrarily operated (opening and closing of the bypass pipe 42) under the control of the control means C (see FIG. 2). In the ice making operation, the bypass pipe 42 is closed to interrupt the circulation of the refrigerant, and in the deicing operation, the bypass pipe 42 is opened based on the control of the control means C. Further, in the vicinity of the discharge side of the hot gas valve HV in the bypass pipe 42, second temperature detection means (temperature detection means) TH2 for detecting the temperature of the bypass pipe 42 is installed.

前記制御手段Cは、前記製氷室12に配設された第1温度検知手段TH1と、前記ホットガス弁HVの開閉に連動して所定時間(閉成時間および開放時間)を計時するタイマ手段TMと、前記バイパス管42に配設された第2温度検知手段TH2等から所定の情報が入力され、この入力情報および図示しないコントロールパネルから入力された各種設定等に基づいて、圧縮機CM、ファンモータFMおよびホットガス弁HV等の冷凍回路30を構成する機器や、水皿開閉機構AM、ポンプモータPMおよび給水弁WV等の製氷機構10を構成する機器を動作させるよう制御している(図2参照)。すなわち自動製氷機は、製氷完了による製氷運転から除氷運転への切替えや、氷塊Mの離脱完了による除氷運転から製氷運転への切替え等の運転切替えは、前記第1製氷温度検知手段TH1で検出した製氷室12の温度に基づいて、制御手段Cにより行なわれる。   The control means C includes a first temperature detection means TH1 disposed in the ice making chamber 12, and a timer means TM for measuring a predetermined time (closing time and opening time) in conjunction with opening and closing of the hot gas valve HV. And predetermined information is input from the second temperature detection means TH2 and the like disposed in the bypass pipe 42, and based on this input information and various settings input from a control panel (not shown), the compressor CM, the fan Control is performed to operate devices constituting the refrigeration circuit 30 such as the motor FM and the hot gas valve HV, and devices constituting the ice making mechanism 10 such as the water tray opening / closing mechanism AM, the pump motor PM, and the water supply valve WV (FIG. 2). That is, in the automatic ice making machine, operation switching such as switching from the ice making operation to the deicing operation when the ice making is completed, or switching from the deicing operation to the ice making operation due to the completion of the removal of the ice block M is performed by the first ice making temperature detecting means TH1. This is performed by the control means C based on the detected temperature of the ice making chamber 12.

また前記自動製氷機は、除氷運転に際し、前記冷凍回路30の圧縮機CMで圧縮されて該圧縮機CMと凝縮器CDとの間を流通するホットガスを、前記ホットガス弁HVを開放することでバイパス回路40を介して前記蒸発器14に分岐供給し、該蒸発器14の温度上昇によって製氷室12を温度上昇させるよう構成される。このとき、前記第2温度検知手段TH2により前記バイパス管42の温度を検出することで、流通するホットガスの温度が検出され、該ホットガスの温度が設定値より高い場合は、タイマ手段TMの計時を開始してホットガス弁HVを所定回数開閉し、前記蒸発器14に対するホットガスの供給が間欠的になされる高温除氷工程に移行し、またホットガスの温度が設定値より低い場合は、タイマ手段TMを起動せず、除氷運転に全期間に亘ってホットガスが蒸発器14に供給される通常除氷工程に移行するよう構成される。前記高温除氷工程は、前記タイマ手段TMに予め設定したホットガス弁HVの閉成時間を該タイマ手段TMがカウントすると、除氷運転の開始と同時に開放されたホットガス弁HVを閉成して蒸発器14へのホットガスの供給を停止して気化冷媒を蒸発器14に供給すると共に、再びタイマ手段TMが、該タイマ手段TMに予め設定した開放時間のカウントを開始するようになっている。前記ホットガス弁HVの閉成時には、主回路32を介して蒸発器14に気化冷媒を供給して冷却運転が実施される。そして、前記タイマ手段TMが開放時間をカウントすると、前記ホットガス弁HVを開放して、前記蒸発器14へ再びホットガスを供給するようになっている。   In the deicing operation, the automatic ice maker opens the hot gas valve HV for hot gas that is compressed by the compressor CM of the refrigeration circuit 30 and flows between the compressor CM and the condenser CD. As a result, the evaporator 14 is branched and supplied to the evaporator 14 via the bypass circuit 40, and the ice making chamber 12 is increased in temperature by increasing the temperature of the evaporator 14. At this time, by detecting the temperature of the bypass pipe 42 by the second temperature detection means TH2, the temperature of the circulating hot gas is detected. If the temperature of the hot gas is higher than a set value, the timer means TM When the timing is started, the hot gas valve HV is opened and closed a predetermined number of times, the process moves to a high temperature deicing process in which hot gas is intermittently supplied to the evaporator 14, and the temperature of the hot gas is lower than a set value. The timer means TM is not started, and the deicing operation is configured to shift to a normal deicing process in which hot gas is supplied to the evaporator 14 over the entire period. In the high temperature deicing step, when the timer means TM counts the closing time of the hot gas valve HV preset in the timer means TM, the hot gas valve HV opened at the same time as the deicing operation is started is closed. Thus, the supply of hot gas to the evaporator 14 is stopped and the vaporized refrigerant is supplied to the evaporator 14, and the timer means TM again starts counting the open time preset in the timer means TM. Yes. When the hot gas valve HV is closed, a cooling operation is performed by supplying vaporized refrigerant to the evaporator 14 via the main circuit 32. When the timer means TM counts the opening time, the hot gas valve HV is opened and hot gas is supplied to the evaporator 14 again.

