JP5176474B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP5176474B2
JP5176474B2 JP2007271168A JP2007271168A JP5176474B2 JP 5176474 B2 JP5176474 B2 JP 5176474B2 JP 2007271168 A JP2007271168 A JP 2007271168A JP 2007271168 A JP2007271168 A JP 2007271168A JP 5176474 B2 JP5176474 B2 JP 5176474B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
circulation pump
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007271168A
Other languages
Japanese (ja)
Other versions
JP2009097826A (en
Inventor
章 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007271168A priority Critical patent/JP5176474B2/en
Publication of JP2009097826A publication Critical patent/JP2009097826A/en
Application granted granted Critical
Publication of JP5176474B2 publication Critical patent/JP5176474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は貯湯式のヒートポンプ給湯装置に関する。   The present invention relates to a hot water storage type heat pump hot water supply apparatus.

従来、この種のヒートポンプ給湯装置は、図2に示すものがある(例えば、特許文献1参照)。   Conventionally, this type of heat pump hot-water supply apparatus has what is shown in FIG. 2 (for example, refer patent document 1).

図2に示すように、この給湯機は貯湯槽2と、ヒートポンプ3による加熱源を備え、貯湯槽2の下部から沸上げ管11でヒートポンプ3と接続し、ヒートポンプ3から貯湯槽2上部へ接続している。   As shown in FIG. 2, this hot water heater includes a hot water storage tank 2 and a heat source by a heat pump 3, and is connected to the heat pump 3 from the lower part of the hot water tank 2 through the boiling pipe 11 and connected from the heat pump 3 to the upper part of the hot water tank 2. doing.

また、浴槽6内の湯水を加熱するための風呂加熱熱交換器19において、利用側は風呂循環ポンプ27により、浴槽13内の湯水を循環するように接続され、また熱源側は循環ポンプ17により貯湯槽2上部の高温の湯を循環して貯湯槽2の下部に環流している。   Further, in the bath heating heat exchanger 19 for heating the hot water in the bathtub 6, the use side is connected to circulate the hot water in the bathtub 13 by the bath circulation pump 27, and the heat source side by the circulation pump 17. Hot water at the upper part of the hot water tank 2 is circulated and circulated to the lower part of the hot water tank 2.

この様に、風呂循環ポンプ27と循環ポンプ17を動作させることにより熱源側の高温水と利用側の低温水が風呂加熱熱交換器19で熱交換することにより浴槽6内の湯水の保温あるいは追い焚きが行われる。また、熱源側の高温水は貯湯槽2の上部より循環ポンプ17により風呂加熱熱交換器19に送られ、利用側の低温水と熱交換した後、貯湯槽2下部付近に環流される。
特開2004−293837号公報
In this way, by operating the bath circulation pump 27 and the circulation pump 17, the hot water on the heat source side and the low temperature water on the use side exchange heat in the bath heating heat exchanger 19, thereby keeping or keeping the hot water in the bathtub 6 warm. A whisper is done. Also, the hot water on the heat source side is sent from the upper part of the hot water tank 2 to the bath heating heat exchanger 19 by the circulation pump 17, exchanges heat with the low temperature water on the use side, and then circulates near the lower part of the hot water tank 2.
Japanese Patent Application Laid-Open No. 2004-293737

しかしながら、上記構成では、風呂加熱熱交換器19での熱交換より30〜50℃程度の中温水が貯湯槽2に貯まっていく。中温水は湯温が低いため風呂の追い焚きに用いることはできない。また、中温水をそのまま貯留しておくと貯湯槽2内の蓄熱量が減少するため湯切れの原因となる。そのため、中温水をヒートポンプ3で加熱することになるが、湯水の温度が高いためヒートポンプ3の効率低下を招くと言う課題があった。   However, in the above configuration, medium temperature water of about 30 to 50 ° C. is stored in the hot water tank 2 by heat exchange in the bath heating heat exchanger 19. Medium temperature water cannot be used for bathing because the temperature of the hot water is low. Further, if the medium-temperature water is stored as it is, the amount of heat stored in the hot water tank 2 is reduced, which causes hot water shortage. Therefore, although medium temperature water will be heated with the heat pump 3, since the temperature of the hot water was high, there existed a subject that the efficiency reduction of the heat pump 3 was caused.

