JP4518544B2 - Operation control device for steam compression refrigerator - Google Patents

Operation control device for steam compression refrigerator Download PDF

Info

Publication number
JP4518544B2
JP4518544B2 JP2004123853A JP2004123853A JP4518544B2 JP 4518544 B2 JP4518544 B2 JP 4518544B2 JP 2004123853 A JP2004123853 A JP 2004123853A JP 2004123853 A JP2004123853 A JP 2004123853A JP 4518544 B2 JP4518544 B2 JP 4518544B2
Authority
JP
Japan
Prior art keywords
ice
cold water
water
pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004123853A
Other languages
Japanese (ja)
Other versions
JP2005308271A (en
Inventor
邦昭 山田
了介 結城
泰洋 戸室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2004123853A priority Critical patent/JP4518544B2/en
Publication of JP2005308271A publication Critical patent/JP2005308271A/en
Application granted granted Critical
Publication of JP4518544B2 publication Critical patent/JP4518544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

本発明は、水蒸気圧縮冷凍機を冷熱源とした氷蓄熱システムにおいて、蓄熱運転始動時の蓄熱槽及び配管経路内の高温の冷水が蒸発器に戻ることによる不具合を解消することを目的とした水蒸気圧縮冷凍機の運転制御装置に関するものである。 The present invention relates to an ice heat storage system using a steam compression refrigerator as a cooling source, and a steam for the purpose of eliminating problems caused by the return of high-temperature cold water in the heat storage tank and the piping path to the evaporator at the start of the heat storage operation. The present invention relates to an operation control device for a compression refrigerator.

蓄熱システムは安価な深夜電力を利用し、ランニングコストを低減させることを目的としている。冷凍機の蓄熱運転は深夜電力料金が設定された限られた時間帯に行われ、その間に必要な熱量を蓄熱する。このため、蓄熱システムの冷熱源は、定格能力に到達するまでの時間が短いことが望まれる。また、氷スラリー液を流送する氷蓄熱システムの搬送設備は、水搬送と比較すると容量が小さいため、出来るだけ早く氷スラリー液を生成させることが望まれる。
従来、水蒸気圧縮冷凍機を冷熱源として氷蓄熱システムは、特開2002−257385特許公開公報に開示された図6に示すような構成であった。これについて説明すれば、1は水蒸気圧縮冷凍機であって、蒸発器1a、圧縮機1b及び凝縮器1cを備えている。該蒸発器1aは氷蓄熱槽2から循環水3を導くと共に前記圧縮機1bの運転によって、低圧に保持しつつ当該循環水3の一部を蒸発させる。該圧縮機1bは当該蒸発器1aから導入された水蒸気を所定の条件で加圧する。前記凝縮器1cは、前記圧縮機1bで加圧されかつ高温になった水蒸気を導入し、これを外部に設置した冷却塔4から導いた冷却水5で冷却し、凝縮する。
ここに於いて、前記氷蓄熱槽2、前記水蒸気圧縮冷凍機1の蒸発器1a、氷スラリーポンプ6及びこれらを結ぶ連絡管には補給水として水道水が満されている。
冷却塔4は、前記水蒸気圧縮機冷凍機1の付帯設備であり補給水を導入し、前記凝縮器1cから導かれた冷却水5を冷却水ポンプ1dで流送し、一部を大気に蒸発させると共に、一部をブロー水として排出し、該補給水を冷却水5に加えて、前記凝縮器1cに導入する。また、前記冷却塔4は前記凝縮器1cに於いて水蒸気を凝縮することで温度上昇した冷却水の熱を、前記冷却水の蒸発に伴う気化熱によって、大気に排出する機能を有する。
2は氷蓄熱槽であり、前記蒸発器1aから氷スラリーポンプ6を介して取出された低温氷スラリーを貯留する。該氷蓄熱槽2では後記する冷熱用熱交換器7から氷融解水2aを導き、低温の氷スラリーの氷融解作用が行なわれ、氷と融解水すなわち冷水が混在することになる。当該冷水は解氷水ポンプ2bで冷熱用熱交換器7に圧送される。該冷熱用熱交換器7はいわゆる熱取出しサイクルとして冷房負荷(開示せず)等に冷水ポンプ7aで冷水を循環流送する。
ところで水蒸気圧縮冷凍機1は、蒸発器1aが熱交換器を介さない水を冷媒とした冷凍機である。すなわち、水蒸気圧縮冷凍機1の冷媒である水は蒸発器1a内と配管を介して負荷側と直接に繋がっており、氷蓄熱槽2内の水を含めた全てが冷媒といえる。この水蒸気圧縮冷凍機1を始動して、所望の定格運転の状態にするためには、蒸発器1aに導入される冷水温度がある程度低下するまで時間を要するが、従来では蒸発器1aはもとより氷蓄熱槽2や配管内の水全体の温度を下げるまで、蒸発器1aと氷蓄熱槽2との間で水の循環を繰り返すしかなかった。
特開2002−257385特許公開公報
The purpose of the heat storage system is to use inexpensive late-night power and reduce running costs. The heat storage operation of the refrigerator is performed during a limited time zone in which a midnight power rate is set, and the necessary amount of heat is stored during that time. For this reason, it is desired that the cooling heat source of the heat storage system has a short time to reach the rated capacity. Moreover, since the capacity | capacitance of the conveyance facility of the ice thermal storage system which flows ice slurry liquid is small compared with water conveyance, it is desired to produce ice slurry liquid as soon as possible.
Conventionally, an ice heat storage system using a steam compression refrigerator as a cold source has a configuration as shown in FIG. 6 disclosed in Japanese Patent Application Laid-Open No. 2002-257385. To explain this, reference numeral 1 denotes a steam compression refrigerator, which includes an evaporator 1a, a compressor 1b, and a condenser 1c. The evaporator 1a guides the circulating water 3 from the ice heat storage tank 2 and evaporates a part of the circulating water 3 while maintaining the low pressure by the operation of the compressor 1b. The compressor 1b pressurizes the water vapor introduced from the evaporator 1a under predetermined conditions. The condenser 1c introduces water vapor that has been pressurized by the compressor 1b and has reached a high temperature, and cools it with cooling water 5 introduced from a cooling tower 4 installed outside to condense.
Here, the ice heat storage tank 2, the evaporator 1a of the steam compression refrigerator 1, the ice slurry pump 6 and the connecting pipe connecting them are filled with tap water as makeup water.
The cooling tower 4 is ancillary equipment of the steam compressor refrigerator 1 and introduces makeup water. The cooling water 5 led from the condenser 1c is sent by the cooling water pump 1d, and a part thereof is evaporated to the atmosphere. At the same time, a part thereof is discharged as blow water, and the makeup water is added to the cooling water 5 and introduced into the condenser 1c. The cooling tower 4 has a function of discharging the heat of the cooling water whose temperature has been increased by condensing water vapor in the condenser 1c to the atmosphere by the heat of vaporization accompanying the evaporation of the cooling water.
An ice heat storage tank 2 stores the low-temperature ice slurry taken out from the evaporator 1a via the ice slurry pump 6. In the ice heat storage tank 2, ice melting water 2a is guided from the heat exchanger 7 for cooling and heating described later, and the ice melting action of the low-temperature ice slurry is performed, so that ice and melting water, that is, cold water are mixed. The cold water is pumped to the cold heat exchanger 7 by the deicing water pump 2b. The cold heat exchanger 7 circulates cold water by a cold water pump 7a to a cooling load (not disclosed) as a so-called heat extraction cycle.
By the way, the steam compression refrigerator 1 is a refrigerator in which the evaporator 1a uses water that does not pass through a heat exchanger as a refrigerant. That is, the water that is the refrigerant of the steam compression refrigerator 1 is directly connected to the load side through the inside of the evaporator 1a and the pipe, and all of the water including the water in the ice heat storage tank 2 can be said to be a refrigerant. In order to start the water vapor compression refrigerator 1 to a desired rated operation state, it takes time until the temperature of the cold water introduced into the evaporator 1a is lowered to some extent. Until the temperature of the heat storage tank 2 and the entire water in the piping was lowered, the circulation of water had to be repeated between the evaporator 1a and the ice heat storage tank 2.
Japanese Patent Laid-Open No. 2002-257385

しかし、氷スラリー液を生成する水蒸気圧縮冷凍機1の蒸発器1aは、熱媒の水から氷への相変化を伴う潜熱冷却を考慮した構造となっており、氷スラリー液が生成しない冷却では、蒸発面積が小さく、定格能力を安定的に出力することが難しい。また、蒸発器1aに流送される冷水の温度が高い状態例えば8℃以上では、蒸発器1a内圧力が高く、圧縮機1bを定格回転まで上昇させることが出来ない。したがって、定格条件外の運転は一般的に効率は低下する。 However, the evaporator 1a of the steam compression refrigerator 1 that generates the ice slurry liquid has a structure that takes into account the latent heat cooling that accompanies the phase change from the water of the heating medium to ice, and in the cooling that does not generate the ice slurry liquid. The evaporation area is small and it is difficult to output the rated capacity stably. Further, in a state where the temperature of the cold water fed to the evaporator 1a is high, for example, 8 ° C. or higher, the pressure in the evaporator 1a is high and the compressor 1b cannot be raised to the rated rotation. Therefore, the efficiency outside the rated conditions generally decreases.

水蒸気圧縮冷凍機1の蒸発器1a内は真空圧となっており、流送された冷水の一部は蒸発して水蒸気となり、冷水に溶存している空気は析出して気相側に移動する。この時、蒸発器1aの水面は沸騰状態となり、それに伴って生じる水の飛沫が気相部壁面や蒸発器1a上部にあるデミスターを濡らし、製氷運転中にこれらの部位で氷結する。蒸発器1aの壁面やデミスターには、氷結した氷を脱落させる対策が施されているが、氷の成長が早い場合は水面すなわち、蒸発面やデミスターを閉塞させ、蒸発器1aへの水蒸気の吸入を妨げる原因となる。飛沫の程度は蒸発器1a内へ流送される冷水温度が高く、溶存空気量が多いほど顕著となる。 The inside of the evaporator 1a of the steam compression refrigerator 1 has a vacuum pressure, and a part of the fed cold water evaporates to become water vapor, and the air dissolved in the cold water precipitates and moves to the gas phase side. . At this time, the water surface of the evaporator 1a is in a boiling state, and the resulting water droplets wet the demister on the wall surface of the gas phase part and the evaporator 1a and freeze at these parts during the ice making operation. The wall surface and the demister of the evaporator 1a are provided with a measure for dropping the frozen ice. However, when the ice grows quickly, the water surface, that is, the evaporation surface or the demister is closed, and water vapor is sucked into the evaporator 1a. It becomes a cause to prevent. The degree of splash becomes more prominent as the temperature of cold water fed into the evaporator 1a is higher and the amount of dissolved air is larger.

以上の問題により、水蒸気圧縮冷凍機1の蓄熱運転開始時の立ち上がり運転、つまり冷水を冷却し、製氷可能な冷水温度とするまでの運転は、定格能力以下となり、効率も低下する。また、製氷運転時における蒸発器1a内の氷結障害の要因も生じさせる。
従って、本発明は、上記の問題を解消するためになされたものであって、水蒸気圧縮冷凍機1を冷熱源とした氷蓄熱システムに関し、冷凍機始動から製氷運転(定格運転)までの立ち上がり時間を短縮し、立ち上がり時の蒸発器1a内飛散水の抑制とエネルギーロスの削減を目的とする。
Due to the above problems, the start-up operation at the start of the heat storage operation of the steam compression refrigerator 1, that is, the operation until the cold water is cooled to the cold water temperature at which ice can be made becomes less than the rated capacity, and the efficiency also decreases. Moreover, the cause of the freezing failure in the evaporator 1a at the time of ice making operation is also caused.
Therefore, the present invention has been made to solve the above-described problem, and relates to an ice heat storage system using the steam compression refrigerator 1 as a cold heat source, and a rise time from the start of the refrigerator to the ice making operation (rated operation). The purpose is to suppress the splashed water in the evaporator 1a at the time of start-up and to reduce energy loss.

本発明に係る水蒸気圧縮冷凍機の運転制御装置は、蓄熱開始時の水蒸気圧縮冷凍機の立ち上がり運転の際に蓄熱槽内の高温の冷水を蒸発器に流送することを防止し、該水蒸気圧縮冷凍機で製造した往き管内の冷熱又は氷スラリー液を返り管内の戻り冷水に導入し、該返り管内の冷水の温度を低下させ、上記水蒸気圧縮冷凍機の製氷運転開始までの時間短縮化を図るべくしたことを目的としたものであって、次の構成、手段から成立する。 The operation control apparatus for a steam compression refrigerator according to the present invention prevents the hot cold water in the heat storage tank from being sent to the evaporator during the start-up operation of the steam compression refrigerator at the start of heat storage, The cold heat or ice slurry liquid in the forward pipe manufactured by the refrigerator is introduced into the return cold water in the return pipe, the temperature of the cold water in the return pipe is lowered, and the time to start the ice making operation of the steam compression refrigerator is shortened This is intended to be achieved, and consists of the following configurations and means.

すなわち請求項1記載の発明によれば、水滴飛散防止用デミスタ及び攪拌機を配備した蒸発器、凝縮器及び圧縮機でなる水蒸気圧縮冷凍機と、記蒸発器で生成された氷スラリー液を氷蓄熱槽に流送する往き管と、記氷蓄熱槽からの冷水を記蒸発器に流送する返り管と、前記往き管に配設されたスラリーポンプを始動し、前記返り管に配設されかつ水位レベル計で蒸発器内の氷スラリー液の水位を検出し弁開度を制御する制御弁と、前記往き管に配設されかつ氷スラリー液の温度及び流量を計測する氷スラリー温度計及び流量計と、前記往き管と前記返り管との間に接続されたバイパス管に介装しかつ前記返り管に配設された冷水温度計の計測値で弁開度を制御するバイパス制御弁と、前記返り管に配設されかつ前記冷水温度計の計測値で弁開度を制御する制御弁と、前記バイパス管に並列に配置したバイパス流路に接続されかつ前記氷蓄熱槽へ流入・流出する冷水を制御する冷水ポンプとを有したことを特徴とする。 That is, according to the first aspect of the present invention, the ice evaporator deployed prevention demister and a stirrer water droplet scattering, and vapor compression refrigeration machine comprising the condenser and the compressor, the ice slurry generated in the preceding Symbol evaporator a forward pipe that Nagareoku in the thermal storage tank, before and return pipe for Nagareoku before Symbol evaporator cold water from Kikori heat storage tank, start the slurry pump disposed in the forward pipe, distribution to the return pipe A control valve that detects the water level of the ice slurry liquid in the evaporator and controls the valve opening by a water level meter, and an ice slurry temperature that is disposed in the forward pipe and measures the temperature and flow rate of the ice slurry liquid Bypass control for controlling the valve opening with a measured value of a chilled water thermometer disposed in the return pipe and interposed in a bypass pipe connected between the flowmeter and the return pipe and the return pipe A valve and a measured value of the cold water thermometer disposed in the return pipe A control valve for controlling the valve opening, characterized in that and a chilled water pump for controlling the cold water to flow in or out to the connected and the ice heat storage tank in a bypass passage arranged in parallel to the bypass pipe.

本発明に係る水蒸気圧縮冷凍機の運転制御装置は、上述の構成を有するので次の効果がある。
すなわち、蒸発器内に水滴飛散防止用デミスタ及び攪拌機を備えたので冷水の蒸発等により冷水や製氷水の水滴が圧縮機側に飛散することを防止でき、併せて氷同士の結氷を防止する効果がある。また返り管に制御弁を配設し水位レベル計で水蒸気圧縮冷凍機の蒸発器内に貯留された氷スラリー液の水液位を検出すると共にこの検出信号によって、該制御弁の弁開度をコントロールし、該氷スラリー液の液位を制御でき、返り管内を流送する冷水温度を検出する冷水温度計の計測値で弁の開度をコントロールできるという効果がある。スラリーポンプから流送した氷スラリー液の全んどをバイパス管に接続したバイパス制御弁を経由して返り管から蒸発器に流送すると共に氷蓄熱槽に流送することがなく、常に該蒸発器内の氷スラリー液又は冷水を低温度に持続でき、水蒸気圧縮冷凍機の運転立上げを速やかに動作させるという効果がある。そしてバイパス制御弁が全開時すなわち冷水温度計の温度が高い値を示す場合に、必要に応じ冷水ポンプを運転することにより制御弁を絞り全バイパスを行ない、氷蓄熱槽へ流入及び流出する冷水流量のバランスの崩れを補完できるという効果がある。
Since the operation control apparatus of the steam compression refrigerator according to the present invention has the above-described configuration, the following effects can be obtained.
That is, since the water droplet scattering prevention demister and stirrer are provided in the evaporator, it is possible to prevent water droplets of cold water and ice making water from splashing to the compressor side due to evaporation of cold water, etc., and also the effect of preventing ice formation between ice There is. In addition, a control valve is provided in the return pipe, and the water level of the ice slurry stored in the evaporator of the steam compression refrigerator is detected by a water level meter, and the valve opening of the control valve is determined by this detection signal. The level of the ice slurry liquid can be controlled, and the opening degree of the valve can be controlled by the measured value of the cold water thermometer that detects the temperature of the cold water flowing in the return pipe. All of the ice slurry liquid fed from the slurry pump is sent from the return pipe to the evaporator via the bypass control valve connected to the bypass pipe and is not sent to the ice heat storage tank. The ice slurry liquid or cold water in the container can be maintained at a low temperature, and there is an effect that the start-up of the steam compression refrigerator can be operated quickly. When the bypass control valve is fully open, that is, when the temperature of the chilled water thermometer shows a high value, the chilled water pump is operated as necessary to squeeze the control valve to perform full bypass, and the flow rate of chilled water flowing into and out of the ice heat storage tank There is an effect that the balance of the balance can be compensated.

以下、本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施の形態について、添付図面に基づき詳細に説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an operation control apparatus for a steam compression refrigerator according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施の形態に於ける一つの例を示す構成配置図である。 FIG. 1 is a structural layout diagram showing one example in an embodiment of an operation control apparatus for a steam compression refrigerator according to the present invention.

8は、氷スラリーを製造する水蒸気圧縮冷凍機であって、蒸発器8a、凝縮器8b及び圧縮機8cで構成されている。上記蒸発器8a内には水滴飛散防止用デミスタ9を配備しており、いわゆるベッセル型の蒸発器8aを構成している。該水滴飛散防止用デミスタ9は、上記蒸発器8aからの冷水の蒸発等により冷水や製氷水の水滴が上記圧縮機8c側に飛散することを防止する。 A steam compression refrigerator 8 for producing ice slurry is composed of an evaporator 8a, a condenser 8b, and a compressor 8c. A water droplet scattering prevention demister 9 is provided in the evaporator 8a to constitute a so-called Bessel type evaporator 8a. The water droplet scattering preventing demister 9 prevents water droplets of cold water or ice-making water from splashing toward the compressor 8c due to evaporation of cold water from the evaporator 8a.

また、10は攪拌機であり、上記蒸発器8a内に挿置され、貯留された冷水を撹拌することにより氷同士の結氷を防止するとともに氷スラリーを一様にする機能を有する。尚、11は上記圧縮機8cのブレードである。 Reference numeral 10 denotes a stirrer, which is inserted into the evaporator 8a and has a function of preventing ice formation between ices and uniforming ice slurry by stirring the stored cold water. Reference numeral 11 denotes a blade of the compressor 8c.

12は往き管であり、上記水蒸気圧縮冷凍機8の蒸発器8aの出口側と氷蓄熱槽13の間に配管又は接続されている。そして、上記蒸発器8aで生成された氷スラリー液8dを氷蓄熱槽13に流送する。14は、上記往き管12に配設されたスラリーポンプであり、流量計14aを備え、インバータ14bにより、上記往き管12内に流送する氷スラリー液8dの流量を制御する。15は氷スラリー温度計であって、上記蒸発器8bから流送された往き管12内の氷スラリー液8dの温度、つまり冷水出口温度を計測する。 A forward pipe 12 is connected or connected between the outlet side of the evaporator 8 a of the steam compression refrigerator 8 and the ice heat storage tank 13. Then, the ice slurry liquid 8d generated by the evaporator 8a is sent to the ice heat storage tank 13. A slurry pump 14 is provided in the forward pipe 12 and includes a flow meter 14a. The inverter 14b controls the flow rate of the ice slurry liquid 8d to be fed into the forward pipe 12. An ice slurry thermometer 15 measures the temperature of the ice slurry liquid 8d in the forward pipe 12 fed from the evaporator 8b, that is, the cold water outlet temperature.

16は返り管であり、上記氷蓄熱槽13と上記水蒸気圧縮冷凍機8の蒸発器8aの入口側の間に配管又は接続されている。また、上記返り管16は制御弁17を配設し、水位レベル計17aで上記水蒸気圧縮冷凍機8の蒸発器8a内に貯留された氷スラリー液8dの水液位を検出すると共にこの検出信号によって、該制御弁17の弁開度をコントロールし、該氷スラリー液8dの液位を制御する。18はバイパス管であり、上記往き管12の経路と上記返り管16の経路との間に接続又は配管されている。 A return pipe 16 is connected or connected between the ice heat storage tank 13 and the inlet side of the evaporator 8a of the steam compression refrigerator 8. Further, the return pipe 16 is provided with a control valve 17, and the water level level meter 17a detects the water level of the ice slurry liquid 8d stored in the evaporator 8a of the steam compression refrigerator 8, and this detection signal. Thus, the valve opening degree of the control valve 17 is controlled, and the liquid level of the ice slurry liquid 8d is controlled. A bypass pipe 18 is connected or piped between the path of the forward pipe 12 and the path of the return pipe 16.

19はバイパス制御弁であり、上記バイパス管18の経路に配設され、上記返り管16内を流送する冷水温度を検出する冷水温度計19aの計測値で弁の開度がコントロールされる。該冷水温度計19aは、上記返り管16の上記氷蓄熱槽13から送出された冷水と、上記バイパス管18から流送された氷スラリー液8dとが混流されてなる上記返り管16内の冷水の温度が検出できる位置に配置している。 Reference numeral 19 denotes a bypass control valve, which is disposed in the path of the bypass pipe 18, and the opening degree of the valve is controlled by a measured value of a cold water thermometer 19a that detects the temperature of the cold water flowing through the return pipe 16. The chilled water thermometer 19a is a chilled water in the return pipe 16 in which the cold water sent from the ice heat storage tank 13 of the return pipe 16 and the ice slurry liquid 8d sent from the bypass pipe 18 are mixed. It is arranged at a position where the temperature of can be detected.

尚、13aは氷蓄熱槽冷水温度計であって、該氷蓄熱槽13の出口側に於ける返り管16に配置され、該氷蓄熱槽13から流出する冷水温度を検出している。 An ice heat storage tank cold water thermometer 13a is disposed on the return pipe 16 on the outlet side of the ice heat storage tank 13 and detects the temperature of the cold water flowing out of the ice heat storage tank 13.

次に、上述した本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施の形態に基づく動作等を明らかにする。 Next, the operation | movement etc. based on embodiment of the operation control apparatus of the water vapor | steam compression refrigerator which concerns on this invention mentioned above are clarified.

当該水蒸気圧縮冷凍機8の運転に際して、上記氷蓄熱槽13の温度状態に拘らず、バイパス管18の流量制御により該水蒸気圧縮冷凍機8の始動時の冷水の温度を設定値以下にすることで当該水蒸気圧縮冷凍機8の安定運転を企図することにある。
先ず、本システムに別途備えている真空ポンプ(図示せず)を始動し、例えば、飽和蒸気温度約24(℃)、真空圧3.0(KPa)で真空システム(図示せず)を始動する。そして、スラリーポンプ14を始動し、流量計14aからの計測値で氷スラリー液8dの流量値を算出し、インバータ14bを作動させて定流量制御を行なう。一方、水位レベル計17aで蒸発器8dに貯留する氷スラリー液8dの水液位を検出し、この検出信号により制御弁17の弁開度をコントロールし、水液位制御を開始する。
During operation of the steam compression refrigerator 8, regardless of the temperature state of the ice heat storage tank 13, by controlling the flow rate of the bypass pipe 18, the temperature of the cold water at the start of the steam compression refrigerator 8 is set to a set value or less. The purpose is to intend stable operation of the steam compression refrigerator 8.
First, a vacuum pump (not shown) provided separately in the present system is started. For example, a vacuum system (not shown) is started at a saturated steam temperature of about 24 (° C.) and a vacuum pressure of 3.0 (KPa). . Then, the slurry pump 14 is started, the flow value of the ice slurry liquid 8d is calculated from the measured value from the flow meter 14a, and the inverter 14b is operated to perform constant flow control. On the other hand, the water level of the ice slurry liquid 8d stored in the evaporator 8d is detected by the water level meter 17a, the valve opening degree of the control valve 17 is controlled by this detection signal, and the water level control is started.

而して、上記水蒸気圧縮冷凍機8を始動し、冷水温度計19aでの計測値が、例えば、5(℃)の設定値以上である場合、該バイパス制御弁19は弁の開放動作を開始し、上記往き管12内を流送する氷スラリー液8dをバイパス管18の経路へ引き込み、かつ上記返り管16へ導入する。 Thus, the water vapor compression refrigerator 8 is started, and when the measured value by the cold water thermometer 19a is, for example, a set value of 5 (° C.) or more, the bypass control valve 19 starts the valve opening operation. Then, the ice slurry liquid 8 d that flows in the forward pipe 12 is drawn into the path of the bypass pipe 18 and introduced into the return pipe 16.

なお、上記冷水温度計19aの計測値、つまり、氷スラリー液8dのバイパス制御弁19によるバイパス制御後の冷水温度が例えば8(℃)以上のときは、上記水蒸気圧縮冷凍機8の圧縮機の回転数を例えば、35(Hz)までにとどめ、冷水温度計19aによる計測値が8(℃)以下になったとき、上記水蒸気圧縮冷凍機8の回転数を例えば、60(Hz)まで上昇させる。
さらに、上記冷水温度計19aによる計測値、つまり、当該冷水温度が例えば、6(℃)以下になったとき上記水蒸気圧縮冷凍機8は定常運転領域の例えば、回転数を70(Hz)まで回転上昇させる。
When the measured value of the cold water thermometer 19a, that is, the cold water temperature after bypass control of the ice slurry liquid 8d by the bypass control valve 19 is, for example, 8 (° C.) or more, the compressor of the steam compression refrigerator 8 is The rotation speed is limited to 35 (Hz), for example, and when the measured value by the cold water thermometer 19a becomes 8 (° C.) or less, the rotation speed of the steam compression refrigerator 8 is increased to, for example, 60 (Hz). .
Further, when the measured value by the chilled water thermometer 19a, that is, the chilled water temperature becomes, for example, 6 (° C.) or less, the steam compression refrigerator 8 rotates in the steady operation region, for example, to a rotational speed of 70 (Hz). Raise.

上記返り管16内の冷水入口温度、つまり、冷水温度計19aの計測値が設定値、すなわち、例えば、5(℃)になるように上記バイパス制御弁19の弁の開度を調整する。
尚、当該バイパス制御弁19がON−OFF制御の場合は、返り管16内を流送する冷水の冷水温度が設定値、すなわち、5(℃)以下のときは上記バイパス制御弁19を閉じる。
The opening degree of the bypass control valve 19 is adjusted so that the cold water inlet temperature in the return pipe 16, that is, the measured value of the cold water thermometer 19a becomes a set value, for example, 5 (° C.).
When the bypass control valve 19 is ON-OFF controlled, the bypass control valve 19 is closed when the temperature of the chilled water flowing through the return pipe 16 is a set value, that is, 5 (° C.) or less.

そして、上記バイパス制御弁19の弁開度が最小開度になったときは、当該バイパス制御弁19の弁を閉じ、上記バイパス管18から上記返り管16への氷スラリー液8d又は冷水の流入を停止させる。なお、最小開度とは、氷スラリーの閉塞が起こらないように予め設定した弁開度である。 And when the valve opening degree of the bypass control valve 19 becomes the minimum opening degree, the valve of the bypass control valve 19 is closed, and the ice slurry liquid 8d or the cold water flows into the return pipe 16 from the bypass pipe 18. Stop. The minimum opening is a valve opening set in advance so as not to block the ice slurry.

また、上記温水温度計19aによる冷水の計測値、つまり返り管16内の冷水温度値が5(℃)以上である場合、顕熱冷却時で、当該冷水の温度を速やかに低下させる必要がある。そして、上記氷スラリー温度計15による氷スラリー液8dの温度、つまり冷水出口温度が氷スラリー液の製造時である0(℃)以下であるときは、上記蒸発器8aの入口側の冷水に氷が残留しない程度の温度値、例えば、2(℃)以上に上記水蒸気圧縮冷凍機8を運転制御する。さらに、例えば、冷水入口温度が大きく変化したとき、それに従い冷水出口温度が変動し、蒸発器8a内の圧力が変動し、当該水蒸気圧縮冷凍機8の運転が不安定となりこれを防止すべく氷蓄熱槽13内の冷水温度とバイパス制御弁19による弁の開度の制御後に於ける冷水入口温度との差が少ない状態で制御を終了させることが重要である。 Moreover, when the measured value of the chilled water by the hot water thermometer 19a, that is, the chilled water temperature value in the return pipe 16 is 5 (° C.) or more, it is necessary to quickly reduce the temperature of the chilled water during sensible heat cooling. . Then, when the temperature of the ice slurry liquid 8d by the ice slurry thermometer 15, that is, the cold water outlet temperature is 0 (° C.) or less, which is the time when the ice slurry liquid is produced, ice water is added to the cold water on the inlet side of the evaporator 8a. The steam compression refrigerator 8 is controlled to operate at a temperature value that does not remain, for example, 2 (° C.) or more. Furthermore, for example, when the chilled water inlet temperature changes greatly, the chilled water outlet temperature fluctuates accordingly, the pressure in the evaporator 8a fluctuates, and the operation of the steam compression refrigerator 8 becomes unstable so that ice can be prevented. It is important to terminate the control in a state where there is little difference between the cold water temperature in the heat storage tank 13 and the cold water inlet temperature after the valve opening degree is controlled by the bypass control valve 19.

次に、本発明に係る当該水蒸気圧縮冷凍機8の運転制御の特性であって、運転時間(min)に対する往き管12又は返り管16内を流送する冷水の温度(℃)を示す図2に基づき、当該バイパス制御弁19の動作による特徴を説明する。 Next, FIG. 2 is a characteristic of the operation control of the steam compression refrigerator 8 according to the present invention and shows the temperature (° C.) of the cold water flowing in the forward pipe 12 or the return pipe 16 with respect to the operation time (min). The characteristics of the bypass control valve 19 according to the operation will be described.

バイパス制御を行った運転とバイパス制御を行わない運転での冷水出入口温度を図2に示す。バイパス制御のバイパス後冷水温度設定は5(℃)とした。
尚、グラフ内の特性線は水蒸気圧縮冷凍機始動からの運転時間(min)に対する各冷水温度(℃)を示すものであって、
aはバイパス制御を行わない場合の冷水出口温度特性線
bはバイパス制御を行った場合の冷水出口温度特性線
cはバイパス制御を行った場合の混合後の冷水入口温度特性線
dはバイパス制御を行った場合の混合前の冷水入口温度特性線
である。
FIG. 2 shows the chilled water inlet / outlet temperatures in the operation with the bypass control and the operation without the bypass control. The cold water temperature setting after bypass of the bypass control was set to 5 (° C.).
In addition, the characteristic line in a graph shows each cold water temperature (degreeC) with respect to the operation time (min) from a steam compression refrigerator start,
a is a chilled water outlet temperature characteristic line when the bypass control is not performed b is a chilled water outlet temperature characteristic line when the bypass control is performed c is a chilled water inlet temperature characteristic line after mixing when the bypass control is performed It is a cold water inlet temperature characteristic line before mixing at the time of performing.

この検証によれば、バイパス制御を行った運転は、バイパス制御を行わない運転に比べて冷水出口温度の0(℃)到達時間Tが約100(min)短かった。すなわち、運転始動時から製氷運転状態までの時間が短縮されたことになり、この短縮分の顕熱運転(水蓄熱運転)と潜熱運転(氷蓄熱運転)との運転効率の差が省エネルギーとなる。 According to this verification, the operation in which the bypass control was performed had a time 0 T for reaching the chilled water outlet temperature T of about 100 (min) shorter than the operation in which the bypass control was not performed. That is, the time from the start of operation to the ice making operation state has been shortened, and the difference in operation efficiency between the sensible heat operation (water heat storage operation) and the latent heat operation (ice heat storage operation) corresponding to this shortening is energy saving. .

以上の検証により、冷水入口温度が約5(℃)以下で氷スラリー液8dが製造され始めることから、氷蓄熱槽13の冷水温度が5(℃)以上の時は顕熱冷却となり、圧縮機8cの回転数も例えば、70(Hz)の定格回転数以下となっている。このため、定格出力以下の能力しか出せないこととなる。このバイパス制御方法は、水蒸気圧縮冷凍機8から流出した氷スラリー液8dを冷水としてバイパス管18を経由してリターンさせることにより、短時間で製氷可能な5(℃)以下の冷水入口温度とし、定格出力までの到達時間の短縮を可能とする。 As a result of the above verification, since the ice slurry liquid 8d starts to be produced when the cold water inlet temperature is about 5 (° C.) or less, when the cold water temperature of the ice heat storage tank 13 is 5 (° C.) or more, sensible heat cooling occurs. The rotational speed of 8c is also below the rated rotational speed of 70 (Hz), for example. For this reason, only the capability below a rated output can be output. In this bypass control method, the ice slurry liquid 8d flowing out from the steam compression refrigerator 8 is returned as cold water via the bypass pipe 18 to obtain a cold water inlet temperature of 5 (° C.) or less capable of making ice in a short time, The time to reach the rated output can be shortened.

次に、本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例1に於いて図3に基づき説明する。 Next, a first embodiment of the operation control apparatus for the steam compression refrigerator according to the present invention will be described with reference to FIG.

図3は、水蒸気圧縮冷凍機の運転制御装置の実施例1を示す構成配置図である。
18Aないし18Dはそれぞれバイパス管であり、上記往き管12の経路と上記返り管16の経路との間に接続又は配管されている。19Aないし19Dはそれぞれバイパス制御弁であり、上記バイパス管18Aないし18Dの経路に対応してそれぞれ配設されている。そして、上記バイパス制御弁19Aないし19Dは、上記返り管16内を流送する冷水温度を検出する冷水温度計19aの計測値で弁の開閉がコントロールされる。該冷水温度計19aのセンサー部は、上記返り管16に挿置され、上記氷蓄熱槽13から送出された冷水と、上記バイパス管18Aないし18Dから流送された氷スラリー液8dとが混流されてなる上記返り管16内の冷水の温度を計測している。
FIG. 3 is a structural layout diagram showing Example 1 of the operation control device of the steam compression refrigerator.
Reference numerals 18A to 18D denote bypass pipes, which are connected or piped between the path of the forward pipe 12 and the path of the return pipe 16. Reference numerals 19A to 19D denote bypass control valves, which are arranged corresponding to the paths of the bypass pipes 18A to 18D, respectively. The bypass control valves 19A to 19D are controlled to be opened and closed by the measured value of the cold water thermometer 19a that detects the temperature of the cold water flowing through the return pipe 16. The sensor part of the cold water thermometer 19a is inserted into the return pipe 16, and the cold water sent from the ice heat storage tank 13 and the ice slurry liquid 8d sent from the bypass pipes 18A to 18D are mixed. The temperature of the cold water in the return pipe 16 is measured.

尚、13aは氷蓄熱槽冷水温度計であって、該氷蓄熱槽13の出口側に於ける返り管16に配置され、該氷蓄熱槽13から流出する冷水温度を検出している。 An ice heat storage tank cold water thermometer 13a is disposed on the return pipe 16 on the outlet side of the ice heat storage tank 13 and detects the temperature of the cold water flowing out of the ice heat storage tank 13.

本発明に係る実施例1の特徴点は、上述した図1に示す実施の形態の構成に対して、バイパス制御弁19Aないし19D及びこれに相応するバイパス管18Aないし18Dを複数個備えた構成である。このように構成したので単一のバイパス管18に比べ、ON−OFF制御としても各々のバイパス制御弁の受け持つバイパス量が少なくでき冷水温度計19aに基づいて、段階的に開閉動作を行うことにより、弁の開閉動作によるバイパス後の冷水温度の変化幅を抑制させることができる。したがって、水蒸気圧縮冷凍機8をさらに安定化した運転制御を行うことができる。
尤もバイパス管18Aないし18D及びバイパス制御弁19Aないし19Dが増加した分、本システムは複雑化し、施工費用等が上昇する隘路がある。
The characteristic point of the first embodiment according to the present invention is that it has a configuration in which a plurality of bypass control valves 19A to 19D and corresponding bypass pipes 18A to 18D are provided in addition to the configuration of the embodiment shown in FIG. is there. Since it was configured in this way, the bypass amount of each bypass control valve can be reduced even for ON-OFF control compared to the single bypass pipe 18, and the opening / closing operation is performed stepwise based on the cold water thermometer 19a. The variation width of the cold water temperature after bypass due to the opening / closing operation of the valve can be suppressed. Therefore, it is possible to perform operation control in which the steam compression refrigerator 8 is further stabilized.
However, since the bypass pipes 18A to 18D and the bypass control valves 19A to 19D are increased, this system becomes complicated and there is a bottleneck that increases the construction cost.

本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例1の他の構成部分は前述した図1に示すものと略同一であり、同一番号を付し説明を省略する。
また、本発明に係る水蒸気圧縮冷凍機の運転制御装置の動作等も図1に示すものと略同一であり、その説明を省略する。
The other components of the first embodiment of the operation control device for the steam compression refrigerator according to the present invention are substantially the same as those shown in FIG.
Also, the operation of the operation control device for the steam compression refrigerator according to the present invention is substantially the same as that shown in FIG.

次に、本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例2に於いて図4に基づき説明する。 Next, a second embodiment of the operation control apparatus for the steam compression refrigerator according to the present invention will be described with reference to FIG.

図4は、水蒸気圧縮冷凍機の運転制御装置の実施例2を示す構成配置図である。 FIG. 4 is a configuration layout diagram showing a second embodiment of the operation control device of the steam compression refrigerator.

20は、熱交換器手段であり、上記往き管12の経路と上記返り管16の経路との間に介装されている。そして、上記熱交換器手段20は一次側配管20aと二次側配管20bで構成され、この一次側配管20aは上記往き管12から分岐配管して、該往き管12に接続されてなり、また、この二次側配管20bは上記返り管16から分岐配管して、該返り管16に接続されてなる。また、上記一次側配管20aのループには、複数の制御弁20c及び20dを、上記二次側配管20bのループには複数の制御弁20e及び20fをそれぞれ備えている。冷水温度計19aによる計測値が設定値になるように、これらの制御弁20cないし20fの弁の開度を調整し、一次側配管20aに流過する氷スラリー液8d及び二次側配管20bに冷水を流量制御する。 A heat exchanger means 20 is interposed between the path of the forward pipe 12 and the path of the return pipe 16. The heat exchanger means 20 is composed of a primary side pipe 20a and a secondary side pipe 20b, and the primary side pipe 20a is branched from the forward pipe 12 and connected to the forward pipe 12. The secondary side pipe 20 b is branched from the return pipe 16 and connected to the return pipe 16. The loop of the primary side pipe 20a includes a plurality of control valves 20c and 20d, and the loop of the secondary side pipe 20b includes a plurality of control valves 20e and 20f. The opening degree of these control valves 20c to 20f is adjusted so that the measured value by the chilled water thermometer 19a becomes a set value, and the ice slurry liquid 8d flowing through the primary side pipe 20a and the secondary side pipe 20b are passed through. Control the flow rate of cold water.

本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例2の他の構成部分は前述した図1に示すものと略同一であり、同一番号を付し説明を省略する。
また、本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例2の動作等も図1に示すものと略同一であり、その説明を省略する。
Other components of the second embodiment of the operation control apparatus for the steam compression refrigerator according to the present invention are substantially the same as those shown in FIG.
Further, the operation of the second embodiment of the operation control device for the steam compression refrigerator according to the present invention is substantially the same as that shown in FIG.

次に、本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例3に於いて図5に基づき説明する。 Next, a third embodiment of the operation control apparatus for the steam compression refrigerator according to the present invention will be described with reference to FIG.

図5は、水蒸気圧縮冷凍機の運転制御装置の実施例3を示す構成配置図である。
19は、バイパス制御弁であり、上記往き管12の経路と上記返り管16の経路との間に接続されたバイパス管18に介装されている。21は冷水ポンプであり該バイパス制御弁19に隣接して並列に配置してあって、往き管12の経路と返り管16の経路との間に接続されたバイパス管に並列に配置したバイパス流路22間に接続されている。23は、二方弁でなる制御弁であり、バイパス制御弁19を接続したバイパス管18と合流する手前であって、上記返り管16の経路に介装されかつ冷水温度計19aにより上記バイパス制御弁19と同様に弁の開度が制御される。
FIG. 5 is a configuration diagram showing a third embodiment of the operation control device of the steam compression refrigerator.
A bypass control valve 19 is interposed in a bypass pipe 18 connected between the path of the forward pipe 12 and the path of the return pipe 16. A cold water pump 21 is arranged in parallel adjacent to the bypass control valve 19 and is arranged in parallel with a bypass pipe connected between the path of the forward pipe 12 and the path of the return pipe 16. Connected between the paths 22. 23 is a control valve composed of a two-way valve, just before joining the bypass pipe 18 to which the bypass control valve 19 is connected. The bypass valve 23 is interposed in the path of the return pipe 16 and is controlled by the cold water thermometer 19a. Similar to the valve 19, the opening of the valve is controlled.

実施例3は、上述の構成としたのでスラリーポンプ14から流送した氷スラリー液の全んどをバイパス管18に接続したバイパス制御弁19を経由して返り管16から蒸発器8aに流送すると共に氷蓄熱槽13に流送することがなく、常に該蒸発器8a内の氷スラリー液又は冷水8dを低温度に持続する。従って上記水蒸気圧縮冷凍機8の運転立上げを速やかに動作させることができる。具体的には、バイパス制御弁19が全開時すなわち冷水温度計19aの温度が高い値を示す場合に、制御弁23を絞り全バイパスを行う。この際、この動作により、氷蓄熱槽13へ流入及び流出する冷水の流量バランスの崩れを補完するため、必要に応じ冷水ポンプ21を運転する。 Since the third embodiment has the above-described configuration, all of the ice slurry liquid fed from the slurry pump 14 is fed from the return pipe 16 to the evaporator 8 a via the bypass control valve 19 connected to the bypass pipe 18. At the same time, the ice slurry liquid or the cold water 8d in the evaporator 8a is always kept at a low temperature without being sent to the ice heat storage tank 13. Accordingly, the start-up of the steam compression refrigerator 8 can be promptly operated. Specifically, when the bypass control valve 19 is fully open, that is, when the temperature of the chilled water thermometer 19a shows a high value, the control valve 23 is throttled to perform full bypass. At this time, by this operation, the cold water pump 21 is operated as necessary in order to supplement the collapse of the flow rate balance of the cold water flowing into and out of the ice heat storage tank 13.

本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例3の他の構成部分は前述した図1に示すものと略同一であり、同一番号を付し説明を省略する。 Other components of the third embodiment of the operation control apparatus for the steam compression refrigerator according to the present invention are substantially the same as those shown in FIG.

本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施の形態に於ける一つの例を示す構成配置図である。1 is a configuration layout diagram showing one example in an embodiment of an operation control device for a steam compression refrigerator according to the present invention. FIG. 本発明に係る水蒸気圧縮冷凍機の運転時間(min)に対する冷水の温度(℃)を示す運転制御特性図である。It is a driving | operation control characteristic figure which shows the temperature (degreeC) of cold water with respect to the operating time (min) of the water vapor compression refrigerator which concerns on this invention. 本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例1を示す構成配置図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows Example 1 of the operation control apparatus of the steam compression refrigerator which concerns on this invention. 本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例2を示す構成配置図である。It is a block diagram which shows Example 2 of the operation control apparatus of the steam compression refrigerator which concerns on this invention. 本発明に係る水蒸気圧縮冷凍機の運転制御装置の実施例3を示す構成配置図である。It is a block diagram which shows Example 3 of the operation control apparatus of the steam compression refrigerator which concerns on this invention. 従来の技術に於ける氷蓄熱システムの一例を示す構成図である。It is a block diagram which shows an example of the ice thermal storage system in a prior art.

8 水蒸気圧縮冷凍機
8a 水蒸気圧縮冷凍機の蒸発器
8b 水蒸気圧縮冷凍機の凝縮器
8c 水蒸気圧縮冷凍機の圧縮機
8d 氷スラリー液又は冷水
9 水滴飛散防止用デミスタ
10 攪拌機
11 圧縮機のブレード
12 往き管
13 氷蓄熱槽
13a 氷蓄熱槽冷水温度計
14 スラリーポンプ
14a 流量計
14b インバータ
15 氷スラリー温度計
16 返り管
17 制御弁
18 バイパス管
18A バイパス管
18B バイパス管
18C バイパス管
18D バイパス管
19 バイパス制御弁
19a 冷水温度計
19A バイパス制御弁
19B バイパス制御弁
19C バイパス制御弁
19D バイパス制御弁
20 熱交換器手段
20a 熱交換器手段の一次側配管
20b 熱交換器手段の二次側配管
20c 制御弁
20d 制御弁
20e 制御弁
20f 制御弁
21 冷水ポンプ
22 バイパス流路
23 制御弁

8 Steam Compressor Refrigerator 8a Steam Compressor Refrigerator Evaporator 8b Steam Compressor Refrigerator Condenser 8c Steam Compressor Refrigerator Compressor 8d Ice Slurry Liquid or Cold Water 9 Water Drop Scattering Demister 10 Stirrer 11 Compressor Blade 12 Tube 13 Ice heat storage tank 13a Ice heat storage tank cold water thermometer 14 Slurry pump 14a Flow meter 14b Inverter 15 Ice slurry thermometer 16 Return pipe 17 Control valve 18 Bypass pipe 18A Bypass pipe 18B Bypass pipe 18C Bypass pipe 18D Bypass pipe 19 Bypass control valve 19a Cold water thermometer 19A Bypass control valve 19B Bypass control valve 19C Bypass control valve 19D Bypass control valve 20 Heat exchanger means 20a Heat exchanger means primary pipe 20b Heat exchanger means secondary pipe 20c Control valve 20d Control valve 20e Control valve 20f Control valve 21 Chilled water pump 2 bypass passage 23 valve

Claims (1)

水滴飛散防止用デミスタ及び攪拌機を配備した蒸発器、凝縮器及び圧縮機でなる水蒸気圧縮冷凍機と、記蒸発器で生成された氷スラリー液を氷蓄熱槽に流送する往き管と、記氷蓄熱槽からの冷水を記蒸発器に流送する返り管と、前記往き管に配設されたスラリーポンプを始動し、前記返り管に配設されかつ水位レベル計で蒸発器内の氷スラリー液の水位を検出し弁開度を制御する制御弁と、前記往き管に配設されかつ氷スラリー液の温度及び流量を計測する氷スラリー温度計及び流量計と、前記往き管と前記返り管との間に接続されたバイパス管に介装しかつ前記返り管に配設された冷水温度計の計測値で弁開度を制御するバイパス制御弁と、前記返り管に配設されかつ前記冷水温度計の計測値で弁開度を制御する制御弁と、前記バイパス管に並列に配置したバイパス流路に接続されかつ前記氷蓄熱槽へ流入・流出する冷水を制御する冷水ポンプとを有したことを特徴とする水蒸気圧縮冷凍機の運転制御装置。 Evaporator deployed prevention demister and a stirrer water droplet scattering, and vapor compression refrigeration machine comprising the condenser and the compressor, the forward pipe for Nagareoku ice slurry generated in the preceding Symbol evaporator in an ice thermal storage tank, before a return pipe for Nagareoku cold water from Kikori storage tank before Symbol evaporator, said to have started the slurry pump disposed forward pipe, in the evaporator by the disposed return pipe and water level meter A control valve that detects the water level of the ice slurry liquid and controls the valve opening; an ice slurry thermometer and a flow meter that are disposed in the forward pipe and measures the temperature and flow rate of the ice slurry liquid; the forward pipe and the A bypass control valve that is interposed in a bypass pipe connected between the return pipe and controls the valve opening degree by a measured value of a cold water thermometer provided in the return pipe, and is provided in the return pipe; A control valve for controlling the valve opening by the measured value of the cold water thermometer; Operation control device for a steam compression refrigeration machine, characterized in that and a chilled water pump for controlling the cold water to flow in or out to the scan line connected to the bypass passage disposed in parallel and the ice heat storage tank.
JP2004123853A 2004-04-20 2004-04-20 Operation control device for steam compression refrigerator Expired - Lifetime JP4518544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123853A JP4518544B2 (en) 2004-04-20 2004-04-20 Operation control device for steam compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123853A JP4518544B2 (en) 2004-04-20 2004-04-20 Operation control device for steam compression refrigerator

Publications (2)

Publication Number Publication Date
JP2005308271A JP2005308271A (en) 2005-11-04
JP4518544B2 true JP4518544B2 (en) 2010-08-04

Family

ID=35437241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123853A Expired - Lifetime JP4518544B2 (en) 2004-04-20 2004-04-20 Operation control device for steam compression refrigerator

Country Status (1)

Country Link
JP (1) JP4518544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452918B (en) * 2007-09-18 2013-03-13 Scottish & Newcastle Plc Control system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272539A (en) * 1985-05-28 1986-12-02 Mitsui Eng & Shipbuild Co Ltd System for accumulating cold and hot medium utilizing ice
JPH01219437A (en) * 1988-02-27 1989-09-01 Takenaka Komuten Co Ltd Ice heat accumulation device
JPH0336472A (en) * 1989-06-29 1991-02-18 Ebara Corp Open type heat pump
JPH06193921A (en) * 1992-12-25 1994-07-15 Mitsubishi Heavy Ind Ltd Supercooling type ice heat storage apparatus
JPH08219502A (en) * 1995-02-13 1996-08-30 Mitsui Eng & Shipbuild Co Ltd Ice heat storage facility
JPH08285335A (en) * 1995-04-13 1996-11-01 Takasago Thermal Eng Co Ltd Heat storage system
JP2002181403A (en) * 2000-12-15 2002-06-26 Sanken Setsubi Kogyo Co Ltd System for taking out cold heat and pure water or clean water of water-vapor compression refrigerating machine
JP2003314916A (en) * 2002-04-22 2003-11-06 Sanken Setsubi Kogyo Co Ltd Water cooling medium evaporation natural circulation cooling system by water vapor compression refrigerating machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272539A (en) * 1985-05-28 1986-12-02 Mitsui Eng & Shipbuild Co Ltd System for accumulating cold and hot medium utilizing ice
JPH01219437A (en) * 1988-02-27 1989-09-01 Takenaka Komuten Co Ltd Ice heat accumulation device
JPH0336472A (en) * 1989-06-29 1991-02-18 Ebara Corp Open type heat pump
JPH06193921A (en) * 1992-12-25 1994-07-15 Mitsubishi Heavy Ind Ltd Supercooling type ice heat storage apparatus
JPH08219502A (en) * 1995-02-13 1996-08-30 Mitsui Eng & Shipbuild Co Ltd Ice heat storage facility
JPH08285335A (en) * 1995-04-13 1996-11-01 Takasago Thermal Eng Co Ltd Heat storage system
JP2002181403A (en) * 2000-12-15 2002-06-26 Sanken Setsubi Kogyo Co Ltd System for taking out cold heat and pure water or clean water of water-vapor compression refrigerating machine
JP2003314916A (en) * 2002-04-22 2003-11-06 Sanken Setsubi Kogyo Co Ltd Water cooling medium evaporation natural circulation cooling system by water vapor compression refrigerating machine

Also Published As

Publication number Publication date
JP2005308271A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
CN100410597C (en) Operation method of single or dual uses adsorption type freezing machine
JP2009287896A (en) Water heater
JP5098472B2 (en) Chiller using refrigerator
RU2224189C2 (en) Cooling absorption plant
JPH0473064B2 (en)
US10794160B2 (en) Geothermal heat recovery device and geothermal heat recovery device operating method
JP4518544B2 (en) Operation control device for steam compression refrigerator
JP6497111B2 (en) Heat pump steam generator
JP5448482B2 (en) Automatic ice machine
JP2010007908A (en) Air conditioning system
JP2009097794A (en) Cryogenic liquid heating method and its device
JP3880852B2 (en) Refrigerant management device and method for storing and discharging refrigerant
JP4269616B2 (en) Control method and apparatus for supercooled water production apparatus
JP2013024435A (en) Ice making machine
JP6455348B2 (en) Heat pump steam generator and method of operating the heat pump steam generator
US20220238896A1 (en) Cooling system for two-phase refrigerant
JP2005121332A (en) Double effect absorption type water cooling and heating machine with exhaust heat recovery device
JP6190577B2 (en) Heat pump frost determination method and heat pump using the method
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3077977B1 (en) Absorption refrigerator
JP2010007907A (en) Air conditioning system
JP6605975B2 (en) Absorption refrigerator
KR20030081154A (en) Absorption refrigerator
JP3824441B2 (en) Absorption refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250