除氷運転の高温除氷工程において、前記ホットガス弁HVは、前記タイマ手段TMによる閉成時間および開放時間の計時に連動して制御手段Cにより開放または閉成を所定回数(実施例では2回)だけ繰返すように設定され、前記蒸発器14にはホットガスが間欠的に供給されることになる。実施例の前記ホットガス弁HVの開閉動作は、除氷運転の開始と同時に駆動される水皿開閉機構AMにより水皿16が完全に開放するまでの間(水皿開閉機構AMの下降駆動時)のみ実施するように、前記タイマ手段TMの閉成時間および開放時間や、ホットガス弁HVの開閉の繰返し回数が設定されている。なお、前記ホットガス弁HVの開閉動作を、水皿16の下降傾動時のみに限らず、製氷室12の温度が均一になるまで実施するようにしてもよい。前記閉成時間および開閉時間は、前記製氷室12の大きさや冷凍回路30の能力等を勘案して設定され、冷凍回路30の圧縮機CM等に負荷をかけずに除氷効率が向上する時間(例えば、10秒〜40秒程度)に設定される。   In the high temperature deicing process of the deicing operation, the hot gas valve HV is opened or closed by the control means C a predetermined number of times (in the embodiment, 2 times) in conjunction with the closing time and the opening time of the timer means TM. The hot gas is intermittently supplied to the evaporator 14. The opening / closing operation of the hot gas valve HV of the embodiment is performed until the water tray 16 is completely opened by the water tray opening / closing mechanism AM driven simultaneously with the start of the deicing operation (when the water tray opening / closing mechanism AM is driven downward). ), The closing time and opening time of the timer means TM and the number of times of opening and closing the hot gas valve HV are set. The opening / closing operation of the hot gas valve HV is not limited to when the water pan 16 is tilted downward, but may be performed until the temperature of the ice making chamber 12 becomes uniform. The closing time and opening / closing time are set in consideration of the size of the ice making chamber 12, the capacity of the refrigeration circuit 30, and the like, and the time for improving the deicing efficiency without applying a load to the compressor CM or the like of the refrigeration circuit 30. (For example, about 10 to 40 seconds).

更に自動製氷機は、前記除氷運転の高温除氷工程において、前記タイマ手段TMにより開閉するホットガス弁HVと連動して、ファンモータFMが駆動または停止するよう構成される。すなわち、前記ファンモータFMは、除氷運転の開始と同時に停止されるものの、前記ホットガス弁HVの閉成に連動して駆動した後、該ホットガス弁HVの開放に連動して再び停止するようになっている(図4参照)。   Further, the automatic ice maker is configured such that the fan motor FM is driven or stopped in conjunction with the hot gas valve HV opened and closed by the timer means TM in the high temperature deicing process of the deicing operation. That is, although the fan motor FM is stopped simultaneously with the start of the deicing operation, the fan motor FM is driven in conjunction with the closing of the hot gas valve HV and then stopped again in conjunction with the opening of the hot gas valve HV. (See FIG. 4).

〔実施例の作用〕
次に、実施例に係る自動製氷機の運転方法の作用について、図3のフローチャートおよび図4のタイミングチャートを参照して説明する。先ず製氷運転において、前記圧縮機CMおよびファンモータFMを駆動すると、冷媒が冷凍回路30のうち主回路32を循環し、前記製氷室12が前記蒸発器14に供給された気化冷媒により強制冷却される。また、前記ポンプモータPMが駆動されて前記水皿16から製氷水が製氷小室12aに供給されて該製氷小室12aに氷塊Mが生成される(ステップS1)。このとき、前記ホットガス弁HVは閉成され、前記バイパス回路40への冷媒の流通を遮断している。前記製氷運転は、前記第1温度検知手段TH1が予め設定していた温度を検出すると、製氷運転を完了して除氷運転に移行する(ステップS2)。
(Effects of Example)
Next, the operation of the operation method of the automatic ice maker according to the embodiment will be described with reference to the flowchart of FIG. 3 and the timing chart of FIG. First, in the ice making operation, when the compressor CM and the fan motor FM are driven, the refrigerant circulates through the main circuit 32 in the refrigeration circuit 30, and the ice making chamber 12 is forcibly cooled by the vaporized refrigerant supplied to the evaporator 14. The The pump motor PM is driven to supply ice making water from the water tray 16 to the ice making chamber 12a, and ice blocks M are generated in the ice making chamber 12a (step S1). At this time, the hot gas valve HV is closed and the flow of the refrigerant to the bypass circuit 40 is blocked. In the ice making operation, when the first temperature detecting means TH1 detects a preset temperature, the ice making operation is completed and the operation proceeds to the deicing operation (step S2).