本発明は前記従来の課題を解決するもので、貯湯槽内の水温上昇を防止し、エネルギー効率の高い給湯運転を実施できるヒートポンプ給湯装置を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump hot water supply apparatus which can prevent the water temperature rise in a hot water storage tank, and can implement hot water supply operation with high energy efficiency.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次接続した冷媒回路と、第一循環ポンプ、前記給湯用熱交換器を順に介して貯湯槽内の水を加熱する給湯回路と、前記給湯回路の前記給湯用熱交換器下流側に設けた三方弁と、前記三方弁と前記給湯回路の前記第一循環ポンプの上流側とを接続したバイパス回路と、前記バイパス回路に設けた放熱手段と、前記放熱手段に第二循環ポンプを介して接続形成した加熱回路と、前記圧縮機の吐出冷媒温度を検出する吐出温度センサと、前記加熱回路に設けられ前記放熱手段に流入する熱媒体の温度を検知する温度センサと、制御装置とを備え、前記制御装置は、前記圧縮機の起動時および/または前記蒸発器に生成される霜を溶かす除霜運転時に、前記吐出温度センサの検出温度と前記温度センサの検出温度とを比較し、前記吐出温度センサの検出温度より、前記温度センサの検出温度の方が高い場合、前記三方弁にて前記給湯用熱交換器の下流側と前記バイパス回路とを連通させるとともに、前記第一循環ポンプと前記第二循環ポンプとを動作させることを特徴とするもので、貯湯槽内の温水の温度を低下させることがなく、貯湯槽下部の水温上昇を防止し、エネルギー効率の高い給湯運転を行うことができる。 In order to solve the above-described conventional problems, a heat pump hot water supply apparatus of the present invention includes a refrigerant circuit in which a compressor, a hot water heat exchanger, a decompression device, and an evaporator are sequentially connected, a first circulation pump, and the hot water heat exchange. A hot water supply circuit for heating the water in the hot water tank through the heater in turn, a three-way valve provided downstream of the hot water supply heat exchanger in the hot water supply circuit, the three-way valve and the first circulation pump of the hot water supply circuit A bypass circuit connected to the upstream side, a heat dissipating means provided in the bypass circuit, a heating circuit connected to the heat dissipating means via a second circulation pump, and a discharge temperature for detecting a discharge refrigerant temperature of the compressor A sensor, a temperature sensor for detecting the temperature of the heat medium flowing into the heat radiating means provided in the heating circuit, and a control device, and the control device is provided at the time of starting the compressor and / or in the evaporator. The generated frost During the defrosting operation, the detected temperature of the discharge temperature sensor is compared with the detected temperature of the temperature sensor, and if the detected temperature of the temperature sensor is higher than the detected temperature of the discharge temperature sensor, the three-way valve The hot water supply heat exchanger is in communication with the bypass circuit and the first circulation pump and the second circulation pump are operated, and the temperature of the hot water in the hot water storage tank The temperature of the hot water tank can be prevented from rising and the energy efficient hot water supply operation can be performed.

本発明によれば、貯湯槽内の水温上昇を防止し、エネルギー効率の高い給湯運転を実施できるヒートポンプ給湯装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump hot water supply apparatus which can prevent the water temperature rise in a hot water storage tank and can implement the hot water supply operation with high energy efficiency can be provided.

第1の発明は、圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次接続した冷媒回路と、第一循環ポンプ、前記給湯用熱交換器を順に介して貯湯槽内の水を加熱する給湯回路と、前記給湯回路の前記給湯用熱交換器下流側に設けた三方弁と、前記三方弁と前記給湯回
路の前記第一循環ポンプの上流側とを接続したバイパス回路と、前記バイパス回路に設けた放熱手段と、前記放熱手段に第二循環ポンプを介して接続形成した加熱回路と、前記圧縮機の吐出冷媒温度を検出する吐出温度センサと、前記加熱回路に設けられ前記放熱手段に流入する熱媒体の温度を検知する温度センサと、制御装置とを備え、前記制御装置は、前記圧縮機の起動時および/または前記蒸発器に生成される霜を溶かす除霜運転時に、前記吐出温度センサの検出温度と前記温度センサの検出温度とを比較し、前記吐出温度センサの検出温度より、前記温度センサの検出温度の方が高い場合、前記三方弁にて前記給湯用熱交換器の下流側と前記バイパス回路とを連通させるとともに、前記第一循環ポンプと前記第二循環ポンプとを動作させることを特徴とするもので、貯湯槽内の温水の温度を低下させることがなく、貯湯槽下部の水温上昇を防止し、エネルギー効率の高い給湯運転を行うことができる。
1st invention heats the water in a hot water tank through the refrigerant circuit which connected the compressor, the hot water supply heat exchanger, the decompression device, and the evaporator sequentially, the 1st circulation pump, and the said hot water supply heat exchanger in order. A hot water supply circuit, a three-way valve provided downstream of the hot water supply heat exchanger of the hot water supply circuit, a bypass circuit connecting the three-way valve and the upstream side of the first circulation pump of the hot water supply circuit, and the bypass A heat dissipating means provided in the circuit; a heating circuit connected to the heat dissipating means via a second circulation pump; a discharge temperature sensor for detecting a discharge refrigerant temperature of the compressor; and the heat dissipating means provided in the heating circuit. A temperature sensor for detecting the temperature of the heat medium flowing into the engine, and a control device, the control device at the start of the compressor and / or at the time of defrosting operation to melt frost generated in the evaporator The detection temperature of the discharge temperature sensor When the temperature detected by the temperature sensor is higher than the temperature detected by the discharge temperature sensor, the downstream side of the heat exchanger for hot water supply and the bypass circuit are compared with the temperature detected by the temperature sensor. And the first circulation pump and the second circulation pump are operated, without increasing the temperature of the hot water in the hot water tank, This can prevent hot water operation with high energy efficiency.

