JP2007303806A - Refrigerating cycle device and its operation method - Google Patents

Refrigerating cycle device and its operation method Download PDF

Info

Publication number
JP2007303806A
JP2007303806A JP2007100202A JP2007100202A JP2007303806A JP 2007303806 A JP2007303806 A JP 2007303806A JP 2007100202 A JP2007100202 A JP 2007100202A JP 2007100202 A JP2007100202 A JP 2007100202A JP 2007303806 A JP2007303806 A JP 2007303806A
Authority
JP
Japan
Prior art keywords
refrigerant
water
heat
heat exchanger
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007100202A
Other languages
Japanese (ja)
Inventor
Akira Komori
晃 小森
Yuichi Kusumaru
雄一 藥丸
Masaya Honma
雅也 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007100202A priority Critical patent/JP2007303806A/en
Publication of JP2007303806A publication Critical patent/JP2007303806A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle device and an operation method therefor, further heightening efficiency by improving the heat transfer characteristic of a refrigerant in an evaporator. <P>SOLUTION: A compressor 11, a heat radiator 12, an expansion valve 13, a second refrigerant-water heat exchanger 14 and the evaporator 15 are connected to each other by a refrigerating circuit 16 taking carbon dioxide, for example, as a refrigerant. The second refrigerant-water heat exchanger 14 is provided in the midway of the passage of refrigerant between the expansion valve 13 and the evaporator 15, and connected to a water circuit 18 where water passes. The refrigerant is depressurised by the expansion valve 13, then heated by heat exchange with water of the water circuit 18 by the second refrigerant-water head exchanger 14, and further it is vaporized by depriving heat from the air in the evaporator 15 to become overheat steam. It returns to the compressor 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、給湯器として用いる冷凍サイクル装置とその運転方法に関する。   The present invention relates to a refrigeration cycle apparatus used as a water heater and an operation method thereof.

圧縮機、放熱器、膨張機、蒸発器を主な構成要素とし、それらを冷媒経路で接続する冷凍サイクル装置、いわゆるヒートポンプサイクルを用いた給湯装置が実用化されている。ヒートポンプサイクルを用いた給湯装置においては、放熱器において、高温の冷媒と、水との熱交換を行うことにより、温水を得ている。   A refrigeration cycle apparatus that uses a compressor, a radiator, an expander, and an evaporator as main components and connects them through a refrigerant path, that is, a hot water supply apparatus using a so-called heat pump cycle has been put into practical use. In a water heater using a heat pump cycle, hot water is obtained by performing heat exchange between a high-temperature refrigerant and water in a radiator.

冷凍サイクル装置においては、構成要素の高性能化、制御の最適化等の様々なシステム性能の高効率化の取組みがなされてきた。システム性能向上手段の一つとして、蒸発器と圧縮機との冷媒経路の間に副熱交換器を設ける構成が提案されている(例えば、特許文献1参照)。   In the refrigeration cycle apparatus, efforts have been made to improve the efficiency of various system performances such as improving the performance of components and optimizing control. As one of the system performance improving means, a configuration in which a sub heat exchanger is provided between refrigerant paths of an evaporator and a compressor has been proposed (for example, see Patent Document 1).

特許文献1は図4に示すように、冷凍サイクル装置50が、圧縮機51、熱交換器52、膨張弁53、蒸発器54、副熱交換器55で構成され、貯湯槽56を備えている。そして、貯湯槽56の温水は、ポンプ57で流通路58に送られ、副熱交換器55で、授熱部59から受熱部60に温水から冷媒に伝熱される。さらに、熱交換器52では、凝縮器61から受熱部62に伝熱され、貯湯槽56に戻る。すなわち、貯湯槽56から取り出された温水は、蒸発器54から圧縮機51に向かう低温の冷媒と熱交換して温度を低下させた後、熱交換器52で圧縮機51から吐出された高温の冷媒と熱交換して加熱され、貯湯槽56に戻る。このような構成とすることにより、副熱交換器55がない場合に比べ、熱交換器52で熱交換される水温条件によって異なるが、成績係数を1前後上昇させている。
特開2002−98429号公報
In Patent Document 1, as shown in FIG. 4, the refrigeration cycle apparatus 50 includes a compressor 51, a heat exchanger 52, an expansion valve 53, an evaporator 54, and an auxiliary heat exchanger 55, and includes a hot water storage tank 56. . Then, the hot water in the hot water storage tank 56 is sent to the flow passage 58 by the pump 57, and is transferred from the hot water to the heat receiving part 60 by the auxiliary heat exchanger 55 from the hot water to the refrigerant. Further, in the heat exchanger 52, heat is transferred from the condenser 61 to the heat receiving unit 62, and returns to the hot water storage tank 56. That is, the hot water taken out from the hot water storage tank 56 is subjected to heat exchange with a low-temperature refrigerant from the evaporator 54 toward the compressor 51 to lower the temperature, and then the hot water discharged from the compressor 51 by the heat exchanger 52 It is heated by exchanging heat with the refrigerant and returned to the hot water tank 56. By setting it as such a structure, compared with the case where there is no sub heat exchanger 55, although it changes with water temperature conditions with which the heat exchanger 52 heat-exchanges, a coefficient of performance is raised around 1.
JP 2002-98429 A

しかしながら、第1に上述の構成の冷凍サイクル装置の蒸発器は、冷媒の熱伝達率の大きい領域を使っていないため、蒸発器での熱伝達特性が良くなかった。冷凍サイクル装置の蒸発器では、膨張機構から吐出された低圧冷媒が、気液混合相状態から周囲の熱により気化されていく。ここで蒸発器における冷媒は、液相状態の領域が大きく占めると、冷媒は密度が大きく、低流速な状態で管内を流動するため熱伝達率が小さく、熱交換器の容積が大きくなる課題があった。第2に膨張機構より吐出された低圧冷媒は、蒸発器をへて副熱交換器に接続されているため、冷媒がガス状態に近く、体積流量が大きな状態で副熱交換器を通過するため、冷媒管のパス数が少ない場合、圧力損失が増大し、成績係数が低下することになるため、必然的に冷媒管のパス数を増やす必要があり、副熱交換器が大きくなる。   However, firstly, the evaporator of the refrigeration cycle apparatus having the above-described configuration does not use a region where the refrigerant has a large heat transfer coefficient, and therefore has poor heat transfer characteristics in the evaporator. In the evaporator of the refrigeration cycle apparatus, the low-pressure refrigerant discharged from the expansion mechanism is vaporized by ambient heat from the gas-liquid mixed phase state. Here, when the refrigerant in the evaporator occupies a large area in the liquid phase, the refrigerant has a high density and flows through the pipe at a low flow rate, so the heat transfer coefficient is small and the volume of the heat exchanger is large. there were. Secondly, since the low-pressure refrigerant discharged from the expansion mechanism passes through the auxiliary heat exchanger in a state where the refrigerant is close to the gas state and the volume flow rate is large because the refrigerant is connected to the auxiliary heat exchanger through the evaporator. When the number of passes of the refrigerant pipe is small, the pressure loss increases and the coefficient of performance decreases, so that it is inevitably necessary to increase the number of passes of the refrigerant pipe, and the auxiliary heat exchanger becomes large.

そこで本発明は、副熱交換器を膨張機構出口に設け、高密度な状態の冷媒を流通させることで冷媒管のパス数が少ない状態でも低圧力損失にすることができ、かつ蒸発器で乾き度の大きな冷媒を多く利用することによって蒸発器での伝熱性能を高め、高効率な冷凍サイクル装置とその運転方法とすることを目的とする。   Therefore, the present invention provides a sub heat exchanger at the outlet of the expansion mechanism, and allows a low-pressure loss to be achieved even in a state where the number of passes of the refrigerant pipe is small by circulating a high-density refrigerant and is dried by the evaporator. The purpose of the present invention is to improve the heat transfer performance in the evaporator by using a large amount of refrigerant having a high degree and to provide a highly efficient refrigeration cycle apparatus and its operation method.

本発明の冷凍サイクル装置は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒を放熱し、水を加熱する第1の冷媒―水熱交換器として機能する放熱器と、前記放熱器で放熱された前記冷媒の圧力を低下させる膨張機構と、前記膨張機構で圧力を低下され
た前記冷媒と前記冷媒より温度の高い水とを熱交換させる第2の冷媒−水熱交換器と、前記第2の冷媒−水熱交換器で熱交換した後の冷媒を蒸発させる蒸発器とが前記冷媒を流す経路で循環する形で接続された冷媒回路と、
水供給源より供給された水が前記冷媒と熱交換して冷却される前記第2の冷媒−水熱交換器と、前記水が前記冷媒と熱交換して加熱される前記放熱器との順に接続した流路に前記水を流す水経路と、
を備えた構成とする。
The refrigeration cycle apparatus of the present invention includes a compressor that compresses a refrigerant, a radiator that functions as a first refrigerant-water heat exchanger that radiates heat and heats the refrigerant compressed by the compressor, An expansion mechanism for reducing the pressure of the refrigerant radiated by the radiator, and a second refrigerant-water heat exchanger for exchanging heat between the refrigerant whose pressure has been reduced by the expansion mechanism and water having a temperature higher than that of the refrigerant. And an evaporator for evaporating the refrigerant after heat exchange with the second refrigerant-water heat exchanger, and a refrigerant circuit connected so as to circulate in a path through which the refrigerant flows,
The second refrigerant-water heat exchanger in which water supplied from a water supply source is cooled by exchanging heat with the refrigerant, and the radiator in which the water is heated by exchanging heat with the refrigerant. A water path for flowing the water in the connected flow path;
It is set as the structure provided with.

このような構成の冷凍サイクル装置は、冷媒−水熱交換器で冷媒の乾き度を上げた低圧の冷媒が蒸発器に入るので、蒸発器の管内の冷媒は熱伝達特性が高い領域を用いることになり、小型で高効率な冷凍サイクル装置を構成できる。   In the refrigeration cycle apparatus having such a configuration, since the low-pressure refrigerant whose degree of dryness of the refrigerant has been increased by the refrigerant-water heat exchanger enters the evaporator, the refrigerant in the evaporator pipe should use a region having high heat transfer characteristics. Thus, a small and highly efficient refrigeration cycle apparatus can be configured.

本発明の冷凍サイクル装置の運転方法は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒を放熱し、水を加熱する第1の冷媒―水熱交換器として機能する放熱器と、前記放熱器で放熱された前記冷媒の圧力を低下させる膨張機構と、前記膨張機構で圧力を低下された前記冷媒と前記冷媒より温度の高い水とを熱交換させる第2の冷媒−水熱交換器と、前記第2の冷媒−水熱交換器と熱交換した後の冷媒を蒸発させる蒸発器とが前記冷媒を流す経路で循環する形で接続された冷媒回路と、
水供給源より供給された水が前記冷媒と熱交換して冷却される前記第2の冷媒−水熱交換器と、前記水が冷媒と熱交換して加熱される前記放熱器との順に接続した流路に前記水を流す水経路とを備えた冷凍サイクル装置の運転方法であって、
前記圧縮機の吸込む冷媒が過熱蒸気となるように前記第2の冷媒−水熱交換器で前記冷媒と前記水とを熱交換させる。
The operation method of the refrigeration cycle apparatus of the present invention includes a compressor that compresses a refrigerant, and a radiator that functions as a first refrigerant-water heat exchanger that radiates heat from the refrigerant compressed by the compressor and heats water. And an expansion mechanism for reducing the pressure of the refrigerant radiated by the radiator, and a second refrigerant-water for exchanging heat between the refrigerant whose pressure has been reduced by the expansion mechanism and water having a temperature higher than that of the refrigerant A refrigerant circuit connected in a form in which a heat exchanger and an evaporator that evaporates the refrigerant after heat exchange with the second refrigerant-water heat exchanger circulates in a path through which the refrigerant flows;
The second refrigerant-water heat exchanger, in which water supplied from a water supply source is cooled by exchanging heat with the refrigerant, and the radiator, in which the water is heated by exchanging heat with the refrigerant, are connected in this order. An operation method of a refrigeration cycle apparatus comprising a water path for flowing the water through the flow path,
Heat is exchanged between the refrigerant and the water in the second refrigerant-water heat exchanger so that the refrigerant sucked by the compressor becomes superheated steam.

このような冷凍サイクル装置の運転方法とすると、1つ目は第2の冷媒―水熱交換器で冷媒の乾き度が上がり熱伝達特性を向上させることができる。2つ目は、蒸発器出口で容易に過熱蒸気とすることができるため、圧縮機での液圧縮を防止・信頼性を向上できる。3つ目は、低圧の冷媒の交換熱量を増加させることができ、より高い温度の過熱蒸気とすることができるため、冷凍サイクル装置の効率を向上することができる。   With such a refrigeration cycle apparatus operating method, the first is the second refrigerant-water heat exchanger, which increases the dryness of the refrigerant and improves the heat transfer characteristics. Second, since superheated steam can be easily formed at the outlet of the evaporator, liquid compression in the compressor can be prevented and reliability can be improved. Third, the amount of exchange heat of the low-pressure refrigerant can be increased, and the superheated steam at a higher temperature can be obtained. Therefore, the efficiency of the refrigeration cycle apparatus can be improved.

また本発明の冷凍サイクル装置の運転方法は、水に貯湯槽の温水を混合することで、冷媒−水熱交換器で冷媒と熱交換する水温度を一定にすることができ、冷媒の乾き度、放熱器の冷媒出口エンタルピも一定にできることから、安定かつ最適な冷凍サイクルとなるように制御が可能となる。   Further, the operation method of the refrigeration cycle apparatus of the present invention is such that the temperature of water that exchanges heat with the refrigerant in the refrigerant-water heat exchanger can be made constant by mixing the hot water of the hot water storage tank with water, and the dryness of the refrigerant Since the refrigerant outlet enthalpy of the radiator can be made constant, it is possible to control the refrigeration cycle to be stable and optimal.

また本発明の別の冷凍サイクル装置の運転方法は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒を放熱し、水を加熱する第1の冷媒―水熱交換器として機能する放熱器と、前記放熱器で放熱された前記冷媒の圧力を低下させる膨張機構と、前記膨張機構で圧力を低下された前記冷媒と前記冷媒より温度の高い水とを熱交換させる第2の冷媒−水熱交換器と、前記第2の冷媒−水熱交換器と熱交換した後の冷媒を蒸発させる蒸発器とが前記冷媒を流す経路で循環する形で接続された冷媒回路と、
水供給源より供給された水が前記冷媒と熱交換して冷却される前記第2の冷媒−水熱交換器と、前記水が冷媒と熱交換して加熱される前記放熱器との順に接続した流路に前記水を流す水経路とを備えた冷凍サイクル装置の運転方法であって、
前記放熱器で熱交換させる前の冷媒と水との温度を検出し、前記放熱器を出る冷媒が所定の温度となるように、前記水の流量を制御する。
Further, another refrigeration cycle apparatus operating method of the present invention functions as a compressor that compresses a refrigerant, and a first refrigerant-water heat exchanger that radiates heat from the refrigerant compressed by the compressor and heats water. Heat exchanger, an expansion mechanism that reduces the pressure of the refrigerant radiated by the radiator, and a second heat exchanger that exchanges heat between the refrigerant whose pressure is reduced by the expansion mechanism and water having a temperature higher than that of the refrigerant. A refrigerant circuit connected in a form in which a refrigerant-water heat exchanger and an evaporator for evaporating the refrigerant after heat exchange with the second refrigerant-water heat exchanger are circulated in a path through which the refrigerant flows;
The second refrigerant-water heat exchanger, in which water supplied from a water supply source is cooled by exchanging heat with the refrigerant, and the radiator, in which the water is heated by exchanging heat with the refrigerant, are connected in this order. An operation method of a refrigeration cycle apparatus comprising a water path for flowing the water through the flow path,
The flow rate of the water is controlled so that the temperature of the refrigerant and water before heat exchange by the radiator is detected and the refrigerant exiting the radiator reaches a predetermined temperature.

このような運転方法にすれば、放熱器での冷媒と水との熱交換量を確実に制御できるため、放熱器において必要な放熱量を得ることができる。このとき、放熱器で季節変化に対しても一定以上の放熱量を得ることができるため、より効率の高い冷凍サイクル装置の運
転方法とすることができる。
With such an operation method, the amount of heat exchange between the refrigerant and water in the radiator can be reliably controlled, so that a necessary amount of heat radiation can be obtained in the radiator. At this time, since a heat radiation amount exceeding a certain level can be obtained even with a seasonal change by the radiator, a more efficient operation method of the refrigeration cycle apparatus can be achieved.

本発明の冷凍サイクル装置とその運転方法によれば、蒸発器での冷媒の熱伝達率が上がり、高効率な冷凍サイクル装置とその運転方法とすることができる。   According to the refrigeration cycle apparatus of the present invention and the operation method thereof, the heat transfer coefficient of the refrigerant in the evaporator is increased, and a highly efficient refrigeration cycle apparatus and the operation method thereof can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態)
本発明の実施の形態の冷凍サイクル装置10は、図1に示すように、冷媒を循環させて、ヒートポンプサイクルを構成する冷媒回路16と、冷媒回路16を利用して水を加熱するための水経路18を有する。冷媒回路16は、冷媒を圧縮する圧縮機11と、圧縮機11で圧縮された冷媒を放熱し、水経路18の水を加熱する第1の冷媒−水熱交換器である放熱器12と、放熱器12で放熱された冷媒の圧力を低下させる膨張機構である膨張弁13と、膨張弁13で圧力を低下された冷媒と水とで熱交換させる冷媒−水熱交換器14と、冷媒―水熱交換器14で熱交換した後の冷媒を蒸発させる蒸発器15とが、順に接続されたものである。ここで用いる冷媒としては、例えば二酸化炭素である。また、供給側の水経路19は、水供給源として、水流量制御弁31、147、25を介して上水に接続されている。水供給源から供給された水は、水経路19を流れ、第2の冷媒−水熱交換器を経由する第1分岐経路180と、それをバイパスする第2分岐経路181に分岐され、これらは再び統合されて水経路18となり、放熱器12を通過して、冷媒により加熱され、貯湯槽17に温水が供給される。ここで上水とは水道水である。また、図1に示すように、必要に応じて貯湯槽17で温度の低くなった水を再加熱するため、水経路19が水流量制御弁31を介して貯湯槽17に接続されている。
(Embodiment)
As shown in FIG. 1, a refrigeration cycle apparatus 10 according to an embodiment of the present invention circulates a refrigerant to form a heat pump cycle and water for heating water using the refrigerant circuit 16. It has a path 18. The refrigerant circuit 16 includes a compressor 11 that compresses the refrigerant, a radiator 12 that is a first refrigerant-water heat exchanger that radiates heat from the refrigerant compressed by the compressor 11 and heats water in the water path 18, An expansion valve 13 that is an expansion mechanism for reducing the pressure of the refrigerant radiated by the radiator 12, a refrigerant-water heat exchanger 14 for exchanging heat between the refrigerant whose pressure is reduced by the expansion valve 13 and water, and a refrigerant The evaporator 15 which evaporates the refrigerant | coolant after heat-exchanged with the water heat exchanger 14 is connected in order. The refrigerant used here is, for example, carbon dioxide. Further, the water path 19 on the supply side is connected to clean water through water flow control valves 31, 147 and 25 as a water supply source. The water supplied from the water supply source flows through the water path 19 and is branched into a first branch path 180 passing through the second refrigerant-water heat exchanger and a second branch path 181 bypassing it. The water path 18 is integrated again, passes through the radiator 12, is heated by the refrigerant, and hot water is supplied to the hot water tank 17. Here, tap water is tap water. Further, as shown in FIG. 1, the water path 19 is connected to the hot water tank 17 via a water flow rate control valve 31 in order to reheat the water whose temperature has been lowered in the hot water tank 17 as necessary.

本実施形態の給湯装置の特徴は、第2の冷媒−水熱交換器14を有し、これによって、水を冷却して冷媒を加熱している点である。従来の給湯装置では、水と冷媒の熱交換器には、本実施形態の第1の冷媒−水熱交換器すなわち放熱器12のみであった。本実施形態の給湯装置は、このような構成を有するために、圧縮機動力を低下させることができ、高効率なシステムを構成できる。この理由は、後に、図3を用いて説明する。   The feature of the hot water supply apparatus of the present embodiment is that it has a second refrigerant-water heat exchanger 14, thereby cooling water and heating the refrigerant. In the conventional hot water supply apparatus, only the first refrigerant-water heat exchanger of the present embodiment, that is, the radiator 12, is used as the heat exchanger for water and refrigerant. Since the hot water supply apparatus of the present embodiment has such a configuration, the compressor power can be reduced and a highly efficient system can be configured. The reason for this will be described later with reference to FIG.

次に、本実施形態のその他の構成について、説明を続ける。蒸発器15には、ファン21が備えられている。冷媒回路16には、放熱器12と第2の冷媒−水熱交換器14に入る前のそれぞれの冷媒の温度を計測する温度センサ22、温度センサ23が備えられている。水経路19には、水道水等の上水の温度を計測する温度センサ24、流量調節バルブ25と水経路19から第1分岐経路180に至る経路に設けられた流量調整バルブ27とその開度を調整する信号線44が備えられている。水経路19は、貯湯槽17の出口温度を計測する温度センサ29、送水ポンプ30、流量調節バルブ31、第2の冷媒−水熱交換器14に入る前の上水の温度を計測する温度センサ26、流量調節バルブ27、放熱器12に入る前の上水の温度を計測する温度センサ28が備えられている。第2分岐経路181には、流量調節バルブ33が備えられている。   Next, description of other configurations of the present embodiment will be continued. The evaporator 15 is provided with a fan 21. The refrigerant circuit 16 is provided with a temperature sensor 22 and a temperature sensor 23 that measure the temperature of each refrigerant before entering the radiator 12 and the second refrigerant-water heat exchanger 14. In the water path 19, a temperature sensor 24 that measures the temperature of tap water such as tap water, a flow rate adjustment valve 25, a flow rate adjustment valve 27 provided in the path from the water path 19 to the first branch path 180, and its opening degree. Is provided with a signal line 44 for adjusting. The water path 19 is a temperature sensor 29 that measures the outlet temperature of the hot water tank 17, a water supply pump 30, a flow rate adjustment valve 31, and a temperature sensor that measures the temperature of clean water before entering the second refrigerant-water heat exchanger 14. 26, a flow rate adjusting valve 27, and a temperature sensor 28 for measuring the temperature of clean water before entering the radiator 12 are provided. The second branch path 181 is provided with a flow rate adjustment valve 33.

そして、温度センサ24、29、22、28、23、26と制御装置34とがそれぞれ信号線35、36、37、38、39、40で接続されている。さらに、制御装置34は流量調節バルブ31、25、ファン21、流量調節バルブ27、33とそれぞれ信号線41、42、43、44、45で接続されている。また、貯湯槽17の温水は、浴槽等の給湯負荷ユニット46に供給される。   The temperature sensors 24, 29, 22, 28, 23, and 26 are connected to the control device 34 by signal lines 35, 36, 37, 38, 39, and 40, respectively. Further, the control device 34 is connected to the flow rate adjusting valves 31 and 25, the fan 21, and the flow rate adjusting valves 27 and 33 through signal lines 41, 42, 43, 44, and 45, respectively. The hot water in the hot water tank 17 is supplied to a hot water supply load unit 46 such as a bathtub.

次に、図1の冷凍サイクル装置10の動作を説明する。冷媒は、冷媒回路16中の圧縮
機11で高温、高圧にして吐出され、第1の冷媒―水熱交換器である放熱器12で水回路18の水と熱交換して放熱される。ここで、冷媒は水回路18の水により冷却されるため、出口エンタルピを十分に低くすることができ、放熱量も大きくすることができる。さらに、放熱器12の冷媒は、低温の上水との熱交換でよいため冷媒の圧力を低くすることができる。
Next, operation | movement of the refrigerating-cycle apparatus 10 of FIG. 1 is demonstrated. The refrigerant is discharged at a high temperature and high pressure by the compressor 11 in the refrigerant circuit 16 and is radiated by exchanging heat with the water in the water circuit 18 by the radiator 12 which is the first refrigerant-water heat exchanger. Here, since the refrigerant is cooled by the water of the water circuit 18, the outlet enthalpy can be sufficiently lowered and the heat radiation amount can be increased. Furthermore, since the refrigerant | coolant of the heat radiator 12 should just be heat exchange with a low temperature clean water, the pressure of a refrigerant | coolant can be made low.

そして冷媒は、膨張弁13でその圧力を低下させられた後、第2の冷媒−水熱交換器14で水回路18の水と熱交換することで加熱されて冷媒の乾き度が上がり、蒸発器15でさらに大気から熱を奪って気化されて圧縮機11に戻る。ここで、この冷媒の過熱度を大きくとって、圧縮機11に吸入させるようにすれば、圧縮機11の冷媒吐出温度を一定とした場合、その冷媒の吐出圧力を低減することができ、圧縮機11の圧縮動力を小さくできる。この過熱量の調整は、ファン21のファン風量と、バイパス経路181に設けられたバルブ33と第2の冷媒−水熱交換器14の前に設けられたバルブ27の開度調整によって蒸発過程にある冷媒の蒸発量を調整することにより行われる。   Then, after the pressure of the refrigerant is reduced by the expansion valve 13, the refrigerant is heated by exchanging heat with the water in the water circuit 18 by the second refrigerant-water heat exchanger 14, thereby increasing the dryness of the refrigerant and evaporating. In the vessel 15, heat is further taken from the atmosphere and vaporized and returned to the compressor 11. Here, if the degree of superheat of the refrigerant is increased and sucked into the compressor 11, when the refrigerant discharge temperature of the compressor 11 is constant, the discharge pressure of the refrigerant can be reduced, and the compression The compression power of the machine 11 can be reduced. This adjustment of the amount of superheat is performed in the evaporation process by adjusting the fan air volume of the fan 21 and the opening of the valve 33 provided in the bypass passage 181 and the valve 27 provided in front of the second refrigerant-water heat exchanger 14. This is done by adjusting the evaporation amount of a certain refrigerant.

水は、水回路180中の第2の冷媒−水熱交換器14で冷媒と熱交換して冷却された後、放熱器12で冷媒と熱交換して加熱され、貯湯槽17に貯留される。   After the water is cooled by exchanging heat with the refrigerant in the second refrigerant-water heat exchanger 14 in the water circuit 180, the water is heated by exchanging heat with the refrigerant in the radiator 12 and stored in the hot water tank 17. .

次に、第1分岐経路180および第2分岐経路181の水量の制御方法について、詳しく説明する。   Next, a method for controlling the amount of water in the first branch path 180 and the second branch path 181 will be described in detail.

原則として、第1分岐経路180の水量を制御した後、第2分岐経路181の水量を制御することにより、水経路18、19の水量を制御する。   In principle, after controlling the amount of water in the first branch path 180, the amount of water in the water paths 18 and 19 is controlled by controlling the amount of water in the second branch path 181.

第1分岐経路の水量は、図5に示すように、以下のような手順で制御を行う。工程S101では、第2の冷媒−水熱交換器14に入る冷媒の温度を温度センサ23によって測定する。次に、工程S102では、制御装置34によって、第2の冷媒−水熱交換器14によって達成する冷媒の目標の乾き度を設定し、工程S101で測定した熱交換器14の冷媒入り口温度を基に熱交換器14の熱交換量を決定する。次に、工程S103では、第2の冷媒−水熱交換器14に入る水の温度を、温度センサ26によって計測し、制御装置34に入力する。次に、工程S104では、制御装置34によって、工程S101で測定した熱交換器14入り側の冷媒温度、工程S102で決定した熱交換量、および上水より供給される水の温度より、第1分岐経路180を流れる適当な水量を決定する。そして、工程S105では、第1の分岐回路180の水量制御弁27または/および水経路の流量制御弁25の開度を制御することにより、第1分岐回路180を流れる水量を制御する。また、必要に応じて、蒸発器のファン21の風量を調節して、適切な過熱度に制御することもできる。   The amount of water in the first branch path is controlled in the following procedure as shown in FIG. In step S <b> 101, the temperature of the refrigerant entering the second refrigerant-water heat exchanger 14 is measured by the temperature sensor 23. Next, in step S102, the control device 34 sets the target dryness of the refrigerant achieved by the second refrigerant-water heat exchanger 14, and based on the refrigerant inlet temperature of the heat exchanger 14 measured in step S101. The heat exchange amount of the heat exchanger 14 is determined. Next, in step S <b> 103, the temperature of water entering the second refrigerant-water heat exchanger 14 is measured by the temperature sensor 26 and input to the control device 34. Next, in step S104, the controller 34 determines the first temperature based on the refrigerant temperature at the entrance side of the heat exchanger 14 measured in step S101, the amount of heat exchange determined in step S102, and the temperature of water supplied from clean water. An appropriate amount of water flowing through the branch path 180 is determined. In step S105, the amount of water flowing through the first branch circuit 180 is controlled by controlling the opening of the water amount control valve 27 of the first branch circuit 180 and / or the flow control valve 25 of the water path. Further, if necessary, the air volume of the fan 21 of the evaporator can be adjusted to control the degree of superheat appropriately.

次に、第2分岐経路181の流量は、図6に示す手順で制御する。工程S201では、放熱器(第1の冷媒―水熱交換器)12に入る冷媒の温度を、温度センサ22によって計測する。計測値は、制御装置34に入力される。工程S202では、工程S201で計測した放熱器入り口冷媒温度をもとに、冷凍サイクルの成績係数が最大となるように、放熱器熱交換量が決定される。次に、工程S203では、放熱器入り側水温度が、温度センサ28により計測され、制御装置34に入力される。次に、S204では、S201で測定した放熱器12入り側冷媒温度、S202で計算された放熱器熱交換量および放熱器入り側水温度を基準に放熱器を流れる水の流量が決定される。S205では、それに基づき、第2分岐経路181の流量制御弁33および水経路の流量制御弁25の開度が調整される。   Next, the flow rate of the second branch path 181 is controlled by the procedure shown in FIG. In step S <b> 201, the temperature of the refrigerant entering the radiator (first refrigerant-water heat exchanger) 12 is measured by the temperature sensor 22. The measured value is input to the control device 34. In step S202, the heat exchanger heat exchange amount is determined based on the radiator inlet refrigerant temperature measured in step S201 so that the coefficient of performance of the refrigeration cycle is maximized. Next, in step S <b> 203, the radiator-side water temperature is measured by the temperature sensor 28 and input to the control device 34. Next, in S204, the flow rate of the water flowing through the radiator is determined based on the refrigerant temperature entering the radiator 12 measured in S201, the heat exchanger heat exchange amount calculated in S202, and the water temperature entering the radiator. In S205, the opening degree of the flow control valve 33 of the second branch path 181 and the flow control valve 25 of the water path are adjusted based on that.

以上説明したように、図5および図6に示した制御を繰り返して実施することにより、
最適な装置の制御が可能になる。
As described above, by repeatedly performing the control shown in FIGS. 5 and 6,
Optimal device control is possible.

以上の説明では、水経路に関して、第2分岐経路(バイパス経路)181を有する場合
について説明した。第2分岐回路により、第1冷媒―水熱交換器と、第2冷媒―水熱交換器
の熱交換器の熱交換量の調整をすることが可能である。しかしながら、このような第2分
岐回路(第2冷媒―水熱交換器のバイパス経路)が無い場合にも本発明は有効である。す
なわち、蒸発器ファン風量の増減、貯湯槽に蓄えられた温水の利用等によって、第2の冷媒−水熱交換器の熱交換量を調整することができる。
In the above description, the case of having the second branch path (bypass path) 181 has been described with respect to the water path. With the second branch circuit, it is possible to adjust the amount of heat exchange between the first refrigerant-water heat exchanger and the second refrigerant-water heat exchanger. However, the present invention is also effective when there is no second branch circuit (second refrigerant-by-water heat exchanger bypass path). That is, the heat exchange amount of the second refrigerant-water heat exchanger can be adjusted by increasing / decreasing the evaporator fan air volume, using hot water stored in the hot water storage tank, and the like.

次に、第2の冷媒−水熱交換器14の作用を説明する。図2は、一般的な蒸発器での熱伝達率と乾き度の関係を示したものである(たとえば、空気調和・冷凍連合論文集、平成15年、第37巻、第123頁参照)。横軸は冷媒の乾き度、縦軸はその乾き度に対する熱
伝達率である。ここで乾き度とは、冷媒の飽和蒸気中に含まれる液相分の割合であり、乾き度0が全て液相、乾き度1が全て気相となった場合である。すなわち、低乾き度は冷媒の流路方向で蒸発器の入口付近、高乾き度は蒸発器の出口付近に対応する。図2から明らかなように、冷媒の熱伝達率は、乾き度が大きくなるにつれて増加し、乾き度が0.8近傍で最大となる。従って蒸発器には、乾き度が0近くの冷媒を入れるよりも、乾き度の高い冷媒を流入させることによって、蒸発器での平均的な熱伝達率が良くなる。
Next, the operation of the second refrigerant-water heat exchanger 14 will be described. FIG. 2 shows the relationship between heat transfer coefficient and dryness in a general evaporator (for example, see Air Conditioning and Refrigeration Union Papers, 2003, Vol. 37, p. 123). The horizontal axis represents the dryness of the refrigerant, and the vertical axis represents the heat transfer coefficient with respect to the dryness. Here, the dryness is a ratio of the liquid phase contained in the saturated vapor of the refrigerant, and is a case where the dryness 0 is all liquid phase and the dryness 1 is all gas phase. That is, the low dryness corresponds to the vicinity of the inlet of the evaporator in the refrigerant flow direction, and the high dryness corresponds to the vicinity of the outlet of the evaporator. As is clear from FIG. 2, the heat transfer coefficient of the refrigerant increases as the dryness increases, and reaches a maximum when the dryness is around 0.8. Therefore, the average heat transfer coefficient in the evaporator is improved by allowing the refrigerant having a high dryness to flow into the evaporator rather than putting the refrigerant having a dryness of nearly zero.

従って、冷媒を第2の冷媒−水熱交換器14でその乾き度を上げた後、蒸発器15に入れると、蒸発器15での伝熱特性が良くなる。そして、第2の冷媒−水熱交換器14において水によって加熱された冷媒は、蒸発器15で容易に過熱蒸気にまで加熱することができるため、圧縮機11での液圧縮を防止できるとともに、圧縮機動力を小さくでき、冷凍サイクル装置の成績係数の向上を図ることができる。   Therefore, when the dryness of the refrigerant is raised by the second refrigerant-water heat exchanger 14 and then put into the evaporator 15, the heat transfer characteristics in the evaporator 15 are improved. And since the refrigerant heated with water in the second refrigerant-water heat exchanger 14 can be easily heated to superheated steam in the evaporator 15, liquid compression in the compressor 11 can be prevented, and The compressor power can be reduced, and the coefficient of performance of the refrigeration cycle apparatus can be improved.

次に、本発明の実施の形態の冷凍サイクル装置10の効率の向上を、従来の冷凍サイクル装置と比較した図3を用いて説明する。図3は、縦軸を冷媒の圧力、横軸を冷媒のエンタルピで表示したモリエル線図である。   Next, improvement in efficiency of the refrigeration cycle apparatus 10 according to the embodiment of the present invention will be described with reference to FIG. 3 compared with a conventional refrigeration cycle apparatus. FIG. 3 is a Mollier diagram in which the vertical axis indicates the refrigerant pressure and the horizontal axis indicates the refrigerant enthalpy.

図3のモリエル線図は、冷媒が二酸化炭素の場合であり、飽和曲線47は冷媒の飽和液線と飽和蒸気線とを結んだ線を示している。閉サイクルA48は、本発明の実施の形態の冷凍サイクル装置10のモリエル線図、閉サイクルA49は、従来の第2の冷媒―水熱交換器を用いない給湯器(冷凍サイクル装置)のモリエル線図である。 The Mollier diagram of FIG. 3 shows the case where the refrigerant is carbon dioxide, and the saturation curve 47 shows a line connecting the saturated liquid line of the refrigerant and the saturated vapor line. The closed cycle A 1 B 1 C 1 D 1 48 is a Mollier diagram of the refrigeration cycle apparatus 10 according to the embodiment of the present invention, and the closed cycle A 2 B 2 C 2 D 2 49 is a conventional second refrigerant-water. It is a Mollier diagram of a water heater (refrigeration cycle apparatus) that does not use a heat exchanger.

図3の閉サイクルA48について、図1の構成図と対比させて詳細に説明する。冷媒は、圧縮機11で、図3の点Aから点Bに変化され、その圧力およびエンタルピが増加される。また放熱器12で、点Bから点Cに変化され、冷媒の圧力一定のままエンタルピを減少させる。膨張弁13で、点Bから点Cに変化され、冷媒のエンタルピが一定のまま、圧力を減少させる。そして、圧力一定のままで第2の冷媒−水熱交換器14および蒸発器15で、点Dから点Aに変化され、エンタルピを増加させる。 The closed cycle A 1 B 1 C 1 D 1 48 of FIG. 3 will be described in detail in comparison with the configuration diagram of FIG. Refrigerant in the compressor 11, is changed to the point B 1 from the point A 1 in FIG. 3, the pressure and enthalpy is increased. Further, the heat radiator 12 changes the point B 1 to the point C 1 to decrease the enthalpy while keeping the refrigerant pressure constant. In the expansion valve 13 is changed from the point B 1 to the point C 1, while the enthalpy of the refrigerant is constant, decreasing the pressure. Then, with the pressure kept constant, the second refrigerant-water heat exchanger 14 and the evaporator 15 are changed from the point D 1 to the point A 1 to increase the enthalpy.

ここで、従来の冷凍サイクル装置の蒸発器では、冷媒は点Dから点Aに変化するだけであるが、本発明の実施の形態の冷凍サイクル装置10では、第2の冷媒−水熱交換器14を設けたため、放熱器12の出口エンタルピを低減できると同時に蒸発器15により容易に過熱蒸気の点Aとすることができる。放熱器12での冷媒出口エンタルピを低減することによって、擬臨界温度以下の高い熱伝達率の領域を利用することができる。また冷媒は、放熱器12で低温の水と熱交換し、かつ蒸発器出口の過熱度を大きくすることができるため、従来の放熱器での点B、点Cの放熱圧力よりも点B、点Cの放熱圧
力を低くできる。このことによって、圧縮機11の動力を小さくすることができる。そして放熱器12では、従来の放熱器より点Cと点Cとの差だけエンタルピを大きくとることができ、放熱器での利用エンタルピ量である放熱量を大きくすることができる。
Here, in the evaporator of the conventional refrigeration cycle apparatus, the refrigerant only changes from the point D 2 to the point A 2 , but in the refrigeration cycle apparatus 10 according to the embodiment of the present invention, the second refrigerant-water heat due to the provision of the exchanger 14 can be a point a 1 of easily overheated steam by simultaneously evaporator 15 when the outlet enthalpy can be reduced in the radiator 12. By reducing the refrigerant outlet enthalpy in the radiator 12, a region with a high heat transfer coefficient below the pseudocritical temperature can be used. In addition, since the refrigerant can exchange heat with low-temperature water in the radiator 12 and can increase the degree of superheat at the outlet of the evaporator, the point is higher than the heat radiation pressure at points B 2 and C 2 in the conventional radiator. The heat radiation pressure at B 1 and point C 1 can be lowered. As a result, the power of the compressor 11 can be reduced. Then, in the radiator 12, it is possible by the difference between the point C 2 and the point C 1 from the conventional radiator can take the enthalpy increased to increase the heat radiation amount utilized is the enthalpy quantity in the radiator.

このように本発明の実施の形態の冷凍サイクル装置10は、第2の冷媒−水熱交換器14で冷媒の乾き度を上げることで、蒸発器15での熱伝達性能を上げることができる。   Thus, the refrigeration cycle apparatus 10 according to the embodiment of the present invention can increase the heat transfer performance in the evaporator 15 by increasing the dryness of the refrigerant in the second refrigerant-water heat exchanger 14.

また、蒸発器15で冷媒を容易に過熱蒸気とすることができるため、圧縮機11が液冷媒を吸入し、液圧縮を起こすこともない。また冷媒は、過熱蒸気となっているため、圧縮機11の動力を低減することができる。
また、冬期においては放熱器12の冷媒は、空気温度の高い水との熱交換することになるため、蒸発過程における過熱度を大きくとることができ、圧縮機11の信頼性向上につながる。
In addition, since the refrigerant can be easily converted into superheated steam by the evaporator 15, the compressor 11 does not suck the liquid refrigerant and cause liquid compression. Moreover, since the refrigerant is superheated steam, the power of the compressor 11 can be reduced.
Further, since the refrigerant of the radiator 12 exchanges heat with water having a high air temperature in winter, the degree of superheat in the evaporation process can be increased, leading to improved reliability of the compressor 11.

本発明の実施の形態によって、水道水等の水温度が低い場合は、貯湯槽の温水を混合させて水温度を高くし、第2の冷媒―水熱交換器での冷媒を加熱することができる。これに対し、水道水温度が高い中間期や夏期は、水の入水温度が高まるため、第2の冷媒−水熱交換器14における受熱量が大きくなり冷凍サイクル装置の成績係数は向上する。   According to the embodiment of the present invention, when the temperature of tap water or the like is low, the hot water in the hot water storage tank is mixed to increase the water temperature, and the refrigerant in the second refrigerant-water heat exchanger can be heated. it can. On the other hand, in the intermediate period and summer period when the tap water temperature is high, the incoming water temperature increases, so the amount of heat received in the second refrigerant-water heat exchanger 14 increases, and the coefficient of performance of the refrigeration cycle apparatus improves.

本発明にかかる冷凍サイクル装置とその運転方法は、蒸気圧縮式冷凍サイクルに関するもので、ヒートポンプ方式の給湯装置等に適用して有用である。   The refrigeration cycle apparatus and its operating method according to the present invention relate to a vapor compression refrigeration cycle and are useful when applied to a heat pump type hot water supply apparatus or the like.

本発明の実施の形態の冷凍サイクル装置の構成図The block diagram of the refrigerating-cycle apparatus of embodiment of this invention 一般的な蒸発器での熱伝達率と乾き度の関係を示した図Diagram showing the relationship between heat transfer coefficient and dryness in a typical evaporator 本発明の実施の形態の冷凍サイクル装置のモリエル線図Mollier diagram of the refrigeration cycle apparatus according to the embodiment of the present invention 従来の冷凍サイクル装置の構成図Configuration diagram of conventional refrigeration cycle equipment 本発明の実施形態の冷凍サイクルにおいて、第1分岐経路の水量を制御する方法を説明するフローチャートThe flowchart explaining the method of controlling the water quantity of a 1st branch path | route in the refrigerating cycle of embodiment of this invention. 本発明の実施形態の冷凍サイクルにおいて、第2分岐経路の水量を制御する方法を説明するフローチャートThe flowchart explaining the method of controlling the water quantity of a 2nd branch path in the refrigerating cycle of embodiment of this invention.

符号の説明Explanation of symbols

10,50 冷凍サイクル装置
11,51 圧縮機
12 放熱器(第1の冷媒―水熱交換器)
13,53 膨張弁
14 第2の冷媒―水熱交換器
15,54 蒸発器
16 冷媒回路
17,56 貯湯槽
18 水経路
19 水経路
21 ファン
22,23,24,26,28,29 温度センサ
25,27,31,32,33,147 流量調節バルブ
30 送水ポンプ
34 制御装置
35,36,37,38,39,40,41,42,43,44,45,148 信号

46 給湯負荷ユニット
47 飽和曲線
48 閉サイクルA
49 閉サイクルA
52 熱交換器
55 副熱交換器
57 ポンプ
58 流通路
59 授熱部
60,62 受熱部
61 ガスクーラ
10, 50 Refrigeration cycle apparatus 11, 51 Compressor 12 Radiator (first refrigerant-water heat exchanger)
13, 53 Expansion valve 14 Second refrigerant-water heat exchanger 15, 54 Evaporator 16 Refrigerant circuit 17, 56 Hot water tank 18 Water path 19 Water path
21 Fan 22, 23, 24, 26, 28, 29 Temperature sensor 25, 27, 31, 32, 33, 147 Flow control valve 30 Water pump 34 Controller 35, 36, 37, 38, 39, 40, 41, 42 , 43, 44, 45, 148 Signal line 46 Hot water supply load unit 47 Saturation curve 48 Closed cycle A 1 B 1 C 1 D 1
49 Closed cycle A 2 B 2 C 2 D 2
52 Heat Exchanger 55 Sub Heat Exchanger 57 Pump 58 Flow Path 59 Heat Transfer Unit 60, 62 Heat Receiving Unit
61 Gas cooler

Claims (7)

冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒を放熱し、水を加熱する第1の冷媒―水熱交換器として機能する放熱器と、前記放熱器で放熱された前記冷媒の圧力を低下させる膨張機構と、前記膨張機構で圧力を低下された前記冷媒と前記冷媒より温度の高い水とを熱交換させる第2の冷媒−水熱交換器と、前記第2の冷媒−水熱交換器で熱交換した後の冷媒を蒸発させる蒸発器とが前記冷媒を流す経路で循環する形で接続された冷媒回路と、
水供給源より供給された水が前記冷媒と熱交換して冷却される前記第2の冷媒−水熱交換器と、前記水が前記冷媒と熱交換して加熱される前記放熱器との順に接続した流路に前記水を流す水経路と、
を備えた冷凍サイクル装置。
A compressor that compresses the refrigerant; a radiator that functions as a first refrigerant-water heat exchanger that radiates heat of the refrigerant compressed by the compressor and heats the water; and the refrigerant that is radiated by the radiator An expansion mechanism that lowers the pressure of the refrigerant, a second refrigerant that exchanges heat between the refrigerant whose pressure has been reduced by the expansion mechanism and water having a higher temperature than the refrigerant, and the second refrigerant. A refrigerant circuit connected in such a manner that an evaporator for evaporating the refrigerant after heat exchange with the water heat exchanger circulates in a path through which the refrigerant flows;
The second refrigerant-water heat exchanger in which water supplied from a water supply source is cooled by exchanging heat with the refrigerant, and the radiator in which the water is heated by exchanging heat with the refrigerant. A water path for flowing the water in the connected flow path;
A refrigeration cycle apparatus comprising:
前記水供給源として貯湯槽を備え、
前記水経路は、前記貯湯槽からの水を前記第2の冷媒−水熱交換器に供給し、前記放熱器で加熱された水を前記貯湯槽に供給する請求項1記載の冷凍サイクル装置。
A hot water storage tank is provided as the water supply source,
The refrigeration cycle apparatus according to claim 1, wherein the water path supplies water from the hot water storage tank to the second refrigerant-water heat exchanger and supplies water heated by the radiator to the hot water storage tank.
前記水供給源として前記貯湯槽および前記貯湯槽とは異なる水供給源を備え、
前記水経路は、前記貯湯槽からの水と前記貯湯槽とは異なる水供給源からの水を混合して前記第2の冷媒−水熱交換器に供給する請求項2記載の冷凍サイクル装置。
The water supply source includes a water supply source different from the hot water storage tank and the hot water storage tank,
3. The refrigeration cycle apparatus according to claim 2, wherein the water path mixes water from the hot water storage tank and water from a water supply source different from the hot water storage tank and supplies the mixed water to the second refrigerant-water heat exchanger.
前記水経路は、前記第2の冷媒−水熱交換器をバイパスする経路を含む請求項1記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the water path includes a path that bypasses the second refrigerant-water heat exchanger. 冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒を放熱し、水を加熱する第1の冷媒―水熱交換器として機能する放熱器と、前記放熱器で放熱された前記冷媒の圧力を低下させる膨張機構と、前記膨張機構で圧力を低下された前記冷媒と前記冷媒より温度の高い水とを熱交換させる第2の冷媒−水熱交換器と、前記第2の冷媒−水熱交換器と熱交換した後の冷媒を蒸発させる蒸発器とが前記冷媒を流す経路で循環する形で接続された冷媒回路と、
水供給源より供給された水が前記冷媒と熱交換して冷却される前記第2の冷媒−水熱交換器と、前記水が冷媒と熱交換して加熱される前記放熱器との順に接続した流路に前記水を流す水経路とを備えた冷凍サイクル装置の運転方法であって、
前記圧縮機の吸込む冷媒が過熱蒸気となるように前記第2の冷媒−水熱交換器で前記冷媒と前記水とを熱交換させる冷凍サイクル装置の運転方法。
A compressor that compresses the refrigerant; a radiator that functions as a first refrigerant-water heat exchanger that radiates heat of the refrigerant compressed by the compressor and heats the water; and the refrigerant that is radiated by the radiator An expansion mechanism that lowers the pressure of the refrigerant, a second refrigerant that exchanges heat between the refrigerant whose pressure has been reduced by the expansion mechanism and water having a higher temperature than the refrigerant, and the second refrigerant. A refrigerant circuit connected in a form in which an evaporator for evaporating the refrigerant after heat exchange with the water heat exchanger circulates in a path through which the refrigerant flows;
The second refrigerant-water heat exchanger, in which water supplied from a water supply source is cooled by exchanging heat with the refrigerant, and the radiator, in which the water is heated by exchanging heat with the refrigerant, are connected in this order. An operation method of a refrigeration cycle apparatus comprising a water path for flowing the water through the flow path,
A method for operating a refrigeration cycle apparatus in which heat is exchanged between the refrigerant and the water in the second refrigerant-water heat exchanger so that the refrigerant sucked by the compressor becomes superheated steam.
前記第2の冷媒−水熱交換器で熱交換させる前の冷媒と水との温度を検出し、前記圧縮機の吸込む冷媒が過熱蒸気となるように、前記水の温度または流量または前記蒸発器に送風するファンの風量を制御する請求項5記載の冷凍サイクル装置の運転方法。   The temperature or flow rate of the water or the evaporator is such that the temperature of the refrigerant and water before the heat exchange with the second refrigerant-water heat exchanger is detected and the refrigerant sucked into the compressor becomes superheated steam. The operating method of the refrigerating cycle apparatus of Claim 5 which controls the air volume of the fan which ventilates to. 冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された前記冷媒を放熱し、水を加熱する第1の冷媒―水熱交換器として機能する放熱器と、前記放熱器で放熱された前記冷媒の圧力を低下させる膨張機構と、前記膨張機構で圧力を低下された前記冷媒と前記冷媒より温度の高い水とを熱交換させる第2の冷媒−水熱交換器と、前記第2の冷媒−水熱交換器と熱交換した後の冷媒を蒸発させる蒸発器とが前記冷媒を流す経路で循環する形で接続された冷媒回路と、
水供給源より供給された水が前記冷媒と熱交換して冷却される前記第2の冷媒−水熱交換器と、前記水が冷媒と熱交換して加熱される前記放熱器との順に接続した流路に前記水を流す水経路とを備えた冷凍サイクル装置の運転方法であって、
前記放熱器で熱交換させる前の冷媒と水との温度を検出し、前記放熱器を出る冷媒が所
定の温度となるように、前記水の流量を制御する冷凍サイクル装置の運転方法。
A compressor that compresses the refrigerant; a radiator that functions as a first refrigerant-water heat exchanger that radiates heat of the refrigerant compressed by the compressor and heats the water; and the refrigerant that is radiated by the radiator An expansion mechanism that lowers the pressure of the refrigerant, a second refrigerant that exchanges heat between the refrigerant whose pressure has been reduced by the expansion mechanism and water having a higher temperature than the refrigerant, and the second refrigerant. A refrigerant circuit connected in a form in which an evaporator for evaporating the refrigerant after heat exchange with the water heat exchanger circulates in a path through which the refrigerant flows;
The second refrigerant-water heat exchanger, in which water supplied from a water supply source is cooled by exchanging heat with the refrigerant, and the radiator, in which the water is heated by exchanging heat with the refrigerant, are connected in this order. An operation method of a refrigeration cycle apparatus comprising a water path for flowing the water through the flow path,
The operating method of the refrigerating-cycle apparatus which detects the temperature of the refrigerant | coolant and water before making it heat-exchange with the said heat radiator, and controls the flow volume of the said water so that the refrigerant | coolant which leaves the said heat exchanger may become predetermined | prescribed temperature.
JP2007100202A 2006-04-11 2007-04-06 Refrigerating cycle device and its operation method Pending JP2007303806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100202A JP2007303806A (en) 2006-04-11 2007-04-06 Refrigerating cycle device and its operation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006108424 2006-04-11
JP2007100202A JP2007303806A (en) 2006-04-11 2007-04-06 Refrigerating cycle device and its operation method

Publications (1)

Publication Number Publication Date
JP2007303806A true JP2007303806A (en) 2007-11-22

Family

ID=38837875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100202A Pending JP2007303806A (en) 2006-04-11 2007-04-06 Refrigerating cycle device and its operation method

Country Status (1)

Country Link
JP (1) JP2007303806A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133541A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
KR100949294B1 (en) * 2009-03-18 2010-03-24 에이치에스지(주) Air source heat pump
JP2010236816A (en) * 2009-03-31 2010-10-21 Nippon Pmac Co Ltd Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP2011102652A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Refrigerant condition determining device, refrigerant condition determining system, and method of detecting refrigerant liquid-level position
KR101169848B1 (en) * 2009-12-23 2012-07-30 홍창의 Air source heat pump
CN103776185A (en) * 2012-10-18 2014-05-07 三菱电机株式会社 Heat pump apparatus
JP2014098547A (en) * 2014-01-29 2014-05-29 Nippon Pmac Co Ltd Heat-pump air conditioner and heat-pump air conditioner control method
WO2015045452A1 (en) * 2013-09-24 2015-04-02 三菱電機株式会社 Air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133541A (en) * 2007-11-30 2009-06-18 Sanyo Electric Co Ltd Heat pump system
KR100949294B1 (en) * 2009-03-18 2010-03-24 에이치에스지(주) Air source heat pump
WO2010107166A1 (en) * 2009-03-18 2010-09-23 에이치에스지(주) Air source heat pump
JP2010236816A (en) * 2009-03-31 2010-10-21 Nippon Pmac Co Ltd Heat pump type air conditioner and method of controlling heat pump type air conditioner
JP2011102652A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Refrigerant condition determining device, refrigerant condition determining system, and method of detecting refrigerant liquid-level position
KR101169848B1 (en) * 2009-12-23 2012-07-30 홍창의 Air source heat pump
CN103776185A (en) * 2012-10-18 2014-05-07 三菱电机株式会社 Heat pump apparatus
WO2015045452A1 (en) * 2013-09-24 2015-04-02 三菱電機株式会社 Air conditioner
JP6041995B2 (en) * 2013-09-24 2016-12-14 三菱電機株式会社 Air conditioner
JP2014098547A (en) * 2014-01-29 2014-05-29 Nippon Pmac Co Ltd Heat-pump air conditioner and heat-pump air conditioner control method

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
US9322562B2 (en) Air-conditioning apparatus
CN102032698B (en) Refrigeration cycle apparatus and hot water heater
JP5860700B2 (en) System for providing a vapor compression cycle and method for controlling a vapor compression cycle
JP2007303806A (en) Refrigerating cycle device and its operation method
US9175889B2 (en) Heat source system and control method thereof
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
JP2008020125A (en) Refrigerating cycle device and heat storage device using the same
KR20010102808A (en) Heat pump type air conditioning apparatus
KR101117032B1 (en) Heat pump system having cascade heat exchange
JP4258241B2 (en) Heat pump system, heat pump water heater
JPH04254156A (en) Heat pump type hot water supply device
JP2003021428A (en) Heat pump type water heater
JPH0432669A (en) Heat pump system controlling method therefor
KR200412598Y1 (en) Heat pump system for having function of hot water supply
JP5150300B2 (en) Heat pump type water heater
US11906208B2 (en) Hybrid multi-air conditioning system
JP3996321B2 (en) Air conditioner and its control method
JP4074422B2 (en) Air conditioner and its control method
JP2020041770A (en) Heat pump type hot water supply air conditioning device
JP2001263857A (en) Cooling/heating water heater and its control method
JP2004044946A (en) Air conditioner
JP6978242B2 (en) Refrigerant circuit equipment
JP2006234211A (en) Heat pump water heater