除氷運転に移行すると、先ず製氷水を製氷小室12aに供給していたポンプモータPMおよび凝縮器CDを冷却していたファンモータFMが停止されると共に、ホットガス弁HVを開放して蒸発器14にバイパス管42を介してホットガスが供給され、また前記水皿開閉機構AMを駆動して水皿16が下方へ向けて付勢される(ステップ3)。前記バイパス管42にホットガスが流通すると、ホットガスによって前記蒸発器14が加熱され、氷点下まで温度低下した前記製氷室12の温度を徐々に上昇させると共に、前記第2温度検知手段TH2によりホットガスの温度が検出され、該ホットガスの温度が設定値n℃(例えばn=50℃程度)より高い場合は、高温除氷工程に移行する(ステップ4)。高温除氷工程に移行すると、前記ファンモータFMの停止状態およびホットガス弁HVの開放状態を維持したまま、前記タイマ手段TMによる閉成時間のカウントが開始される(ステップ5)。そして、前記タイマ手段TMが閉成時間をカウントすると、該ホットガス弁HVを閉成して蒸発器14へのホットガスの供給を停止すると共に、前記ファンモータFMを駆動して凝縮器CDの冷却を開始する(ステップ6)。また、閉成時間をカウントアップしたタイマ手段TMは、前記ホットガス弁HVの開放のタイミングを設定した開放時間のカウントを開始する。   When the deicing operation is started, the pump motor PM that has supplied the ice making water to the ice making chamber 12a and the fan motor FM that has cooled the condenser CD are stopped, and the hot gas valve HV is opened to open the evaporator. 14 is supplied with hot gas via the bypass pipe 42, and the water tray opening / closing mechanism AM is driven to urge the water tray 16 downward (step 3). When hot gas flows through the bypass pipe 42, the evaporator 14 is heated by the hot gas to gradually increase the temperature of the ice making chamber 12 whose temperature has dropped below the freezing point, and at the same time, the second temperature detecting means TH2 causes hot gas to flow. When the temperature of the hot gas is higher than a set value n ° C. (for example, n = about 50 ° C.), the process proceeds to a high temperature deicing process (step 4). When the process goes to the high temperature deicing step, the timer means TM starts counting the closing time while maintaining the fan motor FM stopped and the hot gas valve HV open (step 5). When the timer means TM counts the closing time, the hot gas valve HV is closed to stop the supply of hot gas to the evaporator 14, and the fan motor FM is driven to drive the condenser CD. Cooling is started (step 6). The timer means TM that has counted up the closing time starts counting the opening time that sets the opening timing of the hot gas valve HV.

ステップ6において、前記ホットガス弁HVを閉成すると、主回路32に冷媒が循環して該主回路32を構成する各機器CM,CD,EVによる冷却過程が実施され、蒸発器14に気化冷媒を供給して製氷室12が冷却される。このとき、前記ホットガス弁HVの閉成動作と連動させてファンモータFMを駆動することで、前記凝縮器CDが冷却されて蒸発器14による製氷室12の冷却効率を向上し得る。すなわち、前記製氷室12を短時間で冷却し得るので、高温のホットガスの流通による製氷室12の過剰な加熱状態が好適に解除され、製氷室12における温度上昇の均一化を図り得ると共に、ホットガス弁HVの閉成時間を短く設定し得るから、ファンモータFMを駆動しない場合と比較して全体として除氷運転を短縮することができる。しかも、前記ファンモータFMを断続的に運転することで、除氷運転時の圧縮機CMに対する負荷を軽減することができる。   In step 6, when the hot gas valve HV is closed, the refrigerant circulates in the main circuit 32, and the cooling process is performed by the devices CM, CD, EV constituting the main circuit 32, and the vaporized refrigerant is supplied to the evaporator 14. Is supplied to cool the ice making chamber 12. At this time, by driving the fan motor FM in conjunction with the closing operation of the hot gas valve HV, the condenser CD is cooled and the cooling efficiency of the ice making chamber 12 by the evaporator 14 can be improved. That is, since the ice making chamber 12 can be cooled in a short time, the excessive heating state of the ice making chamber 12 due to the circulation of high-temperature hot gas is preferably released, and the temperature rise in the ice making chamber 12 can be made uniform, Since the closing time of the hot gas valve HV can be set short, the deicing operation as a whole can be shortened as compared with the case where the fan motor FM is not driven. Moreover, by operating the fan motor FM intermittently, the load on the compressor CM during the deicing operation can be reduced.

前記タイマ手段TMの開放時間のカウントに基づいて、前記ホットガス弁HVを開放することで、蒸発器14にホットガスが供給されて製氷室12の加熱が再び行なわれると共に、前記ファンモータFMが停止される(ステップ7)。そして、ステップ6およびステップ7は、所定回数だけ繰返されるよう設定され、この繰返し回数が設定値に満たない場合は、タイマ手段TMがリセットされた後(ステップ8)、再びステップ5に移行し、ステップ6およびステップ7が繰返される。なお除氷運転において、前記水皿16には、該水皿16上に付着した氷を融かすため、前記給水弁WVを所定時間開放して給水管20から製氷水が供給される。   By opening the hot gas valve HV based on the count of the opening time of the timer means TM, hot gas is supplied to the evaporator 14 and the ice making chamber 12 is heated again, and the fan motor FM is Stopped (step 7). Steps 6 and 7 are set to be repeated a predetermined number of times. If the number of repetitions is less than the set value, the timer means TM is reset (step 8), and then the process proceeds to step 5 again. Steps 6 and 7 are repeated. In the deicing operation, ice water is supplied to the water tray 16 from the water supply pipe 20 by opening the water supply valve WV for a predetermined time in order to melt the ice adhering to the water tray 16.

除氷運転の高温除氷工程において、前記蒸発器14には、除氷開始と共にホットガス弁HVが開放されてホットガスにより加熱されるものの、タイマ手段TMによる閉成時間のカウントアップに基づいて、該ホットガス弁HVを閉成して主回路32から供給した気化冷媒により冷却し得る。このように、ホットガス弁HVを開閉することで、蒸発器14に対しバイパス回路40からホットガスが常時供給される構成でなく、断続的にホットガスを供給することで、ホットガス弁HVの閉成時に主回路32を介して蒸発器14に供給される気化冷媒により製氷室12を冷却し、高温のホットガスで過剰に加熱された製氷室12の温度上昇を緩和することができる。すなわち、前記製氷室12が過剰に温度上昇されることはなく、氷塊Mの融解が急激に進行しないから、製氷室12から放出されてストッカ22に貯蔵した氷塊M同士のブロック化を抑制し得ると共に、前記水皿16と氷塊Mとの氷結状態が解除される前に、製氷小室12aと氷塊Mとの氷結状態が解除されることはなく、異形氷の発生や、除氷不良に起因する氷塊Mの噛み込み等の発生を回避し得る。また、氷点下まで冷却された製氷室12が急激に温度上昇することを抑制し、該製氷室12の冷熱衝撃による劣化を抑制し、製氷室12の寿命を向上し得る。   In the high-temperature deicing process of the deicing operation, although the hot gas valve HV is opened and heated by the hot gas when deicing starts, the evaporator 14 is heated based on the counting up of the closing time by the timer means TM. The hot gas valve HV can be closed and cooled by the vaporized refrigerant supplied from the main circuit 32. In this way, by opening and closing the hot gas valve HV, the hot gas is not constantly supplied from the bypass circuit 40 to the evaporator 14, but intermittently supplying the hot gas to the evaporator 14. When the ice making chamber 12 is closed, the ice making chamber 12 is cooled by the vaporized refrigerant supplied to the evaporator 14 via the main circuit 32, and the temperature rise of the ice making chamber 12 heated excessively by the high-temperature hot gas can be mitigated. That is, the temperature of the ice making chamber 12 is not excessively increased, and the melting of the ice block M does not proceed rapidly, so that blocking of the ice blocks M released from the ice making chamber 12 and stored in the stocker 22 can be suppressed. At the same time, before the frozen state between the water dish 16 and the ice block M is released, the frozen state between the ice making chamber 12a and the ice block M is not released, which is caused by the generation of deformed ice or defective deicing. Occurrence of the ice mass M or the like can be avoided. In addition, the ice making chamber 12 cooled to below the freezing point can be prevented from suddenly rising in temperature, the ice making chamber 12 can be prevented from being deteriorated by a thermal shock, and the life of the ice making chamber 12 can be improved.

前記蒸発器14に対しホットガスの後に気化冷媒を供給する過程を複数回繰返すことで、蒸発器14におけるホットガスの入口側の領域に接する製氷室部分と、出口側の領域に接する製氷室部分との間での温度分布の差を軽減し、局所的な急激な温度上昇を抑制し得る。すなわち前記製氷室12は、除氷運転において、全体として均一に温度上昇するから、各製氷小室12aと各氷塊Mとの氷結部分の融解は略同時に進行し、各氷塊Mの離脱のタイミングは略同一となり、氷塊Mの噛み込み等を防止し得ると共に、除氷時間を短縮して除氷効率を向上し得る。従って、設置環境等の条件によって、前記蒸発器14に供給されるホットガスの温度が高温となったとしても、効率のよい除氷運転を実施することができる。   By repeating the process of supplying the vaporized refrigerant after the hot gas to the evaporator 14 a plurality of times, an ice making chamber portion in contact with the region on the inlet side of the hot gas in the evaporator 14 and an ice making chamber portion in contact with the region on the outlet side The difference in temperature distribution between the two can be reduced, and a local rapid temperature increase can be suppressed. That is, since the ice making chamber 12 rises uniformly in temperature during the deicing operation, the melting of the iced portions of the ice making chambers 12a and the ice blocks M proceeds substantially simultaneously, and the timing of the removal of each ice block M is substantially the same. As a result, the ice block M can be prevented from biting, and the deicing time can be shortened to improve the deicing efficiency. Therefore, even if the temperature of the hot gas supplied to the evaporator 14 becomes high depending on conditions such as the installation environment, an efficient deicing operation can be performed.

しかも、前記タイマ手段TMの閉成時間および開放時間を、自動製氷機の設置環境や冷凍回路30の能力等に合わせて任意に設定できるから、各種条件に応じてホットガス弁HVの開閉のタイミングを設定し、効率のよい除氷運転を実施し得る。また、前記ホットガス弁HVにおける開閉の繰返し回数についても、各種条件に応じて圧縮機CM等の機器に負荷がかからず、かつ除氷効率を向上し得るように設定できる。   Moreover, since the closing time and opening time of the timer means TM can be arbitrarily set according to the installation environment of the automatic ice maker, the capacity of the refrigeration circuit 30, etc., the timing of opening and closing the hot gas valve HV according to various conditions And efficient deicing operation can be performed. Also, the number of times the hot gas valve HV is repeatedly opened and closed can be set so that no load is applied to the equipment such as the compressor CM and the deicing efficiency can be improved according to various conditions.

そして、前記製氷小室12aから氷塊Mが放出され、前記第1温度検知手段TH1が製氷室12が除氷完了温度を検出することで除氷運転は完了し、ホットガス弁HVが閉成され、ファンモータFMが駆動されると共に、前記水皿開閉機構AMが駆動して下方に開放した水皿16を上方へ傾動し、製氷小室12aを閉成する(ステップ11)。また、給水弁WVを開放することで、給水管20を介して製氷水タンク18に製氷水を供給すると共に、ポンプモータPMを駆動して製氷運転を開始する(ステップ12)。   Then, the ice block M is released from the ice making chamber 12a, and the first temperature detecting means TH1 detects the deicing completion temperature by the ice making chamber 12, whereby the deicing operation is completed, and the hot gas valve HV is closed, The fan motor FM is driven and the water tray opening / closing mechanism AM is driven to tilt the water tray 16 opened downward to close the ice making chamber 12a (step 11). Further, by opening the water supply valve WV, ice making water is supplied to the ice making water tank 18 through the water supply pipe 20, and the pump motor PM is driven to start the ice making operation (step 12).

また、前記第2温度検知手段TH2で検出した温度が設定値より低い場合、通常除氷工程に移行する(ステップ10)。この通常除氷工程では、前記第1温度検知手段TH1が除氷完了温度を検出するまで、前記ホットガス弁HVが開放され、除氷運転の間は蒸発器14にホットガス弁HVが連続的に供給されると共に、前記ファンモータFMも除氷運転の全期間に亘って停止状態にある。このように、第2温度検知手段TH2で検出したホットガス(バイパス管42)の温度に応じて、除氷工程を選択して効率のよい除氷運転を行なうことができる。すなわち、前記ホットガスの温度が高い場合(例えば90〜100℃程度)は、製氷室12において均一な温度上昇がなされず、過剰に温度上昇して異形氷の発生等の弊害があるが、ホットガスの温度が低い場合(例えば、50℃以下)は、製氷室12に過剰な温度上昇は発生し難く、ホットガスによる製氷室12の連続的な加熱を実施することが、比較的低いホットガスの有効利用に繋がって除氷時間を短縮し、除氷効率を向上させる上で有利である。また、第2温度検知手段TH2でホットガスの温度を検出することで、冷媒の圧力上昇に伴う温度上昇や設置環境に応じて、冷媒の流通経路(主回路32,バイパス回路40)を決定し得るから、圧縮機CMへの負荷を軽減できる利点がある。更に、前記第2温度検知手段TH2は、前記バイパス管42におけるホットガス弁HVの吐出側近傍に配設してあるから、該バイパス管42を流通するホットガスの温度を確実に検出し得る。   If the temperature detected by the second temperature detecting means TH2 is lower than the set value, the process moves to the normal deicing process (step 10). In this normal deicing process, the hot gas valve HV is opened until the first temperature detecting means TH1 detects the deicing completion temperature, and the hot gas valve HV is continuously connected to the evaporator 14 during the deicing operation. The fan motor FM is also stopped during the entire period of the deicing operation. Thus, an efficient deicing operation can be performed by selecting the deicing process according to the temperature of the hot gas (bypass pipe 42) detected by the second temperature detecting means TH2. That is, when the temperature of the hot gas is high (for example, about 90 to 100 ° C.), the temperature does not rise uniformly in the ice making chamber 12, and there is a problem such as generation of deformed ice due to excessive temperature rise. When the temperature of the gas is low (for example, 50 ° C. or lower), an excessive temperature rise is unlikely to occur in the ice making chamber 12, and the continuous heating of the ice making chamber 12 with hot gas is a relatively low hot gas. This is advantageous in reducing the deicing time and improving the deicing efficiency. Further, by detecting the temperature of the hot gas by the second temperature detecting means TH2, the refrigerant flow path (main circuit 32, bypass circuit 40) is determined according to the temperature rise accompanying the rise in refrigerant pressure and the installation environment. Therefore, there is an advantage that the load on the compressor CM can be reduced. Furthermore, since the second temperature detecting means TH2 is disposed in the vicinity of the discharge side of the hot gas valve HV in the bypass pipe 42, the temperature of the hot gas flowing through the bypass pipe 42 can be reliably detected.

実施例では、除氷運転においてホットガス弁HVの開閉動作に連動してファンモータFMを連動するよう構成したが、除氷運転中にファンモータFMを駆動しない構成であってもよい。また、前記第2温度検知手段TH2についても必須でなく、製氷運転から除氷運転に移行した際に、常にタイマ手段Tの計時を開始して高温除氷工程となる構成も採用し得る。更に、前記ホットガス弁HVの開閉の繰返しを、第1温度検知手段TH1が除氷完了温度または別の設定温度(例えば、除氷完了温度よりも低温で、氷塊が落下する前の所定温度)を検出するまで繰返すことで、確実な除氷を実施し得る。更にまた、前記ガス弁HVの開閉を複数回(2回)繰返すよう設定したが、ホットガス弁HVの開閉は1回であってもよい。 In the embodiment, the fan motor FM is configured to be interlocked with the opening / closing operation of the hot gas valve HV in the deicing operation. However, the fan motor FM may not be driven during the deicing operation. The second temperature detecting means TH2 not essential also, when the transition to deicing operation from the ice-making operation can always adopted structure having a high temperature deicing step and starts counting the timer means T M. Further, when the hot gas valve HV is repeatedly opened and closed, the first temperature detecting means TH1 performs the deicing completion temperature or another set temperature (for example, a predetermined temperature that is lower than the deicing completion temperature and before the ice block falls). By repeating the process until it is detected, reliable deicing can be performed. Furthermore, although the opening and closing of the gas valve HV is set to be repeated a plurality of times (twice), the hot gas valve HV may be opened and closed once.

本発明の好適な実施例に係る自動製氷機を示す概略図である。1 is a schematic view showing an automatic ice making machine according to a preferred embodiment of the present invention. 実施例の自動製氷機の制御ブロック図である。It is a control block diagram of the automatic ice making machine of an Example. 実施例の自動製氷機の除氷運転を示すフローチャート図である。It is a flowchart figure which shows the deicing operation | movement of the automatic ice maker of an Example. 実施例の自動製氷機の除氷運転を示すタイミングチャート図である。It is a timing chart figure which shows the deicing operation | movement of the automatic ice maker of an Example. 従来の自動製氷機を示す概略図である。It is the schematic which shows the conventional automatic ice making machine.

符号の説明Explanation of symbols

12 製氷室(製氷部),14 蒸発器,30 冷凍回路,40 バイパス回路,
M 氷塊,HV ホットガス弁,C 制御手段,TM タイマ手段,CD 凝縮器,
FM ファンモータ,TH2 第2温度検知手段(温度検知手段)
12 ice making room (ice making part), 14 evaporator, 30 freezing circuit, 40 bypass circuit,
M ice block, HV hot gas valve, C control means, TM timer means, CD condenser,
FM fan motor, TH2 second temperature detection means (temperature detection means)

Claims (4)

冷凍回路(30)に連通する蒸発器(14)を有する製氷部(12)と、この製氷部(12)を開閉可能に設けられた水皿(16)とを備え、製氷運転時には蒸発器(14)に気化冷媒を循環供給すると共に、前記製氷部(12)を閉じた水皿(16)から該製氷部(12)に製氷水を供給して氷塊(M)を生成し、除氷運転時には冷凍回路(30)のバイパス回路(40)に介挿したホットガス弁(HV)を開放してホットガスを蒸発器(14)に供給すると共に前記水皿(16)を傾動することで、開放された前記製氷部(12)から氷塊(M)を離脱させるようにした自動製氷機の運転方法において、
タイマ手段(TM)が予め設定されたホットガス弁(HV)の閉成時間を除氷運転の開始からカウントしたときに、前記ホットガス弁(HV)を閉成することで前記蒸発器(14)へのホットガス供給を停止して気化冷媒を供給する工程と、前記タイマ手段(TM)が前記ホットガス弁(HV)の閉成から予め設定したホットガス弁(HV)の開放時間をカウントすると、該ホットガス弁(HV)を再び開放して蒸発器(14)へのホットガス供給を行なう工程とを有し、
前記前記ホットガス弁(HV)を閉成して前記蒸発器(14)へ気化冷媒を供給する工程は、前記水皿(16)を傾動開始してから完全に開放するまでの間に少なくとも開始される
ことを特徴とする自動製氷機の運転方法。
An ice making part (12) having an evaporator (14) communicating with the refrigeration circuit (30), and a water tray (16) provided so that the ice making part (12) can be opened and closed. 14) circulating the vaporized refrigerant and supplying ice- making water from the water tray (16) with the ice-making unit (12) closed to the ice-making unit (12) to generate ice blocks (M), deicing operation Sometimes by opening the hot gas valve (HV) inserted in the bypass circuit (40) of the refrigeration circuit (30) to supply hot gas to the evaporator (14 ) and tilting the water dish (16) , In the operation method of the automatic ice making machine so that the ice block (M) is detached from the opened ice making unit (12),
Timer means (TM) is preset hot gas valve closing time (HV) when counted from the start of the deicing operation, the hot gas valve (HV) before Symbol evaporator by closing ( a step of supplying a hot gas supply vaporized refrigerant is stopped to 14), the opening time of said timer means (hot gas valve TM) is pre-set from closing of the hot gas valve (HV) (HV) Counting, the hot gas valve (HV) is reopened to supply hot gas to the evaporator (14) ,
The step of closing the hot gas valve (HV) and supplying the vaporized refrigerant to the evaporator (14) starts at least from when the water pan (16) starts to tilt until it completely opens. A method for operating an automatic ice maker characterized in that:
前記タイマ手段(TM)によるホットガス弁(HV)の閉成時間および開放時間の計時に連動して、前記ホットガス弁(HV)の開閉を、制御手段(C)により複数回実施するよう設定し
前記開放時間は、10秒〜40秒の範囲で設定される請求項1記載の自動製氷機の運転方法。
The control means (C) is set to open and close the hot gas valve (HV) multiple times in conjunction with the time of closing and opening of the hot gas valve (HV) by the timer means (TM). and,
The method for operating an automatic ice making machine according to claim 1 , wherein the opening time is set in a range of 10 seconds to 40 seconds .
前記タイマ手段(TM)によるホットガス弁(HV)の閉成時間の計時によって前記ホットガス弁(HV)を閉成することで前記蒸発器(14)へのホットガス供給を停止して気化冷媒を供給する工程と、前記タイマ手段(TM)によるホットガス弁(HV)の開放時間の計時によって該ホットガス弁(HV)を再び開放して蒸発器(14)へのホットガス供給を行なう工程とを、前記水皿(16)を傾動開始してから完全に開放するまでの間に実施し、
前記除氷運転におけるホットガス弁(HV)の閉成時に、前記冷凍回路(30)を構成する凝縮器(CD)を冷却するファンモータ(FM)を駆動し、該ホットガス弁(HV)の開放時に該ファンモータ(FM)を停止するよう設定した請求項1または2記載の自動製氷機の運転方法。
The hot gas valve (HV) is closed by counting the closing time of the hot gas valve (HV) by the timer means (TM), thereby stopping supply of hot gas to the evaporator (14) and evaporating refrigerant. And the step of supplying the hot gas to the evaporator (14) by reopening the hot gas valve (HV) by counting the open time of the hot gas valve (HV) by the timer means (TM). And between the start of tilting the water pan (16) until it is fully opened,
When the hot gas valve (HV) is closed in the deicing operation, the fan motor (FM) for cooling the condenser (CD) constituting the refrigeration circuit (30) is driven, and the hot gas valve (HV) The method for operating an automatic ice making machine according to claim 1 or 2, wherein the fan motor (FM) is set to stop when opened.
前記バイパス回路(40)に温度検知手段(TH2)を設け、除氷運転開始時に該温度検知手段(TH2)の検出した温度が設定値より高い場合にのみ、前記蒸発器(14)に対するホットガスの供給を一時停止する運転を行なわせるよう設定した請求項1〜3の何れか一項に記載の自動製氷機の運転方法。 The bypass circuit (40) is provided with a temperature detection means (TH2), and the hot gas for the evaporator (14) is provided only when the temperature detected by the temperature detection means (TH2) at the start of the deicing operation is higher than a set value. The operation method of the automatic ice making machine as described in any one of Claims 1-3 set so that the operation | movement which pauses supply of may be performed.
JP2004233787A 2004-08-10 2004-08-10 How to operate an automatic ice machine Expired - Fee Related JP4532201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233787A JP4532201B2 (en) 2004-08-10 2004-08-10 How to operate an automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233787A JP4532201B2 (en) 2004-08-10 2004-08-10 How to operate an automatic ice machine

Publications (2)

Publication Number Publication Date
JP2006052879A JP2006052879A (en) 2006-02-23
JP4532201B2 true JP4532201B2 (en) 2010-08-25

Family

ID=36030475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233787A Expired - Fee Related JP4532201B2 (en) 2004-08-10 2004-08-10 How to operate an automatic ice machine

Country Status (1)

Country Link
JP (1) JP4532201B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123196A (en) * 2013-02-06 2013-05-29 邹杰 Ice storage device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053975A1 (en) * 2006-11-02 2008-05-08 Hoshizaki Denki Kabushiki Kaisha Automatic ice making machine and operation method therefor
JP4954684B2 (en) * 2006-11-27 2012-06-20 ホシザキ電機株式会社 How to operate an automatic ice machine
JP4994087B2 (en) * 2007-04-03 2012-08-08 ホシザキ電機株式会社 How to operate an automatic ice machine
KR101281588B1 (en) * 2011-03-31 2013-07-03 정휘동 Ice dropping process control method and ice making water purifier and ice making hot and cold water dispenser controlled by the same
US20130186113A1 (en) * 2012-01-20 2013-07-25 Pepsico, Inc. Method and Apparatus for Ice Harvesting
MX2017012890A (en) 2015-04-09 2018-02-09 True Mfg Co Inc Methods and apparatuses for controlling the harvest cycle of an ice maker using a harvest sensor and a temperature sensor.
JP6934326B2 (en) * 2017-06-01 2021-09-15 ホシザキ株式会社 Ice machine
US11255593B2 (en) * 2019-06-19 2022-02-22 Haier Us Appliance Solutions, Inc. Ice making assembly including a sealed system for regulating the temperature of the ice mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210283A (en) * 1983-05-13 1984-11-28 松下冷機株式会社 Ice machine
JPH07270015A (en) * 1994-03-28 1995-10-20 Daiwa Reiki Kogyo Kk Ice removing method for icemaker
JPH10281607A (en) * 1997-03-31 1998-10-23 Sanyo Electric Co Ltd Control device for ice making machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59210283A (en) * 1983-05-13 1984-11-28 松下冷機株式会社 Ice machine
JPH07270015A (en) * 1994-03-28 1995-10-20 Daiwa Reiki Kogyo Kk Ice removing method for icemaker
JPH10281607A (en) * 1997-03-31 1998-10-23 Sanyo Electric Co Ltd Control device for ice making machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123196A (en) * 2013-02-06 2013-05-29 邹杰 Ice storage device
CN103123196B (en) * 2013-02-06 2015-08-26 邹杰 A kind of cold-storage apparatus

Also Published As

Publication number Publication date
JP2006052879A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP5008675B2 (en) Automatic ice maker and its operating method
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
JP4954684B2 (en) How to operate an automatic ice machine
JP4532201B2 (en) How to operate an automatic ice machine
JP4994087B2 (en) How to operate an automatic ice machine
JP2009121768A (en) Automatic ice making machine and control method for it
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP5027685B2 (en) How to operate a jet ice maker
JP5052240B2 (en) How to operate an ice machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP5448618B2 (en) Ice machine
US6988373B2 (en) Method for operating automatic ice-making machine
JP4705790B2 (en) Control method of automatic ice machine
JP2002098453A (en) Method for dealing with abnormality of automatic ice maker
WO2011004702A1 (en) Ice making machine
JP2008057862A (en) Ice making machine
JP2012117775A (en) Load side device of freezer/refrigerator
JP5795930B2 (en) How to operate an automatic ice machine
JP2007032941A (en) Operation method of refrigeration unit
JP3875159B2 (en) How to operate an automatic ice machine
JP4518875B2 (en) Deicing operation method of automatic ice maker
JP7161946B2 (en) automatic ice machine
JP5848081B2 (en) How to operate an automatic ice machine
JP2004293824A (en) Automatic ice making machine
JP3412677B2 (en) How to operate an automatic ice maker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Ref document number: 4532201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees