JP2010054145A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2010054145A
JP2010054145A JP2008220687A JP2008220687A JP2010054145A JP 2010054145 A JP2010054145 A JP 2010054145A JP 2008220687 A JP2008220687 A JP 2008220687A JP 2008220687 A JP2008220687 A JP 2008220687A JP 2010054145 A JP2010054145 A JP 2010054145A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat exchanger
heat pump
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008220687A
Other languages
Japanese (ja)
Inventor
Koichi Sakamoto
浩一 坂本
Masami Murayama
昌巳 村山
Original Assignee
Hitachi Appliances Inc
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc, 日立アプライアンス株式会社 filed Critical Hitachi Appliances Inc
Priority to JP2008220687A priority Critical patent/JP2010054145A/en
Publication of JP2010054145A publication Critical patent/JP2010054145A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater suppressing degradation of heating efficiency by frost formation. <P>SOLUTION: This heat pump water heater includes: a heat pump refrigerant circuit constituted by connecting a compressor, a water-refrigerant heat exchanger for exchanging heat between water and a refrigerant, an expansion valve and an air-refrigerant heat exchanger for exchanging heat between the air and the refrigerant, through refrigerant pipes; a hot water storage circuit constituted by connecting the water-refrigerant heat exchanger, a hot water supply mixing valve; a hot water storage tank storing the hot water heated by the water-refrigerant heat exchanger; and an inner circulation pump through water pipes, a tank hot water supply circuit constituted by connecting a water supply fitting, the hot water storage tank, the hot water supply mixing valve, a combination valve, a flow rate adjustment valve and a hot water supply fitting through water pipes; and an operation control means for controlling the compressor, the expansion valve, the hot water supply mixing valve, the inner circulation pump, the combination valve and the flow rate adjustment valve. A frost formation level is determined on the basis of the detected frost forming condition of the air-refrigerant heat exchanger, and an opening of the expansion valve is controlled corresponding to the determined frost formation level. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機に係り、特に空気冷媒熱交換器(蒸発器)の除霜手段に関する。   The present invention relates to a heat pump water heater, and more particularly to a defrosting unit of an air refrigerant heat exchanger (evaporator).
従来のヒートポンプ給湯機として、電気温水器と同様に大容量の貯湯タンクを設け、夜間割引料金の安価な電力を使ってヒートポンプ運転を行い、夜中のうちに湯を沸かして貯湯タンクに貯湯し、貯湯した湯を昼間に使う貯湯式ヒートポンプ給湯機がある(例えば特許文献1参照)。特許文献1は、大容量貯湯タンクを有する貯湯式ヒートポンプ給湯機であり、1日1回夜間にヒートポンプ運転を行って貯湯タンクに貯湯する。冬期低温時には、室外熱交換器(蒸発器)に着霜して加熱能力が低下するため、室外熱交換器が−5℃以下に達した場合、ヒートポンプは運転した状態で送風用ファンのみ停止し、膨張弁を全開して除霜する。   As a conventional heat pump water heater, a large-capacity hot water storage tank is installed like an electric water heater, and heat pump operation is performed using cheap electricity at a discounted night rate, and the water is boiled and stored in the hot water storage tank at night. There is a hot water storage heat pump water heater that uses hot water stored in the daytime (see, for example, Patent Document 1). Patent Document 1 is a hot water storage type heat pump water heater having a large capacity hot water storage tank, and performs heat pump operation once a day at night to store hot water in the hot water storage tank. At low temperatures in winter, the outdoor heat exchanger (evaporator) is frosted and the heating capacity is reduced. Therefore, when the outdoor heat exchanger reaches -5 ° C or lower, only the blower fan is stopped while the heat pump is operating. Then, the expansion valve is fully opened to defrost.
これに対し、近年、主に給湯使用する昼間にもヒートポンプ運転を行って加熱した温水を直接給湯することにより、貯湯タンクの大幅な小形化を図った瞬間式ヒートポンプ給湯機が開発されている(例えば特許文献2参照)。特許文献2では、予め貯湯運転を行って60〜100Lの小形貯湯タンクに高温水(約60℃)を貯湯しておく。湯水使用時において、ヒートポンプの加熱温度が適温(約40℃)に到達しない運転当初は、ヒートポンプの加熱水に貯湯タンクからの高温水を混ぜて適温として給湯する。その後、ヒートポンプ運転による加熱温度が適温に達すると、貯湯タンクからの給湯を止め、ヒートポンプ運転で加熱した適温水(約40℃)を直接給湯する。冬期低温時には、圧縮機から吐出された高温高圧の冷媒を凝縮器(水冷媒熱交換器)及び減圧装置(膨張弁)を介さず、直接、蒸発器(空気冷媒熱交換器)へ循環させるためのバイパス弁を開放することにより除霜する。   On the other hand, in recent years, instantaneous heat pump water heaters have been developed that aim to drastically reduce the size of the hot water storage tank by directly supplying hot water heated by operating the heat pump even during the daytime when hot water is used. For example, see Patent Document 2). In Patent Document 2, hot water storage operation is performed in advance, and hot water (about 60 ° C.) is stored in a 60 to 100 L small hot water storage tank. When hot water is used, when the heating temperature of the heat pump does not reach an appropriate temperature (about 40 ° C.), hot water from the hot water storage tank is mixed with the heated water of the heat pump to supply hot water at an appropriate temperature. Thereafter, when the heating temperature by the heat pump operation reaches an appropriate temperature, the hot water supply from the hot water storage tank is stopped, and the appropriate temperature water (about 40 ° C.) heated by the heat pump operation is directly supplied. To circulate the high-temperature and high-pressure refrigerant discharged from the compressor directly to the evaporator (air refrigerant heat exchanger) without going through the condenser (water refrigerant heat exchanger) and pressure reducing device (expansion valve) at low temperatures in winter. The defrosting is performed by opening the bypass valve.
従来のヒートポンプ給湯機は、空気冷媒熱交換器(蒸発器)の除霜に関して、貯湯式ヒートポンプ給湯機及び瞬間式ヒートポンプ給湯機の何れの方式においても、周囲温度または空気冷媒熱交換器の温度のみによって着霜量を想定していた。また、多量に着霜してヒートポンプの加熱性能が大幅に低下してから、ヒートポンプ運転によって除霜を行うものであった。しかし、周囲温度や空気冷媒熱交換器の温度が低くてもヒートポンプ運転開始後短時間の間は着霜量が少なく、着霜量の検知方法として最良ではなかった。従って、運転時間が短く着霜量が少ないのに除霜運転を行う場合や、逆に長時間運転して着霜量が多くなり加熱能力が低下してから除霜運転に入る場合があり、加熱運転における効率向上の改善余地があった。また、除霜時は給湯しないのにヒートポンプ運転を行うため、余分に圧縮機の運転電力を消費し、省エネ上のマイナス要因となっていた。   In the conventional heat pump water heater, regarding the defrosting of the air refrigerant heat exchanger (evaporator), only the ambient temperature or the temperature of the air refrigerant heat exchanger is used in both the hot water storage heat pump water heater and the instantaneous heat pump water heater. The amount of frost formation was assumed. Moreover, after a large amount of frost is formed and the heating performance of the heat pump is greatly reduced, defrosting is performed by heat pump operation. However, even if the ambient temperature or the temperature of the air refrigerant heat exchanger is low, the amount of frost formation is small for a short time after the start of the heat pump operation, which is not the best method for detecting the amount of frost formation. Therefore, when the defrosting operation is performed even though the operation time is short and the frost amount is small, the defrosting operation may be started after the long time operation and the frost amount increases and the heating capacity decreases. There was room for improvement in efficiency in heating operation. Further, since the heat pump operation is performed without hot water supply at the time of defrosting, extra operating power of the compressor is consumed, which is a negative factor for energy saving.