また、よりエネルギー効率の高い給湯運転を行うことができる。また、風呂の残り湯の排熱の利用ができ、エネルギー効率の高い給湯運転を行うことができる。 Further, hot water supply operation with higher energy efficiency can be performed. In addition, exhaust heat from the remaining hot water in the bath can be used, and hot water supply operation with high energy efficiency can be performed.

第2の発明は、冷媒回路の冷媒として炭酸ガスを用いたので、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。 Since the second invention uses carbon dioxide as the refrigerant in the refrigerant circuit, it achieves high temperature of hot water supply with high efficiency, and even if the refrigerant leaks to the outside, the influence on global warming is extremely high. Less.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

なお、各実施の形態において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。   In each embodiment, portions having the same configuration and the same operation are denoted by the same reference numerals, and detailed description thereof is omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump water heater in the first embodiment of the present invention.

図1において、圧縮機31、給湯用熱交換器32、絞り装置33、蒸発器34を順に環状に接続し、冷媒として炭酸ガスを封入して冷媒循環回路を形成し、蒸発器34は、外気を送風するためのファン35を備えている。また、貯湯槽41、貯湯槽下部の取水口42、第一循環ポンプである循環ポンプ43、給湯用熱交換器32、三方弁44、貯湯槽上部の温水戻り口45を順次接続した給湯回路46と、三方弁44と貯湯槽下部の取水口42と循環ポンプ43の間の配管に放熱器である風呂加熱熱交換器48を介して接続するバイパス回路47を構成しており、圧縮機31より吐出された高温高圧の過熱ガス冷媒は給湯用熱交換器32に流入し、ここで循環ポンプ43から送られてきた水を加熱するようになっている。   In FIG. 1, a compressor 31, a hot water heat exchanger 32, a throttling device 33, and an evaporator 34 are sequentially connected in an annular manner, and carbon dioxide gas is sealed as a refrigerant to form a refrigerant circulation circuit. A fan 35 is provided for blowing air. Further, a hot water supply circuit 46 in which a hot water tank 41, a water intake port 42 at the lower part of the hot water tank, a circulation pump 43 as a first circulation pump, a heat exchanger 32 for hot water supply, a three-way valve 44, and a hot water return port 45 at the upper part of the hot water tank are sequentially connected. And a bypass circuit 47 connected to the piping between the three-way valve 44, the water intake 42 at the lower part of the hot water tank, and the circulation pump 43 via a bath heating heat exchanger 48 as a radiator. The discharged high-temperature and high-pressure superheated gas refrigerant flows into the hot water supply heat exchanger 32 where the water sent from the circulation pump 43 is heated.

また、浴槽50内の湯水を加熱するための風呂加熱熱交換器48において、利用側は第二循環ポンプである風呂循環ポンプ49により、浴槽50内の湯水を循環するように接続し、加熱回路を形成している。   Moreover, in the bath heating heat exchanger 48 for heating the hot water in the bathtub 50, the use side is connected so as to circulate the hot water in the bathtub 50 by a bath circulation pump 49 which is a second circulation pump, and a heating circuit. Is forming.

さらに、給湯用熱交換器32に流入する入水温度を検知する入水温度センサ51と給湯用熱交換器32から流出する出湯温度を検知する出湯温度センサ52と風呂加熱熱交換器48に流入する入水温度を検知する風呂湯温度センサ53と風呂加熱熱交換器48から風呂へ戻る湯温を検知する風呂還流温度センサ54と室外気温を検知する室外気温センサ55、圧縮機31の吐出冷媒温度を検出する吐出温度センサ56、蒸発器34の出口冷媒温度を検出する蒸発器出口温度センサ57を設け、圧縮機31の運転周波数や絞り装置33の開度、ファン35の回転数、循環ポンプ43および風呂循環ポンプ49の回転数を制御
する制御装置58を設置している。冷媒は二酸化炭素を用いている。
Furthermore, the incoming water temperature sensor 51 for detecting the incoming water temperature flowing into the hot water supply heat exchanger 32, the outgoing hot water temperature sensor 52 for detecting the outgoing water temperature flowing out from the hot water supply heat exchanger 32, and the incoming water flowing into the bath heating heat exchanger 48. A bath water temperature sensor 53 for detecting the temperature, a bath reflux temperature sensor 54 for detecting the temperature of the hot water returning to the bath from the bath heating heat exchanger 48, an outdoor air temperature sensor 55 for detecting the outdoor air temperature, and a discharge refrigerant temperature of the compressor 31 are detected. An outlet temperature sensor 57 for detecting the outlet refrigerant temperature of the evaporator 34, an operating frequency of the compressor 31, an opening degree of the expansion device 33, a rotation speed of the fan 35, the circulation pump 43 and the bath A control device 58 for controlling the rotation speed of the circulation pump 49 is provided. Carbon dioxide is used as the refrigerant.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

通常の運転時では、ヒートポンプ給湯装置の運転を開始すると、循環ポンプ43、ファン35が運転され、入水温度センサ51により貯湯槽41から給湯用熱交換器32に流入する入水温度が計測され、室外気温センサ55により室外気温が計測され、吐出温度センサ56により圧縮機31の吐出冷媒温度が計測され、入水温度、室外気温、吐出冷媒温度と出湯目標温度により、圧縮機31の運転周波数、絞り装置33の初期開度P1はあらかじめ設定されたテーブルから選択し、決定され、圧縮機31の運転が開始される。   In normal operation, when the operation of the heat pump hot water supply device is started, the circulation pump 43 and the fan 35 are operated, and the incoming water temperature sensor 51 measures the incoming water temperature flowing into the hot water supply heat exchanger 32 from the hot water storage tank 41, and the outdoor The outdoor air temperature is measured by the air temperature sensor 55, the discharge refrigerant temperature of the compressor 31 is measured by the discharge temperature sensor 56, and the operation frequency of the compressor 31 and the throttle device are determined by the incoming water temperature, the outdoor air temperature, the discharge refrigerant temperature, and the hot water target temperature. The initial opening P1 of 33 is selected and determined from a preset table, and the operation of the compressor 31 is started.

圧縮機31より吐出された冷媒は、圧縮機31運転開始時は低温低圧の冷媒であるが、圧縮機31の回転数の増加に伴い、次第に高温高圧の過熱ガス冷媒となる。この時リモコンにより風呂排熱利用運転を選択された場合、浴槽の温水の温度を検出し、吐出温度と比較し吐出温度より浴槽の温水の温度が高い場合、風呂循環ポンプ49と循環ポンプ43を作動させ、風呂加熱熱交換器48で温度の高い浴槽の温水とバイパス回路47を流れる低温の水と熱交換し、バイパス回路47で加熱された温水を給湯熱交換器に流し、温度の低い冷媒と熱交換することで、早く吐出温度を上昇させることができる。この間に、浴槽の湯温と吐出温度を比較し、吐出温度が高くなった場合は風呂循環ポンプ49を停止し、風呂の熱利用を停止する。   The refrigerant discharged from the compressor 31 is a low-temperature and low-pressure refrigerant at the start of operation of the compressor 31, but gradually becomes a high-temperature and high-pressure superheated gas refrigerant as the number of rotations of the compressor 31 increases. At this time, when the bath exhaust heat utilization operation is selected by the remote controller, the temperature of the hot water in the bathtub is detected, and when the temperature of the hot water in the bathtub is higher than the discharge temperature, the bath circulation pump 49 and the circulation pump 43 are turned on. The heat is exchanged between the hot water in the hot tub and the low-temperature water flowing through the bypass circuit 47 in the bath heating heat exchanger 48, the hot water heated in the bypass circuit 47 is passed through the hot water supply heat exchanger, and the low temperature refrigerant By exchanging heat with, discharge temperature can be raised quickly. During this time, the hot water temperature of the bathtub and the discharge temperature are compared, and when the discharge temperature becomes high, the bath circulation pump 49 is stopped and the heat use of the bath is stopped.

そして、高温高圧となった冷媒は給湯用熱交換器32に流入し、ここで循環ポンプ43から送られてきた水と熱交換し加熱する。そして、冷媒は中温高圧となり、絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化し、圧縮機31にもどる。一方、循環ポンプ43で送られた給湯水は給湯用熱交換器32で加熱され、湯温度が給湯設定温度(例えば80℃)より第一の所定値(例えば10deg)ほど低い温度(70℃)より低い(例えば65℃)場合、温水は三方弁44は給湯用熱交換器32とバイパス回路47を連通させるように制御され、バイパス回路47を経て循環ポンプ43に戻される。   The high-temperature and high-pressure refrigerant flows into the hot water supply heat exchanger 32 where it exchanges heat with the water sent from the circulation pump 43 and heats it. Then, the refrigerant becomes a medium temperature and high pressure, and after being decompressed by the expansion device 33, flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, evaporates, and returns to the compressor 31. On the other hand, the hot water supplied by the circulation pump 43 is heated by the hot water heat exchanger 32, and the hot water temperature is lower by a first predetermined value (for example, 10 deg) than the preset hot water temperature (for example, 80 ° C) (70 ° C). When the temperature is lower (for example, 65 ° C.), the hot water is controlled so that the three-way valve 44 communicates with the hot water heat exchanger 32 and the bypass circuit 47, and is returned to the circulation pump 43 via the bypass circuit 47.

