JP6190577B2 - Heat pump frost determination method and heat pump using the method - Google Patents

Heat pump frost determination method and heat pump using the method Download PDF

Info

Publication number
JP6190577B2
JP6190577B2 JP2012169820A JP2012169820A JP6190577B2 JP 6190577 B2 JP6190577 B2 JP 6190577B2 JP 2012169820 A JP2012169820 A JP 2012169820A JP 2012169820 A JP2012169820 A JP 2012169820A JP 6190577 B2 JP6190577 B2 JP 6190577B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
evaporator
temperature sensor
frost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169820A
Other languages
Japanese (ja)
Other versions
JP2014029230A (en
Inventor
望 赤羽
望 赤羽
Original Assignee
株式会社長府製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長府製作所 filed Critical 株式会社長府製作所
Priority to JP2012169820A priority Critical patent/JP6190577B2/en
Publication of JP2014029230A publication Critical patent/JP2014029230A/en
Application granted granted Critical
Publication of JP6190577B2 publication Critical patent/JP6190577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Description

本発明は、ヒートポンプの蒸発器に霜が生じたのを検出するヒートポンプの着霜判定方法とその方法を採用したヒートポンプに関する。 The present invention relates to a heat pump frost determination method for detecting the occurrence of frost in an evaporator of a heat pump and a heat pump employing the method.

ヒートポンプは、熱交換器である蒸発器として熱伝導率に優れた金属製のフィンを備え、このフィンを介して外気の熱をフィンの内側を流れる冷媒に取り込んで冷媒を気化させる。このフィンの表面(以下、「蒸発器の表面」ともいう)に霜が生じると、蒸発器の外気からの吸熱効率が低下するので、ヒートポンプは、除霜運転モードを備え、蒸発器の表面への着霜を検知した際に除霜運転を行って蒸発器の表面の霜を除去する。 The heat pump includes a metal fin having excellent thermal conductivity as an evaporator which is a heat exchanger, and takes heat of outside air into the refrigerant flowing inside the fin through the fin to vaporize the refrigerant. When frost is generated on the surface of the fin (hereinafter also referred to as “the surface of the evaporator”), the heat absorption efficiency from the outside air of the evaporator is reduced. Therefore, the heat pump is provided with a defrosting operation mode to the surface of the evaporator. When frost formation is detected, defrosting operation is performed to remove frost on the surface of the evaporator.

除霜運転を行っている間、ヒートポンプは、本来の仕事、即ち、貯湯タンクの湯を沸かしたり、室内を暖房したりする仕事を行うことができないので、除霜運転は短時間で終了するのが望ましい。
そして、蒸発器表面への着霜が進行するほど、除霜運転に長い時間を要するので、除霜運転の時間を短縮するには、蒸発器表面への着霜が進行する前に除霜運転を開始するのが有効である。そのため、蒸発器表面への着霜が始まったタイミングを正確に検知することが重要であり、蒸発器表面への着霜が生じたタイミングを検知する方法の具体例が、特許文献1に記載されている。
While performing the defrosting operation, the heat pump cannot perform the original work, that is, the work of boiling the hot water in the hot water storage tank or heating the room, so the defrosting operation is completed in a short time. Is desirable.
And as the frosting on the evaporator surface progresses, it takes a long time for the defrosting operation. To shorten the time for the defrosting operation, the defrosting operation is performed before the frosting on the evaporator surface proceeds. It is effective to start. Therefore, it is important to accurately detect the timing at which frost formation on the evaporator surface has started, and a specific example of a method for detecting the timing at which frost formation on the evaporator surface has occurred is described in Patent Document 1. ing.

特許文献1の方法は、所定時間ごとにヒートポンプによる湯の沸き上げ能力の積算平均値を算出し、この積算平均値が所定回数連続して低下した際に、蒸発器表面への着霜が開始したものと判定する。蒸発器表面に霜が生じて熱交換効率が低下すると湯の沸き上げ能力も低下する点に着目した方法である。 The method of Patent Document 1 calculates an integrated average value of the boiling capacity of hot water by a heat pump every predetermined time, and when this integrated average value decreases continuously a predetermined number of times, frosting on the evaporator surface starts. It is determined that This is a method that pays attention to the fact that when frost is generated on the evaporator surface and the heat exchange efficiency is lowered, the boiling capacity of hot water is also lowered.

特開2003−222392号公報JP 2003-222392 A

しかしながら、本願の発明者らは、特許文献1の方法では、蒸発器の表面に霜が生じているにも関わらず、蒸発器への着霜が検出されないことがあるのを確認した。
これは、着霜の進行速度が緩やかな場合、湯の沸き上げ能力の積算平均値が連続して低下しないことがあることによる。
また、湯の沸き上げ能力はあくまで推定値であるため、実際の値と必ずしも一致しているとはいえず、このことによって、蒸発器への着霜を正確に検出できないことがあると考えられる。
本発明は、かかる事情に鑑みてなされるもので、蒸発器表面への着霜を安定的に検出するヒートポンプの着霜判定方法とその方法を採用したヒートポンプを提供することを目的とする。
However, the inventors of the present application have confirmed that in the method of Patent Document 1, although frost is generated on the surface of the evaporator, frost formation on the evaporator may not be detected.
This is because when the frosting speed is moderate, the integrated average value of the boiling ability of hot water may not continuously decrease.
Moreover, since the boiling capacity of hot water is an estimated value, it does not necessarily match the actual value, and it is considered that frost formation on the evaporator may not be detected accurately. .
This invention is made | formed in view of this situation, and it aims at providing the heat pump which employ | adopted the frost determination method of the heat pump which detects stably the frost on the evaporator surface, and its method.

前記目的に沿う第1の発明に係るヒートポンプの着霜判定方法は、冷媒の流れに沿って圧縮機の上流側に配置され外気から熱を取り込んで液状の該冷媒を蒸発させる蒸発器に、霜が生じたのを検出するヒートポンプの着霜判定方法において、前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、L/4位置から3L/4位置の間で計測した前記冷媒の温度を前記圧縮機に流入する前記冷媒の温度から差し引いた温度が、予め定められた温度△T1以下で所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定する。 In the heat pump frost formation determination method according to the first aspect of the present invention, an frost is disposed in an evaporator disposed upstream of the compressor along the refrigerant flow to evaporate the liquid refrigerant by taking in heat from outside air. In the method for determining frost formation of a heat pump for detecting the occurrence of the refrigerant, the length of the flow path through which the refrigerant in the evaporator flows is L, the inlet of the refrigerant in the flow path is 0 position, and the refrigerant in the flow path The temperature obtained by subtracting the temperature of the refrigerant measured between the L / 4 position and the 3L / 4 position from the temperature of the refrigerant flowing into the compressor is equal to or lower than a predetermined temperature ΔT1. When it is maintained for a predetermined time P, it is determined that frost has formed in the evaporator.

前記目的に沿う第2の発明に係るヒートポンプの着霜判定方法は、冷媒の流れに沿って圧縮機の上流側に配置され外気から熱を取り込んで液状の該冷媒を蒸発させる蒸発器に、霜が生じたのを検出するヒートポンプの着霜判定方法において、前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、L/4位置から3L/4位置の間で計測した前記冷媒の温度を前記圧縮機に流入する前記冷媒の温度から差し引いた温度が予め定められた温度△T1以下であり、かつ、前記圧縮機に流入する前記冷媒の温度を外気温度から差し引いた温度が予め定められた温度△T2以上であり、かつ、前記外気温度が予め定められた温度T3以下である状態が、所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定する。 The frost formation determination method for a heat pump according to the second aspect of the present invention is directed to an evaporator disposed on the upstream side of a compressor along a refrigerant flow to take in heat from outside air and evaporate the liquid refrigerant. In the method for determining frost formation of a heat pump for detecting the occurrence of the refrigerant, the length of the flow path through which the refrigerant in the evaporator flows is L, the inlet of the refrigerant in the flow path is 0 position, and the refrigerant in the flow path The temperature obtained by subtracting the temperature of the refrigerant measured between the L / 4 position and the 3L / 4 position from the temperature of the refrigerant flowing into the compressor is equal to or lower than a predetermined temperature ΔT1. And the temperature obtained by subtracting the temperature of the refrigerant flowing into the compressor from the outside air temperature is equal to or higher than a predetermined temperature ΔT2 and the outside air temperature is equal to or lower than a predetermined temperature T3. When maintained for a predetermined time P It determines that the frost generated in the evaporator.

前記目的に沿う第3の発明に係るヒートポンプは、蒸発器を通過中の冷媒の温度を計測する温度センサAと、圧縮機に流入する前記冷媒の温度を計測する温度センサBとを備え、前記蒸発器で外気から吸収した熱を、放熱器で放熱して水あるいは空気を加熱するヒートポンプにおいて、前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、前記温度センサAは、L/4位置から3L/4位置の間に配置され、前記温度センサBの計測温度から前記温度センサAの計測温度を差し引いた温度が、予め定められた温度△T1以下で所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定する。 A heat pump according to a third aspect of the present invention that includes the above object includes a temperature sensor A that measures the temperature of the refrigerant passing through the evaporator, and a temperature sensor B that measures the temperature of the refrigerant flowing into the compressor, In a heat pump that heats water or air by radiating heat absorbed from outside air by an evaporator to heat water or air, the length of the flow path through which the refrigerant in the evaporator flows is L, and the refrigerant inlet of the flow path The temperature sensor A is disposed between the L / 4 position and the 3L / 4 position, and the temperature sensor A is measured from the temperature measured by the temperature sensor B. When the temperature obtained by subtracting the measured temperature is maintained at a predetermined temperature ΔT1 or less for a predetermined time P, it is determined that frost has occurred in the evaporator.

前記目的に沿う第4の発明に係るヒートポンプは、蒸発器を通過中の冷媒の温度を計測する温度センサAと、圧縮機に流入する前記冷媒の温度を計測する温度センサBと、外気の温度を計測する温度センサCとを備え、前記蒸発器で外気から吸収した熱を、放熱器で放熱して水あるいは空気を加熱するヒートポンプにおいて、前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、前記温度センサAは、L/4位置から3L/4位置の間に配置され、前記温度センサBの計測温度から前記温度センサAの計測温度を差し引いた温度が予め定められた温度△T1以下であり、かつ、前記温度センサCの計測温度から前記温度センサBの計測温度を差し引いた温度が予め定められた温度△T2以上であり、かつ、前記温度センサCの計測温度が予め定められた温度T3以下である状態が、所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定する。 A heat pump according to a fourth aspect of the present invention that meets the above object includes a temperature sensor A that measures the temperature of the refrigerant passing through the evaporator, a temperature sensor B that measures the temperature of the refrigerant flowing into the compressor, and the temperature of the outside air. A heat pump that heats water or air by radiating heat absorbed from outside air by the evaporator to heat water or air, and a length of a flow path through which the refrigerant in the evaporator flows L, the refrigerant inlet of the flow path is the 0 position, the refrigerant outlet of the flow path is the L position, and the temperature sensor A is disposed between the L / 4 position and the 3L / 4 position, The temperature obtained by subtracting the measured temperature of the temperature sensor A from the measured temperature of the temperature sensor B is equal to or lower than a predetermined temperature ΔT1, and the measured temperature of the temperature sensor B is subtracted from the measured temperature of the temperature sensor C. The temperature is predetermined When the temperature ΔT2 or higher and the temperature measured by the temperature sensor C is not higher than a predetermined temperature T3 is maintained for a predetermined time P, it is determined that frost has occurred in the evaporator. .

第1、第2の発明に係るヒートポンプの着霜判定方法及び第3、第4の発明に係るヒートポンプは、圧縮機に流入する冷媒の温度から蒸発器を通過中の冷媒の温度を差し引いた温度が、予め定められた温度△T1以下で所定時間Pの間維持された際に、蒸発器に霜が生じたと判定するので、蒸発器表面への着霜の速度によらず、安定的に蒸発器に霜が生じたのを判定することができる。これは、実験的検証によって確認されている。 The heat pump frost determination method according to the first and second inventions and the heat pump according to the third and fourth inventions are obtained by subtracting the temperature of the refrigerant passing through the evaporator from the temperature of the refrigerant flowing into the compressor. However, when it is maintained at a predetermined temperature ΔT1 or lower for a predetermined time P, it is determined that frost has formed on the evaporator, and therefore, it is stably evaporated regardless of the speed of frost formation on the evaporator surface. It can be determined that frost has formed on the vessel. This has been confirmed by experimental verification.

本発明の一実施の形態に係るヒートポンプの着霜判定方法を採用したヒートポンプの回路図である。It is a circuit diagram of the heat pump which employ | adopted the frost formation determination method of the heat pump which concerns on one embodiment of this invention. 除霜運転を示す説明図である。It is explanatory drawing which shows a defrost operation. 比較例に係るヒートポンプの着霜判定方法を採用した際の除霜運転の時間を示すグラフである。It is a graph which shows the time of the defrost operation at the time of employ | adopting the frost formation determination method of the heat pump which concerns on a comparative example. 本発明の実施例に係るヒートポンプの着霜判定方法を採用した際の除霜運転の時間を示すグラフである。It is a graph which shows the time of the defrost operation at the time of employ | adopting the frost formation determination method of the heat pump which concerns on the Example of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係るヒートポンプの着霜判定方法を採用したヒートポンプ10は、蒸発器11、圧縮機12、放熱器13及び膨張弁14が設けられた冷媒循環回路15を備え、蒸発器11で外気から吸収した熱を、放熱器13で放熱して水あるいは空気を加熱する。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a heat pump 10 that employs a frosting determination method for a heat pump according to an embodiment of the present invention has a refrigerant circulation in which an evaporator 11, a compressor 12, a radiator 13, and an expansion valve 14 are provided. A circuit 15 is provided, and heat absorbed from the outside air by the evaporator 11 is radiated by the radiator 13 to heat water or air. Details will be described below.

本実施の形態では、図1に示すように、ヒートポンプ10に湯水循環回路16を介して貯湯タンク17が接続されている。湯水循環回路16は、貯湯タンク17の下部と放熱器13と貯湯タンク17の上部を接続し、貯湯タンク17の下部にある水を放熱器13を経由して貯湯タンク17の上部に導く。
放熱器13は、貯湯タンク17の下部から放熱器13に送られる水と冷媒循環回路15を流れる冷媒を熱交換して、貯湯タンク17の下部から放熱器13に送られる水を加熱する。放熱器13の通過によって加熱された湯は、湯水循環回路16を介して貯湯タンク17の上部から貯湯タンク17内に流入する。
In the present embodiment, as shown in FIG. 1, a hot water storage tank 17 is connected to the heat pump 10 via a hot water circulation circuit 16. The hot water circulation circuit 16 connects the lower part of the hot water storage tank 17, the radiator 13 and the upper part of the hot water storage tank 17, and guides the water in the lower part of the hot water storage tank 17 to the upper part of the hot water storage tank 17 via the radiator 13.
The heat radiator 13 exchanges heat between water sent from the lower part of the hot water storage tank 17 to the heat radiator 13 and refrigerant flowing through the refrigerant circulation circuit 15, and heats water sent from the lower part of the hot water storage tank 17 to the heat radiator 13. Hot water heated by the passage of the radiator 13 flows into the hot water storage tank 17 from the upper part of the hot water storage tank 17 through the hot water circulation circuit 16.

湯水循環回路16には、貯湯タンク17の下部の水を放熱器13に送り出す循環ポンプ18と、放熱器13を通過した湯水(湯又は水を意味する)の行先を切り替える三方弁19が設けられている。
三方弁19には、三方弁19と貯湯タンク17の下部を接続するバイパス管20が連結され、三方弁19は、放熱器13を通過した湯水の温度に応じて、湯水の行先を切り替える。
The hot water circulation circuit 16 is provided with a circulation pump 18 that sends water below the hot water storage tank 17 to the radiator 13 and a three-way valve 19 that switches the destination of hot water (meaning hot water or water) that has passed through the radiator 13. ing.
A bypass pipe 20 that connects the three-way valve 19 and the lower part of the hot water storage tank 17 is connected to the three-way valve 19, and the three-way valve 19 switches the destination of hot water according to the temperature of the hot water that has passed through the radiator 13.

具体的には、三方弁19は、放熱器13を通過した湯水が所定温度(本実施の形態では、40℃)以下のとき、放熱器13を通過した湯水をバイパス管20を介して貯湯タンク17の下部に送り、放熱器13を通過した湯水が所定温度より高くなったときに、放熱器13を通過した湯水を貯湯タンク17の上部に送るようにする。
このように、放熱器13を通過した湯水の行先を切り替えることによって、貯湯タンク17の上部に低温水が流入するのを防止している。
Specifically, the three-way valve 19 is configured so that the hot water that has passed through the radiator 13 passes through the bypass pipe 20 when the hot water that has passed through the radiator 13 has a predetermined temperature (40 ° C. in this embodiment) or less. When the hot water passing through the radiator 13 becomes higher than a predetermined temperature, the hot water passing through the radiator 13 is sent to the upper portion of the hot water storage tank 17.
Thus, by switching the destination of the hot water that has passed through the radiator 13, the low temperature water is prevented from flowing into the upper part of the hot water storage tank 17.

なお、湯水循環回路16には、放熱器13に流入する水の温度を計測する温度センサ21と放熱器13を通過した湯水の温度を計測する温度センサ22が設けられている。
そして、貯湯タンク17の異なる高さ位置には、複数の温度センサ23が配置され、この複数の温度センサ23には、循環ポンプ18及び三方弁19に接続されたタンク側制御装置24が信号接続されている。タンク側制御装置24は、例えばマイクロコンピュータである。
The hot water circulation circuit 16 is provided with a temperature sensor 21 for measuring the temperature of water flowing into the radiator 13 and a temperature sensor 22 for measuring the temperature of hot water passing through the radiator 13.
A plurality of temperature sensors 23 are arranged at different height positions of the hot water storage tank 17, and a tank side control device 24 connected to the circulation pump 18 and the three-way valve 19 is connected to the plurality of temperature sensors 23 by signal connection. Has been. The tank side control device 24 is, for example, a microcomputer.

また、貯湯タンク17の上部には、貯湯タンク17内の湯を台所や浴室に供給する給湯管25が連結され、貯湯タンク17の下部には、水道水を貯湯タンク17内に供給する水道管26が連結されている。
なお、温度センサ21、22は、蒸発器11、圧縮機12、放熱器13、膨張弁14及び冷媒循環回路15と共にヒートポンプ10の筺体内に収容されている。
A hot water supply pipe 25 that supplies hot water in the hot water storage tank 17 to the kitchen or bathroom is connected to the upper part of the hot water storage tank 17, and a water pipe that supplies tap water to the hot water storage tank 17 at the lower part of the hot water storage tank 17. 26 are connected.
The temperature sensors 21 and 22 are housed in the housing of the heat pump 10 together with the evaporator 11, the compressor 12, the radiator 13, the expansion valve 14, and the refrigerant circulation circuit 15.

冷媒循環回路15には、放熱器13に加え、放熱器13を通過した冷媒を減圧する膨張弁14と、減圧された冷媒を蒸発させて外気の熱を吸収する蒸発器11と、蒸発器11でガス状となった冷媒を圧縮する圧縮機12が設けられている。
蒸発器11は、冷媒の流れに沿って圧縮機12の上流側に配置され、外気から熱を取り込んで液状の冷媒を蒸発させる。蒸発器11の近傍には、蒸発器11による冷媒の蒸発を促進するプロペラファン28が設けられている。そして、蒸発器11には、蒸発器11を通過中の冷媒の温度を計測する温度センサ29(温度センサA)が取り付けられている。
In addition to the radiator 13, the refrigerant circulation circuit 15 includes an expansion valve 14 that decompresses the refrigerant that has passed through the radiator 13, an evaporator 11 that evaporates the decompressed refrigerant and absorbs heat of the outside air, and an evaporator 11. A compressor 12 is provided for compressing the gaseous refrigerant.
The evaporator 11 is disposed on the upstream side of the compressor 12 along the flow of the refrigerant, takes heat from the outside air, and evaporates the liquid refrigerant. In the vicinity of the evaporator 11, a propeller fan 28 that promotes the evaporation of the refrigerant by the evaporator 11 is provided. The evaporator 11 is attached with a temperature sensor 29 (temperature sensor A) for measuring the temperature of the refrigerant passing through the evaporator 11.

蒸発器11を通過した冷媒は、圧縮機12の手前側に設けられたアキュムレータ30を介して、圧縮機12に流入する。アキュムレータ30は、蒸発器11を通過した冷媒の全てがガス状にならず、冷媒が、気液混合状態で蒸発器11から送り出された際に、気液混合状態の冷媒から液体の冷媒を取り除き、圧縮機12内にガス状の冷媒のみを供給するようにする。
アキュムレータ30によって気液混合状態の冷媒から取り除かれた液体の冷媒は、アキュムレータ30内に蓄えられ、時間の経過に伴って蒸発しガス状となって圧縮機12に流入する。
The refrigerant that has passed through the evaporator 11 flows into the compressor 12 through an accumulator 30 provided on the front side of the compressor 12. The accumulator 30 removes the liquid refrigerant from the gas-liquid mixed refrigerant when all of the refrigerant that has passed through the evaporator 11 does not become gaseous and the refrigerant is sent from the evaporator 11 in the gas-liquid mixed state. Only the gaseous refrigerant is supplied into the compressor 12.
The liquid refrigerant removed from the gas-liquid mixed refrigerant by the accumulator 30 is stored in the accumulator 30, evaporates with the passage of time, and flows into the compressor 12 as a gas.

冷媒循環回路15内の冷媒は、圧縮機12の作動によって、冷媒循環回路15内を循環する。
冷媒循環回路15には、アキュムレータ30の上流側に、圧縮機12に流入する冷媒の温度を計測する温度センサ31(温度センサB)が設けられ、圧縮機12の下流側に、圧縮機12から吐出された冷媒の温度を計測する温度センサ32が設けられている。
The refrigerant in the refrigerant circulation circuit 15 circulates in the refrigerant circulation circuit 15 by the operation of the compressor 12.
The refrigerant circulation circuit 15 is provided with a temperature sensor 31 (temperature sensor B) for measuring the temperature of the refrigerant flowing into the compressor 12 on the upstream side of the accumulator 30, and from the compressor 12 on the downstream side of the compressor 12. A temperature sensor 32 that measures the temperature of the discharged refrigerant is provided.

冷媒循環回路15には、圧力スイッチ33が設けられ、圧縮機12を通過した冷媒の圧力が所定の値(例えば、13MPa)以上になった際に、圧縮機12の運転を止めて冷媒循環回路15の管や、冷媒循環回路15に設けられた機器等に不具合が生じるのを防止する。
また、冷媒循環回路15には、放熱器13から膨張弁14に送られる冷媒と蒸発器11から圧縮機12に送られる冷媒を熱交換する内部熱交換器34が設けられている。冷媒は、膨張弁14を通過することによって温度が低下するため、膨張弁14を通過する前の冷媒は、膨張弁14及び蒸発器11を通過した冷媒に比べて高温である。このため、内部熱交換器34は、放熱器13から膨張弁14に送られる冷媒の熱を蒸発器11から圧縮機12に送られる冷媒に与えることができる。
The refrigerant circulation circuit 15 is provided with a pressure switch 33. When the pressure of the refrigerant that has passed through the compressor 12 exceeds a predetermined value (for example, 13 MPa), the operation of the compressor 12 is stopped and the refrigerant circulation circuit. It is possible to prevent troubles from occurring in the 15 pipes and the devices provided in the refrigerant circulation circuit 15.
The refrigerant circulation circuit 15 is provided with an internal heat exchanger 34 for exchanging heat between the refrigerant sent from the radiator 13 to the expansion valve 14 and the refrigerant sent from the evaporator 11 to the compressor 12. Since the temperature of the refrigerant decreases as it passes through the expansion valve 14, the refrigerant before passing through the expansion valve 14 is hotter than the refrigerant that has passed through the expansion valve 14 and the evaporator 11. For this reason, the internal heat exchanger 34 can give the heat of the refrigerant sent from the radiator 13 to the expansion valve 14 to the refrigerant sent from the evaporator 11 to the compressor 12.

ヒートポンプ10は、外気の温度を計測する温度センサ35(温度センサC)に加え、温度センサ35に接続されたHP側制御装置36を備えている。
HP側制御装置36は、例えばマイクロコンピュータであり、温度センサ35の他、温度センサ21、22、29、31、32、膨張弁14、プロペラファン28、圧縮機12及び圧力スイッチ33とタンク側制御装置24とに接続されている。このため、HP側制御装置36及びタンク側制御装置24は、相互に通信可能であり、HP側制御装置36は、温度センサ22の計測温度を取得し、取得した温度センサ22の計測温度を基に、貯湯タンク17の下部から送り出され放熱器13を通過した湯水の行先を決定し、必要に応じてタンク側制御装置24を介して三方弁19に指令信号を送信する。
The heat pump 10 includes an HP-side control device 36 connected to the temperature sensor 35 in addition to a temperature sensor 35 (temperature sensor C) that measures the temperature of the outside air.
The HP-side control device 36 is, for example, a microcomputer. In addition to the temperature sensor 35, the temperature sensors 21, 22, 29, 31, 32, the expansion valve 14, the propeller fan 28, the compressor 12, the pressure switch 33, and the tank-side control. It is connected to the device 24. For this reason, the HP-side control device 36 and the tank-side control device 24 can communicate with each other, and the HP-side control device 36 acquires the measured temperature of the temperature sensor 22 and based on the acquired measured temperature of the temperature sensor 22. Then, the destination of the hot water sent from the lower part of the hot water storage tank 17 and passed through the radiator 13 is determined, and a command signal is transmitted to the three-way valve 19 via the tank side control device 24 as necessary.

圧縮機12及び循環ポンプ18の作動によって、冷媒循環回路15内の冷媒が循環を開始し、湯水循環回路16に貯湯タンク17の下部から水が送り出されると、貯湯タンク17内の湯水の沸き上げが行われる。このとき、冷媒循環回路15内を循環する冷媒は蒸発器11を通過の際に蒸発し、蒸発器11の表面温度を低下させる。
蒸発器11の表面温度が低下すると、外気温度と湿度によっては、蒸発器11の表面に霜が生じ、蒸発器11における冷媒と外気の熱交換効率が低下する。
When the compressor 12 and the circulation pump 18 are operated, the refrigerant in the refrigerant circulation circuit 15 starts to circulate. When water is sent out from the lower part of the hot water tank 17 to the hot water circulation circuit 16, the hot water in the hot water tank 17 is boiled up. Is done. At this time, the refrigerant circulating in the refrigerant circulation circuit 15 evaporates when passing through the evaporator 11, thereby reducing the surface temperature of the evaporator 11.
When the surface temperature of the evaporator 11 is lowered, frost is generated on the surface of the evaporator 11 depending on the outside air temperature and humidity, and the heat exchange efficiency between the refrigerant and the outside air in the evaporator 11 is lowered.

そこで、HP側制御装置36は、蒸発器11の表面に霜が生じたのを検出すると除霜運転を行って霜を除去し、蒸発器11の熱交換効率の回復を図る。除霜運転では、図2に示すように、圧縮機12が作動し冷媒循環回路15内に冷媒を循環させ、循環ポンプ18は最小の運転レベルで運転を行う。そして、膨張弁14は開いた状態、即ち冷媒を減圧しない状態にされる。このようにすることによって、圧縮機12からガス状で、例えば20〜40℃の冷媒が吐出され、この冷媒は、ガス状のまま、温度変化がほとんどない状態で、蒸発器11に到達し、蒸発器11表面の温度を上昇させる。蒸発器11表面に生じていた霜は、蒸発器11表面の温度上昇によって水となり、蒸発器11等を収容している図示しない筺体から外に流れ出る。
なお、除霜運転中、貯湯タンク17の下部から湯水循環回路16に送り出される水は極少量であるので、図2においては、貯湯タンク17の下部から湯水循環回路16に送り出される水の流れの記載を省略している。
Therefore, when the HP-side control device 36 detects that frost has formed on the surface of the evaporator 11, it performs a defrosting operation to remove the frost and recovers the heat exchange efficiency of the evaporator 11. In the defrosting operation, as shown in FIG. 2, the compressor 12 operates to circulate the refrigerant in the refrigerant circulation circuit 15, and the circulation pump 18 operates at the minimum operation level. The expansion valve 14 is opened, that is, the refrigerant is not decompressed. By doing in this way, the refrigerant | coolant of 20-40 degreeC is discharged in gaseous form from the compressor 12, for example, this refrigerant | coolant reaches the evaporator 11 in a state with little temperature change, The temperature of the evaporator 11 surface is raised. The frost generated on the surface of the evaporator 11 becomes water due to the temperature rise on the surface of the evaporator 11 and flows out from a housing (not shown) housing the evaporator 11 and the like.
During the defrosting operation, the amount of water sent from the lower part of the hot water storage tank 17 to the hot water circulation circuit 16 is extremely small. Therefore, in FIG. Description is omitted.

除霜運転は、他の方法であってもよく、例えば、圧縮機の冷媒の出側と蒸発器の冷媒の入側を直接接続するバイパス管を設けて行うこともできる。
具体的には、除霜運転を行わないときには閉じられているバイパス管を、除霜運転を行う際に開いて、圧縮機から吐出されたガス状で高温の冷媒を、直接、蒸発器に供給して蒸発器の表面に生じた霜を除去するものである。
The defrosting operation may be performed by another method, for example, by providing a bypass pipe that directly connects the refrigerant outlet side of the compressor and the refrigerant inlet side of the evaporator.
Specifically, when the defrosting operation is not performed, the closed bypass pipe is opened when the defrosting operation is performed, and the gaseous and high-temperature refrigerant discharged from the compressor is directly supplied to the evaporator. Thus, the frost generated on the surface of the evaporator is removed.

HP側制御装置36は、温度センサ31の計測温度から温度センサ29の計測温度を差し引いた判定対象温度が、予め定められた温度△T1以下で所定時間Pの間維持される条件1を満たすか、放熱器13による貯湯タンク17の水の加熱能力を所定時間Q(本実施の形態では10秒)ごとに算出して得た積算平均値が連続して所定回数N(本実施の形態では、3回)低下した条件2を満たした際に、蒸発器11に霜が生じたとの判定を行い、除霜運転を開始する。即ち、条件1又は条件2を満たすことで、HP側制御装置36は、蒸発器11表面に霜が生じたとの判定を行う。 Does the HP-side control device 36 satisfy the condition 1 in which the determination target temperature obtained by subtracting the temperature measured by the temperature sensor 29 from the temperature measured by the temperature sensor 31 is less than or equal to a predetermined temperature ΔT1 and maintained for a predetermined time P? The integrated average value obtained by calculating the heating capacity of the hot water storage tank 17 by the radiator 13 every predetermined time Q (10 seconds in this embodiment) is continuously N times (in this embodiment, (3 times) When the reduced condition 2 is satisfied, it is determined that frost has occurred in the evaporator 11, and the defrosting operation is started. That is, when the condition 1 or the condition 2 is satisfied, the HP-side control device 36 determines that frost has formed on the surface of the evaporator 11.

条件1は、蒸発器11表面に霜がないとき、冷媒が蒸発器11を通過の際に全て気化しガス状になるのに対し、蒸発器11表面に霜があるとき、蒸発器11の熱交換効率が低下し、冷媒は一部が液体のまま蒸発器11から出る点に着目したものである。
冷媒は、気液混合状態で外部から熱を吸収して蒸発を行っている間、温度が上昇せず、蒸発が終了し全てガス状になった状態で外部から熱を吸収することにより昇温する。
Condition 1 is that when there is no frost on the surface of the evaporator 11, the refrigerant is completely vaporized and gasified when passing through the evaporator 11, whereas when there is frost on the surface of the evaporator 11, the heat of the evaporator 11 The exchange efficiency is lowered, and the refrigerant is focused on the point that it exits the evaporator 11 while being partially liquid.
While the refrigerant absorbs heat from the outside in the gas-liquid mixed state and evaporates, the temperature does not rise, and the temperature rises by absorbing heat from the outside in a state where evaporation is completed and all is in a gaseous state. To do.

このため、蒸発器11の表面に霜がなく、冷媒が蒸発器11を通過途中に全てガス状となっているときに、冷媒は、蒸発器11から出る際の温度が、蒸発器11に入る前の温度より高くなる。これに対し、蒸発器11の表面に霜があって、冷媒が気液混合状態で蒸発器11から出る場合、冷媒は、蒸発器11から出る際の温度が、蒸発器11に入る前の温度と等しい。
従って、冷媒は、蒸発器11の表面に霜がある場合、蒸発器11の表面に霜がない場合に比べ、蒸発器11を出る際の温度が低くなる。条件1は、この事象を利用して、蒸発器11の表面に霜が生じているのを判定する。
For this reason, when there is no frost on the surface of the evaporator 11 and the refrigerant is in the form of a gas in the middle of passing through the evaporator 11, the temperature at which the refrigerant exits the evaporator 11 enters the evaporator 11. It becomes higher than the previous temperature. On the other hand, when there is frost on the surface of the evaporator 11 and the refrigerant exits the evaporator 11 in a gas-liquid mixed state, the temperature when the refrigerant exits the evaporator 11 is the temperature before entering the evaporator 11. Is equal to
Accordingly, when the refrigerant has frost on the surface of the evaporator 11, the temperature when the refrigerant exits the evaporator 11 is lower than when the surface of the evaporator 11 has no frost. Condition 1 uses this phenomenon to determine whether frost has formed on the surface of the evaporator 11.

温度センサ29は、蒸発器11表面の霜の有無に関わらず、気液混合状態の冷媒が通過する位置に配置されている。本実施の形態では、蒸発器11内の冷媒が流れる流路の長さをL、その流路の冷媒の入口を0位置、その流路の冷媒の出口をL位置として、温度センサ29がL/4位置から3L/4位置の間に配置されている。 Regardless of the presence or absence of frost on the surface of the evaporator 11, the temperature sensor 29 is disposed at a position where the refrigerant in the gas-liquid mixed state passes. In the present embodiment, the temperature sensor 29 is set to L with the length of the flow path through which the refrigerant in the evaporator 11 flows being L, the refrigerant inlet of the flow path being 0 position, and the refrigerant outlet of the flow path being L position. / 4 position to 3L / 4 position.

温度センサ31は、内部熱交換器34を通過した冷媒の温度を計測する位置に設けられている。蒸発器11から出た冷媒は、内部熱交換器34を通過中に、放熱器13から膨張弁14に向かう冷媒から熱を吸収し、その後、温度センサ31によって温度が計測される。
全てがガス状となって蒸発器11を出た冷媒は、内部熱交換器34を通過する際に昇温する。よって、内部熱交換器34が有る場合、内部熱交換器34が無い場合に比べ、温度センサ31の計測温度は高くなる。
The temperature sensor 31 is provided at a position for measuring the temperature of the refrigerant that has passed through the internal heat exchanger 34. The refrigerant exiting the evaporator 11 absorbs heat from the refrigerant from the radiator 13 toward the expansion valve 14 while passing through the internal heat exchanger 34, and then the temperature is measured by the temperature sensor 31.
The refrigerant, which is all gaseous and exits the evaporator 11, rises in temperature when passing through the internal heat exchanger 34. Therefore, when the internal heat exchanger 34 is provided, the temperature measured by the temperature sensor 31 is higher than when the internal heat exchanger 34 is not provided.

一方、気液混合状態で蒸発器11を出た冷媒は、内部熱交換器34を通過中に蒸発を行う。そのため、内部熱交換器34を通過してもなお、気液混合状態である場合には、温度センサ29、31の各計測温度は等しくなり、内部熱交換器34を通過途中に全てがガス状になれば、温度センサ31の計測温度は温度センサ29の計測温度より高くなる。
そして、気液混合状態で蒸発器11を出た冷媒は、内部熱交換器34を通過中に全てガス状になったとしても、冷媒が全てガス状となって蒸発器11を出た場合に比べ、温度センサ31によって計測される温度が低くなる。
On the other hand, the refrigerant exiting the evaporator 11 in the gas-liquid mixed state evaporates while passing through the internal heat exchanger 34. Therefore, even if it passes through the internal heat exchanger 34, if it is still in a gas-liquid mixed state, the measured temperatures of the temperature sensors 29 and 31 are equal, and all of them are gaseous while passing through the internal heat exchanger 34. If so, the measured temperature of the temperature sensor 31 becomes higher than the measured temperature of the temperature sensor 29.
And even if the refrigerant that exits the evaporator 11 in the gas-liquid mixed state becomes all gaseous while passing through the internal heat exchanger 34, the refrigerant is all gaseous and exits the evaporator 11. In comparison, the temperature measured by the temperature sensor 31 is lowered.

従って、内部熱交換器34の有無に関わらず、冷媒が全てガス状となって、蒸発器11を出た場合、冷媒が気液混合状態で蒸発器11を出た場合に比べ、温度センサ31の計測温度から温度センサ29の計測温度を差し引いた温度、即ち、判定対象温度は大きくなる。
よって、判定対象温度が、予め定められた温度△T1以下で所定時間Pの間維持されると、蒸発器11表面に霜が生じていると判断することができる。
Therefore, regardless of the presence or absence of the internal heat exchanger 34, when the refrigerant is all in the gaseous state and exits the evaporator 11, the temperature sensor 31 is compared to when the refrigerant exits the evaporator 11 in a gas-liquid mixed state. The temperature obtained by subtracting the measured temperature of the temperature sensor 29 from the measured temperature, that is, the determination target temperature is increased.
Therefore, when the determination target temperature is maintained for a predetermined time P at a predetermined temperature ΔT1 or less, it can be determined that frost is generated on the surface of the evaporator 11.

温度△T1は、−2℃以上2℃以下の範囲であり、本実施の形態では、△T1=0℃である。温度△T1を0℃のみに限定していないのは、温度センサ29、31の各計測地点間の管内の圧力差等が寄与して、ヒートポンプの機種ごとに、蒸発器11の表面に霜が生じているときの判定対象温度が異なるためである。このため、ヒートポンプの機種ごとに実験等により、△T1の値を決定する必要がある。△T1に0℃より低い温度を設定できるようにしているのは、温度センサ31が圧縮機12の近傍にあって、温度センサ31が取り付けられている位置の管内の圧力が、蒸発器11の管内の圧力より低く、冷媒が全てガス状となって蒸発器11を出たとしても、温度センサ31の計測温度が温度センサ29の計測温度より低くなることがあるためである。 The temperature ΔT1 is in the range of −2 ° C. or more and 2 ° C. or less, and in this embodiment, ΔT1 = 0 ° C. The reason why the temperature ΔT1 is not limited to 0 ° C. is that the pressure difference in the pipe between the measurement points of the temperature sensors 29 and 31 contributes, and frost forms on the surface of the evaporator 11 for each heat pump model. This is because the determination target temperature when it occurs is different. For this reason, it is necessary to determine the value of ΔT1 by experiments or the like for each heat pump model. The temperature lower than 0 ° C. can be set for ΔT1 because the pressure in the pipe at the position where the temperature sensor 31 is located near the compressor 12 and the temperature sensor 31 is attached is This is because the measured temperature of the temperature sensor 31 may be lower than the measured temperature of the temperature sensor 29 even if the refrigerant is all gaseous and exits the evaporator 11 below the pressure in the pipe.

時間Pは、10秒以上60秒以下であり、本実施の形態では、P=30秒である。
時間Pを設けているのは、蒸発器11表面に霜が生じていない場合でも、判定対象温度≦温度△T1になることが実験的検証によって確認されたためである。除霜運転が行われている間、貯湯タンク17の湯の沸き上げはなされないので、除霜運転は必要以上に行われないのが好ましい。そのため、蒸発器11表面に霜が生じているのを安定的に検出すべく、この時間Pを設けている。
The time P is not less than 10 seconds and not more than 60 seconds, and in the present embodiment, P = 30 seconds.
The reason why the time P is provided is that, even when no frost is generated on the surface of the evaporator 11, it is confirmed by experimental verification that the determination target temperature ≦ temperature ΔT1. While the defrosting operation is being performed, the hot water in the hot water storage tank 17 is not boiled, so it is preferable that the defrosting operation is not performed more than necessary. Therefore, this time P is provided in order to stably detect that frost is generated on the surface of the evaporator 11.

また、放熱器13の加熱能力の低下は、蒸発器11表面に霜が発生する以外の要因、例えば外気温度の低下によっても発生するので、条件1だけを満たしただけでは、蒸発器11の表面に霜が生じたという判定をせず、条件1と同時に、以下の条件3及び条件4を満たした際に、蒸発器11表面に霜が生じているとの判定を行うようにしてもよい。 Moreover, since the fall of the heating capability of the radiator 13 also occurs due to factors other than the generation of frost on the surface of the evaporator 11, for example, a decrease in the outside air temperature, the surface of the evaporator 11 is satisfied only by satisfying the condition 1. It may be determined that frost is generated on the surface of the evaporator 11 when the following conditions 3 and 4 are satisfied simultaneously with the condition 1 without determining that the frost is generated.

条件3は、所定時間Pの間、温度センサ35の計測温度(外気温度)から温度センサ31の計測温度を差し引いた温度が予め定められた温度△T2以上で維持されるという条件である。この条件3は、温度センサ31の温度により温度センサ31が取り付けられている位置の管内の圧力を推定し、この推定された圧力を基に、蒸発器11を通過した冷媒に液体が有るか無いかを判定するものである。
蒸発器11から出た冷媒が気液混合状態の場合、蒸発器11から出た冷媒が100%ガス状である場合に比べ、温度センサ31が取り付けられている位置の管内の圧力は低くなる。そして、温度センサ31が取り付けられている位置の管内の圧力は、蒸発器11から出た冷媒に液体が含まれているか否かに加え、外気温度によっても左右されるため、温度センサ35の計測温度のみだけでなく、温度センサ31の計測温度を加味した値を判断基準にしている。
Condition 3 is a condition in which the temperature obtained by subtracting the measured temperature of the temperature sensor 31 from the measured temperature (outside air temperature) of the temperature sensor 35 is maintained at a predetermined temperature ΔT2 or more for a predetermined time P. Condition 3 estimates the pressure in the pipe at the position where the temperature sensor 31 is attached based on the temperature of the temperature sensor 31, and based on the estimated pressure, there is no liquid in the refrigerant that has passed through the evaporator 11. This is a judgment.
When the refrigerant discharged from the evaporator 11 is in a gas-liquid mixed state, the pressure in the pipe at the position where the temperature sensor 31 is attached is lower than when the refrigerant discharged from the evaporator 11 is 100% gaseous. Since the pressure in the pipe at the position where the temperature sensor 31 is attached depends on the outside air temperature in addition to whether or not the refrigerant discharged from the evaporator 11 contains liquid, the measurement by the temperature sensor 35 is performed. Not only the temperature but also a value taking into account the temperature measured by the temperature sensor 31 is used as a criterion.

条件4は、所定時間Pの間、温度センサ35の計測温度が予め定められた温度T3以下で維持されるという条件であり、これは、外気が所定の温度以上であると、霜が生じないことに着目したものである。
条件4は考慮せず、条件1と同時に条件3を満たした際に、蒸発器11表面に霜が生じているとの判定を行うようにしてもよく、条件3は考慮せず、条件1と同時に条件4を満たした際に、蒸発器11表面に霜が生じているとの判定を行うようにしてもよい。
温度△T2は、2℃以上13℃以下の範囲であり、本実施の形態では、△T2=7℃である。温度T3は、3℃以上7℃以下の範囲であり、本実施の形態では、T3=5℃である。温度△T2及び温度T3は、ヒートポンプの機種ごとに試験により定められる。
Condition 4 is a condition that the measured temperature of the temperature sensor 35 is maintained at a predetermined temperature T3 or lower for a predetermined time P. This is because frost does not occur when the outside air is higher than a predetermined temperature. It pays attention to.
If condition 3 is satisfied simultaneously with condition 1 without considering condition 4, it may be determined that frost has formed on the surface of the evaporator 11. Condition 3 is not considered without considering condition 3. At the same time, when the condition 4 is satisfied, it may be determined that frost is generated on the surface of the evaporator 11.
The temperature ΔT2 is in the range of 2 ° C. or higher and 13 ° C. or lower. In the present embodiment, ΔT2 = 7 ° C. The temperature T3 is in the range of 3 ° C. or higher and 7 ° C. or lower. In the present embodiment, T3 = 5 ° C. The temperature ΔT2 and the temperature T3 are determined by a test for each model of the heat pump.

条件2は、蒸発器11表面に霜が発生すると、蒸発器11の熱交換効率が低下して放熱器13による貯湯タンク17の水の加熱能力(以下、単に「加熱能力」ともいう)が低下するという考えに基づくものである。
加熱能力は、温度センサ22の計測温度から温度センサ21の計測温度を差し引いた値に、循環ポンプ18の出力値と係数とを乗算することで算出できる。そして、加熱能力はHP側制御装置36(タンク側制御装置24であってもよい)によって算出される。
Condition 2 is that when frost is generated on the surface of the evaporator 11, the heat exchange efficiency of the evaporator 11 is lowered and the water heating capacity of the hot water storage tank 17 by the radiator 13 (hereinafter also simply referred to as “heating ability”) is lowered. It is based on the idea of doing.
The heating capacity can be calculated by multiplying the value obtained by subtracting the measured temperature of the temperature sensor 21 from the measured temperature of the temperature sensor 22 by the output value of the circulation pump 18 and the coefficient. The heating capacity is calculated by the HP-side control device 36 (which may be the tank-side control device 24).

HP側制御装置36は、新たに加熱能力を算出したタイミングで、それまでに算出した加熱能力の全ての値と新たに算出した加熱能力の値を対象に、加熱能力の積算平均値を得る。具体的には、新たにN+1個目の加熱能力が算出されると、それまでに算出したN個の加熱能力のそれぞれの値と新たに算出した加熱能力の値を合算し、その合算値をN+1で除算することで加熱能力の積算平均値が導出される。 The HP-side control device 36 obtains the integrated average value of the heating capacities for all the heating capacities calculated so far and the newly calculated heating capacities at the timing when the heating capacities are newly calculated. Specifically, when the N + 1th heating capacity is newly calculated, the values of the N heating capacities calculated so far and the newly calculated heating capacities are added together, and the total value is calculated. By dividing by N + 1, the integrated average value of the heating capacity is derived.

そして、HP側制御装置36は、新たに導出した加熱能力の積算平均値と、その前に導出した加熱能力の積算平均値の大小を比較し、新たな加熱能力の積算平均値がその前の加熱能力の積算平均値より小さくなるのが連続してN回続いたときに、蒸発器11の表面に霜が生じたと判定する。
新たな加熱能力の積算平均値がその前の加熱能力の積算平均値より小さくなるのが1回だけでなく、連続してN回続いたとしているのは、蒸発器11の表面に霜が生じていないときでも、新たに導出した加熱能力の積算平均値がその前に導出した加熱能力の積算平均値より小さくなることがあるためである。
なお、Q=10秒に限定されず、Qとして、5秒以上20秒以下の範囲の時間が設定可能であり、N=3回に限定されず、Nとして、2回以上5回以下の範囲の回数が設定できる。
Then, the HP-side control device 36 compares the newly derived integrated average value of the heating capacity with the previously calculated integrated average value of the heating capacity, and the integrated average value of the new heating capacity is the previous one. It is determined that frost has formed on the surface of the evaporator 11 when the heating capacity continues to be smaller than the integrated average value N times.
The reason why the cumulative average value of the new heating capacity is smaller than the cumulative average value of the previous heating capacity is not only once but continuously N times, because frost is generated on the surface of the evaporator 11. This is because the newly derived cumulative average value of the heating capacity may be smaller than the previously calculated cumulative average value of the heating capacity even when it is not.
Note that Q is not limited to 10 seconds, and Q can be set in the range of 5 seconds to 20 seconds. N is not limited to 3 times, and N is in the range of 2 to 5 times. The number of times can be set.

従来、条件1は考慮せず、条件2を満たすことのみによって、蒸発器11表面に霜が生じたとの判定を行っていたが、条件2を満たしていない状態でも、蒸発器11表面に霜が生じていることが、実験的検証によって確認された。例えば、蒸発器11表面への着霜速度が緩やかな場合である。
このため、条件1又は条件2を満たすことによって、蒸発器11に霜が生じたとの判定を行い、条件2を満たしていなくとも、条件1を満たすことで、霜が生じたとの判定を行うようにした。このようにすることによって、結果として、除霜運転の時間を短縮でき、放熱器13による貯湯タンク17の湯の沸き上げ時間を短くすることが可能となった。蒸発器11に生じた霜が少量であると、除霜運転の時間が短くなることによる。
なお、条件1と同時に条件3及び条件4を満たすか、又は条件2を満たすことによって、蒸発器11に霜が生じたとの判定を行うこともできる。
Conventionally, it has been determined that frost has occurred on the surface of the evaporator 11 only by satisfying the condition 2 without considering the condition 1, but frost is formed on the surface of the evaporator 11 even when the condition 2 is not satisfied. This has been confirmed by experimental verification. For example, this is a case where the frosting speed on the surface of the evaporator 11 is moderate.
For this reason, it is determined that frost has occurred in the evaporator 11 by satisfying the condition 1 or 2, and even if the condition 2 is not satisfied, it is determined that frost has been generated by satisfying the condition 1. I made it. By doing in this way, as a result, it was possible to shorten the time for the defrosting operation and shorten the time for boiling the hot water in the hot water storage tank 17 by the radiator 13. When the amount of frost generated in the evaporator 11 is small, the time for the defrosting operation is shortened.
Note that it is also possible to determine that frost has occurred in the evaporator 11 by satisfying the condition 3 and the condition 4 simultaneously with the condition 1 or by satisfying the condition 2.

次に、本発明の作用効果を確認するために行った実施例について説明する。
図3、図4は、除霜運転の時間を調べた実験結果を示すグラフであり、図3のX1及び図4のX2が除霜運転を行っていた時間をそれぞれ示している。
図3、図4において、「推定能力」は放熱器の加熱能力の算出値を示し、除霜運転を開始することによって、この「推定能力」の値は急激に低下する。従って、「推定能力」の値が急激に低下したタイミングで除霜運転が開始されている。なお、「推定能力」は、除霜運転の開始を示すために記載したものであるため、図3、図4では、「推定能力」が急激に低下した以降の「推定能力」は記載していない。
Next, examples carried out for confirming the effects of the present invention will be described.
3 and 4 are graphs showing experimental results obtained by examining the time for the defrosting operation, and X1 in FIG. 3 and X2 in FIG. 4 indicate the time during which the defrosting operation was performed, respectively.
3 and 4, “estimated capacity” indicates a calculated value of the heating capacity of the radiator, and the value of “estimated capacity” rapidly decreases by starting the defrosting operation. Therefore, the defrosting operation is started at the timing when the value of the “estimated ability” suddenly decreases. Since “estimated ability” is described to indicate the start of the defrosting operation, FIG. 3 and FIG. 4 do not describe “estimated ability” after “estimated ability” suddenly decreases. Absent.

図3、図4において、「吸入」は圧縮機に流入する温度を計測する温度センサの計測温度であり、「熱交」は蒸発器を通過中の冷媒の温度を計測する温度センサの計測温度である。
そして、「過熱度」は、判定対象温度に当たり、「吸入」の温度から「熱交」の温度を差し引いた値である。
3 and 4, “intake” is the temperature measured by the temperature sensor that measures the temperature flowing into the compressor, and “heat exchange” is the temperature measured by the temperature sensor that measures the temperature of the refrigerant passing through the evaporator. It is.
The “superheat degree” corresponds to the determination target temperature, and is a value obtained by subtracting the “heat exchange” temperature from the “intake” temperature.

図3は、条件2を満たした際に蒸発器の表面に霜が生じていると判定して、除霜運転を開始したもので、除霜運転の時間X1は7分間であった。これに対し、図4は、条件1又は条件2を満たした際に蒸発器の表面に霜が生じていると判定して、除霜運転を開始したもので、除霜運転の時間X2は5分間であった。
なお、除霜運転は、図3の実験及び図4の実験において、「熱交」の温度が2℃まで上昇したタイミングで終了している。
FIG. 3 shows that when the condition 2 is satisfied, it is determined that frost is generated on the surface of the evaporator, and the defrosting operation is started. The defrosting operation time X1 is 7 minutes. On the other hand, FIG. 4 determines that frost is generated on the surface of the evaporator when the condition 1 or 2 is satisfied, and starts the defrosting operation. The defrosting operation time X2 is 5 For minutes.
The defrosting operation is completed at the timing when the temperature of “heat exchange” rises to 2 ° C. in the experiment of FIG. 3 and the experiment of FIG. 4.

この実験結果より、蒸発器の表面に霜が生じていると判定する基準を、条件1又は条件2を満たしたこととした場合は、条件2のみを満たしたこととした場合よりも、除霜運転が短縮できることが確認された。
また、実験の結果、図3、図4のいずれの場合も、蒸発器の表面に霜が生じていると判定されたタイミングで、蒸発器の表面には実際に霜が生じていたことが確認されている。
From this experimental result, when the criterion for determining that frost is generated on the surface of the evaporator is that the condition 1 or 2 is satisfied, the defrosting is performed rather than the case where only the condition 2 is satisfied. It was confirmed that driving can be shortened.
In addition, as a result of the experiment, in both cases of FIGS. 3 and 4, it was confirmed that frost was actually generated on the surface of the evaporator at the timing when it was determined that frost was generated on the surface of the evaporator. Has been.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、ヒートポンプは、室内の温度を調整する空気温調機に使用されるものであってもよい。空気温調機の場合、放熱器の加熱能力とは、室内を暖房する能力であり、放熱器は室内機に設けられ、蒸発器は室外機に設けられることになる。
また、冷媒循環回路に内部熱交換器を設けなくともよい。
そして、条件1のみを蒸発器に霜が生じたと判定する判定基準にすることもできる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, the heat pump may be used in an air temperature controller that adjusts the temperature in the room. In the case of an air temperature controller, the heating ability of the radiator is the ability to heat the room, the radiator is provided in the indoor unit, and the evaporator is provided in the outdoor unit.
Moreover, it is not necessary to provide an internal heat exchanger in the refrigerant circuit.
And only the condition 1 can be used as a criterion for determining that frost has occurred in the evaporator.

10:ヒートポンプ、11:蒸発器、12:圧縮機、13:放熱器、14:膨張弁、15:冷媒循環回路、16:湯水循環回路、17:貯湯タンク、18:循環ポンプ、19:三方弁、20:バイパス管、21〜23:温度センサ、24:タンク側制御装置、25:給湯管、26:水道管、28:プロペラファン、29:温度センサ、30:アキュムレータ、31、32:温度センサ、33:圧力スイッチ、34:内部熱交換器、35:温度センサ、36:HP側制御装置 10: heat pump, 11: evaporator, 12: compressor, 13: radiator, 14: expansion valve, 15: refrigerant circulation circuit, 16: hot water circulation circuit, 17: hot water storage tank, 18: circulation pump, 19: three-way valve 20: Bypass pipe, 21-23: Temperature sensor, 24: Tank side control device, 25: Hot water supply pipe, 26: Water pipe, 28: Propeller fan, 29: Temperature sensor, 30: Accumulator, 31, 32: Temperature sensor 33: pressure switch, 34: internal heat exchanger, 35: temperature sensor, 36: HP side control device

Claims (4)

冷媒の流れに沿って圧縮機の上流側に配置され外気から熱を取り込んで液状の該冷媒を蒸発させる蒸発器に、霜が生じたのを検出するヒートポンプの着霜判定方法において、
前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、L/4位置から3L/4位置の間で計測した前記冷媒の温度を前記圧縮機に流入する前記冷媒の温度から差し引いた温度が、予め定められた温度△T1以下で所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定することを特徴とするヒートポンプの着霜判定方法。
In a frosting determination method for a heat pump that detects the occurrence of frost in an evaporator that is arranged on the upstream side of the compressor along the flow of the refrigerant and takes heat from outside air to evaporate the liquid refrigerant,
The length of the flow path through which the refrigerant in the evaporator flows is L, the refrigerant inlet of the flow path is 0 position, the refrigerant outlet of the flow path is L position, and from the L / 4 position to 3L / 4 When the temperature obtained by subtracting the temperature of the refrigerant measured between the positions from the temperature of the refrigerant flowing into the compressor is maintained at a predetermined temperature ΔT1 or less for a predetermined time P, the evaporator It is determined that frost has occurred in the heat pump.
冷媒の流れに沿って圧縮機の上流側に配置され外気から熱を取り込んで液状の該冷媒を蒸発させる蒸発器に、霜が生じたのを検出するヒートポンプの着霜判定方法において、
前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、L/4位置から3L/4位置の間で計測した前記冷媒の温度を前記圧縮機に流入する前記冷媒の温度から差し引いた温度が予め定められた温度△T1以下であり、かつ、前記圧縮機に流入する前記冷媒の温度を外気温度から差し引いた温度が予め定められた温度△T2以上であり、かつ、前記外気温度が予め定められた温度T3以下である状態が、所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定することを特徴とするヒートポンプの着霜判定方法。
In a frosting determination method for a heat pump that detects the occurrence of frost in an evaporator that is arranged on the upstream side of the compressor along the flow of the refrigerant and takes heat from outside air to evaporate the liquid refrigerant,
The length of the flow path through which the refrigerant in the evaporator flows is L, the refrigerant inlet of the flow path is 0 position, the refrigerant outlet of the flow path is L position, and from the L / 4 position to 3L / 4 The temperature obtained by subtracting the temperature of the refrigerant measured between the positions from the temperature of the refrigerant flowing into the compressor is equal to or lower than a predetermined temperature ΔT1, and the temperature of the refrigerant flowing into the compressor is When the temperature subtracted from the outside air temperature is equal to or higher than a predetermined temperature ΔT2 and the outside air temperature is equal to or lower than a predetermined temperature T3, the evaporator is maintained for a predetermined time P. It is determined that frost has occurred in the heat pump.
蒸発器を通過中の冷媒の温度を計測する温度センサAと、圧縮機に流入する前記冷媒の温度を計測する温度センサBとを備え、前記蒸発器で外気から吸収した熱を、放熱器で放熱して水あるいは空気を加熱するヒートポンプにおいて、
前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、前記温度センサAは、L/4位置から3L/4位置の間に配置され、前記温度センサBの計測温度から前記温度センサAの計測温度を差し引いた温度が、予め定められた温度△T1以下で所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定することを特徴とするヒートポンプ。
A temperature sensor A for measuring the temperature of the refrigerant passing through the evaporator and a temperature sensor B for measuring the temperature of the refrigerant flowing into the compressor, and the heat absorbed by the evaporator from the outside air In heat pumps that dissipate heat and heat water or air,
The length of the flow path through which the refrigerant in the evaporator flows is L, the refrigerant inlet of the flow path is 0 position, the refrigerant outlet of the flow path is L position, and the temperature sensor A is L / It is arranged between the 4th position and the 3L / 4 position, and the temperature obtained by subtracting the measured temperature of the temperature sensor A from the measured temperature of the temperature sensor B is maintained for a predetermined time P at a predetermined temperature ΔT1 or less. And determining that frost has formed in the evaporator.
蒸発器を通過中の冷媒の温度を計測する温度センサAと、圧縮機に流入する前記冷媒の温度を計測する温度センサBと、外気の温度を計測する温度センサCとを備え、前記蒸発器で外気から吸収した熱を、放熱器で放熱して水あるいは空気を加熱するヒートポンプにおいて、
前記蒸発器内の前記冷媒が流れる流路の長さをL、該流路の該冷媒の入口を0位置、該流路の該冷媒の出口をL位置とし、前記温度センサAは、L/4位置から3L/4位置の間に配置され、前記温度センサBの計測温度から前記温度センサAの計測温度を差し引いた温度が予め定められた温度△T1以下であり、かつ、前記温度センサCの計測温度から前記温度センサBの計測温度を差し引いた温度が予め定められた温度△T2以上であり、かつ、前記温度センサCの計測温度が予め定められた温度T3以下である状態が、所定時間Pの間維持された際に、前記蒸発器に霜が生じたと判定することを特徴とするヒートポンプ。
A temperature sensor A for measuring the temperature of the refrigerant passing through the evaporator; a temperature sensor B for measuring the temperature of the refrigerant flowing into the compressor; and a temperature sensor C for measuring the temperature of the outside air. In a heat pump that heats water or air by radiating heat absorbed from outside air with a radiator,
The length of the flow path through which the refrigerant in the evaporator flows is L, the refrigerant inlet of the flow path is 0 position, the refrigerant outlet of the flow path is L position, and the temperature sensor A is L / It is arranged between the 4th position and the 3L / 4 position, the temperature obtained by subtracting the measured temperature of the temperature sensor A from the measured temperature of the temperature sensor B is equal to or lower than a predetermined temperature ΔT1, and the temperature sensor C The temperature obtained by subtracting the measured temperature of the temperature sensor B from the measured temperature is equal to or higher than a predetermined temperature ΔT2 and the measured temperature of the temperature sensor C is equal to or lower than a predetermined temperature T3. A heat pump characterized by determining that frost has formed in the evaporator when maintained for a period of time P.
JP2012169820A 2012-07-31 2012-07-31 Heat pump frost determination method and heat pump using the method Active JP6190577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169820A JP6190577B2 (en) 2012-07-31 2012-07-31 Heat pump frost determination method and heat pump using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169820A JP6190577B2 (en) 2012-07-31 2012-07-31 Heat pump frost determination method and heat pump using the method

Publications (2)

Publication Number Publication Date
JP2014029230A JP2014029230A (en) 2014-02-13
JP6190577B2 true JP6190577B2 (en) 2017-08-30

Family

ID=50201912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169820A Active JP6190577B2 (en) 2012-07-31 2012-07-31 Heat pump frost determination method and heat pump using the method

Country Status (1)

Country Link
JP (1) JP6190577B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468634B2 (en) * 2014-12-24 2019-02-13 三星電子株式会社Samsung Electronics Co.,Ltd. Refrigeration cycle equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123973A (en) * 1986-11-13 1988-05-27 三菱電機株式会社 Controller for refrigerator
JPH0875326A (en) * 1994-09-05 1996-03-19 Sanyo Electric Co Ltd Frost detecting method
JP2001004254A (en) * 1999-06-22 2001-01-12 Sanyo Electric Co Ltd Refrigeration system
JP2003222392A (en) * 2002-01-29 2003-08-08 Daikin Ind Ltd Heat pump type water heater
JP2007155299A (en) * 2005-12-08 2007-06-21 Sharp Corp Air conditioner
JP5100416B2 (en) * 2008-01-25 2012-12-19 三菱電機株式会社 Reheat dehumidifier and air conditioner
JP5632629B2 (en) * 2010-03-24 2014-11-26 東芝キヤリア株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2014029230A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6226073B2 (en) Hot water system
KR20100114087A (en) Heat-pump hot water apparatus
JP2010151329A (en) Storage type hot water supply apparatus
JP2008121982A (en) Refrigerating cycle device
JP7135493B2 (en) heat pump water heater
JP5764533B2 (en) Hot water heating system
US20220235945A1 (en) Hot water supply apparatus
JP6551783B2 (en) Heat pump device and hot water supply device provided with the same
JP3632645B2 (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP6745657B2 (en) Hot water supply system
JP6190577B2 (en) Heat pump frost determination method and heat pump using the method
JP2009287843A (en) Outdoor unit and heat pump device
JP5115283B2 (en) Heat pump type water heater
JP2011149568A (en) Heat pump device
JP2014031930A (en) Refrigeration cycle device
JP2009085476A (en) Heat pump water heater
JP5409474B2 (en) Water heater
JP2008116184A (en) Refrigerating cycle device
JP2009281629A (en) Heat pump water heater
JP2009216335A (en) Heat pump water heater
JP2009192135A (en) Heat pump water heater
JP6480293B2 (en) Heating system
JP6375256B2 (en) Hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6190577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250