JP5795930B2 - How to operate an automatic ice machine - Google Patents

How to operate an automatic ice machine Download PDF

Info

Publication number
JP5795930B2
JP5795930B2 JP2011221390A JP2011221390A JP5795930B2 JP 5795930 B2 JP5795930 B2 JP 5795930B2 JP 2011221390 A JP2011221390 A JP 2011221390A JP 2011221390 A JP2011221390 A JP 2011221390A JP 5795930 B2 JP5795930 B2 JP 5795930B2
Authority
JP
Japan
Prior art keywords
ice making
temperature
water
ice
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011221390A
Other languages
Japanese (ja)
Other versions
JP2013083359A (en
Inventor
文雄 長澤
文雄 長澤
門脇 静馬
静馬 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2011221390A priority Critical patent/JP5795930B2/en
Publication of JP2013083359A publication Critical patent/JP2013083359A/en
Application granted granted Critical
Publication of JP5795930B2 publication Critical patent/JP5795930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、運転開始時に圧縮機の起動を所定時間遅延させる保護運転を実施する自動製氷機の運転方法に関するものである。   The present invention relates to an operation method of an automatic ice making machine that performs a protection operation in which the start of a compressor is delayed for a predetermined time at the start of operation.

下向きに開口する多数の製氷小室に製氷水を下方から噴射供給して、氷塊を連続的に製造する噴射式の自動製氷機が、喫茶店やレストラン等の施設その他の厨房において好適に使用されている。自動製氷機の基本構成は、例えば特許文献1に開示されるように、下向きに開口する多数の製氷小室を画成した製氷室の上面に、冷凍回路を構成する蒸発器が密着的に蛇行配置された製氷機構を備えている。製氷室の直下には、製氷水を貯留する製氷水タンクを下方に一体的に備えた水皿が支軸により片持式に傾動自在に枢支され、該水皿は、製氷小室(製氷室)を下方から閉成する閉成位置と、製氷室から下方に傾動して製氷小室(製氷室)を開放する開放位置との間を傾動するよう構成される。   Spray-type automatic ice makers that continuously produce ice blocks by spraying ice-making water from below into a large number of ice-making chambers that open downward are used favorably in facilities such as coffee shops and restaurants. . The basic structure of an automatic ice making machine is, for example, as disclosed in Patent Document 1, an evaporator constituting a refrigeration circuit closely and meanderingly arranged on the upper surface of an ice making chamber that defines a large number of ice making chambers that open downward. Equipped with an ice making mechanism. Immediately below the ice making chamber, a water tray that is integrally provided with an ice making water tank for storing ice making water is pivotally supported in a cantilevered manner by a support shaft, and the water tray has an ice making chamber (ice making chamber). ) Is closed from below, and is tilted downward from the ice making chamber to an open position where the ice making chamber (ice making chamber) is opened.

前記冷凍回路は、圧縮機、凝縮器、膨張手段および蒸発器を冷媒配管により連結して構成され、製氷運転において、圧縮機の運転により蒸発器に冷媒を循環供給して製氷小室を強制的に冷却すると共に、製氷水タンク内の製氷水を、水皿を介して製氷小室に噴射供給することで、該小室内に氷塊を形成する。そして、製氷室に所要サイズの氷塊が形成されると、製氷運転から除氷運転へ移行し、前記冷凍回路のバイパス管に設けたホットガス弁を開放させる。すると、前記バイパス管を介してホットガス(高温冷媒)が蒸発器に供給され、該ホットガスにより製氷室を加熱することで氷塊を離脱するようになっている。   The refrigeration circuit is configured by connecting a compressor, a condenser, an expansion means, and an evaporator with refrigerant piping, and in ice making operation, the refrigerant is circulated and supplied to the evaporator by the operation of the compressor to force the ice making chamber. While cooling, the ice making water in the ice making water tank is jetted and supplied to the ice making chamber through the water tray, thereby forming ice blocks in the small chamber. When an ice block of a required size is formed in the ice making chamber, the ice making operation is shifted to the deicing operation, and the hot gas valve provided in the bypass pipe of the refrigeration circuit is opened. Then, hot gas (high temperature refrigerant) is supplied to the evaporator via the bypass pipe, and the ice block is separated by heating the ice making chamber with the hot gas.

ここで、停電等により自動製氷機が製氷運転中に異常停止したような場合、冷凍回路内の冷媒は、高圧部分と低圧部分とに分かれた非平衡状態となっている。この状態で自動製氷機の運転を再開(電源ON)して圧縮機を直ちに起動すると、冷媒圧力の非平衡状態に起因して圧縮機の円滑な作動が妨げられる問題がある。また、冷媒圧力が不均衡な状態で圧縮機を起動させると該圧縮機に対する負荷が大きくなって、圧縮機の不具合や故障等が発生する原因ともなる。そこで、前記自動製氷機では、運転開始時(電源ON時)に作動する保護タイマーを設け、該保護タイマーの設定時間が経過するまでの間、冷凍回路における圧縮機の起動を遅延させる保護運転を実施すると共に、該保護運転中にホットガス弁を開放して、冷凍回路内の冷媒圧力の不均衡を解消させるようにしている。   Here, when the automatic ice maker is abnormally stopped during the ice making operation due to a power failure or the like, the refrigerant in the refrigeration circuit is in a non-equilibrium state divided into a high pressure portion and a low pressure portion. If the automatic ice making machine is restarted (power is turned on) in this state and the compressor is immediately started, there is a problem that the smooth operation of the compressor is hindered due to the non-equilibrium state of the refrigerant pressure. In addition, when the compressor is started in a state where the refrigerant pressure is unbalanced, a load on the compressor increases, which may cause a malfunction or failure of the compressor. Therefore, the automatic ice making machine is provided with a protection timer that operates at the start of operation (when the power is turned on), and a protection operation that delays the start of the compressor in the refrigeration circuit until the set time of the protection timer elapses. In practice, the hot gas valve is opened during the protection operation to eliminate the refrigerant pressure imbalance in the refrigeration circuit.

特開2009−180475号公報JP 2009-180475 A

前記自動製氷機では、保護運転中にホットガス弁を開放することで、冷凍回路内における冷媒圧力が均一になることで、蒸発器内の冷媒温度が上昇し、氷塊の製氷小室との氷結部分が融解される。しかしながら、保護運転中には圧縮機は起動しないために冷凍回路内にホットガスが積極的に循環するものではなく、製氷小室に氷塊が残ったまま保護運転が完了して製氷運転に移行する場合がある。このときには、多重製氷が発生する問題を招く難点が指摘される。   In the automatic ice maker, by opening the hot gas valve during the protective operation, the refrigerant pressure in the refrigeration circuit becomes uniform, the refrigerant temperature in the evaporator rises, and the ice block of the ice block with the ice making chamber Is melted. However, since the compressor does not start during the protection operation, hot gas does not circulate actively in the refrigeration circuit, and the protection operation is completed with the ice block remaining in the ice making chamber and the operation is shifted to the ice making operation. There is. At this time, it is pointed out that it causes a problem of multiple ice making.

そこで本発明は、従来の自動製氷機の運転方法に内在する前記問題に鑑み、これを好適に解決するべく提案されたものであって、多重製氷の発生を防止し得る自動製氷機の運転方法を提供することを目的とする。   Accordingly, the present invention has been proposed in order to suitably solve the above problems inherent in the operation method of a conventional automatic ice maker, and an operation method of an automatic ice maker capable of preventing the occurrence of multiple ice making. The purpose is to provide.