さらに、湯温度が給湯設定温度(例えば80℃)より第一の所定値(例えば10deg)ほど低い温度(70℃)より高くなると三方弁44は給湯用熱交換器32と貯湯槽上部の温水戻り口45を連通させるように制御され、湯は貯湯槽41の上部に流入し、上から次第に貯湯されて行き、沸き上げ運転時間の経過とともに貯湯槽41内に湯が貯まって行く。沸き上げ運転完了近くになると、貯湯槽41下部より循環ポンプ43を経て流入する水温は高くなり、入水温度が設定値以上になると、貯湯槽41に湯が貯まったと判断し、圧縮機31、循環ポンプ43、ファン35の運転を停止し、沸上を完了する。   Further, when the hot water temperature becomes higher than a temperature (70 ° C.) lower than a preset hot water supply temperature (for example, 80 ° C.) by a first predetermined value (for example, 10 deg), the three-way valve 44 returns the hot water to the hot water supply heat exchanger 32 and the hot water tank. The hot water flows into the upper part of the hot water storage tank 41 and is gradually stored from above, and hot water accumulates in the hot water storage tank 41 as the boiling operation time elapses. When the boiling operation is almost completed, the temperature of water flowing from the lower part of the hot water storage tank 41 via the circulation pump 43 becomes higher, and when the incoming water temperature exceeds the set value, it is determined that hot water has been stored in the hot water storage tank 41, and the compressor 31 circulates. The operation of the pump 43 and the fan 35 is stopped, and boiling is completed.

次に、風呂温度がリモコンの設定温度より低下したり、リモコンにより風呂加熱運転を選択され、ヒートポンプ給湯装置の運転が開始されると、風呂循環ポンプ49、ファン35が運転され、風呂湯温度センサ53により風呂13から風呂加熱熱交換器48に流入する風呂湯温度が計測され、室外気温センサ55により室外気温が計測され、吐出温度センサ56により圧縮機31の吐出冷媒温度が計測され、風呂湯温度、室外気温、風呂目標温度により、圧縮機31の運転周波数、絞り装置33の初期開度P1はあらかじめ設定されたテーブルから選択し、決定され、圧縮機31と循環ポンプ43の運転が開始される。   Next, when the bath temperature falls below the set temperature of the remote control or the bath heating operation is selected by the remote control and the operation of the heat pump hot water supply device is started, the bath circulation pump 49 and the fan 35 are operated, and the bath water temperature sensor 53, the bath water temperature flowing from the bath 13 into the bath heating heat exchanger 48 is measured, the outdoor air temperature sensor 55 measures the outdoor air temperature, the discharge temperature sensor 56 measures the discharge refrigerant temperature of the compressor 31, and the bath water. The operating frequency of the compressor 31 and the initial opening P1 of the expansion device 33 are selected and determined from a preset table according to the temperature, the outdoor air temperature, and the bath target temperature, and the operation of the compressor 31 and the circulation pump 43 is started. The

圧縮機31より吐出された高温高圧の冷媒は給湯用熱交換器32に流入し、ここで循環ポンプ43から送られてきた水と熱交換し加熱する。そして、冷媒は中温高圧となり、絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と
熱交換して蒸発ガス化し、圧縮機31にもどる。
The high-temperature and high-pressure refrigerant discharged from the compressor 31 flows into the hot water supply heat exchanger 32 where it heats and exchanges heat with the water sent from the circulation pump 43. Then, the refrigerant becomes a medium temperature and high pressure, and after being decompressed by the expansion device 33, flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, evaporates, and returns to the compressor 31.

一方、循環ポンプ43で送られた給湯水は給湯用熱交換器32で加熱され、三方弁44は給湯用熱交換器32とバイパス回路47を連通させるように制御され、バイパス回路47に流入し風呂加熱熱交換器48を経て循環ポンプ43に戻される。この時循環ポンプ43は風呂目標温度より一定値(例えば10deg)高い温度となるように、流量を制御する。また風呂加熱熱交換器48では、冷媒回路により加熱された温水と風呂湯を熱交換して、風呂湯を加熱する。風呂湯温度が風呂目標温度以上になると、風呂の加熱が完了したと判断し、圧縮機31、循環ポンプ43、風呂循環ポンプ49、ファン35の運転を停止し、風呂加熱運転を完了する。   On the other hand, the hot water supplied by the circulation pump 43 is heated by the hot water heat exchanger 32, and the three-way valve 44 is controlled so as to connect the hot water heat exchanger 32 and the bypass circuit 47, and flows into the bypass circuit 47. It returns to the circulation pump 43 through the bath heating heat exchanger 48. At this time, the circulation pump 43 controls the flow rate so that the temperature becomes a certain value (for example, 10 degrees) higher than the bath target temperature. In the bath heating heat exchanger 48, the hot water heated by the refrigerant circuit and the hot water are exchanged to heat the hot water. When the bath water temperature becomes equal to or higher than the bath target temperature, it is determined that the bath heating is completed, the operation of the compressor 31, the circulation pump 43, the bath circulation pump 49, and the fan 35 is stopped, and the bath heating operation is completed.

