JP2008121982A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2008121982A
JP2008121982A JP2006306330A JP2006306330A JP2008121982A JP 2008121982 A JP2008121982 A JP 2008121982A JP 2006306330 A JP2006306330 A JP 2006306330A JP 2006306330 A JP2006306330 A JP 2006306330A JP 2008121982 A JP2008121982 A JP 2008121982A
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
refrigerant
water supply
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006306330A
Other languages
Japanese (ja)
Inventor
Masaya Honma
雅也 本間
Yuichi Kusumaru
雄一 藥丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006306330A priority Critical patent/JP2008121982A/en
Publication of JP2008121982A publication Critical patent/JP2008121982A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reliability of a system and to make effective use of exhaust heat in a refrigerating cycle device carrying out hot water supply and air-conditioning. <P>SOLUTION: A heat pump device comprises a main refrigerant circuit formed by connecting a compressor 11, a parallel circuit with a hot water supply heat exchanger 12 and a heating heat exchanger 16 arranged through a refrigerant conduit, a restricting device 15 and an outdoor heat exchanger 14 annularly in sequence; and a flow control valve provided upstream of the heating heat exchanger 16 in the parallel circuit, wherein the hot water supply heat exchanger 12 and the heating heat exchanger 16 are constituted to be switched in series and in parallel. With this constitution, when high temperature water flows into the hot water supply heat exchanger 12, heat of a refrigerant at the outlet of the hot water supply heat exchanger 12 is effectively used for heating while suppressing the abnormal rise of high pressure, and operation can be comfortably performed without reducing the respective heating capacities of the hot water supply heat exchanger 12 and heating heat exchanger 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、HFCやCO2等の冷媒を用いたヒートポンプ式給湯装置やヒートポンプ式給湯暖房装置に関する。   The present invention relates to a heat pump type hot water supply apparatus and a heat pump type hot water supply and heating apparatus using a refrigerant such as HFC or CO2.

従来、給湯を行う冷凍サイクル装置では、貯湯タンク下部から流出した冷水が冷凍サイクル装置の給湯用熱交換器に流入し、圧縮機から吐出した高温冷媒と熱交換して温水となり、貯湯タンク上部へ戻る動作を貯湯タンク内の水の温度が所定温度(例えば中間期、夏期では65℃、冬期では90℃)になるまで運転される。冷凍サイクル運転初期では、貯湯タンク上部に温水が貯まり、下部には冷水が貯まる、つまり温度成層を形成しており、貯湯タンク下部からは常に冷水が給湯用熱交換器に供給されるが、運転後期になり貯湯タンクが温水で満たされ始めると貯湯タンク下部の冷水の温度も徐々に上昇し、冷凍サイクル装置の給湯用熱交換器へ供給させる水の温度も高くなる。また、貯湯タンク内の温水を床暖房等の放熱に使用すると、沸き終い運転時ではなくても、床暖房等の放熱手段から戻ってきた中温水により貯湯タンク内の温度成層が破壊され、給湯用熱交換器へ供給させる水の温度も高くなる。それに伴って、給湯用熱交換器出口の冷媒温度も上昇し、高圧が上昇して冷凍サイクル装置の信頼性を損ねていた。   Conventionally, in a refrigeration cycle apparatus that performs hot water supply, cold water that flows out from the lower part of the hot water tank flows into the hot water heat exchanger of the refrigeration cycle apparatus, exchanges heat with the high-temperature refrigerant discharged from the compressor, and becomes hot water. The returning operation is performed until the temperature of the water in the hot water storage tank reaches a predetermined temperature (for example, 65 ° C. in the intermediate period and summer, and 90 ° C. in the winter). In the initial stage of the refrigeration cycle, hot water is stored in the upper part of the hot water tank and cold water is stored in the lower part, that is, a temperature stratification is formed, and cold water is always supplied to the heat exchanger for hot water supply from the lower part of the hot water tank. When the hot water storage tank begins to be filled with hot water at a later stage, the temperature of the cold water in the lower part of the hot water storage tank gradually increases, and the temperature of the water supplied to the hot water supply heat exchanger of the refrigeration cycle apparatus also increases. In addition, if the hot water in the hot water storage tank is used for heat dissipation such as floor heating, the temperature stratification in the hot water storage tank is destroyed by the medium hot water returned from the heat dissipation means such as floor heating, even when not at the end of boiling operation, The temperature of the water supplied to the hot water heat exchanger is also increased. Along with this, the refrigerant temperature at the outlet of the hot water supply heat exchanger also increased, and the high pressure increased, impairing the reliability of the refrigeration cycle apparatus.

そこで、特許文献1に開示されたヒートポンプ給湯装置では、給湯用熱交換器への入水温度が標準温度より高ければ圧縮機の規定周波数を減少させて高圧上昇を抑制していた。図10、図11は特許文献1に記載された従来のヒートポンプ装置およびその運転フローチャートを示すものである。   Therefore, in the heat pump hot water supply apparatus disclosed in Patent Document 1, if the temperature of the water entering the heat exchanger for hot water supply is higher than the standard temperature, the specified frequency of the compressor is decreased to suppress an increase in high pressure. 10 and 11 show a conventional heat pump apparatus described in Patent Document 1 and an operation flowchart thereof.

図10において、貯湯タンク20内の温度センサ20A、20B,20C、20Dによって、貯湯タンク20内の湯量が所定値以下となったことを検出すると、ヒートポンプ回路10を動作させて貯湯運転を開始する。ヒートポンプ回路10では、圧縮機11で圧縮された冷媒は、給湯用熱交換器12で放熱し、メイン膨張弁13A及びキャピラリーチューブ13Bで減圧された後、蒸発器14にて吸熱し、ガス状態で圧縮機11に吸入される。一方、循環ポンプ23の運転により、貯湯タンク20内の水は、底部配管22を通って水用配管12Aに導かれ、水用配管12Aで加熱された温水は、上部循環用配管24を取って貯湯タンク20に戻される。圧縮機11での能力制御及び膨張弁13での開度制御は、温度センサ10Aで検出される冷媒吐出温度が、予め設定された温度を維持するように制御される。図11は圧縮機11の周波数決定制御のブロック図である。規定周波数設定手段41では、予め基準となる運転周波数を設定している。入水負荷設定手段では、入水温度によって、その温度範囲を複数の区間に区分し、それぞれの区分において増減する周波数を設定している。即ち、この入水負荷設定手段42では、入水温度が標準温度より高ければ規定周波数を減少させ、入水温度が標準温度より低ければ規定周波数を増加させるように設定している。
特開2005−147542号公報
In FIG. 10, when the temperature sensors 20A, 20B, 20C, and 20D in the hot water storage tank 20 detect that the amount of hot water in the hot water storage tank 20 has become a predetermined value or less, the heat pump circuit 10 is operated to start the hot water storage operation. . In the heat pump circuit 10, the refrigerant compressed by the compressor 11 dissipates heat in the hot water supply heat exchanger 12, is depressurized by the main expansion valve 13A and the capillary tube 13B, then absorbs heat in the evaporator 14, and in a gas state. It is sucked into the compressor 11. On the other hand, by the operation of the circulation pump 23, the water in the hot water storage tank 20 is led to the water pipe 12A through the bottom pipe 22, and the hot water heated by the water pipe 12A takes the upper circulation pipe 24. It is returned to the hot water storage tank 20. The capacity control in the compressor 11 and the opening degree control in the expansion valve 13 are controlled such that the refrigerant discharge temperature detected by the temperature sensor 10A maintains a preset temperature. FIG. 11 is a block diagram of frequency determination control of the compressor 11. In the specified frequency setting means 41, a reference operating frequency is set in advance. In the incoming water load setting means, the temperature range is divided into a plurality of sections according to the incoming water temperature, and the frequency that increases or decreases in each of the sections is set. That is, the incoming water load setting means 42 is set to decrease the specified frequency if the incoming water temperature is higher than the standard temperature, and to increase the specified frequency if the incoming water temperature is lower than the standard temperature.
JP 2005-147542 A

しかしながら、高圧上昇を抑制するために圧縮機の運転周波数を減少させると、冷媒循環量が減少し、給湯用熱交換器での給湯加熱能力が低下するため、所望の温水温度および沸き上げ時間を達成できないとことや、暖房用熱交換器での暖房加熱能力が低下して快適性を損ねるという課題を有していた。   However, if the operating frequency of the compressor is reduced in order to suppress an increase in high pressure, the amount of refrigerant circulation decreases and the hot water heating capacity in the hot water heat exchanger decreases, so the desired hot water temperature and boiling time can be reduced. There were problems that it could not be achieved and that the heating and heating capacity of the heat exchanger for heating was reduced and the comfort was impaired.

本発明は前記課題に鑑みてなされたものであり、給湯用熱交換器へ高温水が入水した場合に、給湯用熱交換器と暖房用熱交換器を並列接続から直列接続に切り替え、給湯用熱交換器出口冷媒の熱を暖房に有効利用するとともに高圧異常上昇を抑制し、給湯用熱交換器と暖房用熱交換器それぞれの加熱能力を低減させることなく快適に運転を行うことを目的とする。   The present invention has been made in view of the above problems, and when high-temperature water enters the hot water supply heat exchanger, the hot water supply heat exchanger and the heating heat exchanger are switched from parallel connection to series connection, The purpose is to effectively use the heat of the refrigerant at the outlet of the heat exchanger for heating and suppress an abnormal increase in high pressure, and to operate comfortably without reducing the heating capacity of each of the heat exchanger for hot water supply and the heat exchanger for heating. To do.

前記課題を解決するために、本発明の冷凍サイクル装置は、圧縮機と、給湯用熱交換器と暖房用熱交換器とが冷媒管路を介して並列に配置された並列回路と、絞り装置と、室外熱交換器を順次環状に接続してなる主冷媒回路と、
前記給湯用熱交換器の冷媒出口と前記暖房用熱交換器の入口を接続するバイパス経路と、
前記給湯用熱交換器を通過した冷媒が、前記バイパス経路を経由して前記暖房用熱交換器を流れる第1の経路と、前記バイパス経路を経由せず前記絞り装置へ向かう第2の経路とを、切り替え可能な制御手段とを有する。
In order to solve the above problems, a refrigeration cycle apparatus according to the present invention includes a compressor, a parallel circuit in which a hot water supply heat exchanger and a heating heat exchanger are arranged in parallel via a refrigerant pipe, and a throttling device. A main refrigerant circuit in which the outdoor heat exchangers are sequentially connected in an annular shape,
A bypass path connecting the refrigerant outlet of the hot water heat exchanger and the inlet of the heating heat exchanger;
A first path through which the refrigerant that has passed through the hot water supply heat exchanger flows through the heating heat exchanger via the bypass path, and a second path toward the expansion device without passing through the bypass path; And switchable control means.

本構成によって、給湯用熱交換器へ高温水が入水した場合に、給湯用熱交換器出口冷媒の熱を暖房に有効利用するとともに高圧異常上昇を抑制し、給湯用熱交換器と暖房用熱交換器それぞれの加熱能力を低減させることなく快適に運転を行うことができる。   With this configuration, when high-temperature water enters the hot water supply heat exchanger, the heat of the hot water supply heat exchanger outlet refrigerant is effectively used for heating and the rise in abnormal high pressure is suppressed. It is possible to operate comfortably without reducing the heating capacity of each exchanger.

本発明のヒートポンプ装置によれば、給湯用熱交換器へ高温水が入水した場合に、給湯用熱交換器出口冷媒の熱を暖房に有効利用するとともに高圧異常上昇を抑制し、給湯用熱交換器と暖房用熱交換器それぞれの加熱能力を低減させることなく快適に運転を行うことができる。   According to the heat pump device of the present invention, when high-temperature water enters the hot water supply heat exchanger, the heat of the hot water supply heat exchanger outlet refrigerant is effectively used for heating and high-pressure abnormal rise is suppressed, and heat exchange for hot water supply is performed. It is possible to operate comfortably without reducing the heating capacity of each of the heater and the heat exchanger for heating.

(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら詳細に説明する。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図1において、本実施形態の冷凍サイクル装置は、冷媒を高温高圧に圧縮する圧縮機11と、圧縮機11から吐出された高温高圧冷媒を2方向に分岐させ、一方を貯湯タンク20の低温水と熱交換させて高温高圧冷媒を冷却する給湯用熱交換器12と、他方を室内暖房、床暖房、浴室暖房等に利用する暖房用熱交換器16と、並列回路内の暖房用熱交換器16の上流側に設けられた冷媒循環量を調整する流量制御弁17と、給湯用放熱器12から流出した冷媒と暖房用熱交換器16から流出した冷媒とを混合させた後、減圧膨張させる膨張機構15と、室外ファン18から流れる空気と熱交換させて大気から吸熱する室外熱交換器14から構成される。   In FIG. 1, the refrigeration cycle apparatus of the present embodiment includes a compressor 11 that compresses a refrigerant to high temperature and high pressure, a high temperature and high pressure refrigerant discharged from the compressor 11 branched in two directions, and one of them is cold water in a hot water storage tank 20. The hot water supply heat exchanger 12 that cools the high-temperature and high-pressure refrigerant by exchanging heat with the other, the heating heat exchanger 16 that uses the other for indoor heating, floor heating, bathroom heating, and the like, and the heating heat exchanger in the parallel circuit The flow rate control valve 17 for adjusting the refrigerant circulation amount provided on the upstream side of 16 and the refrigerant flowing out of the hot water radiator 12 and the refrigerant flowing out of the heating heat exchanger 16 are mixed and then expanded under reduced pressure. It comprises an expansion mechanism 15 and an outdoor heat exchanger 14 that exchanges heat with air flowing from the outdoor fan 18 and absorbs heat from the atmosphere.

また、本実施形態の冷凍サイクル装置は、給湯用熱交換器12の冷媒出口と暖房用熱交換器16の入口を接続するバイパス経路61を有する。バイパス経路61の冷媒流入口には、三方弁32が設けられている。この三方弁32を切り替えることにより、給湯用熱交換器12を通過した冷媒が、バイパス経路61を経由して暖房用熱交換器16を流れる第1の経路(直列接続)と、バイパス経路61を経由せず絞り装置15へ向かう第2の経路(並列接続)とを、切り替え可能である。三方弁32の切り替えは、制御手段21により行う。   In addition, the refrigeration cycle apparatus of the present embodiment includes a bypass path 61 that connects the refrigerant outlet of the hot water supply heat exchanger 12 and the inlet of the heating heat exchanger 16. A three-way valve 32 is provided at the refrigerant inlet of the bypass passage 61. By switching the three-way valve 32, the refrigerant that has passed through the hot water supply heat exchanger 12 passes through the bypass path 61 and the first path (series connection) through the heating heat exchanger 16 and the bypass path 61. It is possible to switch between the second path (parallel connection) toward the aperture device 15 without going through. Switching of the three-way valve 32 is performed by the control means 21.

制御手段21は、冷凍サイクルに設けられた冷媒圧力検出手段39、冷媒温度検出手段38などの検出情報を基に、三方弁32や流量制御弁17を制御する。   The control means 21 controls the three-way valve 32 and the flow control valve 17 based on detection information such as the refrigerant pressure detection means 39 and the refrigerant temperature detection means 38 provided in the refrigeration cycle.

冷媒圧力検出手段39は、第2の経路(並列接続)の給湯用熱交換器12の下流側であって、絞り装置15の入り側より上流の高圧側冷媒配管に設けられる。望ましくは、給湯用熱交換器12の出口付近である。   The refrigerant pressure detection means 39 is provided in the high-pressure side refrigerant pipe downstream of the hot water supply heat exchanger 12 in the second path (parallel connection) and upstream of the inlet side of the expansion device 15. Desirably, it is near the exit of the hot water supply heat exchanger 12.

また、冷媒温度検出手段38は、並列回路の暖房側熱交換器16の上流側であって、バイパス経路61の合流点の下流側に設けている。   The refrigerant temperature detection means 38 is provided on the upstream side of the heating-side heat exchanger 16 in the parallel circuit and on the downstream side of the junction of the bypass path 61.

給湯を行う運転では、貯湯タンク20の下部から流出した冷水が冷凍サイクル装置の給湯用熱交換器12に流入し、圧縮機11から吐出した高温冷媒と熱交換して温水となり、貯湯タンク20上部へ戻る動作を貯湯タンク20内の水の温度が所定温度(例えば中間期、夏期では65℃、冬期では90℃)になるまで運転される。冷凍サイクル運転初期では、貯湯タンク20上部に温水が貯まり、下部には冷水が貯まる、つまり水の密度差によって温度成層を形成しており、貯湯タンク20下部からは常に冷水が給湯用熱交換器12に供給されるが、運転後期になると貯湯タンク20下部の冷水の温度が上昇し、冷凍サイクル装置の給湯用熱交換器12への入水温度が高くなり、高圧の異常上昇を招く。   In the operation of supplying hot water, the cold water flowing out from the lower part of the hot water storage tank 20 flows into the hot water supply heat exchanger 12 of the refrigeration cycle apparatus, exchanges heat with the high-temperature refrigerant discharged from the compressor 11, and becomes hot water. The operation of returning to is continued until the temperature of the water in the hot water storage tank 20 reaches a predetermined temperature (for example, 65 ° C. in the intermediate period, summer, and 90 ° C. in the winter). In the initial stage of the refrigeration cycle, hot water is stored in the upper part of the hot water storage tank 20 and cold water is stored in the lower part, that is, temperature stratification is formed by the density difference of the water, and cold water is always supplied from the lower part of the hot water storage tank 20 to the heat exchanger for hot water supply. However, at the later stage of operation, the temperature of the cold water in the lower part of the hot water storage tank 20 rises, the temperature of water entering the heat exchanger 12 for hot water supply of the refrigeration cycle apparatus rises, and an abnormal rise in high pressure is caused.

ここで、冷凍サイクル装置の給湯用熱交換器12への入水温度が高くなると高圧が上昇する理由について図2をもとに説明する。図2は、通常運転時と給湯用熱交換器へ流入する水の温度が高くなったとき(例えば沸き終い時)の圧力-比エンタルピ線図である。高温冷媒と低温水を熱交換させる際、給湯用熱交換器へ流入する低温水の温度が上昇すると給湯用熱交換器から流出する冷媒の温度も上昇するため、給湯用熱交換器出口冷媒のエンタルピが増加する。膨張機構が例えば膨張弁の場合、給湯用熱交換器から出た冷媒は等エントロピ線に沿うように減圧膨張するため蒸発器入口の冷媒エンタルピも増加する。よって蒸発器内にホールドされている冷媒の平均密度は減少することになり、蒸発器の容積は一定であることから蒸発器にホールドされる冷媒重量は減少する。冷凍サイクル内の冷媒重量は一定であるので、給湯用熱交換器へ流入する水温が上昇したことによって蒸発器でホールドしきれなくなった冷媒は高圧側へ溢れるため圧力は上昇することになる。沸き終い時は、一点鎖線で示すような高圧、給湯用熱交換出口冷媒温度、圧縮機吐出温度が上昇した圧力-比エンタルピ線図になる。   Here, the reason why the high pressure rises when the incoming water temperature to the hot water supply heat exchanger 12 of the refrigeration cycle apparatus increases will be described with reference to FIG. FIG. 2 is a pressure-specific enthalpy diagram during normal operation and when the temperature of the water flowing into the hot water supply heat exchanger becomes high (for example, at the end of boiling). When heat is exchanged between the high-temperature refrigerant and low-temperature water, if the temperature of the low-temperature water flowing into the hot water supply heat exchanger rises, the temperature of the refrigerant flowing out of the hot water heat exchanger also rises. Enthalpy increases. When the expansion mechanism is, for example, an expansion valve, the refrigerant discharged from the hot water supply heat exchanger expands under reduced pressure along the isentropic line, so the refrigerant enthalpy at the evaporator inlet also increases. Therefore, the average density of the refrigerant held in the evaporator decreases, and the volume of the refrigerant held in the evaporator decreases because the volume of the evaporator is constant. Since the refrigerant weight in the refrigeration cycle is constant, the refrigerant that cannot be held by the evaporator due to the rise in the temperature of the water flowing into the hot water supply heat exchanger overflows to the high pressure side, so that the pressure rises. At the end of boiling, a pressure-specific enthalpy diagram in which the high pressure, the hot water supply heat exchange outlet refrigerant temperature, and the compressor discharge temperature are increased as shown by the dashed line.

スタート時は給湯用熱交換器12と暖房用熱交換器16は並列接続(三方弁はa方向)され、流量制御弁は開いた状態であり、給湯用熱交換器12と暖房用熱交換器16は同時運転されている。ここで、スタート時に給湯用熱交換器と暖房用熱交換器を並列接続で運転させる理由は、暖房用熱交換器では立ち上がり時に大きな加熱能力が必要となるので循環量が大きく高温の冷媒が熱交換器に流入することが必要となるからである。しかし、スタート時から給湯用熱交換器と暖房用熱交換器を直列接続で運転させると、給湯用熱交換器で水と熱交換したあとの低温の冷媒が暖房用熱交換器へ流入するため所望の暖房能力が得られない。よってスタート時は、給湯用熱交換器と暖房用熱交換器を並列接続で運転させる必要がある。しかし、給湯用熱交換器に中高温水が入水した場合においては、並列接続で運転させると直列接続で運転させた場合に比べて不利になる。その理由は、給湯用熱交換器に中高温水が入水した場合には、給湯用熱交換器出口の冷媒温度も高くなり、給湯用熱交換器出口冷媒のエンタルピは高くなる。よって、蒸発器入口冷媒のエンタルピも大きくなり、給湯加熱能力が小さくなる。さらに、前述したように蒸発器高圧異常上昇を招くことになる。しかし、給湯用熱交換器に中高温水が入水した場合に給湯用熱交換器と暖房用熱交換器を直列接続で運転させると、給湯用熱交換器出口の冷媒温度が中高温になっているため、暖房用に利用できるのみならず、暖房用熱交換器通過後の冷媒温度は下がるため、高圧の異常上昇を抑制でき、さらには蒸発器入口の冷媒エンタルピを下げることができる。   At the start, the hot water supply heat exchanger 12 and the heating heat exchanger 16 are connected in parallel (the three-way valve is a direction), the flow control valve is open, and the hot water supply heat exchanger 12 and the heating heat exchanger are open. 16 is operated simultaneously. Here, the reason for operating the hot water supply heat exchanger and the heating heat exchanger in parallel connection at the start is that the heating heat exchanger requires a large heating capacity at the time of start-up, so the circulation rate is large and the high-temperature refrigerant is heated. This is because it is necessary to flow into the exchanger. However, if a hot water supply heat exchanger and a heating heat exchanger are operated in series from the start, low-temperature refrigerant after heat exchange with water in the hot water heat exchanger flows into the heating heat exchanger. The desired heating capacity cannot be obtained. Therefore, at the start, it is necessary to operate the heat exchanger for hot water supply and the heat exchanger for heating in parallel connection. However, when medium and high temperature water enters the hot water supply heat exchanger, operation in parallel connection is disadvantageous compared to operation in series connection. The reason for this is that when medium-high temperature water enters the hot water supply heat exchanger, the refrigerant temperature at the hot water supply heat exchanger outlet also increases, and the enthalpy of the hot water supply heat exchanger outlet refrigerant increases. Therefore, the enthalpy of the evaporator inlet refrigerant also increases, and the hot water supply heating capacity decreases. Furthermore, as described above, the evaporator high pressure abnormally rises. However, if medium and high temperature water enters the hot water supply heat exchanger and the hot water supply heat exchanger and the heating heat exchanger are operated in series, the refrigerant temperature at the hot water supply heat exchanger outlet becomes medium to high. Therefore, not only can it be used for heating, but also the refrigerant temperature after passing through the heating heat exchanger can be lowered, so that an abnormal increase in high pressure can be suppressed, and further, the refrigerant enthalpy at the evaporator inlet can be lowered.

この、給湯用熱交換器へ中高温水が入水した場合の給湯用熱交換器と暖房用熱交換器の並列接続から直列接続へ切り替える制御手法について図3のフローチャートをもとに説明する。まず、S1で給湯用熱交換器12出口の冷媒圧力を冷媒圧力検出手段39で検出し、設定値Pa(例えば13MPa)以上になっているか判断する。設定値Paは、システムや各デバイスの安全面・信頼性等からあらかじめ実験・解析等で決定される。次に、S2に移り検出値が設定値Pa以下であれば三方弁32はa方向、流量制御弁17は開いたままの状態(給湯用熱交換器12と暖房用熱交換器16は並列接続)でS1に戻り、再度同様の動作を行う。検出値が設定値Pa以上であれば三方弁32はb方向へ切り替えられ、流量制御弁17は閉じられる。(給湯用熱交換器12と暖房用熱交換器16は直列接続)次に、S3に移り再度冷媒圧力検出手段39で冷媒圧力を検出し、設定値Pa以上になっているか判断する。S4に移り検出値Pが設定値Pa以上であれば設定値以下になるように圧縮機周波数を下げる。もしくは、膨張機回転数を上げても良い。検出値Pが設定値Pa以下であれば冷媒温度検出手段38で暖房用熱交換器16の入口冷媒温度を検出し、検出値Tが設定値Ta以上になっているか判断する。設定値Taは、室内へ吹き出す温風の風量・温度を任意調整可能な冷媒温度をあらかじめ実験・解析等で決定しておく。S5に移り検出値Tが設定値Ta以下であれば、流量制御弁17を開き、圧縮機周波数を上げ、検出値Tが設定値Ta以上になるまで繰り返す。検出値Tが設定値Ta以上であれば運転を継続したままS3に戻りフローチャートを繰り返す。   A control method for switching from a parallel connection of a hot water supply heat exchanger and a heating heat exchanger to a serial connection when medium-high temperature water enters the hot water supply heat exchanger will be described with reference to the flowchart of FIG. First, in S1, the refrigerant pressure at the outlet of the hot water supply heat exchanger 12 is detected by the refrigerant pressure detecting means 39, and it is determined whether or not the set value Pa (for example, 13 MPa) or more. The set value Pa is determined in advance through experiments and analysis from the safety and reliability of the system and each device. Next, the process proceeds to S2, and if the detected value is equal to or less than the set value Pa, the three-way valve 32 is in the a direction and the flow control valve 17 is left open (the hot water supply heat exchanger 12 and the heating heat exchanger 16 are connected in parallel ) To return to S1 and perform the same operation again. If the detected value is greater than or equal to the set value Pa, the three-way valve 32 is switched in the b direction, and the flow control valve 17 is closed. (The hot water supply heat exchanger 12 and the heating heat exchanger 16 are connected in series) Next, the process proceeds to S3, where the refrigerant pressure is detected again by the refrigerant pressure detecting means 39, and it is determined whether or not the set value Pa is exceeded. Moving to S4, if the detected value P is equal to or greater than the set value Pa, the compressor frequency is lowered so as to be equal to or less than the set value. Alternatively, the expander rotational speed may be increased. If the detected value P is less than or equal to the set value Pa, the refrigerant temperature detecting means 38 detects the inlet refrigerant temperature of the heating heat exchanger 16 and determines whether the detected value T is greater than or equal to the set value Ta. As the set value Ta, a refrigerant temperature capable of arbitrarily adjusting the amount and temperature of warm air blown into the room is determined in advance through experiments and analysis. Moving to S5, if the detected value T is less than or equal to the set value Ta, the flow control valve 17 is opened, the compressor frequency is increased, and the process is repeated until the detected value T is greater than or equal to the set value Ta. If the detected value T is equal to or greater than the set value Ta, the operation returns to S3 while continuing the operation and the flowchart is repeated.

以上の制御を行うことによって給湯用熱交換器への中高温入水時(例えば沸き終い時)において、高圧異常上昇を回避することができる。   By performing the above-described control, it is possible to avoid an abnormal increase in high pressure during medium-to-high-temperature water entry (for example, at the end of boiling) into the hot water supply heat exchanger.

なお、給湯用熱交換器12と暖房用熱交換器16の直列・並列の切り替え手段として三方弁に限らず、例えば図4に示すように第1切り替え弁47と第2切り替え弁48を設け、これらを制御しても良い。例えば給湯用熱交換器12と暖房用熱交換器16を並列接続にしたい場合は第1の流路切り替え弁47を開、第2の流路切り替え弁48を閉にする。給湯用熱交換器12と暖房用熱交換器16を直列接続にしたい場合は第1切り替え弁47を閉、第2切り替え弁48を開にする。   The series / parallel switching means for the hot water supply heat exchanger 12 and the heating heat exchanger 16 is not limited to a three-way valve, and for example, as shown in FIG. 4, a first switching valve 47 and a second switching valve 48 are provided. These may be controlled. For example, when it is desired to connect the hot water heat exchanger 12 and the heating heat exchanger 16 in parallel, the first flow path switching valve 47 is opened and the second flow path switching valve 48 is closed. When it is desired to connect the hot water heat exchanger 12 and the heating heat exchanger 16 in series, the first switching valve 47 is closed and the second switching valve 48 is opened.

なお、高圧の上昇を検知するための手段としては、冷媒圧力検出手段に限るものではなく、例えば図5に示すような給湯用熱交換器へ流入する入水温度と圧縮機周波数から予測しても良い。つまり、図6に示すような給湯用熱交換器入水温度と圧縮機周波数、高圧との関係をあらかじめ実験等により導出しておき、高圧が13MPa以上であるかどうかを推測する。圧縮機周波数と給湯用熱交換器への入水温度が増加するにつれて高圧も上昇するため、図6に示すような関係が導ける。図6に示す高圧が13MPa以上(図に示す点線より上方)となる圧縮機周波数と入水温度の条件においては高圧が13MPa以上となったと判断し、図3に示すフローチャートのS2以降の制御を行う。圧力センサで冷媒圧力を測定する方法が正確であるが、コスト面から考えるとサーミスタ等の温度センサを用いて冷媒圧力を推測するほうが望ましい。   Note that the means for detecting an increase in high pressure is not limited to the refrigerant pressure detection means, and may be predicted from, for example, the incoming water temperature and the compressor frequency flowing into the hot water supply heat exchanger as shown in FIG. good. In other words, the relationship between the hot water supply heat exchanger inlet temperature, the compressor frequency, and the high pressure as shown in FIG. 6 is derived in advance by experiments or the like to estimate whether the high pressure is 13 MPa or more. Since the high pressure rises as the compressor frequency and the incoming water temperature to the hot water supply heat exchanger increase, the relationship shown in FIG. 6 can be derived. In the condition of the compressor frequency and the incoming water temperature at which the high pressure shown in FIG. 6 is 13 MPa or higher (above the dotted line shown in the figure), it is determined that the high pressure is 13 MPa or higher, and the control after S2 in the flowchart shown in FIG. . Although the method of measuring the refrigerant pressure with a pressure sensor is accurate, it is desirable to estimate the refrigerant pressure using a temperature sensor such as a thermistor from the viewpoint of cost.

また、その他の代替手段として図7に示すような高圧側の冷媒温度(例えば給湯用熱交換器12の出口冷媒温度)を検出しても良い。つまり、給湯用熱交換器12へ流入する水の温度が上昇すると、給湯用熱交換器12出口冷媒温度も上昇し、高圧も上昇するため高圧が13MPa以上となる給湯用熱交換器12出口冷媒の温度をあらかじめ導出しておいて、高圧が13MPa以上となった推測される温度になると図3に示すフローチャートのS2以降の制御を行う。   Further, as another alternative means, the refrigerant temperature on the high pressure side (for example, the outlet refrigerant temperature of the hot water supply heat exchanger 12) as shown in FIG. 7 may be detected. That is, when the temperature of the water flowing into the hot water supply heat exchanger 12 rises, the hot water supply heat exchanger 12 outlet refrigerant temperature also rises, and the high pressure also rises, so the high pressure becomes 13 MPa or higher, and the hot water supply heat exchanger 12 outlet refrigerant. Is derived in advance, and when the high pressure reaches an estimated temperature of 13 MPa or more, the control after S2 in the flowchart shown in FIG. 3 is performed.

また、図8に示すような貯湯タンク下部のタンク温度と圧縮機11の周波数をもとに高圧を推測しても良い。これは図5、図6を用いて説明した給湯用熱交換器12へ流入する水の温度と圧縮機11の周波数から高圧を予測する手段において、給湯用熱交換器12へ
流入する水の温度を貯湯タンク20の下部温度で代用するものであり、同様の制御を行う。
Further, the high pressure may be estimated based on the tank temperature below the hot water storage tank and the frequency of the compressor 11 as shown in FIG. This is the temperature of the water flowing into the hot water supply heat exchanger 12 in the means for predicting the high pressure from the temperature of the water flowing into the hot water supply heat exchanger 12 and the frequency of the compressor 11 described with reference to FIGS. Is replaced with the lower temperature of the hot water storage tank 20, and the same control is performed.

また、運転開始からの運転時間で高圧上昇を推測しても良い。貯湯タンク20内の水を沸き上げるのに必要な時間を実験・解析等で求めておき、運転開始から求めておいた時間が経過すると高圧が13MPa以上になったと判断し、図3の制御フローチャートを行う。ただし、運転開始からの沸き上げに必要な時間は貯湯タンク内の水の初期温度や運転状態に依存するため、貯湯タンク内の水の温度分布を貯湯タンク外壁に温度センサを設置するなどして把握する必要がある。   Further, the increase in high pressure may be estimated from the operation time from the start of operation. The time required to boil the water in the hot water storage tank 20 is obtained by experiment / analysis, etc., and it is determined that the high pressure has become 13 MPa or more after the time obtained from the start of operation has elapsed. I do. However, since the time required for boiling from the start of operation depends on the initial temperature of the water in the hot water tank and the operating condition, a temperature sensor is installed on the outer wall of the hot water tank to determine the temperature distribution of the water in the hot water tank. It is necessary to grasp.

なお、暖房用熱交換器16は室内暖房に限るものではなく、図9に示すようにブライン等を循環させる二次冷媒回路50を介して放熱手段37を設け、床暖房等に使用しても良い。   Note that the heating heat exchanger 16 is not limited to indoor heating, and as shown in FIG. 9, a heat radiating means 37 may be provided via a secondary refrigerant circuit 50 for circulating brine or the like to be used for floor heating or the like. good.

(実施の形態2)
以下、本発明の実施の形態2について、図面を参照しながら詳細に説明する。なお、背景技術と同一構成については同一符号を付す。
(Embodiment 2)
Hereinafter, Embodiment 2 of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same structure as background art.

図10は、実施の形態1の構成に室内温度検出手段40を設けた構成になっている。この構成によって、給湯用熱交換器12においては給湯運転、暖房用熱交換器16においては暖房立ち上げ運転が行われている場合を考えると、暖房用熱交換器16で、室内温度とリモコン49の設定温度との差が大きく、加熱能力が必要なときは並列接続で運転し、ある程度室内温度がリモコン49の設定温度に近づき加熱能力をそれほど必要としなくなった場合に直列接続に切り替える制御を行うことができる。例えば、冬場に暖房・給湯並列運転を行っている場合を考える。外気温度を10℃、室内温度を15℃、設定温度を20℃と仮定すると、暖房立ち上がり時は室内温度15℃を設定温度20℃まで昇温させる熱量と、室内から室外へ放熱する分の熱量とを出力させる必要があり、大きな加熱能力を必要とするため並列回路で冷凍サイクルを運転させる。並列回路で運転させることで暖房用熱交換器16へ高温の冷媒が流入するとともに暖房用熱交換器での出入口エンタルピ差が確保できるため大きな加熱能力にすることができる。室内温度が設定温度20℃に達すると室内から室外へ放熱する分の熱量を出力することで室内温度は20℃に保たれるため、暖房立ち上がり時と比較してそれほど大きな加熱能力は必要としなくなるため直列接続に切り替えて冷凍サイクルを運転させる。直列回路で運転させると暖房用熱交換器16へは給湯用熱交換器12で熱交換後の中温の冷媒が流入するため暖房用熱交換器16での出入口エンタルピ差があまり確保できないことや、暖房用熱交換器16へ流入する冷媒の温度が並列回路と場合と比較して高くないため、加熱能力はそれほど出力されなくなる。この加熱能力で室内温度を一定に保てるのであればそのままの状態で運転を継続し、加熱能力が不足しているようであれば流量調整弁17を開き、暖房用熱交換器へ流入する冷媒の温度と循環量を増やすことで加熱能力は調整できる。詳細な制御フローチャートを図11に示す。   FIG. 10 shows a configuration in which the room temperature detecting means 40 is provided in the configuration of the first embodiment. With this configuration, considering the case where a hot water supply operation is performed in the hot water supply heat exchanger 12 and a heating start-up operation is performed in the heating heat exchanger 16, the room temperature and the remote controller 49 are controlled by the heating heat exchanger 16. When there is a large difference between the set temperature and the heating capacity is required, operation is performed in parallel connection. When the room temperature approaches the set temperature of the remote controller 49 to some extent and the heating capacity is no longer required, control is performed to switch to serial connection. be able to. For example, consider a case where a heating / hot water supply parallel operation is performed in winter. Assuming that the outside air temperature is 10 ° C., the room temperature is 15 ° C., and the set temperature is 20 ° C., the amount of heat for raising the room temperature 15 ° C. to the set temperature 20 ° C. and the amount of heat radiated from the room to the outside at the start of heating. Are output, and since a large heating capacity is required, the refrigeration cycle is operated in a parallel circuit. By operating in a parallel circuit, a high temperature refrigerant flows into the heating heat exchanger 16 and a difference in entrance and exit enthalpies in the heating heat exchanger can be secured, so that a large heating capacity can be achieved. When the room temperature reaches the set temperature 20 ° C, the room temperature is maintained at 20 ° C by outputting the amount of heat radiated from the room to the outside. Therefore, the refrigeration cycle is operated by switching to a serial connection. When operated in a series circuit, the medium temperature refrigerant after heat exchange in the heat exchanger 12 for hot water flows into the heat exchanger 16 for heating. Since the temperature of the refrigerant flowing into the heating heat exchanger 16 is not higher than that in the parallel circuit, the heating capacity is not output so much. If the room temperature can be kept constant with this heating capacity, the operation is continued as it is, and if the heating capacity is insufficient, the flow control valve 17 is opened and the refrigerant flowing into the heating heat exchanger is opened. Heating capacity can be adjusted by increasing the temperature and circulation rate. A detailed control flowchart is shown in FIG.

まず、室内温度検出手段40により室内温度を検出し、検出値Tとリモコン49の設定値Taとを比較する。S2で、TがTa未満ならば三方弁32はa方向、流量制御弁17は開のままにする。TがTa以上ならば三方弁32はaからb方向へ切り替え、流量制御弁17は閉にする。S3で再度、室内温度検出手段40により室内温度を検出しTがTa未満ならば流量制御弁を開き、圧縮機周波数を上げ、TがTa以上ならば運転を継続させる。   First, the room temperature is detected by the room temperature detecting means 40, and the detected value T is compared with the set value Ta of the remote controller 49. If T2 is less than Ta in S2, the three-way valve 32 is kept in the a direction and the flow control valve 17 is left open. If T is equal to or greater than Ta, the three-way valve 32 is switched from a to b and the flow rate control valve 17 is closed. In S3, the room temperature is detected again by the room temperature detecting means 40. If T is less than Ta, the flow control valve is opened, the compressor frequency is increased, and if T is Ta or more, the operation is continued.

以上の制御を行うことによって、暖房負荷が小さくなった場合において、給湯用熱交換器出口冷媒の熱を有効利用することができる。   By performing the above control, when the heating load becomes small, the heat of the hot water supply heat exchanger outlet refrigerant can be effectively used.

以上、本発明の実施の形態について説明したが、本発明で使用する冷媒はCO2等の高圧側が超臨界となって作動する冷媒が望ましい。本発明のように給湯機能を有するシステムにおいてはフロン系冷媒のような凝縮域を有する冷媒よりもCO2等の高圧側が超臨界となって作動する冷媒のほうが高温加熱に有利であるからである。   Although the embodiments of the present invention have been described above, the refrigerant used in the present invention is preferably a refrigerant that operates on the high-pressure side such as CO2 with supercriticality. This is because, in a system having a hot water supply function as in the present invention, a refrigerant operating with a high pressure side such as CO2 being supercritical is more advantageous for high-temperature heating than a refrigerant having a condensation region such as a chlorofluorocarbon refrigerant.

本発明にかかる冷凍サイクル装置は、給湯機、冷凍・空調機器や乾燥装置などの冷凍サイクル装置として利用することができる。   The refrigeration cycle apparatus according to the present invention can be used as a refrigeration cycle apparatus such as a water heater, a refrigeration / air-conditioning apparatus, and a drying apparatus.

本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、沸き終い時の圧力-比エンタルピ線図Pressure-specific enthalpy diagram at the end of boiling in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態2における、冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus in Embodiment 2 of the present invention 本発明の実施の形態2における、冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus in Embodiment 2 of the present invention 従来の冷凍サイクル装置図Conventional refrigeration cycle diagram 従来の冷凍サイクル装置の制御フローチャートControl flowchart of conventional refrigeration cycle apparatus

符号の説明Explanation of symbols

10 ヒートポンプ回路
10A 温度センサ(吐出温度検出手段)
10B 圧力センサ(吐出圧力検出手段)
10C 温度センサ(外気温度検出手段)
11 圧縮機
12 給湯用熱交換器
12A 水用配管
13A 第1開閉弁
13B キャピラリーチューブ
14 蒸発器
15 膨張機構
16 暖房用熱交換器
17 流量制御弁
18 室外ファン
19 使用端末
20 貯湯タンク
20A、20B,20C,20D、20E、20F 温度センサ
21 制御手段
22 底部配管
23 第1の循環ポンプ
24 上部循環用配管
25 第2の循環ポンプ
26 2次冷媒配管
27 第1の放熱手段
28 第2の放熱手段
29 循環ポンプ
30A 流量センサ
30B 温度センサ
31 室内ファン
32 三方弁
33 出湯用配管
34 混合弁
35 出水用配管
36 給湯用蛇口
37 放熱手段
38 冷媒温度検出手段
39 冷媒圧力検出手段
40 室内温度検出手段
41 規定周波数設定手段
42 入水負荷設定手段
43 外気負荷設定手段
44 入水負荷決定手段
45 外気負荷決定手段
46 目標周波数決定手段
47 第1切り替え弁
48 第2切り替え弁
49 リモコン
50 二次冷媒回路
51 タンク温度検出手段
52 水温度検出手段
61 バイパス経路
10 heat pump circuit 10A temperature sensor (discharge temperature detection means)
10B Pressure sensor (Discharge pressure detection means)
10C temperature sensor (outside air temperature detection means)
DESCRIPTION OF SYMBOLS 11 Compressor 12 Hot water supply heat exchanger 12A Water pipe 13A 1st on-off valve 13B Capillary tube 14 Evaporator 15 Expansion mechanism 16 Heating heat exchanger 17 Flow control valve 18 Outdoor fan 19 Use terminal 20 Hot water storage tank 20A, 20B, 20C, 20D, 20E, 20F Temperature sensor 21 Control means 22 Bottom pipe 23 First circulation pump 24 Upper circulation pipe 25 Second circulation pump 26 Secondary refrigerant pipe 27 First heat release means 28 Second heat release means 29 Circulating pump 30A Flow rate sensor 30B Temperature sensor 31 Indoor fan 32 Three-way valve 33 Hot water outlet pipe 34 Mixing valve 35 Water outlet pipe 36 Hot water supply faucet 37 Heat radiating means 38 Refrigerant temperature detecting means 39 Refrigerant pressure detecting means 40 Indoor temperature detecting means 41 Specified frequency Setting means 42 Incoming load setting means 43 Outside air load setting means 44 Incoming load determination Stage 45 outside air load determining means 46 target frequency determining means 47 first switching valve 48 second switching valve 49 remote controller 50 the secondary refrigerant circuit 51 tank temperature detecting means 52 water temperature detecting means 61 bypass path

Claims (8)

圧縮機と、給湯用熱交換器と暖房用熱交換器とが冷媒管路を介して並列に配置された並列回路と、絞り装置と、室外熱交換器を順次環状に接続してなる主冷媒回路と、
前記給湯用熱交換器の冷媒出口と前記暖房用熱交換器の入口を接続するバイパス経路と、
前記給湯用熱交換器を通過した冷媒が、前記バイパス経路を経由して前記暖房用熱交換器を流れる第1の経路と、前記バイパス経路を経由せず前記絞り装置へ向かう第2の経路とを、切り替え可能な制御手段とを有する冷凍サイクル装置。
A main refrigerant in which a compressor, a hot water supply heat exchanger, and a heating heat exchanger are arranged in parallel via a refrigerant pipe, a throttling device, and an outdoor heat exchanger are sequentially connected in an annular shape. Circuit,
A bypass path connecting the refrigerant outlet of the hot water heat exchanger and the inlet of the heating heat exchanger;
A first path through which the refrigerant that has passed through the hot water supply heat exchanger flows through the heating heat exchanger via the bypass path, and a second path toward the expansion device without passing through the bypass path; A refrigeration cycle apparatus having switchable control means.
前記制御手段による前記第1の経路と前記第2の経路の切り替えが、前記給湯用熱交換器の出口で、前記バイパス経路の入口に設けられた三方弁を切り替えることによって行われる請求項1に記載の冷凍サイクル装置。 The switching between the first path and the second path by the control means is performed by switching a three-way valve provided at the inlet of the bypass path at the outlet of the hot water heat exchanger. The refrigeration cycle apparatus described. 前記並列回路の前記暖房用熱交換器の冷媒の流れる上流側であって、かつ、前記バイパス経路の合流点より上流側に、流量制御弁をさらに有する請求項1または2に記載の冷凍サイクル装置。 3. The refrigeration cycle apparatus according to claim 1, further comprising a flow rate control valve on an upstream side of the refrigerant flowing in the heating heat exchanger of the parallel circuit and on an upstream side of a confluence of the bypass path. . 前記第2の経路の前記給湯用熱交換器の下流側であって、前記絞り装置の入り側より上流の高圧側冷媒配管に冷媒圧力検出手段をさらに有し、
前記制御手段は、前記冷媒圧力検出手段の検出値が所定値以上になると、前記給湯用熱交換器を通過した冷媒の経路を前記第2の経路から前記第1の経路に切り替える、請求項1〜3のいずれかに記載の冷凍サイクル装置。
Further comprising a refrigerant pressure detection means in a high-pressure side refrigerant pipe downstream of the hot water supply heat exchanger in the second path and upstream of the inlet side of the expansion device;
The control means switches the refrigerant path that has passed through the hot water supply heat exchanger from the second path to the first path when the detection value of the refrigerant pressure detection means becomes a predetermined value or more. Refrigeration cycle apparatus in any one of -3.
前記暖房用熱交換器の冷媒入口に冷媒温度検出手段をさらに設け、
前記制御手段は、前記冷媒温度検出手段の検出値が所定値未満になると、前記流量制御弁の開度を大きくする、請求項3に記載の冷凍サイクル装置の運転方法。
A refrigerant temperature detection means is further provided at the refrigerant inlet of the heat exchanger for heating,
The operating method of the refrigeration cycle apparatus according to claim 3, wherein the control means increases the opening of the flow control valve when the detection value of the refrigerant temperature detection means becomes less than a predetermined value.
前記給湯用熱交換器の水入口に水温度検出手段と、前期圧縮機の周波数を測定する手段をさらに設け、
前記制御手段は、前記水温度検出手段の検出値と前記圧縮機の周波数から、前記主冷媒回路の高圧を予測し、前記高圧が所定値以上になると、前記給湯用熱交換器を通過した冷媒の経路を前記第2の経路から前記第1の経路に切り替える、請求項1〜3のいずれかに記載の冷凍サイクル装置の運転方法。
Water temperature detection means at the water inlet of the hot water supply heat exchanger, and further provided with means for measuring the frequency of the previous compressor,
The control means predicts the high pressure of the main refrigerant circuit from the detection value of the water temperature detection means and the frequency of the compressor, and when the high pressure exceeds a predetermined value, the refrigerant that has passed through the hot water supply heat exchanger The operation method of the refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the route is switched from the second route to the first route.
前記暖房用熱交換器によって暖房される被暖房室に室内温度検出手段をさらに設け、
前記制御手段は、前記室内温度検出手段で検出された室内温度と暖房設定温度に基づき、前記給湯用熱交換器を通過した冷媒の経路を前記第2の経路から前記第1の経路に切り替える、請求項1〜3のいずれかに記載の冷凍サイクル装置。
An indoor temperature detecting means is further provided in a heated room heated by the heating heat exchanger,
The control means switches the path of the refrigerant that has passed through the hot water supply heat exchanger from the second path to the first path based on the room temperature and the heating set temperature detected by the room temperature detecting means. The refrigeration cycle apparatus according to any one of claims 1 to 3.
高圧側圧力を超臨界状態にして運転することを可能とする冷媒を用いたことを特徴とする請求項1〜7のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 7, wherein a refrigerant that enables operation with a high-pressure side pressure in a supercritical state is used.
JP2006306330A 2006-11-13 2006-11-13 Refrigerating cycle device Pending JP2008121982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306330A JP2008121982A (en) 2006-11-13 2006-11-13 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306330A JP2008121982A (en) 2006-11-13 2006-11-13 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2008121982A true JP2008121982A (en) 2008-05-29

Family

ID=39506926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306330A Pending JP2008121982A (en) 2006-11-13 2006-11-13 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2008121982A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281553A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Hot air generating device
JP2012047415A (en) * 2010-08-27 2012-03-08 Hitachi Appliances Inc Waste heat utilizing system of refrigerating device
KR101227751B1 (en) 2010-11-24 2013-01-29 주식회사 귀뚜라미 범양냉방 Heat pump type hot water supply system using waste heat
CN101776354B (en) * 2009-12-25 2013-02-27 山东天力干燥股份有限公司 Novel dried tail gas waste heat step recovering system
JP2014169830A (en) * 2013-03-04 2014-09-18 Hitachi Appliances Inc Refrigeration cycle device, and refrigeration device and air conditioner including refrigeration cycle device
WO2016046882A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
KR101653567B1 (en) * 2015-04-30 2016-09-05 오텍캐리어 주식회사 A Duality Cold Cycle Heatpump System Recovering Heat
KR101658021B1 (en) * 2015-04-30 2016-09-20 오텍캐리어 주식회사 A Heatpump System Using Duality Cold Cycle
CN106440512A (en) * 2016-10-08 2017-02-22 珠海格力电器股份有限公司 Heat pump hot water system and control method thereof
KR20180082724A (en) * 2017-01-11 2018-07-19 전남대학교산학협력단 temperature compensated cooling system high efficiency

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281553A (en) * 2009-06-08 2010-12-16 Mayekawa Mfg Co Ltd Hot air generating device
CN101776354B (en) * 2009-12-25 2013-02-27 山东天力干燥股份有限公司 Novel dried tail gas waste heat step recovering system
JP2012047415A (en) * 2010-08-27 2012-03-08 Hitachi Appliances Inc Waste heat utilizing system of refrigerating device
KR101227751B1 (en) 2010-11-24 2013-01-29 주식회사 귀뚜라미 범양냉방 Heat pump type hot water supply system using waste heat
JP2014169830A (en) * 2013-03-04 2014-09-18 Hitachi Appliances Inc Refrigeration cycle device, and refrigeration device and air conditioner including refrigeration cycle device
WO2016046882A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
JP5921777B1 (en) * 2014-09-22 2016-05-24 三菱電機株式会社 Refrigeration cycle equipment
KR101653567B1 (en) * 2015-04-30 2016-09-05 오텍캐리어 주식회사 A Duality Cold Cycle Heatpump System Recovering Heat
KR101658021B1 (en) * 2015-04-30 2016-09-20 오텍캐리어 주식회사 A Heatpump System Using Duality Cold Cycle
CN106440512A (en) * 2016-10-08 2017-02-22 珠海格力电器股份有限公司 Heat pump hot water system and control method thereof
KR20180082724A (en) * 2017-01-11 2018-07-19 전남대학교산학협력단 temperature compensated cooling system high efficiency
KR101964946B1 (en) * 2017-01-11 2019-04-02 전남대학교산학협력단 temperature compensated cooling system high efficiency

Similar Documents

Publication Publication Date Title
JP2008121982A (en) Refrigerating cycle device
US9322562B2 (en) Air-conditioning apparatus
JP5228023B2 (en) Refrigeration cycle equipment
US20140291411A1 (en) Heat pump heating and hot-water system
US20110138839A1 (en) Water circulation apparatus associated with refrigerant system
JP6129520B2 (en) Multi-type air conditioner and control method of multi-type air conditioner
KR20140139425A (en) Heating system
JP2013119954A (en) Heat pump hot water heater
US11525599B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP2007163071A (en) Heat pump type cooling/heating system
JP2007139244A (en) Refrigeration device
JP2010071544A (en) Air-conditioning system
WO2012121326A1 (en) Binary refrigeration cycle device
JP4890320B2 (en) Heat pump hot water supply system
WO2020174618A1 (en) Air-conditioning device
JP2015215117A (en) Heat pump type air cooling device
JP5889347B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP2006010137A (en) Heat pump system
JP5479625B2 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JPWO2020079835A1 (en) Air conditioner
JP2008116184A (en) Refrigerating cycle device
JP2009264714A (en) Heat pump hot water system
JP7055239B2 (en) Air conditioner
JP2009085479A (en) Hot water supply device
WO2019008742A1 (en) Refrigeration cycle device