JP2008116184A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2008116184A
JP2008116184A JP2006302342A JP2006302342A JP2008116184A JP 2008116184 A JP2008116184 A JP 2008116184A JP 2006302342 A JP2006302342 A JP 2006302342A JP 2006302342 A JP2006302342 A JP 2006302342A JP 2008116184 A JP2008116184 A JP 2008116184A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
hot water
high pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006302342A
Other languages
Japanese (ja)
Inventor
Masaya Honma
雅也 本間
Yuichi Kusumaru
雄一 藥丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006302342A priority Critical patent/JP2008116184A/en
Publication of JP2008116184A publication Critical patent/JP2008116184A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of a system, and to effectively use exhaust heat in a refrigerating cycle device carrying out hot water supply and air-conditioning. <P>SOLUTION: The refrigerating cycle device is provided with a compressor 11, a parallel circuit with a hot water supply heat exchanger 12 and a heating heat exchanger 16 arranged in parallel with each other, a main refrigerant circuit comprised by annularly connecting an expansion mechanism 15 and an outdoor heat exchanger 14 in sequence, and a flow control valve 17 provided on a downstream side of the heating heat exchanger 16 in the parallel circuit to regulate a flow rate of a refrigerant. The flow control valve 17 is controlled so as to open when a high pressure becomes a set value or more. With such a composition, a desired heating capacity can be obtained while securing reliability of the refrigerating cycle device by suppressing abnormal rising of the high pressure during high temperature water inflow to the hot water supply heat exchanger 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、給湯や空調を行う、冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus that performs hot water supply and air conditioning.

従来、給湯を行う冷凍サイクル装置では、貯湯タンク下部から流出した冷水が冷凍サイクル装置の給湯用熱交換器に流入し、圧縮機から吐出した高温冷媒と熱交換して温水となり、貯湯タンク上部へ戻る動作を貯湯タンク内の水の温度が所定温度(例えば中間期、夏期では65℃、冬期では90℃)になるまで運転される。冷凍サイクル運転初期では、貯湯タンク上部に温水が貯まり、下部には冷水が貯まる、つまり温度成層を形成しており、貯湯タンク下部からは常に冷水が給湯用熱交換器に供給されるが、運転後期になり貯湯タンクが温水で満たされ始めると貯湯タンク下部の冷水の温度も徐々に上昇し、冷凍サイクル装置の給湯用熱交換器へ供給させる水の温度も高くなる。それに伴って、給湯用熱交換器出口の冷媒温度も上昇し、高圧が上昇して冷凍サイクル装置の信頼性を損ねていた。   Conventionally, in a refrigeration cycle apparatus that performs hot water supply, cold water that flows out from the lower part of the hot water tank flows into the hot water heat exchanger of the refrigeration cycle apparatus, exchanges heat with the high-temperature refrigerant discharged from the compressor, and becomes hot water. The returning operation is performed until the temperature of the water in the hot water storage tank reaches a predetermined temperature (for example, 65 ° C. in the intermediate period and summer, and 90 ° C. in the winter). In the initial stage of the refrigeration cycle, hot water is stored in the upper part of the hot water tank and cold water is stored in the lower part, that is, a temperature stratification is formed, and cold water is always supplied to the heat exchanger for hot water supply from the lower part of the hot water tank. When the hot water storage tank begins to be filled with hot water at a later stage, the temperature of the cold water in the lower part of the hot water storage tank gradually increases, and the temperature of the water supplied to the hot water supply heat exchanger of the refrigeration cycle apparatus also increases. Along with this, the refrigerant temperature at the outlet of the hot water supply heat exchanger also increased, and the high pressure increased, impairing the reliability of the refrigeration cycle apparatus.

そこで、特許文献1に開示されたヒートポンプ給湯装置では、給湯用熱交換器への入水温度が標準温度より高ければ圧縮機の規定周波数を減少させて高圧上昇を抑制していた。図9、図10は特許文献1に記載された従来のヒートポンプ装置およびその運転フローチャートを示すものである。   Therefore, in the heat pump hot water supply apparatus disclosed in Patent Document 1, if the temperature of the water entering the heat exchanger for hot water supply is higher than the standard temperature, the specified frequency of the compressor is decreased to suppress an increase in high pressure. 9 and 10 show a conventional heat pump apparatus described in Patent Document 1 and an operation flowchart thereof.

図9において、貯湯タンク20内の温度センサ20A、20B,20C、20Dによって、貯湯タンク20内の湯量が所定値以下となったことを検出すると、ヒートポンプ回路10を動作させて貯湯運転を開始する。ヒートポンプ回路10では、圧縮機11で圧縮された冷媒は、給湯用熱交換器12で放熱し、メイン膨張弁13A及びキャピラリチューブ13Bで減圧された後、蒸発器14にて吸熱し、ガス状態で圧縮機11に吸入される。一方、循環ポンプ23の運転により、貯湯タンク20内の水は、底部配管22を通って水用配管12Aに導かれ、水用配管12Aで加熱された温水は、上部循環用配管24を取って貯湯タンク20に戻される。圧縮機11での能力制御及び膨張弁13での開度制御は、温度センサ10Aで検出される冷媒吐出温度が、予め設定された温度を維持するように制御される。図10は圧縮機11の周波数決定制御のブロック図である。規定周波数設定手段41では、予め基準となる運転周波数を設定している。入水負荷設定手段では、入水温度によって、その温度範囲を複数の区間に区分し、それぞれの区分において増減する周波数を設定している。即ち、この入水負荷設定手段42では、入水温度が標準温度より高ければ規定周波数を減少させ、入水温度が標準温度より低ければ規定周波数を増加させるように設定している。
特開2005−147542号公報
In FIG. 9, when it is detected by the temperature sensors 20A, 20B, 20C, 20D in the hot water storage tank 20 that the amount of hot water in the hot water storage tank 20 has become a predetermined value or less, the heat pump circuit 10 is operated to start the hot water storage operation. . In the heat pump circuit 10, the refrigerant compressed by the compressor 11 dissipates heat in the hot water supply heat exchanger 12, is depressurized by the main expansion valve 13A and the capillary tube 13B, then absorbs heat in the evaporator 14, and in a gas state. It is sucked into the compressor 11. On the other hand, by the operation of the circulation pump 23, the water in the hot water storage tank 20 is led to the water pipe 12A through the bottom pipe 22, and the hot water heated by the water pipe 12A takes the upper circulation pipe 24. It is returned to the hot water storage tank 20. The capacity control in the compressor 11 and the opening degree control in the expansion valve 13 are controlled such that the refrigerant discharge temperature detected by the temperature sensor 10A maintains a preset temperature. FIG. 10 is a block diagram of frequency determination control of the compressor 11. In the specified frequency setting means 41, a reference operating frequency is set in advance. In the incoming water load setting means, the temperature range is divided into a plurality of sections according to the incoming water temperature, and the frequency that increases or decreases in each of the sections is set. That is, the incoming water load setting means 42 is set to decrease the specified frequency if the incoming water temperature is higher than the standard temperature, and to increase the specified frequency if the incoming water temperature is lower than the standard temperature.
JP 2005-147542 A

しかしながら、高圧上昇を抑制するために圧縮機の運転周波数を減少させると、冷媒循環量が減少し、給湯用熱交換器での給湯加熱能力が低下するため、所望の温水温度および沸き上げ時間を達成できないと言う課題を有していた。   However, if the operating frequency of the compressor is reduced in order to suppress an increase in high pressure, the amount of refrigerant circulation decreases and the hot water heating capacity in the hot water heat exchanger decreases, so the desired hot water temperature and boiling time can be reduced. It had the problem that it could not be achieved.

本発明は前記課題に鑑みてなされたものであり、給湯用熱交換器へ高温水が入水した場合において、給湯用熱交換器と並列に接続された暖房用熱交換器へ一部冷媒を流入させて高圧を設定値まで減少させ、冷凍サイクル装置の信頼性を確保しつつ、所望の加熱能力を得ることを目的とする。   The present invention has been made in view of the above problems, and when high-temperature water enters the hot water heat exchanger, a part of the refrigerant flows into the heating heat exchanger connected in parallel with the hot water heat exchanger. The purpose is to reduce the high pressure to a set value and to obtain a desired heating capacity while ensuring the reliability of the refrigeration cycle apparatus.

前記課題を解決するために、本発明の冷凍サイクル装置においては、圧縮機と、給湯用熱交換器と暖房用熱交換器とが並列に配置された並列回路と、膨張機構と、室外熱交換器とを順次環状に接続してなる主冷媒回路と、並列回路内で暖房用熱交換器の下流側に設けられ、冷媒の流量を調整する流量制御弁とを設け、高圧が設定値以上になったときに流量制御弁を開くように制御する。   In order to solve the above problems, in the refrigeration cycle apparatus of the present invention, a compressor, a parallel circuit in which a heat exchanger for hot water supply and a heat exchanger for heating are arranged in parallel, an expansion mechanism, and outdoor heat exchange And a flow control valve for adjusting the flow rate of the refrigerant, provided at the downstream side of the heat exchanger for heating in the parallel circuit, and the high pressure exceeds the set value. When it becomes, it controls to open the flow control valve.

本構成によって、給湯用熱交換器への高温入水時に高圧の異常上昇を抑制して冷凍サイクル装置の信頼性を確保しつつ、所望の加熱能力を得ることができる。   With this configuration, it is possible to obtain a desired heating capacity while suppressing the abnormal increase in high pressure during high temperature water entry into the hot water supply heat exchanger and ensuring the reliability of the refrigeration cycle apparatus.

本発明のヒートポンプ装置によれば、給湯用熱交換器への高温入水時に高圧の異常上昇を抑制して冷凍サイクル装置の信頼性を確保しつつ、所望の加熱能力を得ることができる。   According to the heat pump device of the present invention, it is possible to obtain a desired heating capacity while suppressing the abnormal increase in high pressure and ensuring the reliability of the refrigeration cycle device when high-temperature water is introduced into the hot water supply heat exchanger.

本発明の冷凍サイクル装置は、圧縮機と、給湯用熱交換器と暖房用熱交換器とが並列に配置された並列回路と、膨張機構と、蒸発器とを順次環状に接続してなる主冷媒回路と、並列回路内で暖房用熱交換器の下流側に設けられ、冷媒の流量を調整する流量制御弁とを設け、高圧が設定値以上になったときに流量制御弁を開くように制御する。   The refrigeration cycle apparatus of the present invention is a main circuit formed by sequentially connecting a compressor, a parallel circuit in which a heat exchanger for hot water supply and a heat exchanger for heating are arranged in parallel, an expansion mechanism, and an evaporator. Provided with a refrigerant circuit and a flow rate control valve that adjusts the flow rate of the refrigerant in the parallel circuit on the downstream side of the heating heat exchanger, and opens the flow rate control valve when the high pressure exceeds the set value Control.

これにより、給湯用熱交換器への高温入水時に高圧の異常上昇を抑制できるため、冷凍サイクル装置の信頼性を確保することができる。   Thereby, since the abnormal rise of a high voltage | pressure can be suppressed at the time of high temperature water injection to the hot water supply heat exchanger, the reliability of the refrigeration cycle apparatus can be ensured.

(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら詳細に説明する。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図1において、本実施形態の冷凍サイクル装置は、冷媒を高温高圧に圧縮する圧縮機11と、圧縮機11から吐出された高温高圧冷媒を2方向に分岐させ、一方を貯湯タンク20の低温水と熱交換させて高温高圧冷媒を冷却する給湯用熱交換器12と、他方を室内暖房、床暖房、浴室暖房等に利用する暖房用熱交換器16と、並列回路内の暖房用熱交換器16側に設けられた冷媒循環量を調整する流量制御弁17と、給湯用放熱器12から流出した冷媒と暖房用熱交換器16から流出した冷媒とを混合させた後、減圧膨張させる膨張機構15と、室外ファン18から流れる空気と熱交換させて大気から吸熱する蒸発器14から構成される。   In FIG. 1, the refrigeration cycle apparatus of the present embodiment includes a compressor 11 that compresses a refrigerant to high temperature and high pressure, a high temperature and high pressure refrigerant discharged from the compressor 11 branched in two directions, and one of them is cold water in a hot water storage tank 20. The hot water supply heat exchanger 12 that cools the high-temperature and high-pressure refrigerant by exchanging heat with the other, the heating heat exchanger 16 that uses the other for indoor heating, floor heating, bathroom heating, and the like, and the heating heat exchanger in the parallel circuit An expansion mechanism that adjusts the refrigerant circulation amount provided on the side of 16 and the refrigerant that flows out of the hot water radiator 12 and the refrigerant that flows out of the heating heat exchanger 16 and then expands under reduced pressure. 15 and an evaporator 14 that absorbs heat from the atmosphere by exchanging heat with the air flowing from the outdoor fan 18.