その結果、従来の機器に新たな構成部品を追加することなく、また、貯湯槽41の湯を利用して風呂を加熱せず、ヒートポンプにより、浴槽50内の湯水を加熱することにより、貯湯槽41内の温水の温度を低下させることがない。   As a result, the hot water storage tank can be obtained by heating the hot water in the bathtub 50 with a heat pump without adding new components to the conventional device, without using the hot water of the hot water storage tank 41 to heat the bath. The temperature of the hot water in 41 is not lowered.

次に、室外気温が低く蒸発器34に霜が生成し、その霜を溶かす除霜運転を行う場合、循環ポンプ43、ファン35を停止し、給湯運転を停止し、絞り装置33を開き、給湯用熱交換器32での吐出冷媒の放熱をできるだけ防ぎ、高温高圧の冷媒を蒸発器34に流し、蒸発器34の温度を上昇させ除霜する。   Next, when the outdoor temperature is low and frost is generated in the evaporator 34 and the defrosting operation is performed to melt the frost, the circulation pump 43 and the fan 35 are stopped, the hot water supply operation is stopped, the expansion device 33 is opened, The heat of the discharged refrigerant in the heat exchanger 32 is prevented as much as possible, and a high-temperature and high-pressure refrigerant is passed through the evaporator 34 to increase the temperature of the evaporator 34 and defrost.

この時、三方弁44は給湯用熱交換器32とバイパス回路47を連通させるように制御し、運転される。除霜運転中は蒸発器34に高温の冷媒を流入させて除霜を行うため、冷媒は吸熱して蒸発することができず、液冷媒の状態で圧縮機31に吸入され、圧縮機31から吸熱して蒸発するため、圧縮機31の吐出温度は次第に低下する。その結果、給湯用熱交換器32には圧縮機31の吐出冷媒が流れるため、給湯熱交換器32の温度は吐出冷媒温度と同じ温度となる。   At this time, the three-way valve 44 is controlled and operated so that the hot water heat exchanger 32 and the bypass circuit 47 communicate with each other. During the defrosting operation, a high-temperature refrigerant is introduced into the evaporator 34 to perform defrosting. Therefore, the refrigerant cannot absorb heat and evaporate, and is sucked into the compressor 31 in a liquid refrigerant state. Since it absorbs heat and evaporates, the discharge temperature of the compressor 31 gradually decreases. As a result, since the refrigerant discharged from the compressor 31 flows through the hot water supply heat exchanger 32, the temperature of the hot water supply heat exchanger 32 is the same as the temperature of the discharged refrigerant.

この時リモコンにより風呂排熱利用運転を選択された場合、浴槽の温水の温度を検出し、吐出温度と比較し吐出温度より浴槽の温水の温度が高い場合、風呂循環ポンプ49と循環ポンプ43を作動させ、風呂加熱熱交換器48で温度の高い浴槽の温水とバイパス回路47を流れる低温の水と熱交換し、バイパス回路47で加熱された温水を給湯熱交換器に流し、温度が低下した冷媒と熱交換することで、浴槽の温水の熱を利用して蒸発器34の霜を早く溶かすことができる。   At this time, when the bath exhaust heat utilization operation is selected by the remote controller, the temperature of the hot water in the bathtub is detected, and when the temperature of the hot water in the bathtub is higher than the discharge temperature, the bath circulation pump 49 and the circulation pump 43 are turned on. The heat is exchanged between the hot water in the hot tub and the low-temperature water flowing through the bypass circuit 47 in the bath heating heat exchanger 48, and the hot water heated in the bypass circuit 47 is passed through the hot water heat exchanger, and the temperature is lowered. By exchanging heat with the refrigerant, the frost of the evaporator 34 can be quickly melted using the heat of the hot water in the bathtub.

蒸発器34の霜が溶け、蒸発器34出口配管の冷媒温度が上昇し、蒸発器出口温度センサ57の出力値が設定値(例えば5℃)以上となると、除霜運転は終了する。除霜運転の間に、浴槽の湯温と吐出温度を比較し、吐出温度が高くなった場合は風呂循環ポンプ49や循環ポンプ43を停止し、風呂の熱利用を停止する。   When the frost of the evaporator 34 is melted, the refrigerant temperature of the outlet pipe of the evaporator 34 rises, and the output value of the evaporator outlet temperature sensor 57 becomes a set value (for example, 5 ° C.) or more, the defrosting operation is finished. During the defrosting operation, the hot water temperature of the bathtub and the discharge temperature are compared. When the discharge temperature becomes high, the bath circulation pump 49 and the circulation pump 43 are stopped, and the heat use of the bath is stopped.

除霜運転が終了すると、循環ポンプ43、ファン35が運転され、入水温度、室外気温、吐出冷媒温度と出湯目標温度により、圧縮機31の運転周波数および、絞り装置33の初期開度P1はあらかじめ設定されたテーブルから選択され、決定され、給湯運転が再開される。この時、三方弁44は給湯用熱交換器32とバイパス回路47を連通させるように制御される。この時の湯温は、給湯設定温度(例えば80℃)より低いが、圧縮機31や給湯用熱交換器32の温度はすぐに上昇し、湯温も上昇し、給湯設定温度(例えば80℃)より高くなると、三方弁44は切り替えられ、貯湯槽上部の温水戻り口45に連通させる。   When the defrosting operation is completed, the circulation pump 43 and the fan 35 are operated, and the operation frequency of the compressor 31 and the initial opening P1 of the expansion device 33 are determined in advance according to the incoming water temperature, the outdoor air temperature, the discharged refrigerant temperature, and the hot water target temperature. The hot water supply operation is resumed by selecting and determining from the set table. At this time, the three-way valve 44 is controlled so that the hot water supply heat exchanger 32 and the bypass circuit 47 communicate with each other. Although the hot water temperature at this time is lower than the hot water supply set temperature (for example, 80 ° C.), the temperatures of the compressor 31 and the hot water heat exchanger 32 rise immediately, the hot water temperature also rises, and the hot water supply set temperature (for example, 80 ° C.). ), The three-way valve 44 is switched to communicate with the hot water return port 45 in the upper part of the hot water tank.

その結果、浴槽の湯の排熱を利用して除霜を行い、除霜時間を短縮することで平均エネルギー効率を向上させることができ、効率の高い給湯運転を行うことができる。   As a result, defrosting is performed using the exhaust heat of the hot water in the bathtub, and the average energy efficiency can be improved by shortening the defrosting time, and a highly efficient hot water supply operation can be performed.

また、貯湯槽41下部の水温上昇を防止することができるため、ヒートポンプ6でよりエネルギー効率の高い給湯運転を行うことができる。   Moreover, since the water temperature rise of the hot water storage tank 41 lower part can be prevented, the hot water supply operation with higher energy efficiency can be performed with the heat pump 6.

なお、本実施の形態においては、放熱器を風呂加熱熱交換器48として説明したが、床暖房機等に用いる加熱熱交換器でも良い。   In the present embodiment, the radiator is described as the bath heating heat exchanger 48, but a heating heat exchanger used for a floor heater or the like may be used.

以上のように、本発明にかかるヒートポンプ給湯装置は、エネルギー効率の高い給湯運転が可能となるため、高温の湯を利用した空調機等の用途にも適用できる。   As described above, the heat pump hot water supply apparatus according to the present invention can perform hot water supply operation with high energy efficiency, and thus can be applied to uses such as an air conditioner using high-temperature hot water.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

31 圧縮機
32 給湯用熱交換器
33 絞り装置(減圧装置)
34 蒸発器
35 ファン
41 貯湯槽
42 貯湯槽下部の取水口
43 循環ポンプ
44 三方弁
45 貯湯槽上部の温水戻り口
46 給湯回路
47 バイパス回路
48 風呂加熱熱交換器
49 風呂循環ポンプ
50 浴槽
51 入水温度センサ
52 出湯温度センサ
53 風呂温度センサ
54 風呂戻り温度センサ
55 室外気温センサ
56 吐出温度センサ
57 蒸発器出口温度センサ
58 制御装置
31 Compressor 32 Heat exchanger for hot water supply 33 Throttle device (pressure reduction device)
34 Evaporator 35 Fan 41 Hot water storage tank 42 Water intake port at the bottom of the hot water storage tank 43 Circulation pump 44 Three-way valve 45 Hot water return port at the top of the hot water storage tank 46 Hot water supply circuit 47 Bypass circuit 48 Bath heating heat exchanger 49 Bath circulation pump 50 Bathtub 51 Incoming water temperature Sensor 52 Hot water temperature sensor 53 Bath temperature sensor 54 Bath return temperature sensor 55 Outdoor air temperature sensor 56 Discharge temperature sensor 57 Evaporator outlet temperature sensor 58 Control device

Claims (2)

圧縮機、給湯用熱交換器、減圧装置、蒸発器を順次接続した冷媒回路と、第一循環ポンプ、前記給湯用熱交換器を順に介して貯湯槽内の水を加熱する給湯回路と、前記給湯回路の前記給湯用熱交換器下流側に設けた三方弁と、前記三方弁と前記給湯回路の前記第一循環ポンプの上流側とを接続したバイパス回路と、前記バイパス回路に設けた放熱手段と、前記放熱手段に第二循環ポンプを介して接続形成した加熱回路と、前記圧縮機の吐出冷媒温度を検出する吐出温度センサと、前記加熱回路に設けられ前記放熱手段に流入する熱媒体の温度を検知する温度センサと、制御装置とを備え、前記制御装置は、前記圧縮機の起動時および/または前記蒸発器に生成される霜を溶かす除霜運転時に、前記吐出温度センサの検出温度と前記温度センサの検出温度とを比較し、前記吐出温度センサの検出温度より、前記温度センサの検出温度の方が高い場合、前記三方弁にて前記給湯用熱交換器の下流側と前記バイパス回路とを連通させるとともに、前記第一循環ポンプと前記第二循環ポンプとを動作させることを特徴とするヒートポンプ給湯装置。 A refrigerant circuit in which a compressor, a hot water supply heat exchanger, a decompression device, and an evaporator are sequentially connected, a first circulation pump, and a hot water supply circuit that heats water in the hot water tank through the hot water supply heat exchanger in order, A three-way valve provided downstream of the hot water supply heat exchanger in the hot water supply circuit, a bypass circuit connecting the three-way valve and the upstream side of the first circulation pump of the hot water supply circuit, and heat dissipation means provided in the bypass circuit A heating circuit connected to the heat dissipating means via a second circulation pump, a discharge temperature sensor for detecting a discharge refrigerant temperature of the compressor, and a heat medium provided in the heating circuit and flowing into the heat dissipating means A temperature sensor for detecting temperature; and a control device , wherein the control device detects a temperature detected by the discharge temperature sensor at the time of starting the compressor and / or during a defrosting operation for melting frost generated in the evaporator. And the temperature sensor When the detected temperature of the temperature sensor is higher than the detected temperature of the discharge temperature sensor, the downstream side of the hot water supply heat exchanger and the bypass circuit are communicated by the three-way valve. In addition, a heat pump hot water supply apparatus that operates the first circulation pump and the second circulation pump. 冷媒として炭酸ガスを用いたことを特徴とする請求項1に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein carbon dioxide gas is used as the refrigerant.
JP2007271168A 2007-10-18 2007-10-18 Heat pump water heater Expired - Fee Related JP5176474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271168A JP5176474B2 (en) 2007-10-18 2007-10-18 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271168A JP5176474B2 (en) 2007-10-18 2007-10-18 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2009097826A JP2009097826A (en) 2009-05-07
JP5176474B2 true JP5176474B2 (en) 2013-04-03

Family

ID=40700992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271168A Expired - Fee Related JP5176474B2 (en) 2007-10-18 2007-10-18 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5176474B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405205B2 (en) * 2009-06-23 2014-02-05 株式会社コロナ Geothermal heat pump water heater
JP5569490B2 (en) * 2011-09-08 2014-08-13 三菱電機株式会社 Hot water storage water heater
JP5474906B2 (en) * 2011-09-30 2014-04-16 サンデン株式会社 Heat pump type water heater
KR101843380B1 (en) * 2013-09-27 2018-03-30 쿄세라 코포레이션 Cooling and heating device
CN114183920B (en) * 2021-10-29 2023-08-18 郑州海尔新能源科技有限公司 Temperature control method, device and equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3588948B2 (en) * 1996-12-19 2004-11-17 松下電器産業株式会社 Heat pump type bath hot water supply system
JP2002174457A (en) * 2000-12-06 2002-06-21 Sanyo Electric Co Ltd Heat pump type hot-water supply apparatus
JP3991216B2 (en) * 2002-10-03 2007-10-17 三菱電機株式会社 Hot water storage water heater
JP4258219B2 (en) * 2003-02-04 2009-04-30 株式会社デンソー Refrigeration cycle equipment
JP2004340399A (en) * 2003-05-13 2004-12-02 Corona Corp Snow melting and heating system using hot-water storage type water heater as heat source
JP4236194B2 (en) * 2004-10-04 2009-03-11 東芝機器株式会社 Water heater

Also Published As

Publication number Publication date
JP2009097826A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5097624B2 (en) Hot water supply system
JP6007123B2 (en) Heat pump system
JP4867749B2 (en) Heat pump water heater
JP2014196849A (en) Heat pump water heater
JP2009299941A (en) Hot water supply system
JP5176474B2 (en) Heat pump water heater
JP5793450B2 (en) Heat pump heat source system
JP3632645B2 (en) Heat pump water heater
JP2013190186A (en) Heat pump type water heater
JP5194492B2 (en) Heat pump water heater
JP6438765B2 (en) Thermal equipment
JP6326344B2 (en) Hot water heater
JP2004232978A (en) Heat pump type hot water supply and heating apparatus
JP2005140439A (en) Heat pump water heater
JP4867517B2 (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP2006194537A (en) Heat pump device
JP2009097799A (en) Heat pump water heater
JP2009281629A (en) Heat pump water heater
JP3644373B2 (en) Heat pump floor heating system
JP5741256B2 (en) Hot water storage water heater
JP6969223B2 (en) Heat pump heat source machine
JP2010054145A (en) Heat pump water heater
JP2010054108A (en) Heat pump water heater
JP2002295899A (en) Hot-water storage type water-heating heat source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees