JP2013024435A - Ice making machine - Google Patents

Ice making machine Download PDF

Info

Publication number
JP2013024435A
JP2013024435A JP2011157197A JP2011157197A JP2013024435A JP 2013024435 A JP2013024435 A JP 2013024435A JP 2011157197 A JP2011157197 A JP 2011157197A JP 2011157197 A JP2011157197 A JP 2011157197A JP 2013024435 A JP2013024435 A JP 2013024435A
Authority
JP
Japan
Prior art keywords
water
ice making
cooling
external
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011157197A
Other languages
Japanese (ja)
Inventor
Takehiro Mizoguchi
岳博 溝口
Shuji Kado
修治 嘉戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2011157197A priority Critical patent/JP2013024435A/en
Publication of JP2013024435A publication Critical patent/JP2013024435A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance condensation efficiency of a water-cooled condenser and to perform efficient ice making operation.SOLUTION: A third water feed valve 35 which is opened and closed under the control of control means C is arranged in a third water feed pipe 34 connected to an external water source. Cooling water amount detection means 50 of sending a water amount detection signal to the control means C is arranged at a cooling water tank 45. After ice making operation by an ice making part 21, remaining ice making water W2A remaining in an ice making water tank 26 is collected in the cooling water tank 45, and third water feed valve 35 is controlled to be opened to feed external water from the external water supply to the cooling water tank 45 until the cooling water amount detection means 50 sends out a water amount detection signal. The control means C controls the third water feed valve 35 on the basis of the water amount detection signal from the cooling water amount detection means 50 to control the feed amount of the external water (W1).

Description

この発明は、製氷運転後に発生した残留製氷水を、冷凍装置を構成する水冷凝縮器の冷却水として利用するよう構成した製氷機に関するものである。   The present invention relates to an ice making machine configured to use residual ice making water generated after ice making operation as cooling water of a water-cooled condenser constituting a refrigeration apparatus.

氷塊を製造する自動製氷機として、製氷部において縦向きに配置した2枚の製氷板間に、冷凍装置を構成する蒸発器(蒸発管)を蛇行状に配設して、前記蒸発器に冷媒を循環供給して製氷板を冷却したもとで該製氷板の外面に製氷水を供給することで、該製氷板の外面に氷塊を生成する製氷ユニットを備えた流下式の製氷機が知られている。前記製氷ユニットは、製氷部の下部に製氷水タンクが配設されると共に該製氷部の上部に製氷水供給装置が配設されており、製氷水タンク内に貯留した製氷水をポンプ等により製氷水供給装置に送り、該製氷水供給装置から製氷水を製氷板の外面へ供給するようになっている。そして、冷却された前記製氷板の外面を製氷水が流下する際に、該製氷水の一部が氷結して該外面に付着するようになると共に、氷結しなかった製氷水は前記製氷水タンクに回収されるようになっている。   As an automatic ice making machine for producing ice blocks, an evaporator (evaporation tube) constituting a refrigeration device is arranged in a meandering manner between two ice making plates arranged vertically in an ice making unit, and a refrigerant is supplied to the evaporator. A flow-down type ice maker equipped with an ice making unit that generates ice blocks on the outer surface of the ice making plate by supplying ice making water to the outer surface of the ice making plate while the ice making plate is cooled is known. ing. In the ice making unit, an ice making water tank is arranged at the lower part of the ice making part and an ice making water supply device is arranged at the upper part of the ice making part, and the ice making water stored in the ice making water tank is made by a pump or the like. The ice making water is sent to the water supply device, and the ice making water is supplied from the ice making water supply device to the outer surface of the ice making plate. When the ice making water flows down the outer surface of the cooled ice making plate, a part of the ice making water freezes and adheres to the outer surface, and the ice making water that has not been frozen is the ice making water tank. It has come to be collected.

前記製氷部における製氷板の外面では、製氷水中の純水が氷結するようになる。このため、所要回数の製氷運転を行なった後に氷結せずに前記製氷水タンク内に回収された製氷水(以降「残留製氷水」という)は、不純物の濃度が高くなっていて製氷に適さなくなる。このような製氷に不適切となった残留製氷水は、前記製氷水タンクから排出する。   The pure water in the ice making water freezes on the outer surface of the ice making plate in the ice making section. For this reason, the ice making water collected in the ice making water tank without icing after the required number of ice making operations (hereinafter referred to as “residual ice making water”) is not suitable for ice making due to the high concentration of impurities. . The residual ice making water that is inappropriate for such ice making is discharged from the ice making water tank.

前記残留製氷水は、製氷水として製氷部に供給されていたものであるから十分に冷却されており、該残留製氷水をそのまま製氷機外へ排出することは、エネルギー効率の低下に繋がる。そこで、前記冷凍装置において水冷凝縮器が採用されている場合では、前記製氷水タンクから排出した前記残留製氷水を、別のタンク(以降「冷却水タンク」という)に回収して前記水冷凝縮器へ供給するよう構成して、当該残留製氷水を水冷凝縮器の冷却水に利用した製氷機も実用化されている。このような製氷機は、特許文献1に開示されている。   The residual ice making water is supplied to the ice making unit as ice making water and is sufficiently cooled, and discharging the residual ice making water as it is outside the ice making machine leads to a decrease in energy efficiency. Therefore, in the case where a water-cooled condenser is employed in the refrigeration apparatus, the residual ice-making water discharged from the ice-making water tank is collected in another tank (hereinafter referred to as “cooling water tank”) and the water-cooled condenser is collected. An ice making machine using the residual ice making water as cooling water for a water-cooled condenser has also been put into practical use. Such an ice making machine is disclosed in Patent Document 1.

特開平10−227546号公報JP-A-10-227546

ところで、前記特許文献1に開示の製氷機では、製氷水タンク(水タンク)から冷却水タンク(排水貯留槽)に回収された残留製氷水(製氷残水)を、圧縮機から排出した高温冷媒ガスや外部水源から供給される製氷水と熱交換させることで、凝縮効率が高まる温度に調節するようになっている。しかしながら、特許文献1の構成では、残留製氷水の水温調節は可能であるが、該残留製氷水の水量は調節できない。従って特許文献1の製氷機では、残留製氷水の水量が水冷凝縮器の冷却に必要とされる量に満たない場合に、凝縮効率が高まる温度に該水冷凝縮器を冷却できない問題がある。   By the way, in the ice making machine disclosed in Patent Document 1, the high-temperature refrigerant discharged from the compressor is the residual ice making water (ice making residual water) recovered from the ice making water tank (water tank) to the cooling water tank (drainage storage tank). Heat exchange with gas or ice-making water supplied from an external water source adjusts the temperature to increase the condensation efficiency. However, in the configuration of Patent Document 1, the temperature of the residual ice making water can be adjusted, but the amount of the residual ice making water cannot be adjusted. Therefore, in the ice making machine of Patent Document 1, when the amount of residual ice making water is less than the amount required for cooling the water-cooled condenser, there is a problem that the water-cooled condenser cannot be cooled to a temperature at which the condensation efficiency is increased.

本発明は、従来の製氷機に内在する前記問題に鑑み、これを好適に解決するべく提案されたものであって、水冷凝縮器の凝縮効率を高め得ると共に効率的な製氷運転を行なうことができる製氷機を提供する。   The present invention has been proposed in view of the above-mentioned problems inherent in the conventional ice making machine, and it is proposed to suitably solve this problem, and it is possible to increase the condensation efficiency of the water-cooled condenser and to perform an efficient ice making operation. An ice machine that can be used is provided.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明では、水冷凝縮器を備え、氷塊を生成する製氷部を冷却する冷凍装置と、製氷水を貯留すると共に前記製氷部に供給して氷結しなかった製氷水を回収する製氷水タンクと、製氷運転後に前記製氷水タンクに残留した残留製氷水を回収して貯留する冷却水タンクとを備え、前記冷却水タンクに貯留された前記残留製氷水を利用して前記水冷凝縮器を冷却するよう構成した製氷機において、
外部水源に接続され、該外部水源からの外部水を前記冷却水タンクに供給する外部給水手段と、
前記外部給水手段を制御して前記冷却水タンクへの外部水の供給量を調節し、前記残留製氷水に前記外部水を混合することで、前記水冷凝縮器を冷却する所要温度の凝縮器冷却水を生成する制御手段とを備えることを要旨とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, in the invention according to claim 1 of the present application, a water-cooled condenser, a refrigeration apparatus that cools an ice making part that generates ice blocks, and ice-making water are stored. An ice making water tank that collects ice making water that has been supplied to the ice making unit and that has not been frozen; and a cooling water tank that collects and stores residual ice making water remaining in the ice making water tank after the ice making operation. In an ice making machine configured to cool the water-cooled condenser using the residual ice making water stored in a tank,
An external water supply means connected to an external water source and supplying external water from the external water source to the cooling water tank;
Controlling the external water supply means to adjust the supply amount of external water to the cooling water tank, and mixing the external water with the residual ice-making water, thereby cooling the water-cooled condenser at a required temperature. And a control means for generating water.

従って、請求項1に係る発明によれば、水冷凝縮器を冷却する凝縮器冷却水を、製氷運転の終了後に製氷水タンクに残留する残留製氷水と外部水源からの外部水とを混合して生成するようにした。従って凝縮器冷却水は、冷媒の凝縮効率が最も良くなる温度に水冷凝縮器を冷却するのに適した水温に生成することができ、製氷運転時における冷凍装置の作動効率を高めることができるので製氷効率を向上させ得る。また、凝縮器冷却水として残留製氷水を利用するので、水冷凝縮器を冷却するための外部水の給水量を減らすことができるから、製氷コストを抑えることもできる。   Therefore, according to the first aspect of the present invention, the condenser cooling water for cooling the water-cooled condenser is obtained by mixing the remaining ice-making water remaining in the ice-making water tank after the completion of the ice making operation and the external water from the external water source. Generated. Therefore, the condenser cooling water can be generated at a water temperature suitable for cooling the water-cooled condenser to a temperature at which the refrigerant condensing efficiency is the best, and the operating efficiency of the refrigeration apparatus during ice making operation can be increased. Ice making efficiency can be improved. Further, since the residual ice making water is used as the condenser cooling water, the amount of external water supplied for cooling the water-cooled condenser can be reduced, so that the ice making cost can be suppressed.

本願の請求項2に係る発明では、前記冷却水タンクに貯留された前記凝縮器冷却水の水量を検知する水量検知手段を備え、
前記水量検知手段からの水量検知信号に基づき、前記制御手段が前記外部給水手段を制御して前記外部水の給水量を調節するよう構成したことを要旨とする。
従って、請求項2に係る発明によれば、冷却水タンクに貯留される凝縮器冷却水の水量を検知しながら外部給水手段の制御を行なうので、水冷凝縮器を冷却するために必要な水量の凝縮器冷却水を生成することができる。
In the invention which concerns on Claim 2 of this application, It is provided with the water quantity detection means which detects the water quantity of the condenser cooling water stored in the cooling water tank,
The gist is that the control means controls the external water supply means to adjust the supply amount of the external water based on the water quantity detection signal from the water quantity detection means.
Therefore, according to the second aspect of the invention, since the external water supply means is controlled while detecting the amount of condenser cooling water stored in the cooling water tank, the amount of water necessary for cooling the water-cooled condenser is reduced. Condenser cooling water can be generated.

本願の請求項3に係る発明では、前記冷却水タンクに貯留された前記凝縮器冷却水の水温を検知する水温検知手段を備え、
前記水温検知手段からの水温検知信号に基づき、前記制御手段が前記外部給水手段を制御して前記外部水の給水量を調節するよう構成したことを要旨とする。
従って、請求項3に係る発明によれば、冷却水タンクに貯留される凝縮器冷却水の水温を検知しながら外部給水手段の制御を行なうので、水冷凝縮器を冷却するための最適な水温の凝縮器冷却水を生成することができる。
In the invention which concerns on Claim 3 of this application, It comprises the water temperature detection means which detects the water temperature of the condenser cooling water stored in the cooling water tank,
Based on a water temperature detection signal from the water temperature detection means, the control means controls the external water supply means to adjust the water supply amount of the external water.
Therefore, according to the third aspect of the invention, since the external water supply means is controlled while detecting the water temperature of the condenser cooling water stored in the cooling water tank, the optimum water temperature for cooling the water-cooled condenser is reduced. Condenser cooling water can be generated.

本願の請求項4に係る発明では、前記外部給水手段による前記外部水の給水開始時点からの時間を計測する計時手段を備え、
前記外部水の給水開始時点から予め設定した時間を前記計時手段が計測したら、前記制御手段が前記外部給水手段を制御して前記外部水の給水を停止するよう構成したことを要旨とする。
従って、請求項4に係る発明によれば、計時手段による計測によって外部給水手段を制御するので、冷却水タンクに給水される外部水の水量を適切に調節できる。
In the invention according to claim 4 of the present application, comprising a time measuring means for measuring the time from the start of water supply of the external water by the external water supply means,
The gist is that the control means controls the external water supply means to stop the supply of the external water when the time measuring means measures a preset time from the start of water supply of the external water.
Therefore, according to the fourth aspect of the invention, since the external water supply means is controlled by the measurement by the time measuring means, the amount of external water supplied to the cooling water tank can be adjusted appropriately.

本発明に係る製氷機によれば、冷凍装置を構成する水冷凝縮器用の冷却水として、製氷運転後に残留した残留製氷水および外部水源から供給される外部水を混合した凝縮器冷却水を使用するので、水冷凝縮器の凝縮効率を高め得ると共に外部水の使用量を抑えて効率的な製氷運転を行なうことができる。   According to the ice making machine according to the present invention, as the cooling water for the water-cooled condenser constituting the refrigeration apparatus, the condenser cooling water obtained by mixing the residual ice-making water remaining after the ice making operation and the external water supplied from the external water source is used. Therefore, it is possible to increase the condensation efficiency of the water-cooled condenser and to reduce the amount of external water used, and to perform an efficient ice making operation.

第1実施例の製氷機の構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of the ice making machine of 1st Example. 第1実施例の製氷機における製氷ユニットを示す側面図である。It is a side view which shows the ice making unit in the ice making machine of 1st Example. 第1実施例の製氷機の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the ice making machine of 1st Example. 第1実施例の製氷機の運転態様を示すタイミングチャートである。It is a timing chart which shows the operation mode of the ice making machine of the 1st example. 第1実施例の製氷機における冷却水タンクを示す説明図であって、(a)は、残留製氷水を冷却水タンクに回収する状態を示し、(b)は、外部水源からの外部水を冷却水タンクに供給して、残留製氷水と外部水とを混合して凝縮器冷却水を生成する状態を示している。It is explanatory drawing which shows the cooling water tank in the ice making machine of 1st Example, Comprising: (a) shows the state which collect | recovers residual ice making water in a cooling water tank, (b) shows the external water from an external water source. The state is shown in which the cooling water tank is supplied and the residual ice making water and external water are mixed to produce condenser cooling water. 第2実施例の製氷機の構成を概略的に示す説明図である。It is explanatory drawing which shows schematically the structure of the ice making machine of 2nd Example. 第2実施例の製氷機の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the ice making machine of 2nd Example. 第3実施例の製氷機の構成を概略的に示すブロック図である。It is a block diagram which shows roughly the structure of the ice making machine of 3rd Example. 水冷凝縮器および空冷凝縮器を備えた製氷機の構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of the ice making machine provided with the water cooling condenser and the air cooling condenser.

次に、本発明に係る製氷機について、好適な実施例を挙げ、添付図面を参照しながら、以下に説明する。   Next, preferred embodiments of the ice making machine according to the present invention will be described below with reference to the accompanying drawings.

(第1実施例)
図1は、第1実施例の製氷機Mの構成を概略的に示す説明図である。第1実施例の製氷機Mは、機内上部に製氷室10が画成されると共に、該製氷室10の下部(機内下部)に貯氷室11が画成されており、製氷室10の底部と貯氷室11の上部とがシュート部12で連通している。また、機内上部には、製氷室10に隣接して機械室13が画成されている。前記製氷室10には、複数(実施例では2つ)の製氷部21を備えた製氷ユニット20が配設され、前記機械室13には、冷凍装置60を構成する圧縮機61、水冷凝縮器62および膨張弁63等が収容されている。また、前記製氷ユニット20の各製氷部21には、前記冷凍装置60を構成する蒸発器(蒸発管)64が配設されている。
(First embodiment)
FIG. 1 is an explanatory diagram schematically showing the configuration of the ice making machine M of the first embodiment. In the ice making machine M of the first embodiment, an ice making chamber 10 is defined at the upper part of the machine, and an ice storage chamber 11 is defined at the lower part (lower part of the machine) of the ice making room. The chute unit 12 communicates with the upper part of the ice storage chamber 11. A machine room 13 is defined adjacent to the ice making room 10 in the upper part of the machine. The ice making chamber 10 is provided with an ice making unit 20 having a plurality (two in the embodiment) of ice making units 21, and the machine room 13 includes a compressor 61 constituting a refrigeration apparatus 60, a water-cooled condenser. 62, an expansion valve 63, and the like are accommodated. Each ice making unit 21 of the ice making unit 20 is provided with an evaporator (evaporating tube) 64 constituting the refrigeration apparatus 60.

前記製氷ユニット20の各製氷部21は、図1および図2に示すように、縦向きに対向して配置した2枚の製氷板22,22を備え、各製氷部21の両製氷板22,22間には、蛇行状に形成された前記蒸発器64が、両製氷板22,22の裏面22Bに接触した状態で配設されている。各製氷部21の上側には、各製氷板22の製氷面である表面22Aへ製氷水W2を噴出する製氷水供給装置24と、各製氷板22の裏面22B側へ除氷水を噴出する除氷水供給装置25とが、各製氷板22の上端に沿って延在するように配設されている。各製氷部21の下側には、製氷水W2を貯留するための製氷水タンク26が配設されている。各製氷部21の下部と製氷水タンク26の上部との間には、簀子状に形成された案内部材27が配設されている。この案内部材27は、各製氷板22から離脱して落下した氷塊ICを前記シュート部12へ案内すると共に、該製氷板22から流下した製氷水W2や除氷水を製氷水タンク26へ通出するようになっている。   As shown in FIGS. 1 and 2, each ice making unit 21 of the ice making unit 20 includes two ice making plates 22, 22 arranged facing each other vertically, and both ice making plates 22, 22 of each ice making unit 21 are provided. Between 22, the evaporator 64 formed in a meandering manner is disposed in contact with the back surfaces 22 </ b> B of both ice making plates 22 and 22. Above each ice making section 21, an ice making water supply device 24 that jets ice making water W 2 to the surface 22 A that is the ice making surface of each ice making plate 22, and deicing water that jets deicing water to the back surface 22 B side of each ice making plate 22. A supply device 25 is disposed so as to extend along the upper end of each ice making plate 22. An ice making water tank 26 for storing ice making water W2 is disposed below each ice making portion 21. Between the lower part of each ice making part 21 and the upper part of the ice making water tank 26, the guide member 27 formed in the shape of a lever is arrange | positioned. The guide member 27 guides the ice blocks IC that have fallen off from the ice making plates 22 to the chute unit 12 and also passes the ice making water W2 and the deicing water flowing down from the ice making plates 22 to the ice making water tank 26. It is like that.

前記除氷水供給装置25には、図示省略した多数の噴出孔が形成されており、図1および図2に示すように、水道水供給部等の外部水源に接続された第1給水管30が連結されている。この第1給水管30には、制御手段C(図3参照)により開閉制御される第1給水バルブ31が配設されている。従って、前記制御手段Cにより前記第1給水バルブ31を開放制御することで、外部水源からの加圧された外部水(水道水)W1が除氷水供給装置25に給水され、該外部水W1は、除氷水として該除氷水供給装置25の各噴出孔から製氷部21における各製氷板22,22の裏面22Bへ噴出する。ここで、前記除氷水は製氷運転により0℃以下に冷却された製氷板22より温度が高く、該製氷板22は該除氷水が流下することで適宜温められるから、該製氷板22の表面22Aに生成された氷塊ICは、該製氷板22の表面22Aとの接触部分が融解して該表面22Aから滑落する。なお、除氷水供給装置25から噴出して製氷板22の裏面22Bを流下した除氷水は、前記製氷水タンク26に落下して次回の製氷運転時の製氷水W2となる。   The deicing water supply device 25 is formed with a large number of ejection holes (not shown). As shown in FIGS. 1 and 2, a first water supply pipe 30 connected to an external water source such as a tap water supply unit is provided. It is connected. The first water supply pipe 30 is provided with a first water supply valve 31 that is controlled to be opened and closed by a control means C (see FIG. 3). Accordingly, by controlling the opening of the first water supply valve 31 by the control means C, pressurized external water (tap water) W1 from an external water source is supplied to the deicing water supply device 25, and the external water W1 is The deicing water is ejected from the ejection holes of the deicing water supply device 25 to the back surfaces 22B of the ice making plates 22 and 22 in the ice making unit 21. Here, the deicing water has a higher temperature than the ice making plate 22 cooled to 0 ° C. or less by the ice making operation, and the ice making plate 22 is appropriately warmed by flowing down the deicing water. The ice lump IC generated in this step melts at the contact portion with the surface 22A of the ice making plate 22 and slides down from the surface 22A. It should be noted that the deicing water ejected from the deicing water supply device 25 and flowing down the back surface 22B of the ice making plate 22 falls into the ice making water tank 26 and becomes ice making water W2 in the next ice making operation.

第1実施例の製氷機Mは、図1に示すように、外部水源に接続されて前記製氷水タンク26の上方開口に出口側を臨ませた第2給水管32を備えている。この第2給水管32には、前記制御手段Cにより開閉制御される第2給水バルブ33が配設されている。これにより、図4に示すように、製氷運転中の適時に制御手段Cにより前記第2給水バルブ33を開放制御することで、外部水源からの加圧された外部水W1が、前記製氷部21を経ずに前記製氷水タンク26へ直接給水される。   As shown in FIG. 1, the ice making machine M according to the first embodiment includes a second water supply pipe 32 that is connected to an external water source and has an outlet side facing the upper opening of the ice making water tank 26. The second water supply pipe 32 is provided with a second water supply valve 33 that is controlled to be opened and closed by the control means C. As a result, as shown in FIG. 4, when the second water supply valve 33 is controlled to be opened by the control means C at an appropriate time during the ice making operation, the pressurized external water W1 from the external water source is supplied to the ice making unit 21. Water is directly supplied to the ice making water tank 26 without passing through the above.

前記製氷水供給装置24には、図示省略した多数の噴出孔が形成されており、図1および図2に示すように、第1送水管36を介して前記製氷水タンク26と接続されている。前記第1送水管36には、前記制御手段Cにより作動制御される第1送水ポンプ37が配設されている。従って、前記制御手段Cにより前記第1送水ポンプ37を作動させることで、製氷水タンク26に貯留された製氷水W2が製氷水供給装置24に給水され、該製氷水W2は、該製氷水供給装置24の各噴出孔から製氷部21における各製氷板22,22の表面22Aへ噴出する。前記製氷水W2は、0℃以下に冷却された製氷板22の表面22Aを流下する間にその一部が該表面22Aに氷結して付着するようになり、製氷運転の進行に伴って製氷水タンク26内の製氷水W2の貯留量が徐々に減少する。なお、各製氷板22,22の表面22Aで氷結せずに流下した製氷水W2は、前記製氷水タンク26に落下した後に、前記第1送水ポンプ37により再び製氷水供給装置24へ給水される。   The ice making water supply device 24 is formed with a large number of ejection holes (not shown), and is connected to the ice making water tank 26 via a first water pipe 36 as shown in FIGS. . The first water supply pipe 36 is provided with a first water supply pump 37 whose operation is controlled by the control means C. Therefore, by operating the first water pump 37 by the control means C, the ice making water W2 stored in the ice making water tank 26 is supplied to the ice making water supply device 24, and the ice making water W2 is supplied to the ice making water supply. The ice is ejected from the ejection holes of the device 24 to the surfaces 22A of the ice making plates 22 and 22 in the ice making unit 21. A part of the ice making water W2 freezes and adheres to the surface 22A while flowing down the surface 22A of the ice making plate 22 cooled to 0 ° C. or less. The amount of ice-making water W2 stored in the tank 26 gradually decreases. The ice making water W2 that has flowed down without being frozen on the surfaces 22A of the ice making plates 22 and 22 falls into the ice making water tank 26 and then is supplied again to the ice making water supply device 24 by the first water pump 37. .

前記製氷水タンク26は、前記製氷ユニット20における各製氷部21の製氷板22,22に、1回の製氷運転において規定数および規定形状・サイズの氷塊ICを生成するのに必要な量の製氷水W2を貯留し得るバケット状に形成されている。この製氷水タンク26には、図1および図3に示すように、該製氷水タンク26に貯留された製氷水W2の水量を検知する製氷水検知手段38を配設されている。この製氷水検知手段38は、例えばフロートスイッチであって、製氷運転前において規定量の製氷水W2が製氷水タンク26に貯留された場合に該製氷水W2を検知する位置に配設された第1製氷水検知スイッチ39と、前記製氷ユニット20の各製氷部21に規定の氷塊ICが生成された状態において製氷水タンク26内の製氷水W2を検知しなくなる位置に配設された第2製氷水検知スイッチ40とを備えている。すなわち第1実施例の製氷機Mは、前記製氷水検知手段38の第2製氷水検知スイッチ40が製氷水W2を検知しなくなるまで該製氷水W2が減少すると、製氷ユニット20の各製氷部21に規定の氷塊ICが生成されたと判断して製氷運転から除氷運転に切り替わるように構成されている。また、製氷水タンク26にはオーバーフローパイプ41が形成されており、前記第1製氷水検知スイッチ39が製氷水W2を検知した状態から更に製氷水タンク26に給水された製氷水W2を、該オーバーフローパイプ41を介して排出するよう構成されている。   The ice making water tank 26 is an amount of ice making necessary for generating ice blocks IC of a specified number, shape and size in one ice making operation on the ice making plates 22 and 22 of each ice making unit 21 in the ice making unit 20. It is formed in a bucket shape that can store water W2. As shown in FIGS. 1 and 3, the ice making water tank 26 is provided with ice making water detecting means 38 for detecting the amount of ice making water W2 stored in the ice making water tank 26. The ice making water detection means 38 is, for example, a float switch, and is disposed at a position where the ice making water W2 is detected when a predetermined amount of ice making water W2 is stored in the ice making water tank 26 before the ice making operation. 1 ice making water detection switch 39 and the 2nd ice making arranged in the position where ice making water W2 in ice making water tank 26 is no longer detected in the state where the specified ice block IC was generated in each ice making part 21 of ice making unit 20 The water detection switch 40 is provided. That is, in the ice making machine M of the first embodiment, when the ice making water W2 decreases until the second ice making water detection switch 40 of the ice making water detecting means 38 does not detect the ice making water W2, each ice making unit 21 of the ice making unit 20 is reduced. Therefore, it is determined that the specified ice block IC has been generated, and the ice making operation is switched to the deicing operation. In addition, an overflow pipe 41 is formed in the ice making water tank 26, and the ice making water W2 supplied to the ice making water tank 26 from the state in which the first ice making water detection switch 39 detects the ice making water W2 is further overflowed. It is configured to discharge through the pipe 41.

前記冷凍装置60は、図1に示すように、圧縮機61、水冷凝縮器62、膨張弁63および前記蒸発器64が冷媒管65を介して順次連結されて閉回路をなし、内部に冷媒が循環するよう構成されている。また冷凍装置60は、圧縮機61の出口側と前記各蒸発器64の入口側とを直接接続するバイパス管66を備えており、このバイパス管66の中途にホットガス弁67が設けられている。このような冷凍装置60は、製氷運転に際して前記ホットガス弁67を閉成することで、圧縮機61で圧縮して気化させた冷媒を、水冷凝縮器62で凝縮液化し、各膨張弁63で減圧させた後、各蒸発器64で膨張、蒸発させることで該蒸発器64を冷却するようになり、前記製氷板22,22の表面22Aを氷点下まで冷却させる。また冷凍装置60は、除氷運転に際して前記ホットガス弁67を開放することで、圧縮機61で圧縮して気化させた高温の冷媒(ホットガス)を、前記バイパス管66を介して前記蒸発器64へ供給することで該蒸発器64を加熱するようになり、該製氷板22,22の表面22Aを温める。   As shown in FIG. 1, the refrigeration apparatus 60 includes a compressor 61, a water-cooled condenser 62, an expansion valve 63, and the evaporator 64 that are sequentially connected via a refrigerant pipe 65 to form a closed circuit. It is configured to circulate. The refrigeration apparatus 60 includes a bypass pipe 66 that directly connects the outlet side of the compressor 61 and the inlet side of each evaporator 64, and a hot gas valve 67 is provided in the middle of the bypass pipe 66. . Such a refrigeration apparatus 60 closes the hot gas valve 67 during the ice making operation so that the refrigerant compressed and vaporized by the compressor 61 is condensed and liquefied by the water-cooled condenser 62. After the pressure is reduced, each evaporator 64 expands and evaporates to cool the evaporator 64, thereby cooling the surfaces 22A of the ice making plates 22 and 22 to below the freezing point. Further, the refrigeration apparatus 60 opens the hot gas valve 67 during the deicing operation, so that the high-temperature refrigerant (hot gas) compressed and vaporized by the compressor 61 is passed through the bypass pipe 66 to the evaporator. By supplying to 64, the evaporator 64 is heated, and the surface 22A of the ice making plates 22, 22 is warmed.

第1実施例の製氷機Mは、図1に示すように、前記水冷凝縮器62を冷却する凝縮器冷却水W3を貯留する冷却水タンク45を備えている。そして、前記第1送水管36において前記第1送水ポンプ37の下流側から分岐した第1排水管46が、その出口側を前記冷却水タンク45に臨ませた状態で配設されている。前記第1排水管46には、前記制御手段Cにより開閉制御される第1排水バルブ47が配設されている。従って、前記第1排水バルブ47を開放制御すると共に前記第1送水ポンプ37を作動することで、製氷水タンク26内に貯留されている製氷水W2は、製氷水供給装置24側へ送水されずに、第1排水管46側へ送水されて前記冷却水タンク45へ排出するようになっている。従って、製氷運転実行後の除氷運転において、不純物を含んで製氷に不適切となった製氷水(以降「残留製氷水W2A」という)が製氷水タンク26内に残留する場合に、この残留製氷水W2Aを、前記冷却水タンク45に排出して前記水冷凝縮器62を冷却する凝縮器冷却水W3として利用するようになっている。   As shown in FIG. 1, the ice making machine M of the first embodiment includes a cooling water tank 45 that stores condenser cooling water W3 for cooling the water-cooled condenser 62. A first drain pipe 46 branched from the downstream side of the first water pump 37 in the first water pipe 36 is disposed with its outlet side facing the cooling water tank 45. The first drain pipe 46 is provided with a first drain valve 47 that is controlled to be opened and closed by the control means C. Accordingly, by controlling the opening of the first drain valve 47 and operating the first water pump 37, the ice making water W2 stored in the ice making water tank 26 is not supplied to the ice making water supply device 24 side. In addition, the water is fed to the first drain pipe 46 side and discharged to the cooling water tank 45. Therefore, in the deicing operation after the execution of the ice making operation, when the ice making water that contains impurities and becomes inappropriate for ice making (hereinafter referred to as “residual ice making water W2A”) remains in the ice making water tank 26, this residual ice making water The water W2A is discharged to the cooling water tank 45 and used as condenser cooling water W3 for cooling the water-cooled condenser 62.

また、図1に示すように、前記製氷水タンク26のオーバーフローパイプ41に接続された第2排水管48が前記第1排水管46の中途に接続されており、製氷水W2の給水中や製氷運転中に製氷水タンク26からオーバーフローした製氷水W2を、該第2排水管48を介して前記冷却水タンク45へ排出するようになっている。   Further, as shown in FIG. 1, a second drain pipe 48 connected to the overflow pipe 41 of the ice making water tank 26 is connected in the middle of the first drain pipe 46 to supply water for ice making water W2 or ice making. The ice making water W2 overflowed from the ice making water tank 26 during operation is discharged to the cooling water tank 45 through the second drain pipe 48.

更に、第1実施例の製氷機Mは、図1に示すように、外部水源に接続されて前記冷却水タンク45の上方開口に出口側を臨ませた第3給水管34を備えている。この第3給水管34には、前記制御手段Cにより開閉制御されて前記外部給水手段としての第3給水バルブ35が配設されている。これにより図4に示すように、除氷運転の後半に前記制御手段Cにより前記第3給水バルブ35を開放制御することで、外部水源からの加圧された外部水W1を、第3給水管34を介して前記冷却水タンク45へ給水して、該外部水W1を水冷凝縮器62の凝縮器冷却水W3として使用するようになっている。   Further, as shown in FIG. 1, the ice making machine M of the first embodiment includes a third water supply pipe 34 that is connected to an external water source and has an outlet side facing the upper opening of the cooling water tank 45. The third water supply pipe 34 is provided with a third water supply valve 35 that is controlled to open and close by the control means C and serves as the external water supply means. As a result, as shown in FIG. 4, the third water supply valve 35 is controlled to be opened by the control means C in the latter half of the deicing operation, whereby the pressurized external water W1 from the external water source is supplied to the third water supply pipe. Water is supplied to the cooling water tank 45 through 34 and the external water W1 is used as the condenser cooling water W3 of the water-cooled condenser 62.

前記冷却水タンク45には、図1および図3に示すように、該冷却水タンク45に貯留された凝縮器冷却水W3の水量を検知する冷却水量検知手段(水量検知手段)50が配設されている。この冷却水量検知手段50は、例えばフロートスイッチであって凝縮器冷却水W3の水量を検知して前記制御手段Cへ水量検知信号を送出するもので、製氷運転前において規定量の凝縮器冷却水W3が冷却水タンク45に貯留された場合に該凝縮器冷却水W3を検知する位置に配設された第1冷却水検知スイッチ51と、冷却水タンク45内の凝縮器冷却水W3の有無を検知する第2冷却水検知スイッチ52とを備えている。前記第1冷却水検知スイッチ51は、1回の製氷運転に際して前記水冷凝縮器62を冷却するのに必要とされる凝縮器冷却水W3が冷却水タンク45に貯留された場合に、検知状態(ON)となって検知信号を送出するように設定されている。   As shown in FIGS. 1 and 3, the cooling water tank 45 is provided with a cooling water amount detecting means (water amount detecting means) 50 for detecting the amount of condenser cooling water W3 stored in the cooling water tank 45. Has been. The cooling water amount detection means 50 is, for example, a float switch that detects the water amount of the condenser cooling water W3 and sends a water amount detection signal to the control means C. A predetermined amount of condenser cooling water is supplied before the ice making operation. When W3 is stored in the cooling water tank 45, the first cooling water detection switch 51 disposed at a position for detecting the condenser cooling water W3 and the presence / absence of the condenser cooling water W3 in the cooling water tank 45 are determined. And a second cooling water detection switch 52 for detection. The first cooling water detection switch 51 is detected when the condenser cooling water W3 required for cooling the water-cooled condenser 62 during one ice making operation is stored in the cooling water tank 45. ON) and set to send a detection signal.

すなわち第1実施例の製氷機Mでは、製氷水タンク26から排出された残留製氷水W2Aだけでは製氷運転中に水冷凝縮器62を冷却するのに必要な水量を確保できないため、該残留製氷水W2Aだけを冷却水タンク45に貯留しても第1冷却水検知スイッチ51は検知状態とならない。このため、残留製氷水W2Aが冷却水タンク45に排出された後に、前記第1給水バルブ31の開放制御により第1給水管30を介して製氷水タンク26内に規定量以上に供給された外部水W1を、オーバーフローパイプ41を介して冷却水タンク45に回収したり、前記第3給水バルブ35の開放制御により第3給水管34を介して外部水W1を該冷却水タンク45に給水して、前記第1冷却水検知スイッチ51が検知状態となることで、残留製氷水W2Aに外部水W1を混合して必要とされる水量の凝縮器冷却水W3を確保するように構成されている。   That is, in the ice making machine M of the first embodiment, the residual ice making water W2A discharged from the ice making water tank 26 alone cannot secure the amount of water necessary for cooling the water-cooled condenser 62 during the ice making operation. Even if only W2A is stored in the cooling water tank 45, the first cooling water detection switch 51 is not in the detection state. For this reason, after the remaining ice making water W2A is discharged to the cooling water tank 45, the external water supplied to the ice making water tank 26 beyond the specified amount through the first water supply pipe 30 by the opening control of the first water supply valve 31. The water W1 is collected in the cooling water tank 45 through the overflow pipe 41, or the external water W1 is supplied to the cooling water tank 45 through the third water supply pipe 34 by opening control of the third water supply valve 35. When the first cooling water detection switch 51 is in the detection state, the condenser water W3 having the required amount of water is ensured by mixing the external water W1 with the residual ice-making water W2A.

なお、第1実施例の製氷機Mでは、前記外部水W1と前記残留製氷水W2Aとの混合比率が概ね1:1の割合となるように設定されており、よって該残留製氷水W2Aは外部水W1により約2倍に希釈されることになる。ここで、前記製氷水タンク26から前記冷却水タンク45に排出された残留製氷水W2Aは、直前に実施された製氷運転において製氷水W2として製氷部21に供給されていたものであるから、該冷却水タンク45に貯留された時点で0〜5℃程度に冷却されている。一方、前記第3給水管34を介して外部水源から冷却水タンク45へ供給される外部水W1は、季節によって多少の変動はあるが概ね5〜25℃の範囲内となっている。従って、前記残留製氷水W2Aと外部水W1とを混合して生成された凝縮器冷却水W3は、その水温が10℃前後となる。   In the ice making machine M according to the first embodiment, the mixing ratio of the external water W1 and the residual ice making water W2A is set to a ratio of approximately 1: 1. Therefore, the residual ice making water W2A is external. It will be diluted about twice with water W1. Here, since the residual ice making water W2A discharged from the ice making water tank 26 to the cooling water tank 45 was supplied to the ice making unit 21 as the ice making water W2 in the ice making operation performed immediately before, When stored in the cooling water tank 45, it is cooled to about 0 to 5 ° C. On the other hand, the external water W1 supplied from the external water source to the cooling water tank 45 via the third water supply pipe 34 is in the range of approximately 5 to 25 ° C., although there are some fluctuations depending on the season. Accordingly, the condenser cooling water W3 generated by mixing the residual ice making water W2A and the external water W1 has a water temperature of about 10 ° C.

前記水冷凝縮器62は、10℃程度の水温の凝縮器冷却水W3で冷却する場合に凝縮効率が最も高く、10℃以下の水温の凝縮器冷却水W3で冷却しても凝縮効率の向上は僅少である。従って第1実施例の製氷機Mでは、外部水W1と残留製氷水W2Aとを1:1の割合で混合して生成された凝縮器冷却水W3が、水冷凝縮器62の凝縮効率が最も高まる水温の状態で該水冷凝縮器62に供給される。   When the water-cooled condenser 62 is cooled by the condenser cooling water W3 having a water temperature of about 10 ° C., the condensation efficiency is the highest. Even if the water-cooled condenser 62 is cooled by the condenser cooling water W3 having a water temperature of 10 ° C. or less, the condensation efficiency is improved. It is scarce. Therefore, in the ice making machine M of the first embodiment, the condenser cooling water W3 generated by mixing the external water W1 and the residual ice making water W2A at a ratio of 1: 1 has the highest condensation efficiency of the water-cooled condenser 62. The water-cooled condenser 62 is supplied in a state of water temperature.

前記冷却水タンク45は、図1に示すように、第2送水管54を介して前記水冷凝縮器62と接続されている。前記第2送水管54には、前記制御手段Cにより作動制御される第2送水ポンプ55が配設されている。従って、製氷運転に際して前記第2送水ポンプ55を作動させることで、冷却水タンク45で生成して貯留された凝縮器冷却水W3が水冷凝縮器62に給水され、該凝縮器冷却水W3で該水冷凝縮器62を冷却することで前記冷凍装置60の冷媒の凝縮を好適に行なうことができる。   As shown in FIG. 1, the cooling water tank 45 is connected to the water-cooled condenser 62 through a second water pipe 54. The second water supply pipe 54 is provided with a second water supply pump 55 whose operation is controlled by the control means C. Therefore, by operating the second water pump 55 during the ice making operation, the condenser cooling water W3 generated and stored in the cooling water tank 45 is supplied to the water-cooled condenser 62, and the condenser cooling water W3 By cooling the water-cooled condenser 62, the refrigerant of the refrigeration apparatus 60 can be suitably condensed.

また前記水冷凝縮器62には、図1に示すように、該水冷凝縮器62内に配設された冷却管62Aに接続された第3排水管57が配設されている。この第3排水管57には、水冷凝縮器62に供給される前記凝縮器冷却水W3の水温に応じて絞り量の調節が自動的に行なわれる絞り弁58が配設され、凝縮器冷却水W3の流量を調節し得るようになっている。すなわち前記絞り弁58は、凝縮器冷却水W3の温度が低いほど絞り量を大きく(閉方向に調節)して該凝縮器冷却水W3の給水過剰による水冷凝縮器62の過冷却を防止し、凝縮器冷却水W3の温度が高くなると絞り量を小さく(開方向に調節)して該凝縮器冷却水W3の給水量を増加させて水冷凝縮器62の温度上昇を防止するようになっている。従って、前記第2送水ポンプ55で凝縮器冷却水W3を圧送すると共に前記絞り弁58で凝縮器冷却水W3の流量を調節することで、水冷凝縮器62に対して適切な量の凝縮器冷却水W3が供給される。   Further, as shown in FIG. 1, the water-cooled condenser 62 is provided with a third drain pipe 57 connected to a cooling pipe 62 </ b> A provided in the water-cooled condenser 62. The third drain pipe 57 is provided with a throttle valve 58 that automatically adjusts the throttle amount in accordance with the water temperature of the condenser cooling water W3 supplied to the water-cooled condenser 62. The flow rate of W3 can be adjusted. That is, the throttle valve 58 increases the throttle amount as the temperature of the condenser cooling water W3 is lower (adjusts in the closing direction) to prevent overcooling of the water-cooled condenser 62 due to excessive supply of the condenser cooling water W3, When the temperature of the condenser cooling water W3 increases, the amount of throttle is reduced (adjusted in the opening direction) to increase the amount of water supplied to the condenser cooling water W3, thereby preventing the water cooling condenser 62 from rising in temperature. . Accordingly, the condenser cooling water W3 is pumped by the second water pump 55 and the flow rate of the condenser cooling water W3 is adjusted by the throttle valve 58, whereby an appropriate amount of condenser cooling is performed with respect to the water cooling condenser 62. Water W3 is supplied.

前記制御手段Cは、製氷機Mを総合的に制御するものであり、図3に示すように、前記製氷水検知手段38の第1製氷水検知スイッチ39および第2製氷水検知スイッチ40や、冷却水量検知手段50の第1冷却水検知スイッチ51および第2冷却水検知スイッチ52から検知信号が入力されると共に、図示省略した各種測定手段や検知手段等から検知信号や検出信号等も入力される。また制御手段Cは、各種検知信号および図示しないコントロールパネルから入力された各種設定条件等に基づき、冷凍装置60の圧縮機61、前記第1送水ポンプ37、第2送水ポンプ55、前記第1給水バルブ31、第2給水バルブ33、第3給水バルブ35および第1排水バルブ47等を総合的に制御する。   The control means C comprehensively controls the ice making machine M. As shown in FIG. 3, the first ice making water detection switch 39 and the second ice making water detection switch 40 of the ice making water detection means 38, Detection signals are input from the first cooling water detection switch 51 and the second cooling water detection switch 52 of the cooling water amount detection means 50, and detection signals and detection signals are also input from various measurement means and detection means not shown. The Further, the control means C is based on various detection signals and various setting conditions inputted from a control panel (not shown), the compressor 61 of the refrigeration apparatus 60, the first water pump 37, the second water pump 55, the first water supply. The valve 31, the second water supply valve 33, the third water supply valve 35, the first drain valve 47 and the like are comprehensively controlled.

(第1実施例の作用)
次に、前述のように構成された第1実施例の製氷機Mの作用について説明する。第1実施例の製氷機Mは、前記制御手段Cにより図4に示すタイミングチャートの如く運転される。すなわち、製氷機MのメインスイッチをONにして電源を投入すると、まず起動初期運転として除氷運転を行ない、この起動初期運転が完了したら、製氷運転および除氷運転を交互に行なって氷塊ICを生成する。そして、第1実施例の製氷機Mでは、除氷運転について、製氷水タンク26内に残留した製氷水W2を排出しない「通常除氷運転」と、製氷水タンク26内に残留した製氷水を前記残留製氷水W2Aとして排出する「排出除氷運転」とを、交互に実行するようになっている。すなわち、製氷運転→通常除氷運転→製氷運転→排出除氷運転→製氷運転→通常除氷運転→製氷運転→排出除氷運転・・・となる。このように製氷機Mを運転するのは、1回の製氷運転を行なった後に製氷水タンク26内に残留した製氷水は、製氷に不適切となる程の不純物が含まれておらず、次回の製氷運転時の製氷水としても利用し得るからである。従って第1実施例の製氷機Mでは、2回の製氷運転を行なった後に製氷水タンク26内に残留した製氷水を、前記残留製氷水W2Aとして排出する。なお製氷運転は、従来の製氷機と基本的に同じであり、ここでは詳細な説明は省略する。
(Operation of the first embodiment)
Next, the operation of the ice making machine M of the first embodiment configured as described above will be described. The ice making machine M of the first embodiment is operated by the control means C as shown in the timing chart of FIG. That is, when the main switch of the ice making machine M is turned on and the power is turned on, the deicing operation is first performed as the initial startup operation. When this initial startup operation is completed, the ice making operation and the deicing operation are alternately performed to change the ice block IC. Generate. In the ice making machine M of the first embodiment, regarding the deicing operation, the “normal deicing operation” in which the ice making water W2 remaining in the ice making water tank 26 is not discharged, and the ice making water remaining in the ice making water tank 26 are used. The “discharge deicing operation” for discharging the residual ice making water W2A is performed alternately. That is, ice making operation → normal deicing operation → ice making operation → discharge deicing operation → ice making operation → normal ice removing operation → ice making operation → discharge deicing operation. The ice making machine M is operated in this way because the ice making water remaining in the ice making water tank 26 after one ice making operation does not contain impurities that are inappropriate for ice making. This is because it can also be used as ice making water during the ice making operation. Therefore, in the ice making machine M of the first embodiment, the ice making water remaining in the ice making water tank 26 after performing the ice making operation twice is discharged as the residual ice making water W2A. The ice making operation is basically the same as a conventional ice making machine, and detailed description thereof is omitted here.

前記通常除氷運転では、冷凍装置60の前記ホットガス弁67を開放制御して圧縮機61からの高温の冷媒を蒸発器64に供給する一方、図4に示すように、前記第2送水ポンプ55を停止して水冷凝縮器62に対する凝縮器冷却水W3の給水を停止する。また、前記第1送水ポンプ37を停止すると共に、前記第1排水バルブ47を閉成状態に保持することで、製氷水タンク26内に残留した製氷水W2を該製氷水タンク26内に貯めておく。そして、第1給水バルブ31を開放制御して除氷水供給装置25を介して除氷水を供給し、製氷部21に生成された各氷塊ICを製氷板22から落下させる。各製氷部21から全ての氷塊ICが落下したら、所定時間後に前記第1給水バルブ31を閉成制御することで、製氷水タンク26内には次の製氷運転に必要な製氷水W2が貯留される。なお、各製氷部21に対して規定量以上の除氷水が給水された場合には、その余剰給水分は製氷水タンク26のオーバーフローパイプ41を介して前記冷却水タンク45に回収される。   In the normal deicing operation, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to open to supply the high-temperature refrigerant from the compressor 61 to the evaporator 64, while the second water pump as shown in FIG. 55 is stopped and the water supply of the condenser cooling water W3 to the water-cooled condenser 62 is stopped. Further, by stopping the first water pump 37 and holding the first drain valve 47 in a closed state, the ice making water W2 remaining in the ice making water tank 26 is stored in the ice making water tank 26. deep. Then, opening control of the first water supply valve 31 is performed to supply deicing water via the deicing water supply device 25, and each ice block IC generated in the ice making unit 21 is dropped from the ice making plate 22. When all ice blocks IC are dropped from each ice making section 21, the first water supply valve 31 is controlled to close after a predetermined time, whereby ice making water W2 necessary for the next ice making operation is stored in the ice making water tank 26. The In addition, when deicing water of a specified amount or more is supplied to each ice making unit 21, the excess water supply is recovered to the cooling water tank 45 through the overflow pipe 41 of the ice making water tank 26.

また、前記第1給水バルブ31の閉成制御と同時に、前記第3給水バルブ35を開放制御して外部水源からの外部水W1を前記冷却水タンク45に給水する。そして、冷却水タンク45内への外部水W1の給水により、前記冷却水量検知手段50の第1冷却水検知スイッチ51からの水量検知信号を制御手段Cが受信したら、前記第3給水バルブ35を閉成制御して外部水W1の給水を停止する。これにより冷却水タンク45内には、次の製氷運転に際して水冷凝縮器62を冷却するために必要な凝縮器冷却水W3が確保されたことになる。そして、当該通常除氷運転の完了により製氷運転に移行したら、前記冷凍装置60のホットガス弁67を閉成制御すると共に、当該製氷運転の開始から所定時間経過した後に前記第2送水ポンプ55を作動させて冷却水タンク45内の凝縮器冷却水W3を水冷凝縮器62へ給水することで、該水冷凝縮器62が凝縮効率が最も高い温度に冷却されて該水冷凝縮器62において冷媒が適切に凝縮される。従って、前記製氷ユニット20における各製氷部21の製氷板22,22を適切に冷却して、該製氷板22,22の表面22Aにおいて氷塊ICを適切に生成することができる。   Simultaneously with the closing control of the first water supply valve 31, the third water supply valve 35 is controlled to open to supply the external water W1 from the external water source to the cooling water tank 45. When the control means C receives the water amount detection signal from the first cooling water detection switch 51 of the cooling water amount detection means 50 by supplying the external water W1 into the cooling water tank 45, the third water supply valve 35 is turned on. The closing control is performed to stop the supply of the external water W1. Thereby, in the cooling water tank 45, the condenser cooling water W3 necessary for cooling the water-cooled condenser 62 during the next ice making operation is secured. When the normal ice removal operation is completed and the ice making operation is started, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to close and the second water supply pump 55 is turned on after a predetermined time has elapsed from the start of the ice making operation. By operating and supplying the condenser cooling water W3 in the cooling water tank 45 to the water-cooled condenser 62, the water-cooled condenser 62 is cooled to a temperature at which the condensation efficiency is the highest, and the water-cooled condenser 62 has an appropriate refrigerant. Is condensed. Therefore, the ice making plates 22 and 22 of the ice making units 21 in the ice making unit 20 can be appropriately cooled, and the ice blocks IC can be appropriately generated on the surfaces 22A of the ice making plates 22 and 22.

前記排出除氷運転では、冷凍装置60の前記ホットガス弁67を開放制御して圧縮機61からの高温の冷媒を蒸発器64に供給する一方、図4および図5に示すように、前記第2送水ポンプ55を停止して水冷凝縮器62に対する凝縮器冷却水W3の給水を停止する。また、前記第1排水バルブ47を開放制御すると共に、前記第1送水ポンプ37を停止させず所定時間に亘って継続運転することで、製氷水タンク26内に残留している残留製氷水W2Aを、前記第1排水管46を介して前記冷却水タンク45へ排出する(図5(a))。そして、前記第1送水ポンプ37により前記製氷水タンク26内の前記残留製氷水W2Aを完全に排出するのに要する時間として制御手段Cに予め設定されている排出完了時間が経過して、該製氷水タンク26から該残留製氷水W2Aの排出が完了したら、前記第1送水ポンプ37の作動を停止させると共に前記第1排水バルブ47を閉成制御した後、第1給水バルブ31を開放制御して除氷水供給装置25を介して除氷水を供給して、製氷部21に生成された各氷塊ICを製氷板22から落下させる。各製氷部21から全ての氷塊ICが落下したら、所定時間後に前記第1給水バルブ31を閉成制御することで、製氷水タンク26内には次の製氷運転に必要な製氷水W2が貯留される。なお、各製氷部21に対して規定量以上の除氷水が給水された場合には、その余剰給水分は製氷水タンク26のオーバーフローパイプ41を介して前記冷却水タンク45に回収される。   In the discharge deicing operation, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to be opened to supply the high-temperature refrigerant from the compressor 61 to the evaporator 64. As shown in FIGS. 2 The water supply pump 55 is stopped and the water supply of the condenser cooling water W3 to the water-cooled condenser 62 is stopped. Further, by controlling the opening of the first drain valve 47 and continuing the operation for a predetermined time without stopping the first water supply pump 37, the remaining ice-making water W2A remaining in the ice-making water tank 26 is removed. Then, the water is discharged to the cooling water tank 45 through the first drain pipe 46 (FIG. 5A). Then, a discharge completion time preset in the control means C as a time required for completely discharging the residual ice making water W2A in the ice making water tank 26 by the first water pump 37 has passed, and the ice making water When the discharge of the residual ice making water W2A from the water tank 26 is completed, the operation of the first water pump 37 is stopped and the first drain valve 47 is controlled to close, and then the first water supply valve 31 is controlled to open. The deicing water is supplied through the deicing water supply device 25, and each ice block IC generated in the ice making unit 21 is dropped from the ice making plate 22. When all ice blocks IC are dropped from each ice making section 21, the first water supply valve 31 is controlled to close after a predetermined time, whereby ice making water W2 necessary for the next ice making operation is stored in the ice making water tank 26. The In addition, when deicing water of a specified amount or more is supplied to each ice making unit 21, the excess water supply is recovered to the cooling water tank 45 through the overflow pipe 41 of the ice making water tank 26.

また、前記第1給水バルブ31の閉成制御により該第1給水バルブ31が閉成されたことが確認されたら、前記第3給水バルブ35を開放制御して外部水源からの外部水W1を前記冷却水タンク45に給水する(図5(b))。そして、第3給水管34を介した冷却水タンク45内への外部水W1の給水により、前記冷却水量検知手段50の第1冷却水検知スイッチ51からの水量検知信号を制御手段Cが受信したら、前記第3給水バルブ35を閉成制御して外部水W1の給水を停止する。これにより冷却水タンク45内には、前記残留製氷水W2Aと外部水W1とが混合されて、次の製氷運転に際して水冷凝縮器62を冷却するために必要な水量の凝縮器冷却水W3が確保されたことになる。そして、当該排出除氷運転の完了により製氷運転に移行したら、前記冷凍装置60のホットガス弁67を閉成制御すると共に、当該製氷運転の開始から所定時間経過した後に前記第2送水ポンプ55を作動させて冷却水タンク45内の凝縮器冷却水W3を水冷凝縮器62へ給水することで、該水冷凝縮器62が凝縮効率が最も高い温度に冷却されて水冷凝縮器62において冷媒が適切に凝縮される。従って、前記製氷ユニット20における各製氷部21の製氷板22,22を適切に冷却して、該製氷板22,22の表面22Aにおいて氷塊ICを適切に生成することができる。   In addition, when it is confirmed that the first water supply valve 31 is closed by the closing control of the first water supply valve 31, the third water supply valve 35 is controlled to be opened, and the external water W1 from the external water source is supplied. Water is supplied to the cooling water tank 45 (FIG. 5B). Then, when the control unit C receives a water amount detection signal from the first cooling water detection switch 51 of the cooling water amount detection unit 50 by supplying the external water W1 into the cooling water tank 45 through the third water supply pipe 34. Then, the third water supply valve 35 is controlled to be closed to stop the supply of the external water W1. As a result, the residual ice making water W2A and the external water W1 are mixed in the cooling water tank 45, and a condenser cooling water W3 having an amount of water necessary for cooling the water cooling condenser 62 in the next ice making operation is secured. It will be done. When the discharge deicing operation is completed and the operation is shifted to the ice making operation, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to close, and the second water pump 55 is turned on after a predetermined time has elapsed from the start of the ice making operation. By operating and supplying the condenser cooling water W3 in the cooling water tank 45 to the water-cooled condenser 62, the water-cooled condenser 62 is cooled to a temperature having the highest condensation efficiency, and the water-cooled condenser 62 appropriately supplies the refrigerant. Condensed. Therefore, the ice making plates 22 and 22 of the ice making units 21 in the ice making unit 20 can be appropriately cooled, and the ice blocks IC can be appropriately generated on the surfaces 22A of the ice making plates 22 and 22.

すなわち、第1実施例の製氷機Mによれば、水冷凝縮器62を冷却する凝縮器冷却水W3は、2回の製氷運転の終了後に製氷水タンク26に残留した冷却状態の残留製氷水W2Aと、外部水源から供給されて前記残留製氷水W2Aより水温が高い外部水W1とを、該凝縮器冷却水W3の水量を検知しながら混合して生成されたものである。しかも、凝縮器冷却水W3として利用される外部水W1の一部は、除氷水として製氷部21に供給された後に製氷水タンク26からオーバーフローパイプ41を介して回収されたものであるから、除氷水の熱エネルギーの有効利用を図り得る。従って凝縮器冷却水W3は、冷媒の凝縮効率が最も良くなる温度に水冷凝縮器62を冷却するのに適した水温に生成されるようになり、製氷運転時における冷凍装置60の作動効率を高めることができるので製氷ユニット20における氷塊ICの製氷効率を向上させ得る。また、凝縮器冷却水W3として残留製氷水W2Aを使用するので、水冷凝縮器62を冷却するために外部水源からの外部水W1の給水量を減らすことができるから、氷塊ICの製氷コストを抑えることもできる。   That is, according to the ice making machine M of the first embodiment, the condenser cooling water W3 for cooling the water cooling condenser 62 is the residual ice making water W2A in the cooled state remaining in the ice making water tank 26 after the completion of the two ice making operations. And the external water W1 supplied from an external water source and having a temperature higher than that of the residual ice making water W2A while being detected while detecting the amount of the condenser cooling water W3. In addition, since a part of the external water W1 used as the condenser cooling water W3 is supplied to the ice making unit 21 as deicing water and then recovered from the ice making water tank 26 through the overflow pipe 41, it is removed. Effective use of thermal energy of ice water can be achieved. Accordingly, the condenser cooling water W3 is generated at a water temperature suitable for cooling the water-cooled condenser 62 to a temperature at which the refrigerant condensing efficiency becomes the best, and the operating efficiency of the refrigeration apparatus 60 during ice making operation is increased. Therefore, the ice making efficiency of the ice block IC in the ice making unit 20 can be improved. Further, since the residual ice making water W2A is used as the condenser cooling water W3, the amount of the external water W1 supplied from the external water source can be reduced in order to cool the water cooling condenser 62, so that the ice making cost of the ice block IC can be reduced. You can also

(第2実施例)
図6は、第2実施例の製氷機Mにおける冷却水タンク45を示した説明図であり、図7は、第2実施例の製氷機Mにおける構成を示したブロック図である。第2実施例の製氷機Mでは、前記冷却水タンク45に、該冷却水タンク45に貯留された凝縮器冷却水W3の水量を検知する冷却水量検知手段(水量検知手段)50と、該凝縮器冷却水W3の水温を検知する冷却水温検知手段(水温検知手段)70とが配設されている。前記冷却水量検知手段50は、前記第1実施例で例示したフロートスイッチと同じものであって、製氷運転前において規定量の凝縮器冷却水W3が冷却水タンク45に貯留された場合に該凝縮器冷却水W3を検知する位置に配設された第1冷却水検知スイッチ51と、冷却水タンク45内の凝縮器冷却水W3の有無を検知する第2冷却水検知スイッチ52とから構成されている。また前記冷却水温検知手段70は、例えば熱電対温度計であって、0℃近くに冷却された残留製氷水W2Aと該残留製氷水W2Aより水温が高い外部水W1とを混合して生成される凝縮器冷却水W3の水温を随時検知するようになっている。従って、第2実施例の製氷機Mでは、前記冷却水量検知手段50からの水量検知信号および前記冷却水温検知手段70からの水温検知信号の各々を前記制御手段Cが受信することで、凝縮効率が高められる温度に水冷凝縮器62を冷却し得る水量および水温の凝縮器冷却水W3を生成するように外部水W1の給水量を調節して、適切な水量および水温に生成された凝縮器冷却水W3を該水冷凝縮器62に給水するように構成したものである。
(Second embodiment)
FIG. 6 is an explanatory view showing the cooling water tank 45 in the ice making machine M of the second embodiment, and FIG. 7 is a block diagram showing the configuration of the ice making machine M of the second embodiment. In the ice making machine M of the second embodiment, the cooling water tank 45 includes a cooling water amount detecting means (water amount detecting means) 50 for detecting the amount of condenser cooling water W3 stored in the cooling water tank 45, and the condensation. Cooling water temperature detecting means (water temperature detecting means) 70 for detecting the water temperature of the vessel cooling water W3 is provided. The cooling water amount detecting means 50 is the same as the float switch exemplified in the first embodiment, and the condensation water is cooled when a specified amount of condenser cooling water W3 is stored in the cooling water tank 45 before the ice making operation. A first cooling water detection switch 51 disposed at a position for detecting the condenser cooling water W3 and a second cooling water detection switch 52 for detecting the presence or absence of the condenser cooling water W3 in the cooling water tank 45. Yes. The cooling water temperature detecting means 70 is, for example, a thermocouple thermometer, and is generated by mixing residual ice-making water W2A cooled to near 0 ° C. and external water W1 having a higher water temperature than the residual ice-making water W2A. The water temperature of the condenser cooling water W3 is detected at any time. Therefore, in the ice making machine M of the second embodiment, the control means C receives each of the water amount detection signal from the cooling water amount detection means 50 and the water temperature detection signal from the cooling water temperature detection means 70, thereby condensing efficiency. The amount of water that can cool the water-cooled condenser 62 to a temperature at which the water-cooled condenser 62 can be cooled, and the amount of water supplied to the external water W1 is adjusted so as to generate the condenser cooling water W3 having the water temperature. The water W3 is configured to be supplied to the water-cooled condenser 62.

前記第2実施例の製氷機Mにおける排出除氷運転では、冷凍装置60の前記ホットガス弁67を開放制御して圧縮機61からの高温の冷媒を蒸発器64に供給する一方、前記第2送水ポンプ55を停止して水冷凝縮器62に対する凝縮器冷却水W3の給水を停止する。また、前記第1排水バルブ47を開放制御すると共に、前記第1送水ポンプ37を停止させず所定時間に亘って継続運転することで、製氷水タンク26内に残留している残留製氷水W2Aを、前記第1排水管46を介して前記冷却水タンク45へ排出する。そして、前記第1送水ポンプ37により前記製氷水タンク26内の前記残留製氷水W2Aを完全に排出するのに要する時間として制御手段Cに予め設定されていた排出完了時間が経過して、該製氷水タンク26から該残留製氷水W2Aの排出が完了したら、前記第1送水ポンプ37の作動を停止させると共に前記第1排水バルブ47を閉成制御した後、第1給水バルブ31を開放制御して除氷水供給装置25を介して除氷水を供給して、製氷部21に生成された各氷塊ICを製氷板22から落下させる。各製氷部21から全ての氷塊ICが落下したら、所定時間後に前記第1給水バルブ31を閉成制御することで、製氷水タンク26内には次の製氷運転に必要な製氷水W2が貯留される。なお、各製氷部21に対して規定量以上の除氷水が給水された場合には、その余剰給水分は製氷水タンク26のオーバーフローパイプ41を介して前記冷却水タンク45に回収される。   In the discharge deicing operation in the ice making machine M of the second embodiment, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to open to supply the high-temperature refrigerant from the compressor 61 to the evaporator 64, while the second The water supply pump 55 is stopped and the supply of the condenser cooling water W3 to the water-cooled condenser 62 is stopped. Further, by controlling the opening of the first drain valve 47 and continuing the operation for a predetermined time without stopping the first water supply pump 37, the remaining ice-making water W2A remaining in the ice-making water tank 26 is removed. The water is discharged to the cooling water tank 45 through the first drain pipe 46. Then, a discharge completion time preset in the control means C as a time required for completely discharging the residual ice making water W2A in the ice making water tank 26 by the first water pump 37 has passed, and the ice making water When the discharge of the residual ice making water W2A from the water tank 26 is completed, the operation of the first water pump 37 is stopped and the first drain valve 47 is controlled to close, and then the first water supply valve 31 is controlled to open. The deicing water is supplied through the deicing water supply device 25, and each ice block IC generated in the ice making unit 21 is dropped from the ice making plate 22. When all ice blocks IC are dropped from each ice making section 21, the first water supply valve 31 is controlled to close after a predetermined time, whereby ice making water W2 necessary for the next ice making operation is stored in the ice making water tank 26. The In addition, when deicing water of a specified amount or more is supplied to each ice making unit 21, the excess water supply is recovered to the cooling water tank 45 through the overflow pipe 41 of the ice making water tank 26.

また、前記第1給水バルブ31の閉成制御により該第1給水バルブ31が閉成されたことが確認されたら、前記第3給水バルブ35を開放制御して外部水源からの外部水W1を前記冷却水タンク45に給水する。そして、第3給水管34を介した冷却水タンク45内への外部水W1の給水により、前記冷却水量検知手段50の第1冷却水検知スイッチ51からの水量検知信号を制御手段Cが受信すると共に、前記冷却水温検知手段70からの水温検知信号が予め設定された所定の温度となったら、前記第3給水バルブ35を閉成制御して外部水W1の給水を停止する。これにより冷却水タンク45内には、前記残留製氷水W2Aと外部水W1とが混合されて、次の製氷運転に際して水冷凝縮器62により冷媒を凝縮するのに最適な水量および水温の凝縮器冷却水W3が確保されたことになる。そして、当該排出除氷運転の完了により製氷運転に移行したら、前記冷凍装置60のホットガス弁67を閉成制御すると共に、当該製氷運転の開始から所定時間経過した後に前記第2送水ポンプ55を作動させて冷却水タンク45内の凝縮器冷却水W3を水冷凝縮器62へ給水することで、水冷凝縮器62が凝縮効率が最も高い温度に冷却されて該水冷凝縮器62において冷媒が適切に凝縮される。従って、前記製氷ユニット20における各製氷部21の製氷板22,22を適切に冷却して、該製氷板22,22の表面22Aにおいて氷塊ICを適切に生成することができる。   In addition, when it is confirmed that the first water supply valve 31 is closed by the closing control of the first water supply valve 31, the third water supply valve 35 is controlled to be opened, and the external water W1 from the external water source is supplied. Water is supplied to the cooling water tank 45. And the control means C receives the water amount detection signal from the 1st cooling water detection switch 51 of the said cooling water amount detection means 50 by the water supply of the external water W1 in the cooling water tank 45 via the 3rd water supply pipe 34. At the same time, when the water temperature detection signal from the cooling water temperature detecting means 70 reaches a predetermined temperature, the third water supply valve 35 is controlled to be closed to stop the supply of the external water W1. As a result, the residual ice making water W2A and the external water W1 are mixed in the cooling water tank 45, and the water cooling and condenser cooling with the water amount optimum for condensing the refrigerant by the water cooling condenser 62 during the next ice making operation are performed. Water W3 is secured. When the discharge deicing operation is completed and the operation is shifted to the ice making operation, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to close, and the second water pump 55 is turned on after a predetermined time has elapsed from the start of the ice making operation. By operating and supplying the condenser cooling water W3 in the cooling water tank 45 to the water-cooled condenser 62, the water-cooled condenser 62 is cooled to a temperature at which the condensation efficiency is the highest, and the water-cooled condenser 62 appropriately supplies the refrigerant. Condensed. Therefore, the ice making plates 22 and 22 of the ice making units 21 in the ice making unit 20 can be appropriately cooled, and the ice blocks IC can be appropriately generated on the surfaces 22A of the ice making plates 22 and 22.

すなわち、第2実施例の製氷機Mによれば、水冷凝縮器62を冷却する凝縮器冷却水W3は、製氷運転の終了後に製氷水タンク26に残留した冷却状態の残留製氷水W2Aと、外部水源から供給されて前記残留製氷水W2Aより水温が高い外部水W1とを、該凝縮器冷却水W3の水量および水温を検知しながら混合して生成されたものである。しかも、凝縮器冷却水W3として利用される外部水W1の一部は、除氷水として製氷部21に供給された後に製氷水タンク26からオーバーフローパイプ41を介して回収されたものであるから、除氷水の熱エネルギーの有効利用を図り得る。従って凝縮器冷却水W3は、冷媒の凝縮効率が最も良くなる温度に水冷凝縮器62を冷却するのに適した水温に生成されるようになり、製氷運転時における冷凍装置60の運転効率を高めることができるので製氷ユニット20における氷塊ICの製氷効率を向上させ得る。また、凝縮器冷却水W3として残留製氷水W2Aを使用するので、水冷凝縮器62を冷却するために外部水源からの外部水W1の給水量を減らすことができるから、氷塊ICの製氷コストを抑えることもできる。   That is, according to the ice making machine M of the second embodiment, the condenser cooling water W3 for cooling the water-cooled condenser 62 includes the remaining ice-making water W2A in the cooled state remaining in the ice-making water tank 26 after the completion of the ice making operation, and the external It is generated by mixing external water W1 supplied from a water source and having a higher water temperature than the residual ice making water W2A while detecting the amount and temperature of the condenser cooling water W3. In addition, since a part of the external water W1 used as the condenser cooling water W3 is supplied to the ice making unit 21 as deicing water and then recovered from the ice making water tank 26 through the overflow pipe 41, it is removed. Effective use of thermal energy of ice water can be achieved. Accordingly, the condenser cooling water W3 is generated at a water temperature suitable for cooling the water-cooled condenser 62 to a temperature at which the refrigerant condensing efficiency becomes the best, and the operating efficiency of the refrigeration apparatus 60 during ice making operation is increased. Therefore, the ice making efficiency of the ice block IC in the ice making unit 20 can be improved. Further, since the residual ice making water W2A is used as the condenser cooling water W3, the amount of the external water W1 supplied from the external water source can be reduced in order to cool the water cooling condenser 62, so that the ice making cost of the ice block IC can be reduced. You can also

(第3実施例)
図8は、第3実施例の製氷機Mの構成を示すブロック図である。第3実施例の製氷機Mでは、計時手段としてのタイマ71を備えている。このタイマ71は、前記第3給水バルブ35による前記外部水源からの外部水W1の給水開始時点からの時間を計測するようになっている。ここで、前記製氷水タンク26に規定量の製氷水W2が貯留された状態で製氷運転を行なうことで各製氷部21において規定の氷塊ICが生成された場合には、製氷運転後に該製氷水タンク26に残留する前記残留製氷水W2Aの水量は概ね一定となる。また、除氷運転時に外部水源から各製氷部21に供給される除氷水の給水量は該除氷水の給水時間によって決定されるから、製氷水タンク26のオーバーフローパイプ41から排出されて冷却水タンク45内に回収される外部水W1の水量は、除氷水の給水時間から算出することが可能である。そして、前記第3給水バルブ35は、制御手段Cにより開放制御した際の単位時間当たりの規定流量が決まっているので、開放時間に基づいて冷却水タンク45に対する給水量を算出することが可能である。従って第3実施例の製氷機Mは、残留製氷水W2Aの水量と、前記製氷水タンク26から前記冷却水タンク45に回収された除氷水の水量と、最終的に生成される凝縮器冷却水W3の水量とから、前記第3給水管34を介して供給される前記外部水W1の給水量を求めて前記第3給水バルブ35の開放時間を算出したもとで、前記制御手段Cにより前記タイマ71による計時に基づいて該第3給水バルブ35を開閉制御することで、所望量の凝縮器冷却水W3を生成するよう構成したものである。
(Third embodiment)
FIG. 8 is a block diagram showing the configuration of the ice making machine M of the third embodiment. The ice making machine M according to the third embodiment includes a timer 71 as a time measuring means. The timer 71 measures the time from the start of water supply of the external water W1 from the external water source by the third water supply valve 35. Here, when the ice making operation is performed with the ice making water tank 26 storing the prescribed amount of ice making water W2 and the ice making operation is performed in each ice making section 21, the ice making water is produced after the ice making operation. The amount of the remaining ice making water W2A remaining in the tank 26 is substantially constant. In addition, since the amount of deicing water supplied from the external water source to each ice making unit 21 during the deicing operation is determined by the time for supplying the deicing water, the cooling water tank is discharged from the overflow pipe 41 of the ice making water tank 26. The amount of the external water W1 collected in 45 can be calculated from the supply time of the deicing water. Since the third water supply valve 35 has a predetermined flow rate per unit time when it is controlled to open by the control means C, it is possible to calculate the amount of water supplied to the cooling water tank 45 based on the open time. is there. Therefore, the ice making machine M according to the third embodiment is configured so that the amount of residual ice making water W2A, the amount of deicing water collected from the ice making water tank 26 to the cooling water tank 45, and the finally generated condenser cooling water. Based on the amount of water W3, the amount of water supply of the external water W1 supplied through the third water supply pipe 34 is obtained and the opening time of the third water supply valve 35 is calculated. The third water supply valve 35 is controlled to open and close based on the time measured by the timer 71 to generate a desired amount of the condenser cooling water W3.

前記第3実施例の製氷機Mにおける排出除氷運転では、冷凍装置60の前記ホットガス弁67を開放制御して圧縮機61からの高温の冷媒を蒸発器64に供給する一方、前記第2送水ポンプ55を停止して水冷凝縮器62に対する凝縮器冷却水W3の給水を停止する。また、前記第1排水バルブ47を開放制御すると共に、前記第1送水ポンプ37を停止させず所定時間に亘って継続運転することで、製氷水タンク26内に残留している残留製氷水W2Aを、前記第1排水管46を介して前記冷却水タンク45へ排出する。そして、前記第1送水ポンプ37により前記製氷水タンク26内の前記残留製氷水W2Aを完全に排出するのに要する時間として制御手段Cに予め設定されていた排出完了時間が経過して、該製氷水タンク26から該残留製氷水W2Aの排出が完了したら、前記第1送水ポンプ37の作動を停止させると共に前記第1排水バルブ47を閉成制御した後、第1給水バルブ31を開放制御して除氷水供給装置25を介して除氷水を供給して、製氷部21に生成された各氷塊ICを製氷板22から落下させる。各製氷部21から全ての氷塊ICが落下したら、所定時間後に前記第1給水バルブ31を閉成制御することで、製氷水タンク26内には次の製氷運転に必要な製氷水W2が貯留される。なお、各製氷部21に対して規定量以上の除氷水が給水された場合には、その余剰給水分は製氷水タンク26のオーバーフローパイプ41を介して前記冷却水タンク45に回収される。   In the discharge deicing operation in the ice making machine M of the third embodiment, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to open to supply the high-temperature refrigerant from the compressor 61 to the evaporator 64, while the second The water supply pump 55 is stopped and the supply of the condenser cooling water W3 to the water-cooled condenser 62 is stopped. Further, by controlling the opening of the first drain valve 47 and continuing the operation for a predetermined time without stopping the first water supply pump 37, the remaining ice-making water W2A remaining in the ice-making water tank 26 is removed. The water is discharged to the cooling water tank 45 through the first drain pipe 46. Then, a discharge completion time preset in the control means C as a time required for completely discharging the residual ice making water W2A in the ice making water tank 26 by the first water pump 37 has passed, and the ice making water When the discharge of the residual ice making water W2A from the water tank 26 is completed, the operation of the first water pump 37 is stopped and the first drain valve 47 is controlled to close, and then the first water supply valve 31 is controlled to open. The deicing water is supplied through the deicing water supply device 25, and each ice block IC generated in the ice making unit 21 is dropped from the ice making plate 22. When all ice blocks IC are dropped from each ice making section 21, the first water supply valve 31 is controlled to close after a predetermined time, whereby ice making water W2 necessary for the next ice making operation is stored in the ice making water tank 26. The In addition, when deicing water of a specified amount or more is supplied to each ice making unit 21, the excess water supply is recovered to the cooling water tank 45 through the overflow pipe 41 of the ice making water tank 26.

また、前記第1給水バルブ31の閉成制御により該第1給水バルブ31が閉成されたことが確認されたら、前記第3給水バルブ35を開放制御して外部水源からの外部水W1を前記冷却水タンク45に給水する。そして、前記第3給水バルブ35の開放制御と同時に前記タイマ71が計時を開始すると共に、残留製氷水W2Aの水量、前記冷却水タンク45に回収された除氷水の水量および最終的に生成される凝縮器冷却水W3の水量から、前記第3給水バルブ35の開放時間を算出する。そして制御手段Cは、第3給水バルブ35を開放制御した後、前記タイマ71の計時が前記算出された開放時間を経過すると同時に該第3給水バルブ35を閉成制御して外部水W1の給水を停止する。これにより冷却水タンク45内には、前記残留製氷水W2Aと外部水W1とが混合されて、次の製氷運転に際して水冷凝縮器62により冷媒を凝縮させるために必要な水温および水量の凝縮器冷却水W3が確保される。そして、当該排出除氷運転の完了により製氷運転に移行したら、前記冷凍装置60のホットガス弁67を閉成制御すると共に、当該製氷運転の開始から所定時間経過した後に前記第2送水ポンプ55を作動させて冷却水タンク45内の凝縮器冷却水W3を水冷凝縮器62へ給水することで、水冷凝縮器62が凝縮効率が最も高い温度に冷却されて該水冷凝縮器62において冷媒が適切に凝縮される。従って、前記製氷ユニット20における各製氷部21の製氷板22,22が適切に冷却されて、該製氷板22,22の表面22Aにおいて氷塊ICを適切に生成することができる。   In addition, when it is confirmed that the first water supply valve 31 is closed by the closing control of the first water supply valve 31, the third water supply valve 35 is controlled to be opened, and the external water W1 from the external water source is supplied. Water is supplied to the cooling water tank 45. Simultaneously with the opening control of the third water supply valve 35, the timer 71 starts measuring time, the amount of residual ice making water W2A, the amount of deicing water collected in the cooling water tank 45, and finally generated. The opening time of the third water supply valve 35 is calculated from the amount of the condenser cooling water W3. Then, after controlling the opening of the third water supply valve 35, the control means C controls the closing of the third water supply valve 35 at the same time as the time of the timer 71 passes the calculated opening time, thereby supplying the external water W1. To stop. As a result, the residual ice making water W2A and the external water W1 are mixed in the cooling water tank 45, and condenser cooling of the water temperature and the amount of water necessary for condensing the refrigerant by the water cooling condenser 62 during the next ice making operation is performed. Water W3 is secured. When the discharge deicing operation is completed and the operation is shifted to the ice making operation, the hot gas valve 67 of the refrigeration apparatus 60 is controlled to close, and the second water pump 55 is turned on after a predetermined time has elapsed from the start of the ice making operation. By operating and supplying the condenser cooling water W3 in the cooling water tank 45 to the water-cooled condenser 62, the water-cooled condenser 62 is cooled to a temperature at which the condensation efficiency is the highest, and the water-cooled condenser 62 appropriately supplies the refrigerant. Condensed. Therefore, the ice making plates 22 and 22 of each ice making unit 21 in the ice making unit 20 are appropriately cooled, and the ice blocks IC can be appropriately generated on the surfaces 22A of the ice making plates 22 and 22.

すなわち、第3実施例の製氷機Mによれば、水冷凝縮器62を冷却する凝縮器冷却水W3は、製氷運転の終了後に製氷水タンク26に残留した冷却状態の残留製氷水W2Aと、外部水源から供給されて前記残留製氷水W2Aより水温が高い所定量の外部水W1とを、該凝縮器冷却水W3の水量を検知しながら混合して生成されたものである。しかも、凝縮器冷却水W3として利用される外部水W1の一部は、除氷水として製氷部21に供給された後に製氷水タンク26からオーバーフローパイプ41を介して回収されたものであるから、除氷水の熱エネルギーの有効利用を図り得る。従って凝縮器冷却水W3は、冷媒の凝縮効率が最も良くなる温度に水冷凝縮器62を冷却するのに適した水温に生成され、製氷運転時における冷凍装置60の運転効率を高めることができるので製氷ユニット20における氷塊ICの製氷効率を向上させ得る。また、凝縮器冷却水W3として残留製氷水W2Aを使用するので、水冷凝縮器62を冷却するために外部水源からの外部水W1の給水量を減らすことができ、氷塊ICの製氷コストを抑えることもできる。   That is, according to the ice making machine M of the third embodiment, the condenser cooling water W3 for cooling the water-cooled condenser 62 includes the cooled remaining ice-making water W2A remaining in the ice-making water tank 26 after the completion of the ice making operation, and the external A predetermined amount of external water W1 supplied from a water source and having a water temperature higher than the residual ice making water W2A is mixed and detected while detecting the amount of the condenser cooling water W3. In addition, since a part of the external water W1 used as the condenser cooling water W3 is supplied to the ice making unit 21 as deicing water and then recovered from the ice making water tank 26 through the overflow pipe 41, it is removed. Effective use of thermal energy of ice water can be achieved. Therefore, the condenser cooling water W3 is generated at a water temperature suitable for cooling the water-cooled condenser 62 to a temperature at which the refrigerant condensing efficiency becomes the best, and the operating efficiency of the refrigeration apparatus 60 during ice making operation can be increased. The ice making efficiency of the ice block IC in the ice making unit 20 can be improved. Further, since the residual ice making water W2A is used as the condenser cooling water W3, the amount of the external water W1 supplied from the external water source can be reduced to cool the water cooling condenser 62, and the ice making cost of the ice block IC can be reduced. You can also.

(変更例)
(1)前記第1〜第3の各実施例では、水冷凝縮器62を備えた冷凍装置60を例示したが、図9に示すように、冷凍装置60は、水冷凝縮器62および空冷凝縮器75の両方を備えたものであってもよい。このように水冷凝縮器62および空冷凝縮器75を備えた冷凍装置60を装備した製氷機Mでは、例えば前記残留製氷水W2Aおよび前記外部水W1を混合して凝縮器冷却水W3を生成した際に、この水量の凝縮器冷却水W3により水冷凝縮器62を凝縮効率が最も高くなる温度に冷却しきれない場合に、前記空冷凝縮器75を作動させることで、冷凍装置60の冷媒を適切に凝縮することができる利点がある。すなわち、残留製氷水W2Aおよび外部水W1を混合して生成された凝縮器冷却水W3による水冷凝縮器62の冷却のみで冷媒を適切に凝縮できる場合には前記空冷凝縮器75を作動させず、凝縮器冷却水W3による水冷凝縮器62の冷却のみでは冷媒を適切に凝縮できない場合は、前記空冷凝縮器75を作動させるよう構成されている。なお前記空冷凝縮器75は、あくまで水冷凝縮器62の補助として機能するものであるから、小型・小容量のものでよく、排熱や騒音が低く抑えられる。
(Example of change)
(1) In each of the first to third embodiments, the refrigeration apparatus 60 provided with the water-cooled condenser 62 is illustrated. As shown in FIG. 9, the refrigeration apparatus 60 includes the water-cooled condenser 62 and the air-cooled condenser. 75 may be provided. In the ice making machine M equipped with the refrigeration apparatus 60 including the water-cooled condenser 62 and the air-cooled condenser 75 as described above, for example, when the residual ice-making water W2A and the external water W1 are mixed to generate the condenser cooling water W3. Furthermore, when the water-cooled condenser 62 cannot be cooled to the temperature at which the condensation efficiency becomes the highest with the condenser cooling water W3 of this amount of water, the air-cooled condenser 75 is operated, so that the refrigerant of the refrigeration apparatus 60 is appropriately There is an advantage that can be condensed. That is, when the refrigerant can be appropriately condensed only by cooling the water-cooled condenser 62 with the condenser cooling water W3 generated by mixing the residual ice making water W2A and the external water W1, the air-cooled condenser 75 is not operated. The air-cooled condenser 75 is operated when the refrigerant cannot be condensed properly only by cooling the water-cooled condenser 62 with the condenser cooling water W3. Since the air-cooled condenser 75 functions only as an auxiliary to the water-cooled condenser 62, it may be of a small size and a small capacity, and exhaust heat and noise can be kept low.

(2)前記第1実施例および第2実施例では、冷却水量検知手段50としてフロートスイッチを例示したが、凝縮器冷却水W3の水量を規定するものとしては、フロースイッチに限らず、例えば冷却水タンク45に配設したオーバーフローパイプや、前記第3給水管34に配設した流量計等であってもよい。
(3)第2実施例では、冷却水温検知手段70として熱電対温度計を例示したが、この冷却水温検知手段70は冷却水タンク45に貯留された凝縮器冷却水W3の水温を適切に検知するものであれば熱電対温度計に限定されるものではなく、既存の様々な温度検知手段を採用可能である
(4)第1実施例では、除氷運転について通常除氷運転および排出除氷運転を交互に行なうようにしたが、排出除氷運転を実行する間隔はこれに限定されず、製氷運転後に残留した製氷水W2が製氷に適していれば、排出除氷運転の実行間隔を、3回毎や4回毎等に変更し得る。また、排水除氷運転は、1回毎に行なうようにしてもよい。
(5)前記各実施例では、外部水源に接続された第3給水管34を冷却水タンク45に上方に臨ませ、該外部水源からの外部水W1を冷却水タンク45に給水するように構成したが、該第3給水管34を水冷凝縮器62の冷却管62Aに直接に接続して、外部水W1を水冷凝縮器62へ直接供給するようにしてもよい。このように構成すれば、前記第2送水ポンプ55を作動することなく外部水W1を水冷凝縮器62に供給することができ、該第2送水ポンプ55を作動するエネルギーを削減できる。
(6)第3実施例の製氷機Mに、第1実施例の冷却水量検知手段50または第2実施例の冷却水温検知手段70を設けてもよい。
(7)本願発明が対象とする製氷機は、実施例で例示した流下式製氷機の限定されず、様々な形態の製氷機が対象とされる。
(2) In the first and second embodiments, the float switch is exemplified as the cooling water amount detecting means 50. However, the water amount of the condenser cooling water W3 is not limited to the flow switch. An overflow pipe disposed in the water tank 45, a flow meter disposed in the third water supply pipe 34, or the like may be used.
(3) In the second embodiment, a thermocouple thermometer is exemplified as the cooling water temperature detecting means 70, but this cooling water temperature detecting means 70 appropriately detects the water temperature of the condenser cooling water W3 stored in the cooling water tank 45. However, the present invention is not limited to the thermocouple thermometer, and various existing temperature detection means can be employed. (4) In the first embodiment, the normal deicing operation and the discharging deicing are performed in the deicing operation. Although the operation is performed alternately, the interval for executing the discharge deicing operation is not limited to this, and if the ice making water W2 remaining after the ice making operation is suitable for ice making, the execution interval of the discharge deicing operation is It can be changed every 3 times or every 4 times. Further, the drainage deicing operation may be performed once.
(5) In each of the above embodiments, the third water supply pipe 34 connected to the external water source faces the cooling water tank 45 upward, and the external water W1 from the external water source is supplied to the cooling water tank 45. However, the third water supply pipe 34 may be directly connected to the cooling pipe 62 </ b> A of the water-cooled condenser 62 to supply the external water W <b> 1 directly to the water-cooled condenser 62. If comprised in this way, the external water W1 can be supplied to the water-cooled condenser 62, without operating the said 2nd water supply pump 55, The energy which operates this 2nd water supply pump 55 can be reduced.
(6) The ice making machine M of the third embodiment may be provided with the cooling water amount detecting means 50 of the first embodiment or the cooling water temperature detecting means 70 of the second embodiment.
(7) The ice making machine targeted by the present invention is not limited to the flow-down type ice making machine exemplified in the embodiment, and various forms of ice making machines are targeted.

21 製氷部,26 製氷水タンク,35 第3給水バルブ(外部給水手段)
45 冷却水タンク,50 冷却水量検知手段(水量検知手段),60 冷凍装置
62 水冷凝縮器,70 冷却水温検知手段(水温検知手段),71 タイマ(計時手段)
C 制御手段,IC 氷塊,W1 外部水,W2 製氷水,W2A 残留製氷水
W3 凝縮器冷却水
21 Ice making section, 26 Ice making water tank, 35 Third water supply valve (external water supply means)
45 Cooling water tank, 50 Cooling water amount detecting means (water amount detecting means), 60 Refrigeration device 62 Water cooling condenser, 70 Cooling water temperature detecting means (water temperature detecting means), 71 Timer (time measuring means)
C control means, IC ice block, W1 external water, W2 ice making water, W2A residual ice making water W3 condenser cooling water

Claims (4)

水冷凝縮器(62)を備え、氷塊(IC)を生成する製氷部(21)を冷却する冷凍装置(60)と、製氷水(W2)を貯留すると共に前記製氷部(21)に供給して氷結しなかった製氷水(W2)を回収する製氷水タンク(26)と、製氷運転後に前記製氷水タンク(26)に残留した残留製氷水(W2A)を回収して貯留する冷却水タンク(45)とを備え、前記冷却水タンク(45)に貯留された前記残留製氷水(W2A)を利用して前記水冷凝縮器(62)を冷却するよう構成した製氷機において、
外部水源に接続され、該外部水源からの外部水(W1)を前記冷却水タンク(45)に供給する外部給水手段(35)と、
前記外部給水手段(35)を制御して前記冷却水タンク(45)への外部水(W1)の供給量を調節し、前記残留製氷水(W2A)に前記外部水(W1)を混合することで、前記水冷凝縮器(62)を冷却する所要温度の凝縮器冷却水(W3)を生成する制御手段(C)とを備える
ことを特徴とする製氷機。
A water-cooled condenser (62) is provided, and a refrigeration device (60) for cooling the ice making unit (21) for generating ice blocks (IC) and an ice making water (W2) are stored and supplied to the ice making unit (21). An ice making water tank (26) for collecting ice making water (W2) that has not been frozen, and a cooling water tank (45) for collecting and storing residual ice making water (W2A) remaining in the ice making water tank (26) after the ice making operation. In the ice making machine configured to cool the water-cooled condenser (62) using the residual ice making water (W2A) stored in the cooling water tank (45),
External water supply means (35) connected to an external water source and supplying external water (W1) from the external water source to the cooling water tank (45),
Controlling the external water supply means (35) to adjust the supply amount of external water (W1) to the cooling water tank (45), and mixing the external water (W1) with the residual ice making water (W2A). And a control means (C) for generating condenser cooling water (W3) at a required temperature for cooling the water-cooled condenser (62).
前記冷却水タンク(45)に貯留された前記凝縮器冷却水(W3)の水量を検知する水量検知手段(50)を備え、
前記水量検知手段(50)からの水量検知信号に基づき、前記制御手段(C)が前記外部給水手段(35)を制御して前記外部水(W1)の給水量を調節するよう構成した請求項1記載の製氷機。
Water amount detection means (50) for detecting the amount of the condenser cooling water (W3) stored in the cooling water tank (45),
The control means (C) is configured to control the external water supply means (35) based on a water quantity detection signal from the water quantity detection means (50) to adjust the water supply amount of the external water (W1). The ice making machine according to 1.
前記冷却水タンク(45)に貯留された前記凝縮器冷却水(W3)の水温を検知する水温検知手段(70)を備え、
前記水温検知手段(70)からの水温検知信号に基づき、前記制御手段(C)が前記外部給水手段(35)を制御して前記外部水(W1)の給水量を調節するよう構成した請求項1または2記載の製氷機。
Water temperature detection means (70) for detecting the water temperature of the condenser cooling water (W3) stored in the cooling water tank (45),
The control means (C) is configured to control the external water supply means (35) based on a water temperature detection signal from the water temperature detection means (70) to adjust the water supply amount of the external water (W1). The ice making machine according to 1 or 2.
前記外部給水手段(35)による前記外部水(W1)の給水開始時点からの時間を計測する計時手段(71)を備え、
前記外部水(W1)の給水開始時点から予め設定した時間を前記計時手段(71)が計測したら、前記制御手段(C)が前記外部給水手段(35)を制御して前記外部水(W1)の給水を停止するよう構成した請求項1記載の製氷機。
It comprises time measuring means (71) for measuring the time from the start of water supply of the external water (W1) by the external water supply means (35),
When the time measuring means (71) measures a preset time from the start of water supply of the external water (W1), the control means (C) controls the external water supply means (35) to control the external water (W1). The ice maker according to claim 1, which is configured to stop water supply.
JP2011157197A 2011-07-15 2011-07-15 Ice making machine Withdrawn JP2013024435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011157197A JP2013024435A (en) 2011-07-15 2011-07-15 Ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011157197A JP2013024435A (en) 2011-07-15 2011-07-15 Ice making machine

Publications (1)

Publication Number Publication Date
JP2013024435A true JP2013024435A (en) 2013-02-04

Family

ID=47783006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011157197A Withdrawn JP2013024435A (en) 2011-07-15 2011-07-15 Ice making machine

Country Status (1)

Country Link
JP (1) JP2013024435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204845A (en) * 2017-06-01 2018-12-27 ホシザキ株式会社 Deicing operation method of ice maker
CN109237678A (en) * 2018-09-28 2019-01-18 宁波奥克斯电气股份有限公司 A kind of air conditioner, compressor control method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204845A (en) * 2017-06-01 2018-12-27 ホシザキ株式会社 Deicing operation method of ice maker
CN109237678A (en) * 2018-09-28 2019-01-18 宁波奥克斯电气股份有限公司 A kind of air conditioner, compressor control method and device

Similar Documents

Publication Publication Date Title
JP5097459B2 (en) How to operate an ice machine
JP5008675B2 (en) Automatic ice maker and its operating method
JP2008224189A (en) Refrigerating cycle device
JP2005201545A (en) Multiple ice-making determining method of automatic ice maker, and operation method
KR20230044385A (en) Water purifier with ice maker
JP2009121768A (en) Automatic ice making machine and control method for it
JP2013024435A (en) Ice making machine
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP6919696B2 (en) Hot water heater
KR20120105662A (en) Ice and cold water maker and making method
JP5448482B2 (en) Automatic ice machine
JP5448618B2 (en) Ice machine
JP2008057862A (en) Ice making machine
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
JP2011179790A (en) Automatic ice making machine
JP5469935B2 (en) Ice machine
JP5253944B2 (en) Automatic ice machine
KR101470958B1 (en) An ice machine with an integrated water-air cooling system
JP2014031930A (en) Refrigeration cycle device
JP2006090691A (en) Operating method for flow down type ice maker
JP5253863B2 (en) Automatic ice machine
JP2017110844A (en) Ice making machine
JP4518875B2 (en) Deicing operation method of automatic ice maker
JP2006183925A (en) Method of operating automatic ice machine for deicing
JP4518544B2 (en) Operation control device for steam compression refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007