給湯を行う運転では、貯湯タンク20の下部から流出した冷水が冷凍サイクル装置の給湯用熱交換器12に流入し、圧縮機11から吐出した高温冷媒と熱交換して温水となり、貯湯タンク20上部へ戻る動作を貯湯タンク20内の水の温度が所定温度(例えば中間期、夏期では65℃、冬期では90℃)になるまで運転される。冷凍サイクル運転初期では、貯湯タンク20上部に温水が貯まり、下部には冷水が貯まる、つまり温度成層を形成しており、貯湯タンク20下部からは常に冷水が給湯用熱交換器12に供給されるが、運転後期になると貯湯タンク20下部の冷水の温度が上昇し、冷凍サイクル装置の給湯用熱交換器12への入水温度が高くなり、高圧の異常上昇を招く。ここで、冷凍サイクル装置の給湯用熱交換器12への入水温度が高くなると高圧が上昇する理由について図2をもとに説明する。図2は、通常運転時と給湯用熱交換器へ流入する水の温度が高くなったとき(沸き終い時)の圧力-比エンタルピ線図である。高温冷媒と低温水を熱交換させる際、給湯用熱交換器へ流入する低温水の温度が上昇すると給湯用熱交換器から流出する冷媒の温度も上昇するため、給湯用熱交換器出口冷媒のエンタルピが増加する。膨張機構が例えば
膨張弁の場合、給湯用熱交換器から出た冷媒は等エントロピー変化で減圧膨張するため蒸発器入口の冷媒エンタルピも増加することになる。よって蒸発器内にホールドされている冷媒の平均密度は減少することになり、蒸発器の容積は一定であることから蒸発器にホールドされる冷媒重量は減少する。冷凍サイクル内の冷媒重量は一定であるので、給湯用熱交換器へ流入する水温が上昇したことによって蒸発器でホールドしきれなくなった冷媒は高圧側へ移動するため圧力は上昇することになる。沸き終い時は、一点鎖線で示すような高圧、給湯用熱交換出口冷媒温度、圧縮機吐出温度が上昇した圧力-比エンタルピ線図になる。この高圧異常上昇を回避するための制御方法を図3のフローチャートをもとに説明する。
In the operation of supplying hot water, the cold water flowing out from the lower part of the hot water storage tank 20 flows into the hot water supply heat exchanger 12 of the refrigeration cycle apparatus, exchanges heat with the high-temperature refrigerant discharged from the compressor 11, and becomes hot water. The operation of returning to is continued until the temperature of the water in the hot water storage tank 20 reaches a predetermined temperature (for example, 65 ° C. in the intermediate period, summer, and 90 ° C. in the winter). In the initial stage of the refrigeration cycle, hot water is stored in the upper part of the hot water storage tank 20 and cold water is stored in the lower part, that is, a temperature stratification is formed, and cold water is always supplied from the lower part of the hot water storage tank 20 to the hot water supply heat exchanger 12. However, in the latter half of the operation, the temperature of the cold water at the lower part of the hot water storage tank 20 rises, the temperature of the water entering the hot water supply heat exchanger 12 of the refrigeration cycle apparatus becomes high, and an abnormal increase in high pressure is caused. Here, the reason why the high pressure rises when the incoming water temperature to the hot water supply heat exchanger 12 of the refrigeration cycle apparatus increases will be described with reference to FIG. FIG. 2 is a pressure-specific enthalpy diagram during normal operation and when the temperature of water flowing into the hot water supply heat exchanger becomes high (at the end of boiling). When heat is exchanged between the high-temperature refrigerant and low-temperature water, if the temperature of the low-temperature water flowing into the hot water supply heat exchanger rises, the temperature of the refrigerant flowing out of the hot water heat exchanger also rises. Enthalpy increases. When the expansion mechanism is, for example, an expansion valve, the refrigerant discharged from the hot water supply heat exchanger expands under reduced pressure due to isentropic change, so that the refrigerant enthalpy at the evaporator inlet also increases. Therefore, the average density of the refrigerant held in the evaporator decreases, and the volume of the refrigerant held in the evaporator decreases because the volume of the evaporator is constant. Since the refrigerant weight in the refrigeration cycle is constant, the refrigerant that cannot be held by the evaporator due to the rise in the temperature of the water flowing into the hot water supply heat exchanger moves to the high pressure side, and thus the pressure rises. At the end of boiling, a pressure-specific enthalpy diagram in which the high pressure, the hot water supply heat exchange outlet refrigerant temperature, and the compressor discharge temperature are increased as shown by the dashed line. A control method for avoiding this abnormal increase in high pressure will be described with reference to the flowchart of FIG.

まず、S1で冷媒圧力検出手段37の検出値を読み、設定値Pa(例えば13MPa)以下になっているか判断する。ここで設定値PaになっていなければS2に移り、制御手段21によって流量制御弁17を冷媒圧力検出手段37の値が設定値以下になるように開く。設定値PaになっていればS3に移り運転を継続する。S2とS3の後はまたS1に戻って再度図2のフローチャートを貯湯タンク内の温水温度が設定値(例えば中間期、夏期では65℃、冬期では90℃)になるまで継続させる。   First, the detected value of the refrigerant pressure detecting means 37 is read in S1, and it is determined whether or not the set value Pa (for example, 13 MPa) or less. If the set value Pa is not reached, the process proceeds to S2, and the control means 21 opens the flow rate control valve 17 so that the value of the refrigerant pressure detecting means 37 is equal to or less than the set value. If it is the set value Pa, the process proceeds to S3 and the operation is continued. After S2 and S3, the process returns to S1 and the flow chart in FIG. 2 is continued again until the hot water temperature in the hot water storage tank reaches a set value (for example, 65 ° C. in the intermediate period, summer, and 90 ° C. in the winter).

なお、流量制御弁17の設置場所は図1においては暖房用熱交換器16の下流側であるが、上流側であっても構わない。   In addition, although the installation place of the flow control valve 17 is the downstream side of the heat exchanger 16 for heating in FIG. 1, it may be an upstream side.

また、その他の代替手段として図4に示すような高圧側の冷媒温度(給湯用熱交換器12の出口から膨張機構15の間の配管の冷媒温度)を検出しても良い。つまり、給湯用熱交換器12へ流入する水の温度が上昇すると、給湯用熱交換器12出口冷媒温度も上昇し、高圧も上昇するため高圧が設定値以上となる給湯用熱交換器12出口冷媒の温度をあらかじめ導出しておいて、高圧が設定値以上となった場合に図3のフローチャートと同様に流量制御弁17を開くように制御する。   As another alternative, the refrigerant temperature on the high pressure side (the refrigerant temperature in the pipe between the outlet of the hot water supply heat exchanger 12 and the expansion mechanism 15) as shown in FIG. 4 may be detected. That is, when the temperature of the water flowing into the hot water supply heat exchanger 12 rises, the hot water supply heat exchanger 12 outlet refrigerant temperature also rises, and the high pressure also rises, so that the high pressure becomes equal to or higher than the set value. The temperature of the refrigerant is derived in advance, and when the high pressure exceeds the set value, the flow control valve 17 is controlled to open as in the flowchart of FIG.

なお、その他の代替手段として、例えば図5に示すように給湯用熱交換器へ流入する水の入水温度(入水温度検出手段38で検知)と圧縮機周波数(圧縮機周波数検出手段39で検知)から予測しても良い。つまり、図6に示すような給湯用熱交換器入水温度と圧縮機周波数、高圧との関係をあらかじめ実験等により導出しておき、高圧が設定値以上であるかどうかを推測する。圧縮機周波数と給湯用熱交換器への入水温度が増加するにつれて高圧も上昇するため、図6に示すような関係が導ける。図6に示す高圧が設定値以上(図に示す点線より上方)となる圧縮機周波数と入水温度の条件においては高圧が設定値以上となったと判断し、図3のフローチャートと同様に流量制御弁17を開くように制御する。   As other alternative means, for example, as shown in FIG. 5, the incoming temperature of water flowing into the hot water heat exchanger (detected by the incoming water temperature detecting means 38) and the compressor frequency (detected by the compressor frequency detecting means 39). You may predict from. That is, the relationship between the temperature of the hot water supply heat exchanger, the compressor frequency, and the high pressure as shown in FIG. 6 is derived in advance by experiments or the like to estimate whether the high pressure is equal to or higher than the set value. Since the high pressure rises as the compressor frequency and the incoming water temperature to the hot water supply heat exchanger increase, the relationship shown in FIG. 6 can be derived. It is determined that the high pressure has exceeded the set value under the conditions of the compressor frequency and the incoming water temperature at which the high pressure shown in FIG. 6 is equal to or higher than the set value (above the dotted line shown in the figure). 17 is controlled to open.

また、従来であれば高圧の異常上昇を抑制するために圧縮機周波数を小さくしたり、膨張弁を開いたり、さらには圧縮機と膨張弁をバイパスさせるバイパス回路を設けバイパス回路に冷媒を流すようにしていた。しかし、このシステムは給湯と暖房を行う多機能システムであるがゆえに、暖房用熱交換器を設置している流路がバイパス回路の役割を果たすため、バイパス回路を新たに設置する必要がなくコストメリットも出る。また、流量制御弁17をわずかに開くだけで高圧低減効果は得られることから、給湯用熱交換器12への循環量低減もわずかなものであり、また圧縮機周波数を下げる必要はなく膨張機構15の開度も大きくする必要がないため給湯能力を低減させることなく高圧異常上昇を抑制することができる。   Further, conventionally, in order to suppress an abnormal increase in high pressure, the compressor frequency is reduced, the expansion valve is opened, and further, a bypass circuit for bypassing the compressor and the expansion valve is provided so that the refrigerant flows through the bypass circuit. I was doing. However, since this system is a multifunctional system that performs hot water supply and heating, the flow path where the heating heat exchanger is installed plays the role of a bypass circuit, so there is no need to newly install a bypass circuit. There are also benefits. Further, since the effect of reducing the high pressure can be obtained by slightly opening the flow control valve 17, the amount of circulation to the hot water supply heat exchanger 12 is reduced little, and there is no need to lower the compressor frequency, and the expansion mechanism. Since it is not necessary to increase the opening degree of 15, it is possible to suppress an abnormal increase in high pressure without reducing the hot water supply capacity.

(実施の形態2)
以下、本発明の実施の形態2について、図面を参照しながら詳細に説明する。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 2)
Hereinafter, Embodiment 2 of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図7において、本実施形態のヒートポンプ装置は、図1に示すヒートポンプ装置において、暖房用熱交換器16と並列に放熱手段27と蒸発器14とを2次冷媒配管26を介して接続し、2次冷媒配管26に循環ポンプ25を備えた構成とする。   7, the heat pump device of this embodiment is the same as the heat pump device shown in FIG. 1, except that the heat dissipating means 27 and the evaporator 14 are connected in parallel with the heating heat exchanger 16 via the secondary refrigerant pipe 26. The secondary refrigerant pipe 26 is provided with a circulation pump 25.

ここで、実施の形態2の制御方法を図8の制御フローチャート図を用いて説明する。制御フローチャートのS2、S3までは図3と同様であるが、S2で流量制御弁を開いた後S4に移り循環ポンプを起動させる。   Here, the control method of Embodiment 2 is demonstrated using the control flowchart figure of FIG. The steps up to S2 and S3 in the control flowchart are the same as in FIG. 3, but after opening the flow control valve in S2, the process proceeds to S4 to start the circulation pump.

通常であれば高圧の異常上昇を検知して流量制御弁17を開くことで高圧の異常上昇を抑制はできるが、高温冷媒の一部が並列回路のもう一方の流路をそのまま流れ膨張機構15で減圧されるため高温冷媒の熱を無駄にすることになるが、この構成にすることにより、今まで無駄にしていた高温冷媒の熱を有効利用することができる。例えば、冬期に運転を行っている場合、冷媒の蒸発温度が0℃以下になると蒸発器のフィンに着霜が起こり、従来は冷凍サイクル装置の運転を止めるもしくは膨張弁を開いて霜を融かしていたため、霜を融かしている間は給湯や暖房が行えなかったが、この構成で制御を行うことで蒸発器14に高温冷媒の熱が伝わり、給湯や暖房運転を止めることなく霜を融かすことができる。さらに夏期、中間期、冬期を通して、蒸発器における冷媒沸点上昇が起こり、高低圧力差が小さくなることで圧縮機動力が低減し、COPが向上する。   Normally, the abnormal increase in high pressure can be suppressed by detecting the abnormal increase in high pressure and opening the flow control valve 17, but a part of the high-temperature refrigerant flows through the other flow path of the parallel circuit as it is. However, the heat of the high-temperature refrigerant is wasted, so that the heat of the high-temperature refrigerant that has been wasted can be effectively used. For example, when operating in winter, when the evaporation temperature of the refrigerant falls below 0 ° C, frosting occurs on the fins of the evaporator, and conventionally the refrigeration cycle device is stopped or the expansion valve is opened to melt the frost. Therefore, while the frost was melted, hot water supply and heating could not be performed. However, by controlling with this configuration, the heat of the high-temperature refrigerant is transmitted to the evaporator 14, and frost can be generated without stopping the hot water supply or heating operation. Can be melted. Furthermore, the refrigerant boiling point rises in the evaporator throughout the summer, middle and winter seasons, and the compressor power is reduced and the COP is improved by reducing the high and low pressure difference.

また、本実施形態においては、図7において、冷媒圧力検出手段37を用いた場合に付いて説明した。しかしながら、実施形態1と同様に、図4〜6に開示されているように、高圧推定手段を用いた場合にも本実施形態は有効である。   In the present embodiment, the case where the refrigerant pressure detecting means 37 is used in FIG. 7 has been described. However, as in the first embodiment, as disclosed in FIGS. 4 to 6, this embodiment is also effective when high-pressure estimation means is used.

以上、本発明の実施の形態1および2について説明したが、本発明で使用する冷媒はCO2等の高圧側が超臨界となって作動する冷媒が望ましい。本発明のように給湯機能を有するシステムにおいてはフロン系冷媒のような凝縮域を有する冷媒よりもCO2等の高圧側が超臨界となって作動する冷媒のほうが高温加熱に有利であるからである。   As described above, the first and second embodiments of the present invention have been described. However, the refrigerant used in the present invention is preferably a refrigerant that operates on the high-pressure side such as CO2 with supercriticality. This is because, in a system having a hot water supply function as in the present invention, a refrigerant operating with a high pressure side such as CO2 being supercritical is more advantageous for high-temperature heating than a refrigerant having a condensation region such as a chlorofluorocarbon refrigerant.

本発明にかかる冷凍サイクル装置は、給湯機、冷凍・空調機器や乾燥装置などの冷凍サイクル装置として利用することができる。   The refrigeration cycle apparatus according to the present invention can be used as a refrigeration cycle apparatus such as a water heater, a refrigeration / air-conditioning apparatus, and a drying apparatus.

本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、沸き終い時の圧力-比エンタルピ線図Pressure-specific enthalpy diagram at the end of boiling in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態2における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 2 of the present invention 本発明の実施の形態2における、冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus in Embodiment 2 of the present invention 従来の冷凍サイクル装置図Conventional refrigeration cycle diagram 従来の冷凍サイクル装置の制御フローチャートControl flowchart of conventional refrigeration cycle apparatus

符号の説明Explanation of symbols

10 ヒートポンプ回路
10A 温度センサ(吐出温度検出手段)
10B 圧力センサ(吐出圧力検出手段)
10C 温度センサ(外気温度検出手段)
11 圧縮機
12 給湯用熱交換器
12A 水用配管
13A 第1開閉弁
13B キャピラリーチューブ
14 蒸発器
15 膨張機構
16 暖房用熱交換器
17 流量制御弁
18 室外ファン
19 使用端末
20 貯湯タンク
20A、20B,20C,20D、20E、20F 温度センサ
21 制御手段
22 底部配管
23 第1の循環ポンプ
24 上部循環用配管
25 第2の循環ポンプ
26 2次冷媒配管
27 放熱手段
30A 流量センサ
30B 温度センサ
33 出湯用配管
34 混合弁
35 出水用配管
36 冷媒温度検出手段
37 冷媒圧力検出手段
38 入水温度検出手段
39 圧縮機周波数検出手段
41 規定周波数設定手段
42 入水負荷設定手段
43 外気負荷設定手段
44 入水負荷決定手段
45 外気負荷決定手段
46 目標周波数決定手段
10 heat pump circuit 10A temperature sensor (discharge temperature detection means)
10B Pressure sensor (Discharge pressure detection means)
10C temperature sensor (outside air temperature detection means)
DESCRIPTION OF SYMBOLS 11 Compressor 12 Hot water supply heat exchanger 12A Water pipe 13A 1st on-off valve 13B Capillary tube 14 Evaporator 15 Expansion mechanism 16 Heating heat exchanger 17 Flow control valve 18 Outdoor fan 19 Use terminal 20 Hot water storage tank 20A, 20B, 20C, 20D, 20E, 20F Temperature sensor 21 Control means 22 Bottom pipe 23 First circulation pump 24 Upper circulation pipe 25 Second circulation pump 26 Secondary refrigerant pipe 27 Heat radiation means 30A Flow rate sensor 30B Temperature sensor 33 Hot water supply pipe 34 Mixing valve 35 Drain pipe 36 Refrigerant temperature detecting means 37 Refrigerant pressure detecting means 38 Incoming water temperature detecting means 39 Compressor frequency detecting means 41 Specified frequency setting means 42 Incoming load setting means 43 Outside air load setting means 44 Incoming air load determining means 45 Outside air Load determining means 46 Target frequency determining means

Claims (4)

圧縮機と、給湯用熱交換器と暖房用熱交換器とが並列に配置された並列回路と、膨張機構と、蒸発器とを順次環状に接続してなる主冷媒回路と、前記並列回路内で前記暖房用熱交換器側に設けられ、冷媒の流量を調整する流量制御弁とを備え、
前記圧縮機の吐出側と前記膨張機構の入口までの間の主冷媒回路の高圧が予め定められた設定値以上になると、前記流量制御弁の開度を大きくする冷凍サイクル装置。
A compressor, a parallel circuit in which a heat exchanger for hot water supply and a heat exchanger for heating are arranged in parallel, a main refrigerant circuit in which an expansion mechanism and an evaporator are sequentially connected in an annular manner, and the parallel circuit A flow control valve for adjusting the flow rate of the refrigerant, provided on the heating heat exchanger side,
A refrigeration cycle apparatus that increases the opening of the flow control valve when the high pressure of the main refrigerant circuit between the discharge side of the compressor and the inlet of the expansion mechanism is equal to or greater than a predetermined set value.
前記主冷媒回路を流れる冷媒を一次冷媒とし、
前記暖房用熱交換器と、前記蒸発器と、二次冷媒を循環させる循環ポンプとを配管を介して接続する二次冷媒回路をさらに有し、
前記暖房用熱交換器および前期蒸発器において、前記一次冷媒と前記二次冷媒とが熱交換し、
前記高圧が予め定められた設定値以上になると、前記流量制御弁の開度を調整し、かつ、前記循環ポンプを作動させる請求項1に記載の冷凍サイクル装置。
The refrigerant flowing through the main refrigerant circuit is a primary refrigerant,
A secondary refrigerant circuit for connecting the heating heat exchanger, the evaporator, and a circulation pump for circulating the secondary refrigerant via a pipe;
In the heating heat exchanger and the previous evaporator, the primary refrigerant and the secondary refrigerant exchange heat,
The refrigeration cycle apparatus according to claim 1, wherein when the high pressure becomes equal to or higher than a predetermined set value, the opening degree of the flow control valve is adjusted and the circulation pump is operated.
前記給湯用熱交換器の出口から前記膨張機構の入口の間に設けられた冷媒温度検出手段と、前記冷媒温度検出手段によって測定された冷媒温度により高圧を推定する手段とをさらに備え、
前記高圧が予め定められた設定値以上になると、前記流量制御弁の開度を調整する請求項1または2に記載の冷凍サイクル装置。
A refrigerant temperature detection means provided between an outlet of the hot water supply heat exchanger and an inlet of the expansion mechanism; and a means for estimating a high pressure from the refrigerant temperature measured by the refrigerant temperature detection means,
The refrigeration cycle apparatus according to claim 1 or 2, wherein an opening degree of the flow control valve is adjusted when the high pressure is equal to or higher than a predetermined set value.
前記給湯用熱交換器の入口水配管に水温度検出手段と、前記圧縮機の周波数を検出する圧縮機周波数検出手段をさらに備え、
前記水温度検出手段の検出値と前記圧縮機周波数検出手段の検出値から高圧を推測し、推測値が予め定められた設定値以上になると、前記流量制御弁の開度を調整する請求項1または2に記載の冷凍サイクル装置。
Water temperature detection means on the inlet water piping of the hot water heat exchanger, and further comprises compressor frequency detection means for detecting the frequency of the compressor,
The high pressure is estimated from the detection value of the water temperature detection means and the detection value of the compressor frequency detection means, and when the estimated value is equal to or greater than a predetermined set value, the opening degree of the flow control valve is adjusted. Or the refrigeration cycle apparatus of 2.
JP2006302342A 2006-11-08 2006-11-08 Refrigerating cycle device Pending JP2008116184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302342A JP2008116184A (en) 2006-11-08 2006-11-08 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302342A JP2008116184A (en) 2006-11-08 2006-11-08 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2008116184A true JP2008116184A (en) 2008-05-22

Family

ID=39502251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302342A Pending JP2008116184A (en) 2006-11-08 2006-11-08 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2008116184A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354688A2 (en) * 2010-02-09 2011-08-10 Mitsubishi Heavy Industries, Ltd. Hot water supply air conditioner
JP2013145116A (en) * 2013-04-30 2013-07-25 Daikin Industries Ltd Heat pump system
CN111609593A (en) * 2020-04-24 2020-09-01 珠海格力电器股份有限公司 Double-temperature air conditioning system, control method and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354688A2 (en) * 2010-02-09 2011-08-10 Mitsubishi Heavy Industries, Ltd. Hot water supply air conditioner
JP2011163654A (en) * 2010-02-09 2011-08-25 Mitsubishi Heavy Ind Ltd Hot water supply air conditioner
JP2013145116A (en) * 2013-04-30 2013-07-25 Daikin Industries Ltd Heat pump system
CN111609593A (en) * 2020-04-24 2020-09-01 珠海格力电器股份有限公司 Double-temperature air conditioning system, control method and air conditioner

Similar Documents

Publication Publication Date Title
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
US9897349B2 (en) Refrigeration cycle device
US9322562B2 (en) Air-conditioning apparatus
JP5395479B2 (en) Air conditioning system
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP2010144938A (en) Heat pump water heater and method for operating the same
JPWO2011010473A1 (en) Heat pump equipment
JP2008121982A (en) Refrigerating cycle device
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP6109307B2 (en) Air conditioner
JP2013119954A (en) Heat pump hot water heater
JP2012159255A (en) Heat pump type heat source device, and heating system
JP2007139244A (en) Refrigeration device
JP2013127332A (en) Hydronic heating device
KR20130116360A (en) Binary refrigeration cycle device
JP2007303806A (en) Refrigerating cycle device and its operation method
JP5176474B2 (en) Heat pump water heater
JP2007278656A (en) Heat pump water heater
JP2006010137A (en) Heat pump system
JP2008116184A (en) Refrigerating cycle device
JP5150300B2 (en) Heat pump type water heater
JP4298388B2 (en) Air conditioner and control method of air conditioner
JP6698312B2 (en) Control device, control method, and heat source system
KR100585517B1 (en) Sola cooling/heating system used geothermy and heat-pump unit