特開2003−90653号公報JP 2003-90653 A 特開2003−279133号公報JP 2003-279133 A
本発明は、着霜による加熱効率の低下を抑制するヒートポンプ給湯機を提供することを課題とする。   This invention makes it a subject to provide the heat pump water heater which suppresses the fall of the heating efficiency by frost formation.
上記課題を解決するために、本発明に係るヒートポンプ給湯機は、圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器,膨張弁,空気と冷媒との熱交換を行う空気冷媒熱交換器を、冷媒配管を介して接続したヒートポンプ冷媒回路と、水冷媒熱交換器,給湯混合弁、水冷媒熱交換器で加熱した温水を貯湯する貯湯タンク,機内循環ポンプを、水配管を介して接続した貯湯回路と、給水金具,貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁,出湯金具を、水配管を介して接続したタンク給湯回路と、圧縮機,膨張弁,給湯混合弁,機内循環ポンプ,湯水混合弁,流量調整弁を制御する運転制御手段とを備え、検知された空気冷媒熱交換器の着霜条件に基づいて着霜レベルを判定し、判定された着霜レベルに対応して膨張弁の開度を制御する。   In order to solve the above problems, a heat pump water heater according to the present invention includes a compressor, a water refrigerant heat exchanger that exchanges heat between water and a refrigerant, an expansion valve, and an air refrigerant heat that exchanges heat between air and refrigerant. A heat pump refrigerant circuit connected via a refrigerant pipe, a water refrigerant heat exchanger, a hot water mixing valve, a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger, and an in-machine circulation pump via the water pipe Hot water storage circuit, water supply fitting, hot water storage tank, hot water supply mixing valve, hot water mixing valve, flow rate adjustment valve, hot water supply fitting connected via a water pipe, compressor, expansion valve, hot water supply mixing valve , An in-machine circulation pump, a hot and cold water mixing valve, and an operation control means for controlling the flow rate adjusting valve, and determining the frost level based on the detected frost condition of the air refrigerant heat exchanger, and the determined frost level To control the opening of the expansion valve
本発明によれば、除霜による加熱効率の低下を抑制するヒートポンプ給湯機を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump water heater which suppresses the fall of the heating efficiency by defrost can be provided.
以下、図面を用いて、本発明に係る実施例について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.
本発明の実施例を図1〜図4を用いて説明する。図1は本実施例に係るヒートポンプ給湯機の構成図である。一例として、本発明を瞬間式ヒートポンプ給湯機に適用している。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of a heat pump water heater according to the present embodiment. As an example, the present invention is applied to an instantaneous heat pump water heater.
ヒートポンプ給湯機はヒートポンプ冷媒回路30,給湯回路40、及び運転制御手段50を備える。ヒートポンプ冷媒回路30は、第一冷媒回路30a及び第二冷媒回路30bの2サイクル方式で構成される。第一冷媒回路30a及び第二冷媒回路30bにおいては、それぞれ、圧縮機1a,1b,水冷媒熱交換器2に配置される冷媒側伝熱管2a,2b,膨張弁3a,3b,空気冷媒熱交換器4a,4bが冷媒配管を介して順次接続されており、冷媒配管内には冷媒が封入されている。   The heat pump water heater includes a heat pump refrigerant circuit 30, a hot water supply circuit 40, and an operation control means 50. The heat pump refrigerant circuit 30 is configured by a two-cycle system of a first refrigerant circuit 30a and a second refrigerant circuit 30b. In the first refrigerant circuit 30a and the second refrigerant circuit 30b, refrigerant side heat transfer tubes 2a and 2b, expansion valves 3a and 3b, air refrigerant heat exchange disposed in the compressors 1a and 1b and the water refrigerant heat exchanger 2, respectively. The containers 4a and 4b are sequentially connected via the refrigerant pipe, and the refrigerant is sealed in the refrigerant pipe.
圧縮機1a,1bは容量制御が可能で、多量に給湯する場合には大きな容量で運転される。圧縮機1a,1bはPWM制御,電圧制御(例えばPAM制御)及びこれらの組み合せ制御により、低速(例えば700回転/分)から高速(例えば7000回転/分)まで回転数を制御することができる。   The compressors 1a and 1b are capable of capacity control, and are operated with a large capacity when supplying a large amount of hot water. The compressors 1a and 1b can control the rotation speed from a low speed (for example, 700 rotations / minute) to a high speed (for example, 7000 rotations / minute) by PWM control, voltage control (for example, PAM control) and combination control thereof.
水冷媒熱交換器2は冷媒側伝熱管2a,2b及び給水側伝熱管2c,2dを備えており、冷媒側伝熱管2a,2bと給水側伝熱管2c,2dとの間で熱交換を行う。   The water refrigerant heat exchanger 2 includes refrigerant side heat transfer tubes 2a and 2b and water supply side heat transfer tubes 2c and 2d, and performs heat exchange between the refrigerant side heat transfer tubes 2a and 2b and the water supply side heat transfer tubes 2c and 2d. .
膨張弁3a,3bは開度調整時の応答性が速い電動膨張弁を使用する。膨張弁3a,3bは、水冷媒熱交換器2を経て送られる中温高圧冷媒を減圧し、蒸発し易い低圧冷媒として空気冷媒熱交換器4a,4bへ送る。また、膨張弁3a,3bは、冷媒通路の開度を変えてヒートポンプ冷媒回路内の冷媒循環量を調節するとともに、開度を大きくして中温冷媒を空気冷媒熱交換器4a,4bに多量に送って霜を溶かすための除霜装置としても機能する。   The expansion valves 3a and 3b use electric expansion valves that have a quick response when adjusting the opening. The expansion valves 3a and 3b depressurize the medium temperature and high pressure refrigerant sent via the water refrigerant heat exchanger 2 and send it to the air refrigerant heat exchangers 4a and 4b as a low pressure refrigerant that easily evaporates. The expansion valves 3a and 3b adjust the refrigerant circulation amount in the heat pump refrigerant circuit by changing the opening degree of the refrigerant passage, and increase the opening degree so that the medium temperature refrigerant is supplied to the air refrigerant heat exchangers 4a and 4b in a large amount. It also functions as a defroster for sending and melting frost.
空気冷媒熱交換器4a,4bは送風ファン5a,5bの回転により外気を取り入れ空気と冷媒との熱交換を行い、外気から熱を吸収する。   The air refrigerant heat exchangers 4a and 4b take in outside air by the rotation of the blower fans 5a and 5b, exchange heat between the air and the refrigerant, and absorb heat from the outside air.
給湯回路40は貯湯,直接給湯,タンク給湯,風呂湯張り,風呂追焚きを行うための水循環回路を備える。貯湯回路はタンク沸上げ運転によって貯湯タンク16に高温水を貯めるための水回路である。貯湯回路は、貯湯タンク16,機内循環ポンプ17,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,貯湯タンク16が、水配管を介して順次接続され構成される。   The hot water supply circuit 40 includes a water circulation circuit for performing hot water storage, direct hot water supply, tank hot water supply, bath hot water filling, and bath reheating. The hot water storage circuit is a water circuit for storing high-temperature water in the hot water storage tank 16 by the tank boiling operation. The hot water storage circuit is configured by sequentially connecting a hot water storage tank 16, an in-machine circulation pump 17, a hydrothermal AC sensor 10, water supply side heat transfer pipes 2c and 2d, a hot water supply mixing valve 11, and a hot water storage tank 16 via a water pipe.
直接給湯回路は、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14が、水配管を介して順次接続され構成される。尚、給水金具6は水道などの給水源に接続される。また、台所出湯金具14は台所蛇口15などに接続されている。   The direct hot water supply circuit includes a water supply fitting 6, a pressure reducing valve 7, a water supply water amount sensor 8, a water supply side check valve 9, a water heat AC amount sensor 10, water supply side heat transfer tubes 2c and 2d, a hot water supply mixing valve 11, a hot water mixing valve 12, A flow rate adjusting valve 13 and a kitchen tapping metal fitting 14 are sequentially connected via a water pipe. The water supply fitting 6 is connected to a water supply source such as a water supply. The kitchen tapping metal fitting 14 is connected to a kitchen faucet 15 or the like.
タンク給湯回路は、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,貯湯タンク16,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14が、水配管を介して順次接続され構成される。   The tank hot water supply circuit includes a water supply fitting 6, a pressure reducing valve 7, a water supply amount sensor 8, a water supply side check valve 9, a hot water storage tank 16, a hot water supply mixing valve 11, a hot water mixing valve 12, a flow rate adjusting valve 13, and a kitchen tapping metal fitting 14. Sequentially connected via water piping.
風呂湯張り回路は、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,湯水混合弁12,流量調整弁13,風呂注湯弁18,フロースイッチ19,風呂循環ポンプ20,水位センサ21,風呂入出湯金具22,風呂循環アダプター23,浴槽24が、水配管を介して順次接続され構成される。また、風呂入出湯金具22からは浴槽24と共に風呂蛇口25やシャワー(図示せず)にも給湯できるよう接続されている。尚、風呂湯張り時には、風呂湯張り回路による直接給湯と共に、貯湯タンク16内の湯量が最低必要量以下にならない範囲において貯湯タンク16から浴槽24へのタンク給湯も行う。   The bath hot water filling circuit includes a water supply fitting 6, a pressure reducing valve 7, a water supply water amount sensor 8, a water supply side check valve 9, a water heat AC amount sensor 10, water supply side heat transfer tubes 2c and 2d, a hot water supply mixing valve 11, and a hot water mixing valve 12. , Flow adjustment valve 13, bath pouring valve 18, flow switch 19, bath circulation pump 20, water level sensor 21, bath inlet / outlet metal fitting 22, bath circulation adapter 23, and bathtub 24 are sequentially connected via a water pipe. The Moreover, it connects so that it can supply hot water to the bath faucet 25 and the shower (not shown) from the bath entry / exit metal fitting 22 with the bathtub 24. During bath hot water filling, hot water supply from the hot water storage tank 16 to the bathtub 24 is performed in a range where the hot water amount in the hot water storage tank 16 does not fall below the minimum required amount as well as direct hot water supply by the bath hot water filling circuit.
風呂追焚回路は、浴槽24,風呂循環アダプター23,風呂入出湯金具22,水位センサ21,風呂循環ポンプ20,フロースイッチ19,風呂用熱交換器27の風呂水伝熱管23b,風呂出湯金具26,風呂循環アダプター23,浴槽24が、水配管を介して順次接続され構成される。尚、風呂追焚き時には、風呂追焚回路による浴槽水の水循環と共に、ヒートポンプ運転及び機内循環ポンプ17を運転し、かつ温水開閉弁28を開放して水冷媒熱交換器2で加熱された温水を風呂用熱交換器27に設けられた温水伝熱管27aに循環させ、温水伝熱管27aと風呂水伝熱管27bとの間で熱交換し、風呂追焚きを行う。   The bath memory circuit includes a bath 24, a bath circulation adapter 23, a bath inlet / outlet fitting 22, a water level sensor 21, a bath circulation pump 20, a flow switch 19, a bath water heat transfer pipe 23b of a bath heat exchanger 27, and a bath outlet fitting 26. The bath circulation adapter 23 and the bathtub 24 are sequentially connected via a water pipe. At the time of bathing, the hot water heated by the water / refrigerant heat exchanger 2 is operated by operating the heat pump operation and the in-machine circulation pump 17 together with the water circulation of the bathtub water by the bath chasing circuit and opening the hot water on-off valve 28. It is made to circulate through the hot water heat exchanger tube 27a provided in the heat exchanger 27 for baths, heat is exchanged between the hot water heat exchanger tube 27a and the bath water heat exchanger tube 27b, and the bath is reheated.
次に、運転制御手段50は、台所リモコン51または風呂リモコン52の操作設定により、ヒートポンプ冷媒回路30の運転・停止、及び圧縮機1a,1bの回転数制御を行うとともに、膨張弁3a,3bの冷媒開度調整,機内循環ポンプ17,風呂循環ポンプ20の運転・停止及び給湯混合弁11,湯水混合弁12,流量調整弁13,風呂注湯弁18,温水開閉弁28を制御することにより、貯湯運転,直接給湯運転,タンク給湯運転,風呂湯張り運転,風呂追焚運転を行う。ここで、運転開始時は徐々に圧縮機1a,1bの回転数を増大し、加熱立上げ時間を早めるため所定の高速回転数で運転し、運転安定後は中速運転に戻すとともに、比較的熱負荷の軽い風呂追焚運転等の時は加熱温度に見合った低速回転数で運転するよう制御する。   Next, the operation control means 50 performs the operation / stop of the heat pump refrigerant circuit 30 and the rotation speed control of the compressors 1a, 1b and the expansion valves 3a, 3b according to the operation setting of the kitchen remote controller 51 or the bath remote controller 52. By adjusting the opening of the refrigerant, the operation / stop of the in-machine circulation pump 17, the bath circulation pump 20, and the hot water mixing valve 11, the hot water mixing valve 12, the flow rate adjusting valve 13, the bath pouring valve 18, and the hot water on / off valve 28, Hot water storage operation, direct hot water supply operation, tank hot water operation, bath hot water operation, and bath memorial operation are performed. Here, at the start of operation, the number of revolutions of the compressors 1a and 1b is gradually increased, and the operation is performed at a predetermined high speed to shorten the heating start-up time. When performing bath chasing operation with a light heat load, control is performed to operate at a low speed corresponding to the heating temperature.
また、運転制御手段50は除霜運転制御手段を有し、除霜運転制御手段はヒートポンプ運転における着霜条件を検知し、着霜条件の検知結果により着霜レベルを判定し、判定した着霜レベルに基づいて膨張弁の開度を制御するとともに、ヒートポンプ運転の組み合せを制御する。   Moreover, the operation control means 50 has a defrosting operation control means, and the defrosting operation control means detects the frosting condition in the heat pump operation, determines the frosting level based on the detection result of the frosting condition, and determines the determined frosting. The opening of the expansion valve is controlled based on the level, and the combination of heat pump operations is controlled.
更に、ヒートポンプ給湯機には、貯湯タンク16の貯湯温度や貯湯量を検知するためのタンクサーミスタ15a〜16e,空気冷媒熱交換器の周囲温度を検知する周囲温度サーミスタ(図示せず),空気冷媒熱交換器の温度を検知する空気熱交サーミスタ,各部の温度を検知するサーミスタ(図示せず),圧縮機1a,1bの吐出圧力を検知する圧力センサ(図示せず),浴槽24内の水位を検出する水位センサ21等が設けられる。これらの検出信号は運転制御手段50に入力され、運転制御手段50はこれらの検出信号に基づいて各機器を制御する。   Further, the heat pump water heater includes tank thermistors 15a to 16e for detecting the hot water storage temperature and amount of hot water storage tank 16, an ambient temperature thermistor (not shown) for detecting the ambient temperature of the air refrigerant heat exchanger, and air refrigerant. An air heat exchanger thermistor that detects the temperature of the heat exchanger, a thermistor (not shown) that detects the temperature of each part, a pressure sensor (not shown) that detects the discharge pressure of the compressors 1a and 1b, and the water level in the bathtub 24 A water level sensor 21 or the like is provided. These detection signals are input to the operation control means 50, and the operation control means 50 controls each device based on these detection signals.
尚、給湯混合弁11は、給湯運転開始当初においては、水冷媒熱交換器2側と湯水混合弁12側間及び貯湯タンク16側と湯水混合弁12側間が共に開となって、水冷媒熱交換器2及び貯湯タンク16の両方から給湯する。その後、ヒートポンプによる水冷媒熱交換器2での加熱温度が給湯温度(約42℃)に達すると、貯湯タンク16側と湯水混合弁12側間を閉じて、水冷媒熱交換器2からのみ給湯する。   Incidentally, at the beginning of the hot water supply operation, the hot water mixing valve 11 is opened between the water / refrigerant heat exchanger 2 side and the hot / cold water mixing valve 12 side and between the hot water storage tank 16 side and the hot / cold water mixing valve 12 side. Hot water is supplied from both the heat exchanger 2 and the hot water storage tank 16. Thereafter, when the heating temperature in the water refrigerant heat exchanger 2 by the heat pump reaches the hot water supply temperature (about 42 ° C.), the hot water storage tank 16 side and the hot water mixing valve 12 side are closed, and hot water supply is only from the water refrigerant heat exchanger 2. To do.
また、温水開閉弁28は、水冷媒熱交換器2と風呂用熱交換器27の間に設けられ、風呂追焚き時は開いて風呂追い焚き運転を行い、それ以外の時は水回路を閉じて水冷媒熱交換器2から風呂用熱交換器27への熱の漏洩を防ぐものである。   The hot water on / off valve 28 is provided between the water-refrigerant heat exchanger 2 and the bath heat exchanger 27. The hot water on / off valve 28 is opened when the bath is replenished to perform the bath retreat operation, and at other times the water circuit is closed. Thus, heat leakage from the water refrigerant heat exchanger 2 to the bath heat exchanger 27 is prevented.
また、給水側逆止弁9は、一方向にのみに水を流し、逆流を防止する。   Further, the water supply side check valve 9 allows water to flow only in one direction and prevents backflow.
次に、本実施例に係るヒートポンプ給湯機の運転動作について、図1ヒートポンプ冷媒回路30及び給湯回路40を参照しながら、図2の除霜運転フローチャート、図3の着霜レベル判定基準表、及び図4の除霜運転手段に基づいて説明する。   Next, about the operation | movement operation | movement of the heat pump water heater which concerns on a present Example, referring the heat pump refrigerant circuit 30 and the hot water supply circuit 40 of FIG. 1, the defrost operation flowchart of FIG. 2, the frost level determination criteria table | surface of FIG. This will be described based on the defrosting operation means of FIG.
図2は本実施例に係る除霜運転のフローチャートであり、台所蛇口15を開けて湯水を使用した場合の給湯運転及びその後の除霜運転を示している。台所蛇口15を開けて湯水使用が始まる(ステップ61)と、運転制御手段50は、圧縮機1a,1bを運転させてヒートポンプの冷媒回路30の運転を開始するとともに、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14,台所蛇口15の直接給湯回路により直接給湯運転を開始する(ステップ62)。また、ステップ62と同時に、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,貯湯タンク16,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14,台所蛇口15のタンク給湯回路によりタンク給湯運転を開始する(ステップ63)。   FIG. 2 is a flowchart of the defrosting operation according to the present embodiment, and shows a hot water supply operation and subsequent defrosting operation when the kitchen faucet 15 is opened and hot water is used. When the kitchen faucet 15 is opened and the use of hot water begins (step 61), the operation control means 50 operates the compressors 1a and 1b to start the operation of the refrigerant circuit 30 of the heat pump, and the water supply fitting 6 and the pressure reducing valve 7 , Water supply amount sensor 8, water supply side check valve 9, hydrothermal AC amount sensor 10, water supply side heat transfer pipes 2c, 2d, hot water mixing valve 11, hot water mixing valve 12, flow rate adjustment valve 13, kitchen tap metal fitting 14, kitchen faucet The direct hot water supply operation is started by the 15 direct hot water supply circuits (step 62). Simultaneously with step 62, the water supply fitting 6, the pressure reducing valve 7, the water supply water amount sensor 8, the water supply side check valve 9, the hot water storage tank 16, the hot water supply mixing valve 11, the hot water mixing valve 12, the flow rate adjusting valve 13, and the kitchen tapping metal fitting 14 The tank hot water supply operation is started by the tank hot water supply circuit of the kitchen faucet 15 (step 63).
ここで、ヒートポンプ冷媒回路30は、圧縮機1a,1bで圧縮された高温高圧冷媒を水冷媒熱交換器2の冷媒側伝熱管2a,2bへ送り、給水側伝熱管2c,2d内を流れる水を加熱して給湯混合弁11側へ循環させる。しかし、運転直後の立上がり時は水冷媒熱交換器2へ送り込まれる冷媒が十分に高温高圧となりきらず温度が低く、かつ水冷媒熱交換器2全体が冷えているため、水を加熱する加熱能力が十分でない。従って、貯湯タンク16からの高温水を供給するタンク給湯が必要となる(ステップ63)。つまり、ヒートポンプ運転の加熱能力が適温状態に達するまでには数分かかるので、運転制御手段50は、台所蛇口15から適温水を給湯するために、運転開始から適温状態に達するまでは、圧縮機1a,1bの回転数を通常より高速にすると共に、貯湯タンク16から高温水を供給する(ステップ63)。   Here, the heat pump refrigerant circuit 30 sends the high-temperature and high-pressure refrigerant compressed by the compressors 1a and 1b to the refrigerant-side heat transfer tubes 2a and 2b of the water-refrigerant heat exchanger 2, and the water flowing in the water supply-side heat transfer tubes 2c and 2d. Is heated and circulated to the hot water supply mixing valve 11 side. However, at the time of start-up immediately after operation, the refrigerant sent to the water-refrigerant heat exchanger 2 is not sufficiently high-temperature and high-pressure, the temperature is low, and the entire water-refrigerant heat exchanger 2 is cooled. not enough. Accordingly, a tank hot water supply for supplying high-temperature water from the hot water storage tank 16 is required (step 63). In other words, since it takes several minutes for the heating capacity of the heat pump operation to reach an appropriate temperature state, the operation control means 50 supplies the appropriate temperature water from the kitchen faucet 15, and until the temperature reaches the appropriate temperature state from the start of operation, the compressor The rotational speed of 1a, 1b is made higher than usual, and hot water is supplied from the hot water storage tank 16 (step 63).
その後、ヒートポンプ運転による加熱温度判定(ステップ64)を行い、規定値未満であれば直接給湯とタンク給湯の並行運転を継続し、規定値以上であればタンク給湯を停止(ステップ65)して、直接給湯の単独運転により給湯する(ステップ66)。   Then, the heating temperature determination by the heat pump operation (step 64) is performed, and if it is less than the specified value, the parallel operation of the direct hot water supply and the tank hot water supply is continued, and if the specified value or more, the tank hot water supply is stopped (step 65), Hot water is supplied by direct operation of direct hot water supply (step 66).
尚、運転制御手段50は、給湯混合弁11後の混合湯温が適温よりかなり低い場合はタンク給湯量を増やし、適温にほぼ近くなるに従ってタンク給湯量を減らすように給湯混合弁11を作動させ、流量比率を調整して適温とする。給湯混合弁11通過後の混合湯温が適温より高い場合には、湯水混合弁12からの給水量を調整することによっても使用端末への給湯温度を調整することができる。   The operation control means 50 operates the hot water supply mixing valve 11 to increase the tank hot water supply amount when the mixed hot water temperature after the hot water supply mixing valve 11 is considerably lower than the appropriate temperature, and to decrease the tank hot water supply amount as the temperature approaches the appropriate temperature. Adjust the flow rate ratio to make it suitable temperature. When the mixed hot water temperature after passing through the hot water mixing valve 11 is higher than the appropriate temperature, the hot water supply temperature to the use terminal can also be adjusted by adjusting the amount of water supplied from the hot water mixing valve 12.
従って、貯湯タンク16の役割は、ヒートポンプ運転の加熱能力が、給湯温度に十分な温度に達するまでの立上がり時の補助的なものであり、ヒートポンプ冷媒回路30の能力、特に圧縮機1a,1bの出力が大きいほど、立上げ時間を短くでき、貯湯タンク16を小さくできる。   Therefore, the role of the hot water storage tank 16 is an auxiliary one at the time of start-up until the heating capacity of the heat pump operation reaches a temperature sufficient for the hot water supply temperature, and the capacity of the heat pump refrigerant circuit 30, particularly the compressors 1a and 1b. The larger the output, the shorter the startup time and the smaller the hot water storage tank 16.
また、台所給湯と同時に風呂湯張りを行う等のように複数箇所の同時使用に直接給湯のみで対応するには、圧縮機1a,1bの容量は、従来の貯湯式で一般に用いられている5kW程度に対し20kW程度まで大きくすることが望ましい。しかしながら、新規圧縮機の開発が必要であるばかりでなく、ヒートポンプ冷媒回路30の各部品についても新規検討が必要となり、極めて困難である。そこで本実施例においては、従来圧縮機の2倍程度の圧縮機を2個使用した2サイクルヒートポンプ方式30a,30bとし、従来技術の活用と、実績による信頼性を確保したものである。尚、圧縮機の容量が十分であれば、1サイクルヒートポンプ方式においても本発明を適用することができる。   Moreover, in order to cope with simultaneous use of a plurality of places by using only direct hot water supply such as performing hot water bathing at the same time as kitchen hot water supply, the capacity of the compressors 1a and 1b is 5 kW generally used in the conventional hot water storage system. It is desirable to increase it to about 20 kW with respect to the degree. However, it is extremely difficult not only to develop a new compressor but also to make a new study for each component of the heat pump refrigerant circuit 30. Therefore, in this embodiment, the two-cycle heat pump systems 30a and 30b using two compressors approximately twice as large as those of the conventional compressor are used, and the reliability of the conventional technology and the results are ensured. In addition, if the capacity | capacitance of a compressor is enough, this invention is applicable also to a 1 cycle heat pump system.
次に、蛇口が閉じられ湯水使用が終了すると(ステップ67)、直接給湯運転のみの場合であれば直接給湯運転を停止し、タンク給湯運転と直接給湯運転が併用されている場合は直接給湯運転及びタンク給湯運転の両方を停止する(ステップ68)。   Next, when the faucet is closed and the use of hot water is completed (step 67), the direct hot water supply operation is stopped if only the direct hot water supply operation is performed, and the direct hot water supply operation is performed when the tank hot water supply operation and the direct hot water supply operation are used together. Both the tank hot water supply operation is stopped (step 68).
更に、運転制御手段50は、着霜条件である空気冷媒熱交換器4a,4bの周囲温度,空気冷媒熱交換器4a,4bの温度、及びヒートポンプの運転時間を検知し(ステップ69)、これらの検知結果に基づき着霜レベルを判定する(ステップ70)。その後、判定された3段階の着霜レベルに対応した除霜運転を行う(ステップ71〜ステップ73)。   Furthermore, the operation control means 50 detects the ambient temperature of the air refrigerant heat exchangers 4a and 4b, the temperature of the air refrigerant heat exchangers 4a and 4b, and the operation time of the heat pump, which are frosting conditions (step 69). The frost level is determined based on the detection result (step 70). Thereafter, a defrosting operation corresponding to the determined three frost levels is performed (steps 71 to 73).
ここで図3及び図4により、着霜レベル判定基準及び除霜運転手段の一例について説明する。発明者による試験結果によれば、ヒートポンプ運転による着霜には、着霜に十分な絶対湿度があり、かつ、空気冷媒熱交換器温度が0℃以下となる周囲温度が約−7℃〜+7℃の間で顕著となる。即ち、周囲温度が+7℃以上の場合は、空気冷媒熱交換器4a,4bの温度が約0℃以上となるため水滴となって着霜には至らない。また、周囲温度が−7℃以下の場合は、絶対湿度が低下し空気中の水分が少ないため着霜量も僅かなものとなる。   Here, with reference to FIG. 3 and FIG. 4, an example of frost level determination criteria and a defrosting operation means will be described. According to the inventor's test results, frost formation by heat pump operation has an absolute humidity sufficient for frost formation, and the ambient temperature at which the air refrigerant heat exchanger temperature becomes 0 ° C. or lower is about −7 ° C. to + 7 ° C. It becomes remarkable between ° C. That is, when the ambient temperature is + 7 ° C. or higher, the temperature of the air refrigerant heat exchangers 4a and 4b is about 0 ° C. or higher, so that water droplets are formed and frost formation does not occur. Further, when the ambient temperature is −7 ° C. or lower, the absolute humidity is lowered and the moisture in the air is small, so that the amount of frost formation is also small.
図3は、着霜レベル判定条件と着霜レベル判定基準との関係を示す図である。周囲温度,空気冷媒熱交換器4a,4bの温度、及びヒートポンプ運転時間をそれぞれ3段階に区分し、これらの組み合せによって、着霜レベルを着霜量の少ない順にA,B,Cの3段階に区分する。例えば、周囲温度が+7℃以上または空気冷媒熱交換器温度が0℃以上のいずれかの場合は、ヒートポンプ運転時間が30分以上であっても着霜量の少ないレベルAと判断する。また、周囲温度が−7℃以下または空気冷媒熱交換器温度が0〜−5℃のいずれかの場合は、ヒートポンプ運転時間によってレベルA,B,Cに区分する。最も着霜し易い周囲温度が−7〜+7℃または空気冷媒熱交換器温度が−5℃以下のいずれかの場合は、ヒートポンプ運転時間が10分以下であればレベルB、10分を越えればレベルCと判断する。   FIG. 3 is a diagram illustrating a relationship between the frost level determination condition and the frost level determination criterion. The ambient temperature, the temperature of the air refrigerant heat exchangers 4a and 4b, and the heat pump operating time are each divided into three stages, and by combining these, the frost level is divided into three stages A, B, and C in the order of decreasing frost amount. Break down. For example, when the ambient temperature is + 7 ° C. or higher or the air refrigerant heat exchanger temperature is 0 ° C. or higher, it is determined that the level A has a small frost formation amount even if the heat pump operation time is 30 minutes or longer. Further, when the ambient temperature is −7 ° C. or lower or the air refrigerant heat exchanger temperature is 0 to −5 ° C., the temperature is classified into levels A, B, and C according to the heat pump operation time. If the ambient temperature at which frost formation is most likely is −7 to + 7 ° C. or the air refrigerant heat exchanger temperature is −5 ° C. or less, if the heat pump operation time is 10 minutes or less, the level B exceeds 10 minutes. Judged as level C.
尚、本実施例においては、着霜レベル判定基準として、周囲温度,空気冷媒熱交換器温度,ヒートポンプ運転時間の組み合せにより3段階に区分したが、更に細かく区分してもよい。例えば、ヒートポンプ運転時間を10分以下,10〜30分,30〜50分,50分以上とすることもできる。   In the present embodiment, the frost level determination criterion is classified into three stages according to the combination of the ambient temperature, the air refrigerant heat exchanger temperature, and the heat pump operating time, but may be further finely classified. For example, the heat pump operation time can be 10 minutes or less, 10 to 30 minutes, 30 to 50 minutes, or 50 minutes or more.
次に、着霜レベルに対応した除霜運転(ステップ71〜ステップ73)を行うことにより、ヒートポンプ運転による余熱を有効活用し(ステップ74)、次回湯水使用時(ステップ75)には、ほとんど着霜しないレベルAの場合は水冷媒熱交換器が保温され、着霜量の比較的少ないレベルBや着霜量の多いCの場合は、除霜により着霜がないので、加熱立上がり性能の向上を図ることができる。(ステップ76)。   Next, the defrosting operation (steps 71 to 73) corresponding to the frosting level is performed to effectively utilize the residual heat from the heat pump operation (step 74). In the case of level A where frost is not generated, the water-refrigerant heat exchanger is kept warm, and in the case of level B where the amount of frost formation is relatively small or C where there is a large amount of frost formation, there is no frost formation due to defrosting. Can be achieved. (Step 76).
図4は着霜レベルと除霜運転手段との関係を示す図である。ほとんど着霜しないレベルAの場合は、ヒートポンプは運転せず、膨張弁3a,3bを全閉として水冷媒熱交換器2内の高温乃至中温冷媒を循環させず、水冷媒熱交換器2内の高温状態を少しでも長く保持することにより、次回運転開始時における加熱立上がりを早くする効果を得るものである。   FIG. 4 is a diagram showing the relationship between the frost level and the defrosting operation means. In the case of level A where frost is hardly formed, the heat pump is not operated, the expansion valves 3a and 3b are fully closed, and the high-temperature to medium-temperature refrigerant in the water-refrigerant heat exchanger 2 is not circulated. By maintaining the high temperature state as long as possible, the effect of accelerating the heating rise at the start of the next operation is obtained.
着霜量の比較的少ないレベルBの場合は、ヒートポンプは運転せず、膨張弁3a,3bを半開として水冷媒熱交換器2内の高温余熱冷媒を空気冷媒熱交換器4a,4bに循環させて除霜し、次回運転開始時における空気冷媒熱交換器4a,4bの熱交換性能を良くすることにより、加熱効率の向上を図る。   In the case of level B where the amount of frost formation is relatively small, the heat pump is not operated, and the expansion valves 3a and 3b are opened halfway to circulate the high temperature residual heat refrigerant in the water refrigerant heat exchanger 2 to the air refrigerant heat exchangers 4a and 4b. The air efficiency is improved by improving the heat exchange performance of the air refrigerant heat exchangers 4a and 4b at the start of the next operation.
着霜量の多いレベルCの場合は、着霜にとどまらず凍結に到る恐れがあるため確実に除霜する必要がある。従って、膨張弁3a,3bを全開とし、かつ、ヒートポンプ運転を行って空気冷媒熱交換器4a,4bを確実に除霜して、次回運転開始時には空気冷媒熱交換器4a,4bを初期に近い状態とし熱交換性能を良くすることにより、加熱効率の向上を図る。また、従来のヒートポンプ給湯機においては、除霜開始を温度のみで判断していたため、ヒートポンプ運転時間が1時間近くまでも除霜しない場合もあったが、本実施例においては30分以下でレベルCと判断してヒートポンプ除霜を行うように設定しており、着霜による加熱性能の低下状態を早期に解消することができる。   In the case of level C with a large amount of frost formation, it is necessary to surely defrost because there is a risk of freezing as well as frost formation. Therefore, the expansion valves 3a and 3b are fully opened, and the air refrigerant heat exchangers 4a and 4b are surely defrosted by performing the heat pump operation, and the air refrigerant heat exchangers 4a and 4b are close to the initial stage at the start of the next operation. By improving the heat exchange performance in the state, the heating efficiency is improved. Moreover, in the conventional heat pump water heater, since the start of the defrosting is determined only by the temperature, the heat pump operation time may not be defrosted even for nearly 1 hour, but in this example, the level is 30 minutes or less. It is determined that the heat pump is defrosted by judging C, and the deterioration of the heating performance due to frost formation can be eliminated at an early stage.
尚、膨張弁3a,3bの開度は膨張弁3a,3bの弁口径によっても異なる。従って、本実施例においては、膨張弁3a,3bの開度を3段階に区分したが、これに限るものではない。例えば、膨張弁3a,3bの開度をほぼ全閉,約1/4開,約1/2,約3/4開,ほぼ全開の5段階に区分してもよい。   The opening degree of the expansion valves 3a and 3b also varies depending on the valve diameters of the expansion valves 3a and 3b. Therefore, in the present embodiment, the opening degree of the expansion valves 3a and 3b is divided into three stages, but is not limited to this. For example, the opening degree of the expansion valves 3a and 3b may be divided into five stages of almost fully closed, about 1/4 open, about 1/2, about 3/4 open, and almost fully open.
以上のように、本実施例においては、検知された空気冷媒熱交換器の着霜条件に基づいて着霜レベルを判定し、判定された着霜レベルに対応して膨張弁の開度を制御するので、着霜レベルに応じた除霜を行うことができるので、着霜による加熱効率の低下を抑制することができる。具体的には、着霜レベルが低い場合には膨張弁の開度を全閉または半開として余熱除霜を行い、着霜レベルが高い場合には膨張弁の開度を全開として余熱除霜を早期に除霜することにより、着霜による加熱効率の低下を抑制する。また、着霜レベルを少なくとも3段階とし、判定された着霜レベルに対応して膨張弁の開度を少なくとも全閉,半開,全開の3段階に制御することもできる。また、判定された着霜レベルに対応して膨張弁の開度のみならずヒートポンプの運転/停止も合わせて制御する。ヒートポンプ運転の断続ごとに空気冷媒熱交換器4a,4bの除霜を行うことにより、次の加熱立上がり時の性能を向上させて、加熱効率の向上及び省エネを達成することができる。   As described above, in this embodiment, the frost level is determined based on the detected frost condition of the air refrigerant heat exchanger, and the opening degree of the expansion valve is controlled in accordance with the determined frost level. Therefore, since defrosting according to a frost level can be performed, the fall of the heating efficiency by frost formation can be suppressed. Specifically, when the frost level is low, the opening degree of the expansion valve is fully closed or half-open, and the residual heat defrosting is performed. When the frost level is high, the opening degree of the expansion valve is fully opened and the residual heat defrosting is performed. By defrosting early, the fall of the heating efficiency by frost formation is suppressed. Further, the frosting level can be set to at least three levels, and the opening degree of the expansion valve can be controlled to at least three levels of fully closed, half open, and fully open in accordance with the determined frost level. Further, not only the opening degree of the expansion valve but also the operation / stop of the heat pump is controlled in accordance with the determined frost level. By performing defrosting of the air refrigerant heat exchangers 4a and 4b every time the heat pump operation is interrupted, it is possible to improve the performance at the next heating start-up, thereby improving the heating efficiency and saving energy.
以上、本実施例によれば、着霜レベル判断基準に対応して膨張弁開度及びヒートポンプ運転可否の除霜手段を組み合せることにより、ヒートポンプ余熱による自然除霜を活用し、かつ、除霜のためのヒートポンプ運転を必要最小限に抑制すると共に、ヒートポンプ運転の断続毎に余熱除霜を行って、次の加熱運転時の空気冷媒熱交換器を最善の状態とし加熱効率向上及び省エネを図ることができる。   As described above, according to the present embodiment, by combining the defrosting means for determining whether the expansion valve opening degree and the heat pump operation are possible or not according to the frost level determination criterion, the natural defrost due to the heat pump residual heat is utilized, and the defrosting is performed. The heat pump operation for the heat pump is suppressed to the minimum necessary, and the residual heat defrosting is performed every time the heat pump operation is interrupted, so that the air refrigerant heat exchanger in the next heating operation is in the best condition to improve the heating efficiency and save energy be able to.
尚、本実施例においては、周囲温度,空気冷媒熱交換器,ヒートポンプ運転時間に基づいて少なくとも三段階の着霜レベル判断基準を設け、判断基準による着霜レベルに対応して膨張弁開度及びヒートポンプ運転の組み合せによる少なくとも3段階の除霜運転手段を設定する。このような本発明に係る実施例は、特に、ヒートポンプの断続回数の多い、瞬間式ヒートポンプ給湯機において大きな効果を有する。しかしながら、本発明は、瞬間式ヒートポンプ給湯機に限定されるものではなく、貯湯式ヒートポンプ給湯機においても、貯湯タンクの小形化や省エネ化のために夜間以外にも貯湯運転する場合があり、瞬間式ヒートポンプ給湯機に適用した場合と同様の効果を得ることができる。   In this embodiment, at least three stages of frost level determination criteria are provided based on the ambient temperature, the air refrigerant heat exchanger, and the heat pump operation time, and the expansion valve opening and At least three stages of defrosting operation means are set by a combination of heat pump operations. Such an embodiment according to the present invention has a great effect particularly in an instantaneous heat pump water heater having a large number of intermittent heat pumps. However, the present invention is not limited to the instantaneous heat pump water heater, and even in the hot water storage heat pump water heater, there is a case where the hot water storage operation is performed other than at night in order to reduce the size of the hot water storage tank and save energy. The effect similar to the case where it applies to a type heat pump water heater can be acquired.
ヒートポンプ給湯機の構成図。The block diagram of a heat pump water heater. 除霜運転を示すフローチャート。The flowchart which shows a defrost operation. 着霜レベル判定条件と着霜レベル判定基準との関係を示す図。The figure which shows the relationship between frost level determination conditions and frost level determination criteria. 着霜レベルと除霜運転手段との関係を示す図。The figure which shows the relationship between a frost formation level and a defrost driving | operation means.
符号の説明Explanation of symbols
1a,1b 圧縮機
2 水冷媒熱交換器
3a,3b 膨張弁
4a,4b 空気冷媒熱交換器
6 給水金具
7 減圧弁
8 給水水量センサ
11 給湯混合弁
12 湯水混合弁
13 流量調整弁
14 台所出湯金具
15 台所蛇口
16 貯湯タンク
17 機内循環ポンプ
20 風呂循環ポンプ
24 浴槽
25 風呂蛇口
27 風呂用熱交換器
28 温水開閉弁
30 ヒートポンプ冷媒回路
40 給湯回路
50 運転制御手段
DESCRIPTION OF SYMBOLS 1a, 1b Compressor 2 Water refrigerant | coolant heat exchanger 3a, 3b Expansion valve 4a, 4b Air refrigerant | coolant heat exchanger 6 Water supply metal fitting 7 Pressure reducing valve 8 Water supply water quantity sensor 11 Hot water supply mixing valve 12 Hot water mixing valve 13 Flow rate adjustment valve 14 Kitchen hot water supply metal fitting 15 Kitchen Faucet 16 Hot Water Storage Tank 17 In-machine Circulation Pump 20 Bath Circulation Pump 24 Bathtub 25 Bath Faucet 27 Bath Heat Exchanger 28 Hot Water On / Off Valve 30 Heat Pump Refrigerant Circuit 40 Hot Water Supply Circuit 50 Operation Control Means

Claims (8)

  1. 圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器、及び膨張弁、空気と冷媒との熱交換を行う空気冷媒熱交換器を、冷媒配管を介して接続したヒートポンプ冷媒回路と、
    前記水冷媒熱交換器,給湯混合弁,前記水冷媒熱交換器で加熱した温水を貯湯する貯湯タンク、及び機内循環ポンプを、水配管を介して接続した貯湯回路と、
    給水金具,前記貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁、及び出湯金具を、水配管を介して接続したタンク給湯回路と、
    前記圧縮機,前記膨張弁,前記給湯混合弁,前記機内循環ポンプ,前記湯水混合弁、及び前記流量調整弁を制御する運転制御手段とを備え、
    検知された前記空気冷媒熱交換器の着霜条件に基づいて着霜レベルを判定し、前記判定された着霜レベルに対応して前記膨張弁の開度を制御するヒートポンプ給湯機。
    A heat pump refrigerant circuit in which a compressor, a water refrigerant heat exchanger that performs heat exchange between water and refrigerant, and an expansion valve, an air refrigerant heat exchanger that performs heat exchange between air and refrigerant, are connected via a refrigerant pipe;
    A hot water storage circuit in which the water refrigerant heat exchanger, a hot water mixing valve, a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger, and an in-machine circulation pump are connected via a water pipe;
    A tank hot water circuit in which a water supply fitting, the hot water storage tank, a hot water supply mixing valve, a hot water mixing valve, a flow rate adjustment valve, and a hot water supply fitting are connected via a water pipe;
    An operation control means for controlling the compressor, the expansion valve, the hot water mixing valve, the in-machine circulation pump, the hot water mixing valve, and the flow rate adjustment valve;
    A heat pump water heater that determines a frost level based on the detected frost condition of the air refrigerant heat exchanger, and controls the opening of the expansion valve in accordance with the determined frost level.
  2. 圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器、及び膨張弁、空気と冷媒との熱交換を行う空気冷媒熱交換器を、冷媒配管を介して接続したヒートポンプ冷媒回路と、
    前記水冷媒熱交換器,給湯混合弁,前記水冷媒熱交換器で加熱した温水を貯湯する貯湯タンク、及び機内循環ポンプを、水配管を介して接続した貯湯回路と、
    給水金具,前記貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁、及び出湯金具を、水配管を介して接続したタンク給湯回路と、
    前記圧縮機,前記膨張弁,前記給湯混合弁,前記機内循環ポンプ,前記湯水混合弁、及び前記流量調整弁を制御する運転制御手段とを備え、
    前記空気冷媒熱交換器の着霜条件を検知し、前記着霜条件の検知結果と着霜レベル判定基準とから着霜レベルを判定し、前記判定された着霜レベルに対応して膨張弁の開度を制御するヒートポンプ給湯機。
    A heat pump refrigerant circuit in which a compressor, a water refrigerant heat exchanger that performs heat exchange between water and refrigerant, and an expansion valve, and an air refrigerant heat exchanger that performs heat exchange between air and refrigerant are connected via a refrigerant pipe;
    A hot water storage circuit in which the water refrigerant heat exchanger, a hot water mixing valve, a hot water storage tank for storing hot water heated by the water refrigerant heat exchanger, and an in-machine circulation pump are connected via a water pipe;
    A tank hot water supply circuit in which a water supply fitting, the hot water storage tank, a hot water supply mixing valve, a hot water mixing valve, a flow rate adjustment valve, and a hot water supply fitting are connected via a water pipe;
    An operation control means for controlling the compressor, the expansion valve, the hot water supply mixing valve, the in-machine circulation pump, the hot water mixing valve, and the flow rate adjustment valve;
    The frosting condition of the air refrigerant heat exchanger is detected, the frosting level is determined from the detection result of the frosting condition and the frosting level determination criterion, and the expansion valve of the expansion valve corresponding to the determined frosting level is determined. A heat pump water heater that controls the opening.
  3. 請求項1又は2において、前記着霜レベルを少なくとも3段階に判定し、前記判定された着霜レベルに対応して前記膨張弁の開度を少なくとも全閉,半開,全開の3段階に制御するヒートポンプ給湯機。   In Claim 1 or 2, the said frost level is determined to at least 3 steps | paragraphs, and the opening degree of the said expansion valve is controlled to at least 3 steps | paragraphs of full open, half open, and full open corresponding to the determined frost level. Heat pump water heater.
  4. 請求項1乃至3の何れかにおいて、前記判定された着霜レベルに対応して前記膨張弁の開度を全開に制御する場合はヒートポンプを運転し、前記判定された着霜レベルに対応して前記膨張弁の開度を全閉又は半開に制御する場合はヒートポンプを停止するヒートポンプ給湯機。   In any one of Claim 1 thru | or 3, when controlling the opening degree of the said expansion valve fully open corresponding to the said determined frost level, a heat pump is drive | operated and it respond | corresponds to the determined frost level A heat pump water heater that stops the heat pump when the opening degree of the expansion valve is controlled to be fully closed or half open.
  5. 請求項1乃至4の何れかにおいて、前記着霜条件が前記空気冷媒熱交換器の周囲温度,空気冷媒熱交換器の温度、及びヒートポンプの連続運転時間であるヒートポンプ給湯機。   The heat pump water heater according to any one of claims 1 to 4, wherein the frosting conditions are an ambient temperature of the air refrigerant heat exchanger, a temperature of the air refrigerant heat exchanger, and a continuous operation time of the heat pump.
  6. 請求項5において、前記着霜条件である前記空気冷媒熱交換器の周囲温度を、少なくとも7℃以上,7℃〜−7℃,−7℃以下の3段階に区分して、前記着霜レベルを判定するヒートポンプ給湯機。   6. The frost level according to claim 5, wherein the ambient temperature of the air refrigerant heat exchanger that is the frosting condition is divided into at least 7 degrees C, 7 degrees C to -7 degrees C, and -7 degrees C or less. Determine the heat pump water heater.
  7. 請求項5又は6において、前記着霜条件である前記空気冷媒熱交換器の温度を、少なくとも0℃以上,0℃〜−5℃,−5℃以下の3段階に区分して、前記着霜レベルを判定するヒートポンプ給湯機。   7. The frost formation according to claim 5, wherein the temperature of the air refrigerant heat exchanger which is the frosting condition is divided into three stages of at least 0 ° C., 0 ° C. to −5 ° C., and −5 ° C. or less. A heat pump water heater that determines the level.
  8. 請求項5乃至7の何れかにおいて、前記着霜条件である前記ヒートポンプの連続運転時間を、少なくとも10分以下,10分〜30分,30分以上の3段階に区分して、前記着霜レベルを判定するヒートポンプ給湯機。   In any one of Claims 5 thru | or 7, the continuous operation time of the said heat pump which is the said frost formation conditions is divided into three steps of at least 10 minutes or less, 10 minutes-30 minutes, 30 minutes or more, and the said frost level Determine the heat pump water heater.
JP2008220687A 2008-08-29 2008-08-29 Heat pump water heater Pending JP2010054145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220687A JP2010054145A (en) 2008-08-29 2008-08-29 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220687A JP2010054145A (en) 2008-08-29 2008-08-29 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2010054145A true JP2010054145A (en) 2010-03-11

Family

ID=42070267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220687A Pending JP2010054145A (en) 2008-08-29 2008-08-29 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2010054145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026636A (en) * 2010-07-22 2012-02-09 Corona Corp Heat pump water heater
JP2016080201A (en) * 2014-10-10 2016-05-16 株式会社デンソー Electronic control device
US20170321939A1 (en) * 2014-12-26 2017-11-09 Daikin Industries, Ltd. Air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186169A (en) * 1989-12-14 1991-08-14 Daikin Ind Ltd Defrosting operation controller of air conditioner
JPH10332231A (en) * 1997-06-02 1998-12-15 Mitsubishi Heavy Ind Ltd Air conditioner and air-conditioning method
JP2000035266A (en) * 1998-07-15 2000-02-02 Fujitsu General Ltd Control method of air conditioner
JP2005121283A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007263517A (en) * 2006-03-29 2007-10-11 Hitachi Appliances Inc Heat pump water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186169A (en) * 1989-12-14 1991-08-14 Daikin Ind Ltd Defrosting operation controller of air conditioner
JPH10332231A (en) * 1997-06-02 1998-12-15 Mitsubishi Heavy Ind Ltd Air conditioner and air-conditioning method
JP2000035266A (en) * 1998-07-15 2000-02-02 Fujitsu General Ltd Control method of air conditioner
JP2005121283A (en) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2007263517A (en) * 2006-03-29 2007-10-11 Hitachi Appliances Inc Heat pump water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026636A (en) * 2010-07-22 2012-02-09 Corona Corp Heat pump water heater
JP2016080201A (en) * 2014-10-10 2016-05-16 株式会社デンソー Electronic control device
US20170321939A1 (en) * 2014-12-26 2017-11-09 Daikin Industries, Ltd. Air conditioner
US10544958B2 (en) * 2014-12-26 2020-01-28 Daikin Industries, Ltd. Air conditioner with defrost control

Similar Documents

Publication Publication Date Title
JP5073970B2 (en) Heat pump hot water floor heater
JP4215735B2 (en) Heat pump water heater
JP3887781B2 (en) Heat pump water heater
JP4958460B2 (en) Heat pump water heater
JP5082536B2 (en) Heat pump water heater
EP3163176B1 (en) Heating and hot water supply system
JP2008275271A (en) Heat pump hot water supply floor heating device
JP4726573B2 (en) Heat pump hot water floor heater
JP2009063246A (en) Heat pump water heater
JP2009264718A (en) Heat pump hot water system
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP2010054145A (en) Heat pump water heater
JP2006003077A (en) Heat pump type hot water supply apparatus
JP5176474B2 (en) Heat pump water heater
JP2008224070A (en) Heat pump water heater
JP5081050B2 (en) Heat pump water heater
JP2007322084A (en) Heat pump water heater
JP2007040590A (en) Heat pump water heater
JP5095488B2 (en) Heat pump water heater
JP4078673B2 (en) Heat pump water heater
JP2006266592A (en) Heat pump water heater
JP5021385B2 (en) Heat pump water heater and operating method thereof
JP2011252675A (en) Heat pump water heater
JP4284291B2 (en) Heat pump water heater
JP5741256B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122