前記課題を克服し、所期の目的を達成するため、請求項1の発明に係る自動製氷機の運転方法は、
一方に開口する製氷小室を有する製氷室と、該製氷小室を閉成する閉成位置と開放する開放位置との間を移動する水皿とを備え、製氷運転時に冷凍回路の圧縮機から冷媒が前記製氷室に配設した蒸発器に循環供給されると共に閉成位置の水皿から製氷小室に製氷水を供給して氷塊を生成し、除氷運転時に前記水皿を開放すると共に、前記冷凍回路に設けたホットガス弁を開放してホットガスを前記蒸発器に供給して離氷するよう構成された自動製氷機において、
自動製氷機の運転開始時に、前記圧縮機の起動を遅延させる制御、前記水皿を開放する制御、および前記ホットガス弁を開放する制御を行なう保護運転を実施し、
前記保護運転に際し、前記製氷室の温度を検知する温度検知手段の検知温度が除氷完了温度以上の場合は、前記ホットガス弁を所要時間だけ開放した後に閉じ、前記水皿の開放位置を検出する位置検出手段の検出条件および前記圧縮機の起動を遅延させる遅延時間の経過条件が満たされたときに、前記圧縮機を起動すると共に前記水皿を閉成位置に移動して製氷運転に移行し、
前記保護運転に際し、前記温度検知手段の検知温度が除氷完了温度より低い場合は、前記ホットガス弁の開放状態を維持したまま、前記位置検出手段の検出条件および前記遅延時間の経過条件が満たされたときに、前記圧縮機を起動して除氷運転に移行するようにしたことを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, an operation method of the automatic ice making machine according to the invention of claim 1 is as follows:
An ice making chamber having an ice making chamber opened on one side, and a water tray moving between a closed position for closing the ice making chamber and an open position for opening the ice making chamber, and refrigerant is supplied from the compressor of the refrigeration circuit during ice making operation. Circulatingly supplied to the evaporator disposed in the ice making chamber and supplying ice making water from the water tray in the closed position to the ice making chamber to generate ice blocks, opening the water tray during deicing operation, and In an automatic ice maker configured to open a hot gas valve provided in a circuit and supply hot gas to the evaporator to deiculate,
At the start of the operation of the automatic ice making machine, a control operation for delaying start of the compressor, control for opening the water pan, and control for opening the hot gas valve is performed,
When the temperature detected by the temperature detection means for detecting the temperature of the ice making chamber is equal to or higher than the deicing completion temperature during the protection operation, the hot gas valve is opened only for a required time and then closed to detect the opening position of the water tray. When the detection condition of the position detecting means to perform and the elapse condition of the delay time for delaying the start of the compressor are satisfied, the compressor is started and the water tray is moved to the closed position to shift to the ice making operation And
During the protection operation, when the temperature detected by the temperature detecting unit is lower than the deicing completion temperature, the detection condition of the position detecting unit and the elapsed condition of the delay time are satisfied while the open state of the hot gas valve is maintained. When this is done, the gist is that the compressor is started to shift to the deicing operation.

請求項1に係る発明によれば、保護運転に際して製氷室の温度が除氷完了温度より低い場合は、遅延時間の経過後に除氷運転を行なうので、製氷室に生成されている氷塊を確実に離脱させることができ、多重製氷の発生を防止し得る。また、保護運転に際して製氷室の温度が除氷完了温度以上の場合は、遅延時間の経過後に除氷運転を行なうことなく製氷運転に移行させるので、圧縮機の起動時に高温の冷媒を圧縮する期間を短かくすることができ、圧縮機の負荷を軽減することができる。   According to the first aspect of the invention, when the temperature of the ice making chamber is lower than the deicing completion temperature during the protection operation, the ice removing operation is performed after the delay time elapses. It can be made to detach, and multiple ice making can be prevented. In addition, if the temperature of the ice making chamber is equal to or higher than the deicing completion temperature during the protection operation, the system is shifted to the ice making operation without performing the deicing operation after the delay time has elapsed, so the period during which the high-temperature refrigerant is compressed when the compressor starts Can be shortened, and the load on the compressor can be reduced.

本発明に係る自動製氷機の運転方法によれば、多重製氷の発生を防止し得る。   According to the operation method of the automatic ice maker according to the present invention, the occurrence of multiple ice making can be prevented.

実施例に係る自動製氷機を示す概略構成図である。It is a schematic block diagram which shows the automatic ice making machine which concerns on an Example. 実施例に係る自動製氷機の制御ブロック図である。It is a control block diagram of the automatic ice making machine according to the embodiment. 実施例の自動製氷機の運転方法のフローチャート図である。It is a flowchart figure of the operating method of the automatic ice maker of an Example. 実施例の自動製氷機の運転方法における保護運転時に温度検知手段の検知温度が除氷完了温度より低い場合のタイムチャート図である。It is a time chart figure in case the detection temperature of a temperature detection means is lower than deicing completion temperature at the time of the protection driving | operation in the operation method of the automatic ice making machine of an Example. 実施例の自動製氷機の運転方法における保護運転時に温度検知手段の検知温度が除氷完了温度以上の場合のタイムチャート図である。It is a time chart figure in case the detection temperature of a temperature detection means is more than deicing completion temperature at the time of the protection driving | operation in the operation method of the automatic ice making machine of an Example. 別実施例1の自動製氷機の運転方法のフローチャート図である。 It is a flowchart figure of the operating method of the automatic ice making machine of another Example 1 .

次に、本発明に係る自動製氷機の運転方法につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。   Next, the operation method of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment.

図1は、実施例に係る自動製氷機の製氷機構10および冷凍回路12を示す概略図である。製氷機構10は、所謂クローズドセルタイプと云われるものであって、自動製氷機の本体内部に水平に配置され、下方に開口する多数の製氷小室14aを備えた製氷室14と、該製氷小室14aを開閉自在に閉成し、製氷水を貯留する製氷水タンク16を下方に一体的に備えた水皿18とから基本的に構成されている。前記製氷室14の上面には、冷凍回路12を構成する蒸発器20が密着的に蛇行配置され、製氷運転時に該蒸発器20に冷媒を循環させて前記製氷小室14aを強制冷却すると共に、除氷運転時にはホットガス(高温高圧冷媒)が蒸発器20に供給されて製氷小室14aからの氷塊の離脱を促すようになっている。前記水皿18は、支軸18aにより傾動可能に枢支され、この水皿18および製氷水タンク16は、製氷運転時には水平に位置して前記製氷小室14aを閉成する閉成位置に保持される。また水皿18は、除氷運転開始時には開閉モータAMを備える水皿開閉機構22の作動により支軸18aを中心として下方へ傾動して前記製氷小室14aを開放した開放位置まで姿勢変化するよう構成されている。そして、水皿18は、除氷運転において製氷小室14aから氷塊が離脱したことを条件(後述する温度検知手段THによる除氷完了温度T2の検知)として、水皿開閉機構22の作動により支軸18aを中心として上方へ傾動して前記製氷小室14aを閉成する前記閉成位置に復帰するよう構成される。なお、製氷水タンク16には、製氷水ポンプPMが設けられ、該製氷水ポンプPMにより製氷水タンク16内の製氷水が水皿18を介して製氷室14(製氷小室14a)へ供給される。   FIG. 1 is a schematic diagram showing an ice making mechanism 10 and a refrigeration circuit 12 of an automatic ice maker according to an embodiment. The ice making mechanism 10 is a so-called closed cell type, and is arranged horizontally inside the main body of the automatic ice making machine and includes an ice making chamber 14 having a large number of ice making chambers 14a opened downward, and the ice making chamber 14a. Is basically constituted by a water tray 18 integrally provided below an ice making water tank 16 for storing ice making water. On the upper surface of the ice making chamber 14, an evaporator 20 constituting the refrigeration circuit 12 is closely arranged in a meandering manner. During the ice making operation, a refrigerant is circulated through the evaporator 20 to forcibly cool the ice making chamber 14a and to remove the ice making chamber 14a. During the ice operation, hot gas (high-temperature and high-pressure refrigerant) is supplied to the evaporator 20 to promote the removal of the ice block from the ice making chamber 14a. The water tray 18 is pivotally supported by a support shaft 18a, and the water tray 18 and the ice making water tank 16 are held in a closed position where the ice making chamber 14a is closed in a horizontal position during ice making operation. The In addition, the water tray 18 is tilted downward about the support shaft 18a by the operation of the water tray opening / closing mechanism 22 provided with the opening / closing motor AM at the start of the deicing operation so that the posture of the water tray 18 changes to the open position where the ice making chamber 14a is opened. Has been. The water tray 18 is supported by the operation of the water tray opening / closing mechanism 22 under the condition that the ice block is detached from the ice making chamber 14a in the deicing operation (detection of the deicing completion temperature T2 by the temperature detecting means TH described later). It is configured to tilt upward about 18a and return to the closed position where the ice making chamber 14a is closed. The ice making water tank 16 is provided with an ice making water pump PM, and ice making water in the ice making water tank 16 is supplied to the ice making chamber 14 (ice making chamber 14a) through the water tray 18 by the ice making water pump PM. .

前記水皿開閉機構22には、適宜の回転部分における回転方向および回転角度を検出可能なホールIC等の水皿位置検出センサ(位置検出手段)24が配設され、該水皿位置検出センサ24によって水皿18の開放位置および閉成位置を検出し得るよう構成される。そして、水皿位置検出センサ24の検出状態および検出信号に基づいて、後述する制御手段32(図2参照)が水皿開閉機構22の開閉モータAMを制御して、前記水皿18を開閉動すると共に閉成位置と開放位置とに位置決め停止するよう構成される(図4,図5等参照)。すなわち、水皿開閉機構22は、開閉モータAMの正転駆動により閉成位置の水皿18を下方へ傾動して、水皿18の開放位置への到来を水皿位置検出センサ24が検出すると開閉モータAMが停止制御される。また、水皿開閉機構22は、開閉モータAMの逆転駆動により開放位置の水皿18を上方へ傾動して、水皿18の閉成位置への到来を水皿位置検出センサ24が検出すると開閉モータAMが停止制御される。なお、位置検出手段は、水皿開閉機構22における可動部によってスイッチが切替えられる機械式のものであってもよい。   The water pan opening / closing mechanism 22 is provided with a water pan position detection sensor (position detection means) 24 such as a Hall IC capable of detecting a rotation direction and a rotation angle in an appropriate rotation portion. Thus, the open position and the closed position of the water dish 18 can be detected. Based on the detection state and detection signal of the water pan position detection sensor 24, the control means 32 (see FIG. 2), which will be described later, controls the open / close motor AM of the water pan open / close mechanism 22 to open / close the water pan 18. And is configured to stop positioning at the closed position and the open position (see FIGS. 4 and 5). That is, the water tray opening / closing mechanism 22 tilts the water tray 18 in the closed position downward by the forward drive of the opening / closing motor AM, and the water tray position detection sensor 24 detects the arrival of the water tray 18 at the open position. The opening / closing motor AM is controlled to stop. Further, the water tray opening / closing mechanism 22 tilts the water tray 18 in the open position upward by reverse rotation driving of the opening / closing motor AM, and opens and closes when the water tray position detection sensor 24 detects the arrival of the water tray 18 at the closed position. The motor AM is controlled to stop. The position detection means may be a mechanical type whose switch is switched by a movable part in the water tray opening / closing mechanism 22.

前記水皿18の上方には、図示しない外部水源に連通する給水管26が設けられ、該給水管26に給水弁WVが介挿されている。そして、製氷運転の初期段階および初期除氷運転時(後述する保護運転後に行なわれる運転時)に給水弁WVが開放(ON)され、給水管26から常温の水が水皿18の表面へ供給される。給水管26から供給された水は、水皿18に設けた戻り孔(図示せず)等を介して製氷水タンク16に貯留され、製氷水として使用される。なお、後述する別実施例1では、保護運転時にも給水弁WVが開放されるようになっている。前記製氷機構10の下方には、貯氷室38が設けられ、除氷運転によって製氷室14から離脱した氷塊は、該貯氷室38に貯留される。また、貯氷室38には貯氷スイッチ40が配設され、貯氷室38に所定量の氷塊が貯留されたことを貯氷スイッチ40が検出することで、製氷機構10での氷塊の製造が中断されるようになっている。   A water supply pipe 26 communicating with an external water source (not shown) is provided above the water tray 18, and a water supply valve WV is inserted into the water supply pipe 26. The water supply valve WV is opened (ON) at the initial stage of the ice making operation and the initial deicing operation (after the protection operation described later), and normal temperature water is supplied from the water supply pipe 26 to the surface of the water tray 18. Is done. The water supplied from the water supply pipe 26 is stored in the ice making water tank 16 through a return hole (not shown) provided in the water tray 18 and used as ice making water. In another embodiment 1 described later, the water supply valve WV is also opened during the protection operation. An ice storage chamber 38 is provided below the ice making mechanism 10, and ice blocks separated from the ice making chamber 14 by the deicing operation are stored in the ice storage chamber 38. In addition, an ice storage switch 40 is disposed in the ice storage chamber 38, and the ice storage switch 40 detects that a predetermined amount of ice blocks has been stored in the ice storage chamber 38, whereby the production of ice blocks in the ice making mechanism 10 is interrupted. It is like that.

前記冷凍回路12は、図1に示す如く、圧縮機CM、凝縮器CD、膨張手段EVおよび蒸発器20の順番で冷媒が循環するよう設定され、各機器は冷媒配管28で連通接続されている。すなわち、前記圧縮機CMで圧縮された気化冷媒は、冷媒配管28を経て前記凝縮器CDで凝縮液化された後、前記膨張手段EVで減圧され、前記蒸発器20に流入してここで一挙に膨張して蒸発し、前記製氷室14と熱交換を行なって該製氷室14を氷点下にまで強制冷却させる。そして、前記蒸発器20で蒸発し熱交換した気化冷媒は、冷媒配管28を経て圧縮機CMに帰還するサイクルを反復するようになっている。なお、前記凝縮器CDに対向して設けられた冷却ファンFMは、前記凝縮器CDを冷却するべく機能している。   As shown in FIG. 1, the refrigeration circuit 12 is set so that the refrigerant circulates in the order of the compressor CM, the condenser CD, the expansion means EV, and the evaporator 20. . That is, the vaporized refrigerant compressed by the compressor CM is condensed and liquefied by the condenser CD via the refrigerant pipe 28, and then depressurized by the expansion means EV, and flows into the evaporator 20 at once. The ice making chamber 14 expands and evaporates, and exchanges heat with the ice making chamber 14 to forcibly cool the ice making chamber 14 to below the freezing point. The vaporized refrigerant evaporated and heat-exchanged by the evaporator 20 repeats a cycle of returning to the compressor CM via the refrigerant pipe 28. A cooling fan FM provided to face the condenser CD functions to cool the condenser CD.

前記冷凍回路12には、ホットガス弁HVが介挿されたバイパス管30が配設されている。このバイパス管30は、その始端が前記圧縮機CMの吐出側から凝縮器CDの吸込み側を連通する冷媒配管28に接続され、終端は前記膨張手段EVから蒸発器20の吸込み側を連通する冷媒配管28に接続されている。前記ホットガス弁HVは、後述する制御手段32により開閉制御されて、バイパス管30内のホットガスの流通を制御する。すなわち、ホットガス弁HVは、基本的には製氷運転時にバイパス管30の管路を閉成してホットガスの流通を規制すると共に、除氷運転時にバイパス管30の管路を開放し、ホットガスの流通を許容するようになっている。実施例のホットガス弁HVは、通電により開放(ON)し、通電停止により閉成(OFF)する電磁弁や電動弁等が好適に採用される。   The refrigeration circuit 12 is provided with a bypass pipe 30 in which a hot gas valve HV is inserted. The bypass pipe 30 is connected at its start end to a refrigerant pipe 28 that communicates from the discharge side of the compressor CM to the suction side of the condenser CD, and the end is a refrigerant that communicates from the expansion means EV to the suction side of the evaporator 20. It is connected to the pipe 28. The hot gas valve HV is controlled to be opened and closed by a control means 32 described later, and controls the flow of hot gas in the bypass pipe 30. That is, the hot gas valve HV basically closes the pipeline of the bypass pipe 30 during ice making operation and regulates the flow of hot gas, and opens the pipeline of the bypass pipe 30 during deicing operation. Gas is allowed to flow. As the hot gas valve HV of the embodiment, an electromagnetic valve, an electric valve, or the like that is opened (ON) when energized and closed (OFF) when energization is stopped is preferably employed.

前記製氷機構10における製氷室14の所要位置には、該製氷室14の温度を検知するサーミスタ等の温度検知手段THが配設されている。実施例の自動製氷機は、製氷室14の温度に基づき、製氷完了および除氷完了を判断するよう構成されている。すなわち、製氷室14が所定の温度まで低下すると該製氷室14の各製氷小室14aにおける氷塊の生成が完了するため、この温度を製氷完了温度T1として設定している。また、製氷室14が所定の温度まで上昇すると該製氷室14からの氷塊の離脱(除氷)が完了するため、この温度を除氷完了温度T2として設定している。なお、製氷室14の温度を検知する温度検知手段THとしては、サーミスタに限らず、白金測温抵抗体、熱電対等、実用に供されている既存のものが好適に実施可能である。   A temperature detecting means TH such as a thermistor for detecting the temperature of the ice making chamber 14 is disposed at a required position of the ice making chamber 14 in the ice making mechanism 10. The automatic ice maker according to the embodiment is configured to determine completion of ice making and deicing based on the temperature of the ice making chamber 14. That is, when the ice making chamber 14 is lowered to a predetermined temperature, the formation of ice blocks in each ice making chamber 14a of the ice making chamber 14 is completed, and this temperature is set as the ice making completion temperature T1. Further, when the ice making chamber 14 rises to a predetermined temperature, the removal of ice blocks from the ice making chamber 14 (deicing) is completed, and this temperature is set as the deicing completion temperature T2. Note that the temperature detection means TH for detecting the temperature of the ice making chamber 14 is not limited to the thermistor, and an existing one that is practically used such as a platinum resistance thermometer or a thermocouple can be suitably implemented.

前記制御手段32は、図2に示すように、圧縮機CM、冷却ファンFM、開閉モータAM、ホットガス弁HV、製氷水ポンプPMおよび給水弁WV等の各機器、および温度検知手段TH、水皿位置検出センサ24、貯氷スイッチ40等の検出部品(センサやスイッチ)等と電気的に接続され、製氷機構10および冷凍回路12を統括的に制御する役割を果たしている。制御手段32には、自動製氷機の運転開始時(主電源34がONされたとき)に作動して所定時間をカウントする保護タイマー36が内蔵されている。また、制御手段32は、自動製氷機の主電源34と接続しており、該主電源34がON/OFFされたのを検知し得るようになっている。更に、制御手段32は、各種時間を計時するタイマーを内蔵している。   As shown in FIG. 2, the control means 32 includes a compressor CM, a cooling fan FM, an opening / closing motor AM, a hot gas valve HV, an ice making water pump PM, a water supply valve WV, and other devices, a temperature detection means TH, water It is electrically connected to detection parts (sensors and switches) such as the dish position detection sensor 24 and the ice storage switch 40, and plays a role of comprehensively controlling the ice making mechanism 10 and the refrigeration circuit 12. The control means 32 incorporates a protection timer 36 that operates when the automatic ice making machine starts operating (when the main power supply 34 is turned on) and counts a predetermined time. The control means 32 is connected to the main power supply 34 of the automatic ice making machine, and can detect that the main power supply 34 is turned on / off. Furthermore, the control means 32 has a built-in timer that measures various times.

自動製氷機は、水皿位置検出センサ24および温度検知手段THの入力、保護タイマー36やその他の内蔵タイマー等で計時される時間に基づいて、制御手段32により製氷機構10および冷凍回路12を構成する各機器等が駆動制御されて、製氷運転および除氷運転を交互に繰返すようになっている。また自動製氷機では、電源を投入(主電源34のON)して自動製氷機での運転を開始する際には、圧縮機CMを保護する目的で、所要時間は圧縮機CMの起動を遅延する保護運転を行なうように設定されている(図3,図4および図5参照)。この保護運転では、水皿18を開放位置に向けて移動する制御、およびホットガス弁HVを開放する制御が併せて行なわれるようになっている。そして、この保護運転時におけるホットガス弁HVの開閉は、後述するように前記温度検知手段THでの検知温度に基づいて制御されるように設定される。また、保護運転中におけるホットガス弁HVの開放タイミングと、水皿18の開放(下降)タイミングは、必ず水皿18の開放が先に行なわれるよう設定される。更に実施例では、水皿18が開放位置に到達する前にホットガス弁HVを開放するように設定されている。なお、実施例では、保護タイマー36に設定された保護時間(例えば、3分)が経過した条件および前記水皿位置検出センサ24が水皿18の開放位置を検出した条件が満たされたときに、制御手段32が圧縮機CMを起動するよう設定されている。すなわち、圧縮機CMの起動条件は、保護時間の経過と水皿位置検出センサ24の開放位置の検出とがAND条件となっている。また、前記電源を投入するとは、操作スイッチを操作して通電する場合や、停電や異常状態によって非通電になった状態から通電状態に復帰した場合を含むものであって、自動製氷機が非通電状態から通電状態となることを意味する。   In the automatic ice maker, the ice making mechanism 10 and the refrigeration circuit 12 are configured by the control means 32 based on the inputs of the water pan position detection sensor 24 and the temperature detection means TH, and the time measured by the protection timer 36 and other built-in timers. The devices and the like are driven and controlled so that the ice making operation and the deicing operation are repeated alternately. In addition, when the automatic ice maker is turned on (the main power supply 34 is turned on) and the operation of the automatic ice maker is started, the start time of the compressor CM is delayed for the purpose of protecting the compressor CM. The protection operation is set to be performed (see FIGS. 3, 4 and 5). In this protection operation, control for moving the water pan 18 toward the open position and control for opening the hot gas valve HV are performed together. The opening / closing of the hot gas valve HV during the protection operation is set so as to be controlled based on the temperature detected by the temperature detecting means TH, as will be described later. Further, the opening timing of the hot gas valve HV and the opening (lowering) timing of the water pan 18 during the protection operation are set so that the water pan 18 is always opened first. Further, in the embodiment, the hot gas valve HV is set to be opened before the water pan 18 reaches the open position. In the embodiment, when the condition that the protection time (for example, 3 minutes) set in the protection timer 36 has passed and the condition that the water pan position detection sensor 24 detects the open position of the water pan 18 are satisfied. The control means 32 is set to start the compressor CM. That is, the start condition of the compressor CM is an AND condition for the passage of the protection time and the detection of the open position of the water pan position detection sensor 24. In addition, turning on the power includes a case where the power is operated by operating an operation switch, and a case where the power is turned off due to a power failure or an abnormal state, and the automatic ice maker is turned off. It means that the energized state is changed to the energized state.

〔実施例の作用〕
次に、実施例に係る自動製氷機の運転方法の作用について、図3のフローチャートおよび図4のタイムチャートを参照して、保護運転に際して製氷室14に氷塊が形成されている状態で温度検知手段THの検知温度が除氷完了温度T2より低い場合を説明する。なお、水皿18は、電源投入時には閉成位置に位置しているものとする。このように水皿18が閉成位置で製氷室14に氷塊が形成されている状態は、製氷運転中に停電等によって自動製氷機の運転が中断(非通電)となった状態が想定される。
(Effects of Example)
Next, with respect to the operation of the operation method of the automatic ice maker according to the embodiment, with reference to the flowchart of FIG. 3 and the time chart of FIG. 4, the temperature detecting means in a state where ice blocks are formed in the ice making chamber 14 during the protection operation. A case where the detected temperature of TH is lower than the deicing completion temperature T2 will be described. The water pan 18 is assumed to be in the closed position when the power is turned on. The state in which the ice pan is formed in the ice making chamber 14 with the water tray 18 in the closed position as described above is assumed to be a state in which the operation of the automatic ice making machine is interrupted (not energized) due to a power failure or the like during the ice making operation. .

図3に示すように、自動製氷機の運転を開始するべく主電源34をONすると(ステップS1)、制御手段32は、先ず始めに保護運転を開始させる。すなわち、主電源34のONと同時に保護タイマー36が作動を開始(ON)し、該タイマー36はカウントを始める(ステップS2)。また、制御手段32の内蔵タイマーに予め設定された時間の経過後に、制御手段32は、前記水皿18が開放位置に向けて下降するように前記開閉モータAMを駆動制御し、これにより閉成位置の水皿18は開放位置に向けて下降する(ステップS3)。次いで、制御手段32は、ホットガス弁HVを開放(ON)し(ステップS3)、これにより冷凍回路12内の冷媒圧力は平衡する。すなわち、ホットガス弁HVを開放することで、膨張手段EVから下流に存在する低温の冷媒と、圧縮機CMから凝縮器CDを結ぶ冷媒配管28に存在する高温の冷媒とがバイパス管30を介して混合し、冷凍回路12内の冷媒圧力は平衡状態となる。   As shown in FIG. 3, when the main power supply 34 is turned on to start the operation of the automatic ice making machine (step S1), the control means 32 first starts the protection operation. That is, the protection timer 36 starts operating (ON) simultaneously with the turning on of the main power supply 34, and the timer 36 starts counting (step S2). Further, after elapse of a time set in advance in the built-in timer of the control means 32, the control means 32 drives and controls the open / close motor AM so that the water pan 18 descends toward the open position, and thereby closes. The water tray 18 at the position descends toward the open position (step S3). Next, the control means 32 opens (ON) the hot gas valve HV (step S3), whereby the refrigerant pressure in the refrigeration circuit 12 is balanced. That is, by opening the hot gas valve HV, the low-temperature refrigerant existing downstream from the expansion means EV and the high-temperature refrigerant existing in the refrigerant pipe 28 connecting the compressor CM to the condenser CD pass through the bypass pipe 30. The refrigerant pressure in the refrigeration circuit 12 is in an equilibrium state.

実施例では、ホットガス弁HVの開放は、図4に示す如く、水皿18が開放位置に向けて下降を開始した後に実施されるよう設定されている(すなわち、主電源34のONと同時にカウントを開始する内蔵タイマーに設定される水皿開放開始時間に対し、ホットガス弁開放開始時間が長く設定される)。これにより、保護運転時において前記製氷室14に氷塊が形成されている状態では、ホットガス弁HVの開放による冷凍回路12内の冷媒の平衡化により蒸発器20内の冷媒温度が上昇して製氷室14と氷塊との氷結状態が解除される前に、水皿18を氷塊から剥離することができる。従って、水皿18の表面に氷塊が氷結したまま該水皿18が開放位置に下降することで、その後の水皿18の閉成位置への上昇による氷ガミの発生や製氷運転での多重製氷が発生するのを防止し得る。なお、前記水皿開放開始時間および弁開放開始時間は、具体的には保護時間が3分の場合では、水皿開放開始時間は2分20秒で、弁開放開始時間は2分30秒に設定される。そして、ホットガス弁HVが開放してから保護時間が経過するまでの時間30秒は、ホットガス弁HVが開放している状態で冷媒圧力が平衡するのに最低限必要な時間となっている。また、水皿18の閉成位置から開放位置に達するまでに要する傾動時間は、製氷室14に形成される氷塊の大きさや機種によっても多少の違いはあるものの概ね30〜40秒である。すなわち、実施例では、冷媒圧力が平衡するのに最低限必要なホットガス弁HVの開放時間(30秒)と、水皿18が閉成位置から開放位置への移動を開始してから開放位置に到達するまでの時間(30〜40秒)とが、保護時間の3分の終了タイミングに合わせるように設定されている。   In the embodiment, as shown in FIG. 4, the opening of the hot gas valve HV is set to be performed after the water pan 18 starts to descend toward the open position (that is, at the same time as the main power supply 34 is turned on). The hot gas valve opening start time is set longer than the water pan opening starting time set in the built-in timer that starts counting). As a result, in a state where ice blocks are formed in the ice making chamber 14 during the protection operation, the refrigerant temperature in the evaporator 20 rises due to the equilibrium of the refrigerant in the refrigeration circuit 12 by opening the hot gas valve HV, and ice making. The water dish 18 can be peeled from the ice block before the icing state between the chamber 14 and the ice block is released. Accordingly, the water dish 18 descends to the open position while the ice mass is frozen on the surface of the water dish 18, so that the ice dish due to the subsequent rise of the water dish 18 to the closed position and the multiple ice making in the ice making operation. Can be prevented from occurring. The water dish opening start time and the valve opening start time are specifically set to 2 minutes and 20 seconds when the protection time is 3 minutes, and the valve opening start time is 2 minutes and 30 seconds. Is set. The time 30 seconds from when the hot gas valve HV is opened until the protection time elapses is the minimum time required for the refrigerant pressure to equilibrate with the hot gas valve HV opened. . The tilting time required for the water dish 18 to reach the open position from the closed position is approximately 30 to 40 seconds, although there are some differences depending on the size and model of the ice block formed in the ice making chamber 14. That is, in the embodiment, the opening time (30 seconds) of the hot gas valve HV that is the minimum required for the refrigerant pressure to be balanced, and the opening position after the water pan 18 starts moving from the closing position to the opening position. The time to reach (30 to 40 seconds) is set to match the end timing of 3 minutes of the protection time.

ステップS4で前記保護時間が経過したか否かを判定し、ステップS4が肯定(YES)の場合は、保護タイマー36をリセットする(ステップS5)。また、制御手段32は、前記水皿位置検出センサ24が水皿18の開放位置を検出したか否かを判定し(ステップS6)、水皿位置検出センサ24が開放位置を検出していなければ(ステップS6でNO)、ステップS6を繰り返す。そして、水皿18が開放位置に到達して水皿位置検出センサ24が開放位置を検出すると(ステップS6でYES)、ステップS7に移行して前記圧縮機CMを起動する。この圧縮機CMの起動時には、予め開放されたホットガス弁HVを介して冷凍回路12内における冷媒圧力の不均衡は解消されているので、圧縮機CMに対する負荷が軽減され、安定的な作動を確保し得る。   In step S4, it is determined whether or not the protection time has elapsed. If step S4 is affirmative (YES), the protection timer 36 is reset (step S5). Further, the control means 32 determines whether or not the water pan position detection sensor 24 has detected the open position of the water tray 18 (step S6), and if the water pan position detection sensor 24 has not detected the open position. (NO in step S6), step S6 is repeated. When the water pan 18 reaches the open position and the water pan position detection sensor 24 detects the open position (YES in step S6), the process proceeds to step S7 to start the compressor CM. When starting up the compressor CM, the refrigerant pressure imbalance in the refrigeration circuit 12 is eliminated via the pre-opened hot gas valve HV, so the load on the compressor CM is reduced and stable operation is achieved. Can be secured.

また、前記温度検知手段THで検知している製氷室14の温度が、除氷完了温度T2以上であるか否かを判定する(ステップS8)。前記製氷室14には氷塊が形成されていて、該製氷室14の温度は除氷完了温度T2より低くなっているので、ステップS8は否定(NO)され、温度検知手段THの検知温度が除氷完了温度T2以上となるまで現在の状態を維持する。すなわち、前記ホットガス弁HVは開放状態となっているので、圧縮機CMの起動により前記蒸発器20にホットガスが循環供給される初期除氷運転が開始される(ステップS9)。このように、保護運転に際して前記製氷室14に氷塊が形成されている場合は、初期除氷運転により蒸発器20にホットガスを積極的に循環供給することで、残留している氷塊を速やかに製氷室14から離脱することができる。なお、初期除氷運転に際して制御手段32は、給水弁WVを開放して開放位置の水皿18の洗浄を行ない、水皿18の表面上の氷片を除去する。そして、給水弁WVは、所定時間(例えば、20秒)経過後に閉成される。   Further, it is determined whether or not the temperature of the ice making chamber 14 detected by the temperature detecting means TH is equal to or higher than the deicing completion temperature T2 (step S8). Since ice blocks are formed in the ice making chamber 14, and the temperature of the ice making chamber 14 is lower than the deicing completion temperature T2, step S8 is denied (NO), and the temperature detected by the temperature detecting means TH is removed. The current state is maintained until the ice completion temperature T2 or higher. That is, since the hot gas valve HV is in an open state, an initial deicing operation in which hot gas is circulated and supplied to the evaporator 20 is started by starting the compressor CM (step S9). As described above, when ice blocks are formed in the ice making chamber 14 during the protection operation, the hot ice gas is actively circulated and supplied to the evaporator 20 through the initial deicing operation, so that the remaining ice blocks can be quickly removed. The ice making chamber 14 can be detached. In the initial deicing operation, the control means 32 opens the water supply valve WV to clean the water dish 18 in the open position, and removes ice pieces on the surface of the water dish 18. The water supply valve WV is closed after a predetermined time (for example, 20 seconds) has elapsed.

前記初期除氷運転が継続することで製氷室14から氷塊が離脱すると、前記温度検知手段THでの検知温度が除氷完了温度T2以上になり(ステップS8でYES)、制御手段32は、ホットガス弁HVを閉成(OFF)すると共に、開閉モータAMを駆動制御して水皿18を閉成位置に向けて上昇させる(ステップS10)。そして、水皿18が閉成位置に到達したことを前記水皿位置検出センサ24が検出することで(ステップS11でYES)、製氷運転が開始される(ステップS12)。すなわち、水皿位置検出センサ24が閉成位置を検出すると、制御手段32は、前記給水弁WVが開放して水皿上面に水を供給し、該水が製氷水タンク16に貯留される。また、前記製氷水ポンプPMが駆動され(図4参照)、製氷水タンク16に貯留された製氷水が、水皿18を介して製氷室14の各製氷小室14aに噴射供給される。なお、外部水源から供給される水の温度が予め設定された基準温度(例えば13℃)より低い場合は、水皿18を上昇する途中において前記給水弁WVを所定時間(例えば10秒)だけ開放して水皿18上面に常温の水を供給して融氷と氷ガミの防止を図るようにしてもよい。   When the ice block is detached from the ice making chamber 14 by continuing the initial deicing operation, the temperature detected by the temperature detecting means TH becomes equal to or higher than the deicing completion temperature T2 (YES in step S8), and the control means 32 The gas valve HV is closed (OFF), and the open / close motor AM is driven and controlled to raise the water tray 18 toward the closed position (step S10). Then, when the water pan position detection sensor 24 detects that the water pan 18 has reached the closed position (YES in step S11), the ice making operation is started (step S12). That is, when the water tray position detection sensor 24 detects the closed position, the control means 32 opens the water supply valve WV to supply water to the upper surface of the water tray, and the water is stored in the ice making water tank 16. The ice making water pump PM is driven (see FIG. 4), and the ice making water stored in the ice making water tank 16 is jetted and supplied to each ice making chamber 14a of the ice making chamber 14 through the water tray 18. When the temperature of the water supplied from the external water source is lower than a preset reference temperature (for example, 13 ° C.), the water supply valve WV is opened for a predetermined time (for example, 10 seconds) in the middle of ascending the water tray 18. Then, normal temperature water may be supplied to the upper surface of the water tray 18 to prevent melting ice and ice debris.

次に、図3のフローチャートおよび図5のタイムチャートを参照して、保護運転に際して製氷室14に氷塊が形成されていない状態で温度検知手段THの検知温度が除氷完了温度T2以上の場合を説明する。なお、水皿18は、電源投入時には閉成位置に位置するものとする。   Next, referring to the flowchart of FIG. 3 and the time chart of FIG. 5, the case where the temperature detected by the temperature detecting means TH is equal to or higher than the deicing completion temperature T2 in the state where the ice making chamber 14 is not forming ice during the protection operation. explain. The water pan 18 is assumed to be in the closed position when the power is turned on.

図3のフローチャートにおけるステップS1〜ステップS7の制御が前述と同様に実行され、ステップS8において、前記温度検知手段THで検知している製氷室14の温度が除氷完了温度T2以上であるか否かを判定する。前記製氷室14には氷塊が形成されていないので、該製氷室14の温度は除氷完了温度T2以上となっており、ステップS8が肯定(YES)され、制御手段32は、ホットガス弁HVを閉成(OFF)すると共に、開閉モータAMを駆動制御して水皿18を閉成位置に向けて上昇させる(ステップS10)。そして、水皿18が閉成位置に到達したことを前記水皿位置検出センサ24が検出することで、製氷運転が開始される(ステップS11,ステップS12)。このように、保護運転の開始時に既に製氷室14が除氷完了温度T2以上になっていれば、水皿18が開放位置に到達すると共に保護時間が経過した条件で、ホットガス弁HVの閉成と圧縮機CMの起動とが略同時に行なわれるから(図5参照)、ホットガス弁HVの開放状態で圧縮機CMが運転する時間は極めて短かく、圧縮機CMの負荷は軽減される。なお、保護運転の開始時に製氷室14が除氷完了温度T2以上となっている場合のホットガス弁HVの開放時間は、冷凍回路12内の冷媒が平衡状態となる必要最小限の時間であればよい。   Control in steps S1 to S7 in the flowchart of FIG. 3 is executed in the same manner as described above. In step S8, whether or not the temperature of the ice making chamber 14 detected by the temperature detection means TH is equal to or higher than the deicing completion temperature T2. Determine whether. Since ice blocks are not formed in the ice making chamber 14, the temperature of the ice making chamber 14 is equal to or higher than the deicing completion temperature T2, step S8 is affirmed (YES), and the control means 32 controls the hot gas valve HV. Is closed (OFF), and the open / close motor AM is driven and controlled to raise the water tray 18 toward the closed position (step S10). Then, when the water pan position detection sensor 24 detects that the water pan 18 has reached the closed position, the ice making operation is started (steps S11 and S12). Thus, if the ice making chamber 14 is already at or above the deicing completion temperature T2 at the start of the protection operation, the hot gas valve HV is closed under the condition that the water pan 18 reaches the open position and the protection time has elapsed. Since the configuration and the start-up of the compressor CM are performed substantially simultaneously (see FIG. 5), the time for which the compressor CM operates with the hot gas valve HV opened is extremely short, and the load on the compressor CM is reduced. Note that the open time of the hot gas valve HV when the ice making chamber 14 is at or above the deicing completion temperature T2 at the start of the protection operation may be the minimum necessary time for the refrigerant in the refrigeration circuit 12 to be in an equilibrium state. That's fine.

また、温度検知手段THの検知温度が除氷完了温度T2以上である場合は、水皿位置検出センサ24の検出条件および保護時間の経過条件が満たされたときに直ちにホットガス弁HVは閉成されるので、ホットガス弁HVとして通電により開放する型式を採用している場合は、保護運転時におけるホットガス弁HVへの通電時間を最小限に抑えることができ、ホットガス弁HVの過度の発熱を抑えて使用寿命を長くし得る。すなわち、実施例のようにホットガス弁HVの開放開始時間を保護時間の後半に設定して、冷媒圧力が平衡するのに最低限必要な時間30秒が経過した頃合いで保護時間の3分が経過するので、ホットガス弁HVへの通電時間を最小限に抑えることができる。更に、水皿18が開放位置でホットガス弁HVが閉成されると共に圧縮機CMが起動するから、水皿18が閉成位置に向けて上昇する間は前記蒸発器20に凝縮器CDを経た低温の冷媒が供給されることで、該蒸発器20を予冷することができ、製氷運転に要する時間を短かくし得る。すなわち、保護運転の開始時に製氷室14が除氷完了温度T2以上の状態では、保護運転の完了から製氷運転に移行する期間(図5の初動運転)は、水皿18が開放位置から閉成位置に移動する期間であり、この期間に冷媒を蒸発器20に供給して製氷室14を予冷することから、実質的に製氷運転と見なすことができる。   Further, when the detection temperature of the temperature detection means TH is equal to or higher than the deicing completion temperature T2, the hot gas valve HV is immediately closed when the detection condition of the water pan position detection sensor 24 and the protection time elapse condition are satisfied. Therefore, in the case of adopting a type that is opened by energization as the hot gas valve HV, the energization time to the hot gas valve HV during the protection operation can be minimized, and the hot gas valve HV The service life can be extended by suppressing heat generation. That is, the opening start time of the hot gas valve HV is set to the latter half of the protection time as in the embodiment, and the protection time is 3 minutes when the minimum time 30 seconds necessary for the refrigerant pressure to equilibrate has elapsed. Therefore, the energization time to the hot gas valve HV can be minimized. Furthermore, since the hot gas valve HV is closed and the compressor CM is started when the water pan 18 is in the open position, the condenser CD is connected to the evaporator 20 while the water pan 18 rises toward the closed position. By supplying the low-temperature refrigerant that has passed, the evaporator 20 can be pre-cooled, and the time required for the ice making operation can be shortened. That is, when the ice making chamber 14 is at or above the deicing completion temperature T2 at the start of the protection operation, the water pan 18 is closed from the open position during the period of transition from the completion of the protection operation to the ice making operation (initial operation in FIG. 5). This is a period of movement to the position, and during this period, the refrigerant is supplied to the evaporator 20 to precool the ice making chamber 14, so that it can be regarded substantially as an ice making operation.

実施例の自動製氷機では、保護運転時の製氷室温度に基づいて、ホットガス弁HVを開放したまま初期除氷運転に移行するのか、ホットガス弁HVを閉成して製氷運転に移行するのかを選択するようにしたので、製氷室14に氷塊が形成されていない場合には直ちに製氷運転に移行することができ、圧縮機CMの負荷を軽減し得る。また製氷室14に氷塊が形成されている場合は、除氷を行なって氷ガミの発生を防止し得る。更に、保護運転に際して、水皿18が開放位置に到達する前にホットガス弁HVを開放するように設定したので、水皿18が開放位置に到達してからホットガス弁HVを開放する場合に比べて保護運転後の初期除氷運転に要する時間を短かくすることができる。すなわち、圧縮機CMを起動する前にホットガス弁HVを開放することで、冷凍回路内における冷媒の圧力差によってホットガスが流れて蒸発器内の冷媒温度が上昇し、氷塊の製氷小室14aとの氷結部分をある程度融解させておくことができるからである。なお、図3に示すフローチャートでは、圧縮機CDの起動条件の成立を確認してから製氷室14の温度を確認しているが、保護運転の開始時(主電源34のON時)に製氷室14の温度を確認し、該温度(温度検知手段THの検知温度)を前提として製氷機構10および冷凍回路12の各機構を前述したように制御して初期除氷運転や初動運転に移行させるようにしてもよいことは勿論である。また、主電源34のON時における温度検知手段THの検知温度が除氷完了温度T2以上の場合において、該主電源34のON時に水皿位置検出センサ24が開放位置を検出していれば、保護タイマー36が保護時間を計時したときに前記初動運転に移行するようにすることで、水皿18の不要な運転を省くことができる。   In the automatic ice making machine of the embodiment, based on the ice making chamber temperature during the protection operation, the initial deicing operation is performed while the hot gas valve HV is opened, or the hot gas valve HV is closed and the operation proceeds to the ice making operation. Therefore, when ice blocks are not formed in the ice making chamber 14, the ice making operation can be immediately started, and the load on the compressor CM can be reduced. Further, when ice blocks are formed in the ice making chamber 14, deicing can be performed to prevent generation of ice chips. Further, since the hot gas valve HV is set to open before the water pan 18 reaches the open position during the protection operation, the hot gas valve HV is opened after the water pan 18 reaches the open position. In comparison, the time required for the initial deicing operation after the protection operation can be shortened. That is, by opening the hot gas valve HV before starting the compressor CM, the hot gas flows due to the pressure difference of the refrigerant in the refrigeration circuit, the refrigerant temperature in the evaporator rises, and the ice making chamber 14a of the ice block This is because the frozen portion of the can be melted to some extent. In the flowchart shown in FIG. 3, the temperature of the ice making chamber 14 is confirmed after confirming that the start condition of the compressor CD is satisfied. However, when the protection operation starts (when the main power supply 34 is turned on), the ice making chamber is confirmed. 14 is confirmed, and each mechanism of the ice making mechanism 10 and the refrigeration circuit 12 is controlled as described above on the premise of the temperature (detected temperature of the temperature detecting means TH) to shift to the initial deicing operation and the initial operation. Of course, it may be. Further, when the detection temperature of the temperature detection means TH when the main power supply 34 is ON is equal to or higher than the deicing completion temperature T2, if the water pan position detection sensor 24 detects the open position when the main power supply 34 is ON, When the protection timer 36 measures the protection time, the operation is shifted to the initial operation, so that unnecessary operation of the water tray 18 can be omitted.

ここで、実施例の自動製氷機のように、圧縮機CMを起動する条件として、保護時間の経過と、水皿18が開放位置に到達したことをAND条件としたので、製氷運転に移行する前までに水皿開閉機構22の異常を検知して対応することができる。すなわち、前記内蔵タイマーに設定される水皿開放開始時間を、水皿開閉機構22が正常に作動して水皿18が閉成位置から開放位置に到達した後に保護時間が経過する時間に設定する。そして、保護タイマー36が保護時間を計時した時点(保護時間の経過時点)で、前記水皿位置検出センサ24が水皿18の開放位置を検出していない場合は、開閉モータAMが水皿18を開放位置に向けて移動させる運転を開始(開閉モータAMON)してからリトライ時間(例えば60秒)までは開閉モータAMの運転を継続させ、該リトライ時間が経過するまでに水皿位置検出センサ24が水皿18の開放位置を検出しないときには、リトライ時間の経過後に開閉モータAMの運転を停止、または逆転させるように制御してリトライさせる。   Here, as in the automatic ice making machine of the embodiment, as the conditions for starting the compressor CM, the passage of the protection time and the fact that the water tray 18 has reached the open position are set as the AND conditions, so the operation shifts to the ice making operation. The abnormality of the water tray opening / closing mechanism 22 can be detected and dealt with before. That is, the water dish opening start time set in the built-in timer is set to a time when the protection time elapses after the water dish opening / closing mechanism 22 operates normally and the water dish 18 reaches the open position from the closed position. . When the protection timer 36 measures the protection time (when the protection time has elapsed), if the water pan position detection sensor 24 has not detected the open position of the water pan 18, the open / close motor AM is moved to the water tray 18. The operation of the opening / closing motor AM is continued until the retry time (for example, 60 seconds) from the start of the operation for moving the lens toward the open position (open / close motor AMON), and the water pan position detection sensor until the retry time elapses. When 24 does not detect the open position of the water pan 18, the operation of the open / close motor AM is stopped or reversed after the retry time has elapsed, and is retried.

なお、リトライさせる場合は、水皿位置検出センサ24が水皿18の閉成位置を検出した後に、開閉モータAMを開放位置に向けて下降するように運転制御し、所定時間後に水皿位置検出センサ24が水皿18の開放位置を検出した場合は、通常の運転に移行(初期除氷運転または製氷運転に移行)させる。これに対し、所定時間が経過しても水皿位置検出センサ24が水皿18の開放位置を検出しないときには開閉モータAMの運転を停止して異常の発生を報知するようにする。また、リトライ時において水皿位置検出センサ24が、予め設定した異状復帰時間を経過しても水皿18の閉成位置を検出しない場合は、異常の発生を報知する。   In the case of retrying, after the water pan position detection sensor 24 detects the closed position of the water pan 18, the operation control is performed so that the opening / closing motor AM is lowered toward the open position, and the water pan position is detected after a predetermined time. When the sensor 24 detects the open position of the water pan 18, the operation is shifted to normal operation (transferred to the initial deicing operation or ice making operation). On the other hand, if the water pan position detection sensor 24 does not detect the open position of the water pan 18 even after a predetermined time has elapsed, the operation of the opening / closing motor AM is stopped to notify the occurrence of an abnormality. Further, if the water pan position detection sensor 24 does not detect the closed position of the water pan 18 even after a preset abnormality return time has elapsed during the retry, the occurrence of an abnormality is notified.

〔別実施例について〕
は、別実施例に係る自動製氷機の運転方法のフローチャートを示すものであって、周囲温度の高低に応じて保護運転中に冷却ファンFMを運転するか否かの制御を加えたものである。
[About Example 1 ]
6, there is shown a flow chart of a method of operating an automatic ice making machine according to another embodiment 1, whether the control to operate the cooling fan FM in the protective operation according to the level of the ambient temperature was added der thing was Ru.

にフローチャートに示す如く、主電源34のON(ステップS20)により、制御手段32は、保護運転を開始(ステップS21)すると共に、外気温度検知手段(図示せず)で検知した周囲温度が、設定温度以上であるか否かを判定する(ステップS22)。外気温度検知手段による周囲温度の検知結果が設定温度を下回る場合(ステップS22でNO)は、前述した実施例と同様の制御を行なって保護運転を完了する。すなわち、ステップS24に移行し、圧縮機CMの起動条件(保護時間の経過および水皿位置検出センサ24の開放位置の検出)が成立したか否かを判定し、成立していれば(ステップS24でYES)、ステップS25に移行して保護運転を完了する。また、圧縮機CMの起動条件が成立していなければ(ステップS24でNO)、該条件が成立するのを待って保護運転を完了する。 As shown in the flowchart of FIG. 6 , when the main power supply 34 is turned on (step S20), the control means 32 starts the protection operation (step S21) and the ambient temperature detected by the outside air temperature detection means (not shown) Then, it is determined whether the temperature is equal to or higher than the set temperature (step S22). When the detection result of the ambient temperature by the outside air temperature detection means is lower than the set temperature (NO in step S22), the same control as in the above-described embodiment is performed to complete the protection operation. That is, the process proceeds to step S24, and it is determined whether or not the start condition of the compressor CM (detection of the elapse of the protection time and the opening position of the water pan position detection sensor 24) is satisfied, and if it is satisfied (step S24). YES), the process proceeds to step S25 to complete the protection operation. If the start condition for the compressor CM is not satisfied (NO in step S24), the protection operation is completed after the condition is satisfied.

これに対し、自動製氷機の設置環境が高温域にあって設定温度以上となる場合は、ステップS22が肯定(YES)され、前記冷却ファンFMが駆動される(ステップS23)。これにより、前記凝縮器CD内の冷媒が冷される。また、冷却ファンFMは、自動製氷機の機械室に配置されており、凝縮器CDを空冷する作用の他、該冷却ファンFMで生ずる空気流によって圧縮機CMも空冷されるようになっているので、保護運転が完了して圧縮機CMが起動するまでの間に、冷却ファンFMによって冷媒および圧縮機自体を冷やすことができ、該圧縮機CMの起動時の負荷を軽減し得る。なお、保護運転に際して駆動された冷却ファンFMは、前記圧縮機CMの起動条件の成立によって停止制御される。   On the other hand, when the installation environment of the automatic ice making machine is in the high temperature range and is equal to or higher than the set temperature, step S22 is affirmed (YES), and the cooling fan FM is driven (step S23). Thereby, the refrigerant in the condenser CD is cooled. The cooling fan FM is disposed in the machine room of the automatic ice making machine, and the compressor CM is also cooled by the air flow generated by the cooling fan FM in addition to the function of cooling the condenser CD by air. Therefore, the refrigerant and the compressor itself can be cooled by the cooling fan FM between the completion of the protection operation and the start of the compressor CM, and the load at the start of the compressor CM can be reduced. The cooling fan FM driven during the protection operation is controlled to stop when the start condition for the compressor CM is satisfied.

ここで、別実施例において、保護運転の完了により圧縮機CMを起動する前に、冷却ファンFMを停止すると共にホットガス弁HVを閉成(非通電の状態)とすることで、圧縮機CMの起動時における電源負荷を軽減するようにしてもよい。すなわち、圧縮機CMの起動時の電源負荷を圧縮機CMだけにすることで電圧降下を抑制することができ、圧縮機CMの正常な起動が達成される。なお、別実施例において、周囲温度を検知するのに代えて、凝縮器CDの温度を検出し、凝縮器温度に基づいて冷却ファンFMを運転するか否かの判定を行なうようにしてもよい。 Here, in another embodiment 1 , before starting the compressor CM upon completion of the protection operation, the cooling fan FM is stopped and the hot gas valve HV is closed (non-energized state). You may make it reduce the power load at the time of starting of CM. That is, the voltage drop can be suppressed by setting the power source load at the time of starting the compressor CM only to the compressor CM, and normal starting of the compressor CM is achieved. Note that in another embodiment 1, instead of detecting the ambient temperature, to detect the temperature of the condenser CD, be performed to determine whether or not to operate the cooling fan FM based on condenser temperature Good.

(変更例)
本発明は実施例の構成に限定されず、例えば以下のようにも変更可能である。
(1) 別実施例1の運転方法は、夫々を実施例の運転方法に組合わせたり、単独で組合わせることができる。
(2) 温度検知手段の検知温度が除氷完了温度以上の場合の運転方法において、ホットガス弁の開放と閉成とを繰り返す制御を行なうようにしてもよく、この場合は圧縮機の負荷を軽減し得る。
(3) 電源の投入時に水皿が閉成位置に位置している状態からの運転に際し、停電や異常発生により非通電となった場合は、水皿がどの位置で停止しているか分からない。そこで、主電源の投入時に水皿位置検出センサが閉成位置を検出している場合を除き、主電源の投入時には、水皿を閉成位置に移動するように開閉モータを制御し、水皿位置検出センサが閉成位置を検出した時点から、別実施例1の運転方法を行なうようにすればよい。但し、主電源の投入時における製氷室の温度が除氷完了温度以上であれば、初期除氷運転を行なう必要はないので、水皿位置検出センサが閉成位置や開放位置を検出していない状態であっても、水皿を開放位置に向けて移動するよう開閉モータを制御するようにすればよい。
(4) 実施例では、下方に開放した製氷小室を備えた製氷室に対して下方から水皿が接離する構成であるが、クローズセルタイプの製氷機構であれば、横方向に開放した製氷小室を備えた製氷室に対して横方向から水皿が接離する縦型のものであってもよい。
上記した変更例に限らず、実施形態に記載した構成については、本発明の主旨を逸脱しない範囲でその他の各種構成を採用し得る。
(Change example)
The present invention is not limited to the configuration of the embodiment, and can be modified as follows, for example.
(1) The operation method of another embodiment 1 can be combined with the operation method of the embodiment or can be combined alone.
(2) In the operation method in which the temperature detected by the temperature detecting means is equal to or higher than the deicing completion temperature, the control of repeatedly opening and closing the hot gas valve may be performed. Can be reduced.
(3) Upon operation from a state the water tray when the main power is located at the closed position, when the non-energized by a power failure or abnormal, do not know the water tray is stopped at any position . Therefore, except when the water pan position detection sensor detects the closed position when the main power is turned on, the open / close motor is controlled to move the water tray to the closed position when the main power is turned on. What is necessary is just to make it perform the driving | running method of another Example 1 from the time of a position detection sensor detecting a closed position. However, if the ice making chamber temperature when the main power is turned on is equal to or higher than the deicing completion temperature, it is not necessary to perform the initial deicing operation, so the water pan position detection sensor does not detect the closed position or the open position. Even in the state, the open / close motor may be controlled to move the water tray toward the open position.
(4) In the embodiment, the water tray is configured to contact and separate from below with respect to the ice making chamber provided with the ice making chamber opened downward. However, in the case of a closed cell type ice making mechanism, the ice making opened in the lateral direction. It may be a vertical type in which a water tray comes in contact with or separates from an ice making chamber provided with a small chamber from the lateral direction.
The configuration described in the embodiment is not limited to the above-described modification example, and various other configurations can be adopted without departing from the gist of the present invention.

12 冷凍回路,14 製氷室,14a 製氷小室18 水皿
20 蒸発器,24 水皿位置検出センサ(位置検出手段),CM 圧縮機
HV ホットガス弁,TH 温度検知手
12 refrigeration circuit, 14 Freezer, 14a freezing cells, 18 water tray 20 evaporator, 24 water tray position detecting sensor (position detecting means), CM compressor HV hot gas valve, TH temperature sensing hand stage

Claims (1)

一方に開口する製氷小室(14a)を有する製氷室(14)と、該製氷小室(14a)を閉成する閉成位置と開放する開放位置との間を移動する水皿(18)とを備え、製氷運転時に冷凍回路(12)の圧縮機(CM)から冷媒が前記製氷室(14)に配設した蒸発器(20)に循環供給されると共に閉成位置の水皿(18)から製氷小室(14a)に製氷水を供給して氷塊を生成し、除氷運転時に前記水皿(18)を開放すると共に、前記冷凍回路(12)に設けたホットガス弁(HV)を開放してホットガスを前記蒸発器(20)に供給して離氷するよう構成された自動製氷機において、
自動製氷機の運転開始時に、前記圧縮機(CM)の起動を遅延させる制御、前記水皿(18)を開放する制御、および前記ホットガス弁(HV)を開放する制御を行なう保護運転を実施し、
前記保護運転に際し、前記製氷室(14)の温度を検知する温度検知手段(TH)の検知温度が除氷完了温度(T2)以上の場合は、前記ホットガス弁(HV)を所要時間だけ開放した後に閉じ、前記水皿(18)の開放位置を検出する位置検出手段(24)の検出条件および前記圧縮機(CM)の起動を遅延させる遅延時間の経過条件が満たされたときに、前記圧縮機(CM)を起動すると共に前記水皿(18)を閉成位置に移動して製氷運転に移行し、
前記保護運転に際し、前記温度検知手段(TH)の検知温度が除氷完了温度(T2)より低い場合は、前記ホットガス弁(HV)の開放状態を維持したまま、前記位置検出手段(24)の検出条件および前記遅延時間の経過条件が満たされたときに、前記圧縮機(CM)を起動して除氷運転に移行するようにした
ことを特徴とする自動製氷機の運転方法。
An ice making chamber (14) having an ice making chamber (14a) opened on one side, and a water tray (18) moving between a closed position for closing the ice making chamber (14a) and an open position for opening the ice making chamber (14a). During the ice making operation, the refrigerant is circulated and supplied from the compressor (CM) of the refrigeration circuit (12) to the evaporator (20) disposed in the ice making chamber (14) and from the water tray (18) in the closed position. Ice making water is supplied to the chamber (14a) to generate ice blocks, and during the deicing operation, the water pan (18) is opened, and the hot gas valve (HV) provided in the refrigeration circuit (12) is opened. In an automatic ice making machine configured to supply hot gas to the evaporator (20) for deicing,
At the start of operation of the automatic ice maker, a protective operation is performed in which the start of the compressor (CM) is delayed, the water pan (18) is opened, and the hot gas valve (HV) is opened. And
During the protection operation, when the detection temperature of the temperature detection means (TH) for detecting the temperature of the ice making chamber (14) is equal to or higher than the deicing completion temperature (T2), the hot gas valve (HV) is opened for a required time. And when the detection condition of the position detection means (24) for detecting the open position of the water tray (18) and the elapsed condition of the delay time for delaying the start of the compressor (CM) are satisfied, Start the compressor (CM) and move the water tray (18) to the closed position to move to the ice making operation,
During the protection operation, when the temperature detected by the temperature detection means (TH) is lower than the deicing completion temperature (T2), the position detection means (24) while maintaining the open state of the hot gas valve (HV). The automatic ice maker operating method is characterized in that the compressor (CM) is started to shift to the deicing operation when the detection condition of the delay time and the elapsed condition of the delay time are satisfied.
JP2011221390A 2011-10-05 2011-10-05 How to operate an automatic ice machine Active JP5795930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221390A JP5795930B2 (en) 2011-10-05 2011-10-05 How to operate an automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221390A JP5795930B2 (en) 2011-10-05 2011-10-05 How to operate an automatic ice machine

Publications (2)

Publication Number Publication Date
JP2013083359A JP2013083359A (en) 2013-05-09
JP5795930B2 true JP5795930B2 (en) 2015-10-14

Family

ID=48528734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221390A Active JP5795930B2 (en) 2011-10-05 2011-10-05 How to operate an automatic ice machine

Country Status (1)

Country Link
JP (1) JP5795930B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893533B1 (en) * 2017-09-04 2018-08-30 주식회사 에스앤아이 Ice maker
JP6993274B2 (en) * 2018-03-23 2022-01-13 フクシマガリレイ株式会社 Cell type ice machine
US20240271847A1 (en) * 2022-10-11 2024-08-15 Haier Us Appliance Solutions, Inc. Systems and methods for clear ice making in appliances

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116082U (en) * 1981-01-12 1982-07-19
US5025637A (en) * 1990-04-16 1991-06-25 Hoshizaki Denki Kabushiki Kaisha Automatic ice making machine
JP3573911B2 (en) * 1997-03-31 2004-10-06 三洋電機株式会社 Ice machine control device
JP2003336948A (en) * 2002-05-16 2003-11-28 Hoshizaki Electric Co Ltd Deicing operation method for automatic ice machinery
JP4954684B2 (en) * 2006-11-27 2012-06-20 ホシザキ電機株式会社 How to operate an automatic ice machine
JP5027685B2 (en) * 2008-01-31 2012-09-19 ホシザキ電機株式会社 How to operate a jet ice maker

Also Published As

Publication number Publication date
JP2013083359A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5795930B2 (en) How to operate an automatic ice machine
JP4954684B2 (en) How to operate an automatic ice machine
JP4994087B2 (en) How to operate an automatic ice machine
JP2018105522A (en) Automatic ice maker
JP5052173B2 (en) How to operate an automatic ice machine
JP5052240B2 (en) How to operate an ice machine
JP5027685B2 (en) How to operate a jet ice maker
JP2008064322A (en) Automatic ice making machine
JP4532201B2 (en) How to operate an automatic ice machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP6043497B2 (en) How to operate an automatic ice machine
JP2008057862A (en) Ice making machine
JP2010121802A (en) Method of operating automatic ice-making machine
JP2002098453A (en) Method for dealing with abnormality of automatic ice maker
JP2004293824A (en) Automatic ice making machine
JP3875159B2 (en) How to operate an automatic ice machine
JP5052213B2 (en) How to operate an automatic ice machine
JP3301810B2 (en) Ice machine
JP6993274B2 (en) Cell type ice machine
JP5848081B2 (en) How to operate an automatic ice machine
JP2024054944A (en) Ice making machine
JP2024094043A (en) Ice maker, method for controlling ice maker, and program
JP2018013283A (en) Control method for automatic ice-making machine
JP2009216255A (en) Inverted-cell type ice making machine
JP2006349256A (en) Method for controlling automatic ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140904

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5795930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350