JP2010236816A - Heat pump type air conditioner and method of controlling heat pump type air conditioner - Google Patents

Heat pump type air conditioner and method of controlling heat pump type air conditioner Download PDF

Info

Publication number
JP2010236816A
JP2010236816A JP2009086568A JP2009086568A JP2010236816A JP 2010236816 A JP2010236816 A JP 2010236816A JP 2009086568 A JP2009086568 A JP 2009086568A JP 2009086568 A JP2009086568 A JP 2009086568A JP 2010236816 A JP2010236816 A JP 2010236816A
Authority
JP
Japan
Prior art keywords
heat
air
refrigerant
air conditioner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086568A
Other languages
Japanese (ja)
Inventor
Toshiaki Saito
敏明 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pmac Co Ltd
Original Assignee
Nippon Pmac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pmac Co Ltd filed Critical Nippon Pmac Co Ltd
Priority to JP2009086568A priority Critical patent/JP2010236816A/en
Publication of JP2010236816A publication Critical patent/JP2010236816A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To continuously operate a compressor even when the minimum capacity of the compressor is over air conditioning load. <P>SOLUTION: In this heat pump type air conditioner 1, at least a part of heat source water introduced to an external heat source heat exchanger 17 is introduced to an external heat source heat exchanger 17 after heat exchange with an air conditioning object side refrigerant, thus cold or hot heat corresponding to excess of air-conditioning capacity to an air-conditioning target temperature, of the cold or hot heat of the air conditioning object side refrigerant is transferred to the external heat source side refrigerant. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒートポンプ式空調機に関する。   The present invention relates to a heat pump type air conditioner.

従来、四方弁の切り換えによって冷房時には空調対象空気の熱で冷媒を蒸発させ、暖房時には空調対象空気の熱で冷媒を凝縮させる冷凍サイクルを行うことにより、冷房運転と暖房運転の両方を行うようにしたヒートポンプ式空調機が知られている。   Conventionally, both the cooling operation and the heating operation are performed by switching the four-way valve to evaporate the refrigerant with the heat of the air-conditioning target air during cooling and condensing the refrigerant with the heat of the air-conditioning target air during heating. A heat pump type air conditioner is known.

特開2007−315682号公報JP 2007-315682 A

従来、空調機が、圧縮機の最小能力が空調負荷を上回る部分負荷運転を行っている場合に、圧縮機の運転停止/再開が繰り返される断続運転が行われ、空調機のCOP(Coefficient Of Performance)が低下することが知られている。   Conventionally, when an air conditioner performs a partial load operation in which the minimum capacity of the compressor exceeds the air conditioning load, an intermittent operation in which the operation stop / restart of the compressor is repeated is performed, and the COP (Coefficient Of Performance) of the air conditioner is performed. ) Is known to decrease.

図8は、従来の空調機における断続運転の際の室温変動(冷房運転の場合)および圧縮機状態を示す図である。図8に示した例によれば、冷房運転によって室温が低下し、設定温度Tsを下回ったことが検知されると同時に圧縮機の運転が停止され、停止後暫くすると室温が上昇して圧縮機の運転が再開される断続運転が行われていることが分かる。このとき、圧縮機の最小能力が空調負荷を上回る部分負荷で運転が行われるため、圧縮機の運転が再開されると直ぐに室温が設定温度Tsを下回る(暖房運転の場合、上回る)こととなり、短時間に圧縮機の停止/再開が繰り返されてしまう。   FIG. 8 is a diagram showing a change in room temperature (in the case of cooling operation) and a compressor state during intermittent operation in a conventional air conditioner. According to the example shown in FIG. 8, it is detected that the room temperature has decreased due to the cooling operation and has fallen below the set temperature Ts, and at the same time, the operation of the compressor is stopped. It can be seen that the intermittent operation is resumed. At this time, since the operation is performed with a partial load where the minimum capacity of the compressor exceeds the air conditioning load, the room temperature immediately falls below the set temperature Ts (in the case of heating operation) as soon as the operation of the compressor is resumed. The compressor is repeatedly stopped / restarted in a short time.

また、部分負荷運転では、圧縮機の能力が空調負荷に比べて高いため、室温が設定温度を超えて冷房または暖房されるオーバーシュートが発生し易く、電力消費が大きい。このため、上記に説明したような断続運転は、従来の空調機におけるCOP低下の要因となっていた。また、断続運転では、空調対象の室温が短時間に上昇/下降を繰り返すために、居住者の快適性が損なわれるという問題や、運転の停止/再開を繰り返すために、空調機の製品寿命に影響を与えるという問題もある。   Further, in the partial load operation, since the capacity of the compressor is higher than that of the air conditioning load, an overshoot in which the room temperature exceeds the set temperature and is cooled or heated easily occurs, and the power consumption is large. For this reason, intermittent operation as described above has been a cause of COP reduction in conventional air conditioners. In intermittent operation, the room temperature of the air-conditioner repeatedly increases / decreases in a short time, so that the comfort of the resident is impaired, and the product life of the air-conditioner is repeated to repeatedly stop / restart the operation. There is also the problem of affecting it.

本発明は、上記した問題に鑑み、圧縮機の最小能力が空調負荷を上回るような場合にも、圧縮機の連続運転を可能とすることを課題とする。   In view of the above-described problems, an object of the present invention is to enable continuous operation of a compressor even when the minimum capacity of the compressor exceeds the air conditioning load.

本発明は、空調対象熱交換器側を流れる冷媒(熱媒)の冷熱または温熱の一部を、外部熱源熱交換器側を流れる冷媒に移転させることで、圧縮機の最小能力が空調負荷を上回るような場合にも、圧縮機の連続運転を可能とし、空調機のCOP低下を防止することを可能にした。   The present invention transfers a part of the cold or hot heat of the refrigerant (heat medium) flowing through the air-conditioning target heat exchanger side to the refrigerant flowing through the external heat source heat exchanger side, so that the minimum capacity of the compressor reduces the air-conditioning load. Even in such a case, the compressor can be continuously operated, and the COP reduction of the air conditioner can be prevented.

詳細には、本発明は、圧縮機、空調対象熱交換器、膨張弁および外部熱源熱交換器が冷凍サイクルを形成するように、冷媒流路を介して接続されたヒートポンプ式空調機であって、前記冷凍サイクルのうち前記空調対象熱交換器側を流れる空調対象側冷媒の冷熱または温熱の一部を、熱交換によって、前記外部熱源熱交換器側を流れる外部熱源側冷媒に移転させる熱移転手段を備える、ヒートポンプ式空調機である。   Specifically, the present invention is a heat pump type air conditioner in which a compressor, an air conditioning target heat exchanger, an expansion valve, and an external heat source heat exchanger are connected via a refrigerant flow path so as to form a refrigeration cycle. In the refrigeration cycle, heat transfer for transferring a part of the cold or hot heat of the air-conditioning target side refrigerant flowing on the air-conditioning target heat exchanger side to the external heat source side refrigerant flowing on the external heat source heat exchanger side by heat exchange It is a heat pump type air conditioner provided with a means.

冷凍サイクルは、圧縮機および膨張弁を境界として、圧縮機を通過し、膨張弁に到達するまでの冷媒が流れる凝縮側、および膨張弁を通過し、圧縮機に到達するまでの冷媒が流れる蒸発側に区分けすることが出来る。本発明では、これらの圧縮機および膨張弁を境界として区分けされた冷凍サイクルの各部分のうち、空調対象熱交換器を含む部分を空調対象熱交換器側と称し、外部熱源熱交換器を含む部分を外部熱源熱交換器側と称する。なお、空調対象熱交換器側および外部熱源熱交換器側と、凝縮側および蒸発側との対応関係は、ヒートポンプ式空調機が冷房運転であるか暖房運転であるかで交代する。   The refrigeration cycle uses the compressor and the expansion valve as a boundary, the condensation side through which the refrigerant passes through the compressor and reaches the expansion valve, and the evaporation through which the refrigerant passes through the expansion valve and reaches the compressor Can be divided into sides. In the present invention, among the parts of the refrigeration cycle that are divided with the compressor and the expansion valve as a boundary, the part including the air conditioning target heat exchanger is referred to as the air conditioning target heat exchanger side and includes the external heat source heat exchanger. The part is referred to as the external heat source heat exchanger side. It should be noted that the correspondence relationship between the air-conditioning target heat exchanger side and the external heat source heat exchanger side, the condensation side, and the evaporation side changes depending on whether the heat pump type air conditioner is in a cooling operation or a heating operation.

また、本発明において、前記熱移転手段は、前記空調対象側冷媒の冷熱または温熱のうち、空調の目標温度に対する空調能力の余剰分に相当する冷熱または温熱を、熱交換によって前記外部熱源側冷媒に移転させてもよい。   Further, in the present invention, the heat transfer means converts the cold heat or hot heat corresponding to the excess of the air conditioning capability with respect to the target air conditioning temperature among the cold heat or hot heat of the air conditioning target side refrigerant by heat exchange to the external heat source side refrigerant. May be relocated.

即ち、本発明に係るヒートポンプ式空調機では、空調能力の余剰分に相当する冷熱または温熱を、熱交換によって空調対象側冷媒から外部熱源側冷媒に移転させることで、空調対象の過度な温度変化を防ぎ、圧縮機の運転停止/再開が繰り返される断続運転を効果的に抑制し、連続運転可能な期間を延ばすことが可能となる。   That is, in the heat pump type air conditioner according to the present invention, an excessive temperature change of the air-conditioning target is achieved by transferring the heat or heat corresponding to the surplus air-conditioning capacity from the air-conditioning target-side refrigerant to the external heat source-side refrigerant by heat exchange. It is possible to effectively suppress the intermittent operation in which the operation stop / restart of the compressor is repeated, and to extend the period during which continuous operation is possible.

また、前記ヒートポンプ式空調機は、外部熱源として熱源水の供給を受けて運転を行うヒートポンプであり、前記熱移転手段は、前記外部熱源熱交換器に導入される前記熱源水の少なくとも一部を、前記空調対象側冷媒と熱交換した後に、前記外部熱源熱交換器に導入することで、前記空調対象側冷媒の冷熱または温熱の一部を、前記外部熱源側冷媒に移転させてもよい。   Further, the heat pump air conditioner is a heat pump that operates by receiving supply of heat source water as an external heat source, and the heat transfer means receives at least a part of the heat source water introduced into the external heat source heat exchanger. Then, after exchanging heat with the air-conditioning target side refrigerant, it may be transferred to the external heat source-side refrigerant by introducing it into the external heat source heat exchanger so as to transfer a part of the cold or warm heat of the air-conditioning target-side refrigerant.

ここで、熱源水としては、例えば、冷却塔等の冷却水温度調節装置から供給される冷却水や、ボイラー等から供給される温水が挙げられる。本発明では、外部熱源熱交換器に導入される熱源水の一部または全部を、一旦空調対象側に設けられた補助水熱交換器等に導入して空調対象側冷媒と熱交換した後に、外部熱源熱交換器に導入することで、空調対象側冷媒の冷熱または温熱の一部を、外部熱源側冷媒に移転させる。   Here, examples of the heat source water include cooling water supplied from a cooling water temperature adjusting device such as a cooling tower, and hot water supplied from a boiler or the like. In the present invention, after a part or all of the heat source water introduced into the external heat source heat exchanger is introduced into an auxiliary water heat exchanger or the like once provided on the air conditioning target side and heat exchanged with the air conditioning target side refrigerant, By introducing it into the external heat source heat exchanger, a part of the cold or warm heat of the air conditioning target side refrigerant is transferred to the external heat source side refrigerant.

また、本発明に係るヒートポンプ式空調機は、前記熱移転手段による、前記外部熱源熱交換器に導入される前記熱源水の、前記空調対象側冷媒との熱交換に用いられる水量を調整する水量調整手段を更に備えてもよい。   Moreover, the heat pump type air conditioner according to the present invention is configured to adjust the amount of water used for heat exchange between the heat source water introduced into the external heat source heat exchanger and the air-conditioning target side refrigerant by the heat transfer means. Adjustment means may be further provided.

このような水量調整手段を備えることで、熱移転による冷熱または温熱の移転量が、空調能力の余剰分に相当する冷熱または温熱となるように水量を調整し、連続運転可能な期間を延ばすことが可能となる。   By providing such a water amount adjusting means, the amount of water transferred is adjusted so that the amount of cold or warm transferred by heat transfer becomes cold or hot corresponding to the surplus of air conditioning capacity, and the period of continuous operation is extended. Is possible.

また、前記熱移転手段は、前記外部熱源側冷媒と前記空調対象側冷媒とが導入される冷媒熱交換器を用いて、前記空調対象側冷媒の冷熱または温熱の一部を、前記外部熱源側冷媒に移転させてもよい。   Further, the heat transfer means uses a refrigerant heat exchanger into which the external heat source-side refrigerant and the air-conditioning target-side refrigerant are introduced, to transfer a part of the cold or hot heat of the air-conditioning target-side refrigerant to the external heat source side It may be transferred to a refrigerant.

このような方法で冷熱または温熱を移転することで、より簡易な構成で、冷媒間の熱移転を行うことが出来る。特に、冷却水等の熱源水を用いない方式のヒートポンプ式空調機(例えば、外部熱源熱交換器が空冷式であるヒートポンプ式空調機)においても、部分負荷運転時に冷媒間の熱移転を行い、断続運転を抑制することが可能となる。   By transferring cold heat or warm heat by such a method, heat transfer between refrigerants can be performed with a simpler configuration. In particular, even in heat pump air conditioners that do not use heat source water such as cooling water (for example, heat pump air conditioners in which the external heat source heat exchanger is air-cooled), heat transfer between refrigerants is performed during partial load operation, It becomes possible to suppress intermittent operation.

また、本発明に係るヒートポンプ式空調機は、前記冷媒熱交換器において熱交換に用いられる前記冷媒の量を調整する冷媒量調整手段を更に備えてもよい。   The heat pump air conditioner according to the present invention may further include a refrigerant amount adjusting unit that adjusts the amount of the refrigerant used for heat exchange in the refrigerant heat exchanger.

このような冷媒量調整手段を備えることで、熱移転による冷熱または温熱の移転量が、空調能力の余剰分に相当する冷熱または温熱となるように冷媒の量を調整し、連続運転可能な期間を延ばすことが可能となる。   By providing such a refrigerant amount adjusting means, the amount of refrigerant is adjusted so that the amount of cold or hot transfer due to heat transfer becomes the cold or hot equivalent to the surplus of air conditioning capacity, and the continuous operation period Can be extended.

また、本発明に係るヒートポンプ式空調機は、空調対象の温度を取得する温度取得手段と、前記空調対象の温度と空調の目標温度との差が所定以下になった場合に、前記熱移転手段による熱移転を開始させる制御手段と、を更に備えてもよい。   The heat pump air conditioner according to the present invention includes a temperature acquisition unit that acquires a temperature of an air-conditioning target, and the heat transfer unit when a difference between the temperature of the air-conditioning target and a target temperature of the air conditioning is equal to or less than a predetermined value. And a control means for initiating heat transfer by.

空調対象の温度(例えば、室温)と空調の目標温度との差が所定以下になった場合に、上記説明したような熱移転を開始させることで、目標温度に所定以上近づいた場合に空調能力を下げて連続運転を行うこと、即ち、目標温度を通過して断続運転が行われてしまうことを抑制すること、が可能となる。   When the difference between the air-conditioning target temperature (for example, room temperature) and the target temperature for air conditioning becomes less than a predetermined value, the air-conditioning capability is achieved when the target temperature approaches a predetermined value or more by starting heat transfer as described above. It is possible to perform continuous operation with lowering, i.e., to suppress intermittent operation after passing through the target temperature.

また、本発明に係るヒートポンプ式空調機は、前記圧縮機および前記外部熱源熱交換器に対して、複数の前記空調対象熱交換器が接続され、前記複数の空調対象熱交換器のうち、運転停止に係る空調対象熱交換器の数が所定以下となった場合に、前記熱移転手段による熱移転を開始させる制御手段を更に備えてもよい。   In the heat pump air conditioner according to the present invention, the plurality of air conditioning target heat exchangers are connected to the compressor and the external heat source heat exchanger, and the operation is performed among the plurality of air conditioning target heat exchangers. When the number of air-conditioning target heat exchangers to be stopped becomes equal to or less than a predetermined value, a control unit that starts heat transfer by the heat transfer unit may be further provided.

このような制御手段を備えることで、例えば空調対象の建物の各室に空調対象熱交換器が設けられているような空調システムにおいても、圧縮機の断続運転を抑制し、連続運転を行うことが可能となる。   By providing such a control means, for example, in an air conditioning system in which an air conditioning target heat exchanger is provided in each room of an air conditioning target building, the intermittent operation of the compressor is suppressed and continuous operation is performed. Is possible.

また、本発明は、ヒートポンプ式空調機の制御方法としても把握することが可能である。例えば、本発明は、圧縮機、空調対象熱交換器、膨張弁および外部熱源熱交換器が冷凍サイクルを形成するように、冷媒流路を介して接続され、前記冷凍サイクルのうち前記空調対象熱交換器側を流れる空調対象側冷媒の冷熱または温熱の一部を、熱交換によって、前記外部熱源熱交換器側を流れる外部熱源側冷媒に移転させる熱移転手段を備えるヒートポンプ式空調機において、空調対象の温度を取得する温度取得ステップと、前記空調対象の温度と空調の目標温度との差が所定以下になった場合に、前記熱移転ステップにおける熱移転を開始させる制御ステップと、を実行する、ヒートポンプ式空調機の制御方法である。   Moreover, this invention can also be grasped | ascertained as a control method of a heat pump type air conditioner. For example, in the present invention, a compressor, an air conditioning target heat exchanger, an expansion valve, and an external heat source heat exchanger are connected via a refrigerant flow path so as to form a refrigeration cycle, and the air conditioning target heat is included in the refrigeration cycle. In a heat pump air conditioner comprising heat transfer means for transferring a part of the cold or hot temperature of the air-conditioning target side refrigerant flowing through the exchanger side to the external heat source side refrigerant flowing through the external heat source heat exchanger side by heat exchange. A temperature acquisition step of acquiring a target temperature, and a control step of starting the heat transfer in the heat transfer step when a difference between the temperature of the air-conditioning target and a target temperature of the air-conditioning becomes a predetermined value or less. It is a control method of a heat pump type air conditioner.

本発明によれば、圧縮機の最小能力が空調負荷を上回るような場合にも、圧縮機の連続運転を可能とすることが可能となる。   According to the present invention, it is possible to enable continuous operation of the compressor even when the minimum capacity of the compressor exceeds the air conditioning load.

第一の実施形態に係るヒートポンプ式空調機の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump type air conditioner which concerns on 1st embodiment. ヒートポンプ式空調機の冷房運転時における外気温度に応じた、空調負荷と圧縮機のインバータ制御によって得られる空調能力との関係を示す図である。It is a figure which shows the relationship between the air-conditioning load and the air-conditioning capability obtained by the inverter control of a compressor according to the external temperature at the time of air_conditionaing | cooling operation of a heat pump type air conditioner. 実施形態に係る熱移転処理の開始の流れを示すフローチャートである。It is a flowchart which shows the flow of the start of the heat transfer process which concerns on embodiment. 実施形態に係るヒートポンプ式空調機の冷房運転時における、室温に応じた、圧縮機の制御および比例三方弁の制御を示す図である。It is a figure which shows control of the compressor and control of a proportional three-way valve according to room temperature at the time of air_conditionaing | cooling operation of the heat pump type air conditioner which concerns on embodiment. 第二の実施形態に係るヒートポンプ式空調機の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump type air conditioner which concerns on 2nd embodiment. 第三の実施形態に係るヒートポンプ式空調機の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump type air conditioner which concerns on 3rd embodiment. 第四の実施形態に係るヒートポンプ式空調機の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump type air conditioner which concerns on 4th embodiment. 従来の空調機における断続運転の際の室温変動および圧縮機状態を示す図である。It is a figure which shows the room temperature fluctuation | variation in the case of the intermittent operation in the conventional air conditioner, and a compressor state.

以下、本発明に係るヒートポンプ式空調機の実施の形態について、図面に基づいて説明する。   Embodiments of a heat pump air conditioner according to the present invention will be described below with reference to the drawings.

<第一の実施形態>
図1は、第一の実施形態に係るヒートポンプ式空調機1の概略構成を示す図である。ヒートポンプ式空調機1は、冷却塔(クーリングタワー)等の冷却水温度調節装置(図示は省略する)によって温度制御された冷却水(熱源水)の供給を受けて冷媒の温度調節を行う水熱源ヒートポンプ式の空調機であり、供給された冷却水を外部の熱源として冷媒との間で熱交換を行う外部熱源熱交換器としての水熱交換器17、冷媒を圧縮する圧縮機14、冷媒を膨張させる膨張弁16、冷媒と空調対象の空気との間で熱交換を行うことで空調を行う空調対象熱交換器としての空気熱交換器13、および冷媒の流路を切り替えることで冷房運転と暖房運転とを切り替える四方弁15を有する。これらの構成要素は冷媒管路19で接続されることで冷凍サイクルを形成し、四方弁15の切り替えによって、冷房運転と暖房運転とを切り替えることが出来る。
<First embodiment>
FIG. 1 is a diagram showing a schematic configuration of a heat pump air conditioner 1 according to the first embodiment. The heat pump air conditioner 1 is a water heat source heat pump that receives coolant water (heat source water) controlled in temperature by a cooling water temperature adjusting device (not shown) such as a cooling tower (cooling tower) and adjusts the temperature of the refrigerant. Type air conditioner, which uses the supplied cooling water as an external heat source to exchange heat with the refrigerant, the water heat exchanger 17 as an external heat source heat exchanger, the compressor 14 for compressing the refrigerant, and the refrigerant to expand The expansion valve 16, the air heat exchanger 13 as an air conditioning target heat exchanger that performs air conditioning by performing heat exchange between the refrigerant and the air to be air conditioned, and the cooling operation and heating by switching the refrigerant flow path. It has a four-way valve 15 for switching between operation. These components are connected by a refrigerant pipe 19 to form a refrigeration cycle, and switching between a cooling operation and a heating operation can be performed by switching the four-way valve 15.

また、ヒートポンプ式空調機1は送風機21を有しており、送風機21によって、室内の空気が還気としてフィルタ(図示は省略する)を介してヒートポンプ式空調機1に取り込まれ、空気熱交換器13による温度調節後に給気として室内に送られる。なお、冷房運転時には、圧縮機14、水熱交換器17、膨張弁16、空気熱交換器13の順に冷媒が循環し、暖房運転時には、圧縮機14、空気熱交換器13、膨張弁16、水熱交換器17の順に冷媒が循環する。   Further, the heat pump air conditioner 1 has a blower 21, and indoor air is taken into the heat pump air conditioner 1 through a filter (not shown) as return air by the blower 21, and the air heat exchanger After the temperature adjustment by 13, it is sent to the room as supply air. In the cooling operation, the refrigerant circulates in the order of the compressor 14, the water heat exchanger 17, the expansion valve 16, and the air heat exchanger 13, and in the heating operation, the compressor 14, the air heat exchanger 13, the expansion valve 16, The refrigerant circulates in the order of the water heat exchanger 17.

本実施形態に係るヒートポンプ式空調機1は、制御装置90によって制御される。例えば、制御装置90は、ユーザによる設定内容に従って四方弁15の切り替えを行うことによって冷房運転と暖房運転とを切り替え、また、空調対象の室内に設置された室温センサ91によって検出された室温が、設定温度(空調目標温度)Tsとなるように圧縮機14のインバータ制御および運転/停止制御を行う。但し、本発明は、インバータ制御等の能力可変でない、定速の圧縮機を用いるヒートポンプ式空調機にも適用されてもよい。   The heat pump air conditioner 1 according to the present embodiment is controlled by the control device 90. For example, the control device 90 switches between the cooling operation and the heating operation by switching the four-way valve 15 according to the setting content by the user, and the room temperature detected by the room temperature sensor 91 installed in the room to be air-conditioned is Inverter control and operation / stop control of the compressor 14 are performed so that the set temperature (air conditioning target temperature) Ts is obtained. However, the present invention may also be applied to a heat pump type air conditioner using a constant speed compressor that is not variable in capacity such as inverter control.

本実施形態に係るヒートポンプ式空調機1の圧縮機14はインバータ制御可能な能力可変の圧縮機14である。このため、空調の設定温度Tsが変更されたり、室温が変化したり等することで、空調負荷に対する空調能力が過大となると、ヒートポンプ式空調機1では、圧縮機14の能力が制御されることで、空調能力が調整される。以下、空調負荷が圧縮機14の最小能力を下回らない範囲で、空調能力を空調負荷に対応させながら行われる連続運転を、通常負荷運転と称する。   The compressor 14 of the heat pump type air conditioner 1 according to the present embodiment is a variable capacity compressor 14 that can be controlled by an inverter. For this reason, if the air conditioning capacity with respect to the air conditioning load becomes excessive by changing the set temperature Ts of the air conditioning or changing the room temperature, in the heat pump air conditioner 1, the capacity of the compressor 14 is controlled. Thus, the air conditioning capacity is adjusted. Hereinafter, the continuous operation performed while the air conditioning load corresponds to the air conditioning load in a range where the air conditioning load does not fall below the minimum capacity of the compressor 14 is referred to as a normal load operation.

図2は、ヒートポンプ式空調機1の冷房運転時における外気温度に応じた、空調負荷と圧縮機14のインバータ制御によって得られる空調能力との関係を示す図である。図2によれば、外気温度が低下すると冷房運転に対する空調負荷が下がること、即ち、必要な空調能力が低くなることが分かる。このため、ある外気温(図2の例では、摂氏26度)までは、圧縮機14をインバータ制御して空調能力を定格能力から最小能力までの間で調整することで、省エネルギー運転を行い、COPを向上させることが出来る。しかし、圧縮機14には最小能力がある。このため、空調負荷が、この最小能力で運転する圧縮機14によって提供される空調能力を更に下回る場合(図2の例では、外気温が摂氏26度以下の場合)、即ち、部分負荷時には、圧縮機14のみによる空調能力制御では、空調能力に余剰が出てしまう(図2を参照)。   FIG. 2 is a diagram showing the relationship between the air conditioning load and the air conditioning capability obtained by inverter control of the compressor 14 according to the outside air temperature during the cooling operation of the heat pump type air conditioner 1. As can be seen from FIG. 2, when the outside air temperature decreases, the air conditioning load for the cooling operation decreases, that is, the necessary air conditioning capacity decreases. For this reason, up to a certain outside air temperature (26 degrees Celsius in the example of FIG. 2), the compressor 14 is inverter-controlled to adjust the air conditioning capacity from the rated capacity to the minimum capacity, thereby performing energy saving operation. COP can be improved. However, the compressor 14 has a minimum capacity. Therefore, when the air conditioning load is further lower than the air conditioning capability provided by the compressor 14 operating at this minimum capacity (in the example of FIG. 2, the outside air temperature is 26 degrees Celsius or less), that is, at the time of partial load, In the air conditioning capability control only by the compressor 14, a surplus will appear in the air conditioning capability (see FIG. 2).

このような部分負荷状態は、夏季や冬季を除く中間期において発生し易い。そして、空調機が、空調負荷に対する空調能力が過大である部分負荷運転の状態となると、従来の空調機では、設定温度までの空調が達成されたことが検知された時点での空調機の運転停止
と、室温が設定温度から外れたことが検知された時点での空調機の運転再開と、が繰り返される(従来空調機の断続運転を示す図8を参照)。
Such a partial load state is likely to occur in an intermediate period excluding summer and winter. When the air conditioner is in a partial load operation state where the air conditioning capacity for the air conditioning load is excessive, the conventional air conditioner is operated when it is detected that air conditioning up to the set temperature has been achieved. Stopping and resuming the operation of the air conditioner when it is detected that the room temperature has deviated from the set temperature are repeated (see FIG. 8 showing the intermittent operation of the conventional air conditioner).

従来の空調機において発生するこのような状況を防止するため、本実施形態に係るヒートポンプ式空調機1では、圧縮機14のインバータ制御のみでは対応が困難な程度に空調負荷が低い場合(部分負荷時)に、空調機の運転停止/再開の繰り返し(断続運転)によるCOP低下を防止するため、膨張弁16と空気熱交換器13との間の冷媒流路に補助水熱交換器18を備え、この補助水熱交換器18に、水熱交換器17に導入される前の冷却水を、冷却水迂回管路12を介して導入して空調対象側(空調対象熱交換器側)の冷媒と熱交換させる。   In order to prevent such a situation that occurs in the conventional air conditioner, in the heat pump type air conditioner 1 according to the present embodiment, when the air conditioning load is low to the extent that it is difficult to cope with only the inverter control of the compressor 14 (partial load) ), An auxiliary water heat exchanger 18 is provided in the refrigerant flow path between the expansion valve 16 and the air heat exchanger 13 in order to prevent a decrease in COP due to repeated stop / restart of the air conditioner (intermittent operation). Then, the cooling water before being introduced into the water heat exchanger 17 is introduced into the auxiliary water heat exchanger 18 via the cooling water bypass duct 12 and the refrigerant on the air conditioning target side (air conditioning target heat exchanger side). Heat exchange.

このようにすることで、冷房運転時には、空調負荷に対する余剰な冷熱が、冷却水を介して空調対象側の冷媒から外部熱源側の冷媒に移転され、圧縮機14の凝縮圧力を低下させることが出来る。また、空調対象側の冷媒の温度が上昇するため、必要以上の冷房が抑制されることとなり、空調機の運転停止/再開の繰り返しが抑制され、部分負荷時にも連続運転が可能となる。   By doing in this way, at the time of air_conditionaing | cooling operation, the excessive cold heat with respect to an air-conditioning load is transferred from the refrigerant | coolant by the side of an air conditioning to the refrigerant | coolant by the side of an external heat source via cooling water, and the condensation pressure of the compressor 14 may be reduced. I can do it. Further, since the temperature of the refrigerant on the air conditioning target side rises, cooling more than necessary is suppressed, and repeated repetition of operation stop / resumption of the air conditioner is suppressed, and continuous operation is possible even at partial load.

なお、ここで、空調対象側とは、本実施形態に係るヒートポンプ式空調機1の、圧縮機14および膨張弁16によって蒸発側と凝縮側に区分される冷凍サイクルの両側のうち、空調対象熱交換器(本実施形態では、空気熱交換器13)が属する側を指す。また、外部熱源側とは、本実施形態に係るヒートポンプ式空調機1の、圧縮機14および膨張弁16によって蒸発側と凝縮側に区分される冷凍サイクルの両側のうち、外部熱源熱交換器(本実施形態では、水熱交換器17)が属する側を指す。   Here, the air-conditioning target side is the air-conditioning target heat among both sides of the refrigeration cycle of the heat pump air conditioner 1 according to the present embodiment, which is divided into the evaporation side and the condensation side by the compressor 14 and the expansion valve 16. It refers to the side to which the exchanger (air heat exchanger 13 in this embodiment) belongs. In addition, the external heat source side refers to an external heat source heat exchanger (of both sides of the refrigeration cycle of the heat pump air conditioner 1 according to the present embodiment, which is divided into an evaporation side and a condensation side by the compressor 14 and the expansion valve 16 ( In this embodiment, it refers to the side to which the water heat exchanger 17) belongs.

以下、部分負荷運転時における、空調対象側の冷媒から外部熱源側の冷媒への余剰な冷熱または温熱の移転処理を、熱移転処理と称する。実施形態に係るヒートポンプ式空調機1は、熱移転処理の開始/終了と、補助水熱交換器18へ迂回させる冷却水の流量調整と、を行うことが可能な比例三方弁11を備える。通常負荷運転時には、比例三方弁11は、冷却塔等から供給された冷却水の全量を水熱交換器17へ送り、補助水熱交換器18へは送らない。これに対して、部分負荷運転時には、比例三方弁11は、冷却塔等から供給された冷却水の一部または全量を補助水熱交換器18へ一旦迂回させ、空調対象側の冷媒との熱交換の後で、水熱交換器17へ導入する。なお、本実施形態では、比例三方弁11が採用されているが、比例三方弁11に代えて、流量調整を行わない切替三方弁が採用されてもよいし、流量調整を行う場合にも、比例三方弁11以外の構成、例えば、切替三方弁と膨張弁との組み合わせ等が採用されてもよい。   Hereinafter, surplus cold heat or heat transfer processing from the air conditioning target side refrigerant to the external heat source side refrigerant during partial load operation is referred to as heat transfer processing. The heat pump air conditioner 1 according to the embodiment includes a proportional three-way valve 11 capable of performing the start / end of heat transfer processing and the flow rate adjustment of cooling water to be detoured to the auxiliary water heat exchanger 18. During normal load operation, the proportional three-way valve 11 sends the entire amount of cooling water supplied from a cooling tower or the like to the water heat exchanger 17 and does not send it to the auxiliary water heat exchanger 18. On the other hand, at the time of partial load operation, the proportional three-way valve 11 temporarily bypasses part or all of the cooling water supplied from the cooling tower or the like to the auxiliary water heat exchanger 18 and heats it with the refrigerant on the air conditioning target side. After the replacement, the water heat exchanger 17 is introduced. In this embodiment, the proportional three-way valve 11 is adopted, but instead of the proportional three-way valve 11, a switching three-way valve that does not adjust the flow rate may be adopted, and also when the flow rate adjustment is performed, A configuration other than the proportional three-way valve 11, for example, a combination of a switching three-way valve and an expansion valve may be employed.

図3は、本実施形態に係る熱移転処理の開始の流れを示すフローチャートである。本フローチャートに示された処理は、ヒートポンプ式空調機1の稼働中に、制御装置90によって定期的に実行される。なお、処理の詳細や処理順序については、本フローチャートに示したものに限定されず、実施の形態に応じて適宜採用されることが好ましい。   FIG. 3 is a flowchart showing a flow of starting the heat transfer process according to the present embodiment. The processing shown in this flowchart is periodically executed by the control device 90 while the heat pump air conditioner 1 is in operation. Note that the details of the processing and the processing order are not limited to those shown in this flowchart, and are preferably adopted as appropriate according to the embodiment.

はじめに、制御装置90は、圧縮機14から圧縮機14の運転状態を取得し、圧縮機14が最小能力で運転しているか否か、即ち、ヒートポンプ式空調機1が部分負荷運転の状態であるか否かを判断する(ステップS101)。ヒートポンプ式空調機1が部分負荷運転状態である場合、制御装置90は、現在の設定内容を参照することで、冷房運転中であるか暖房運転中であるかを判定する(ステップS102)。そして、制御装置90は、室温センサ91から空調対象の室温を定期的に取得し、冷房運転中である場合、取得された室温と、設定温度Tsに比べて所定温度(例えば、本実施形態では、摂氏2度)だけ高い温度に設定された閾値Ts+2と、を比較する(ステップS103)。比較の結果、室温が閾値Ts+2よりも低くなった場合、制御装置90は、断続運転が発生する可能性があ
ると判断し、比例三方弁11における冷却水迂回管路12へのルートを開弁することで、熱移転処理を開始する(ステップS105)。暖房運転中である場合も同様に、取得された室温と、設定温度Tsに比べて所定温度(例えば、本実施形態では、摂氏2度)だけ低い温度に設定された閾値Ts−2と、を比較する(ステップS104)。比較の結果、室温が閾値Ts−2よりも高くなった場合、制御装置90は、断続運転が発生する可能性があると判断し、比例三方弁11における冷却水迂回管路12へのルートを開弁することで、熱移転処理を開始する(ステップS105)。
First, the control device 90 acquires the operation state of the compressor 14 from the compressor 14 and determines whether or not the compressor 14 is operating at the minimum capacity, that is, the heat pump air conditioner 1 is in a partial load operation state. Whether or not (step S101). When the heat pump type air conditioner 1 is in the partial load operation state, the control device 90 determines whether it is in the cooling operation or the heating operation by referring to the current setting content (step S102). And the control apparatus 90 acquires the room temperature of air conditioning object regularly from the room temperature sensor 91, and when it is in air_conditionaing | cooling operation, compared with the acquired room temperature and preset temperature Ts (for example, in this embodiment). The threshold value Ts + 2 set to a temperature higher by 2 degrees Celsius is compared (step S103). As a result of the comparison, when the room temperature becomes lower than the threshold value Ts + 2, the control device 90 determines that intermittent operation may occur, and opens the route to the coolant bypass pipe 12 in the proportional three-way valve 11. Thus, the heat transfer process is started (step S105). Similarly, during the heating operation, the acquired room temperature and the threshold value Ts-2 set to a temperature lower by a predetermined temperature (for example, 2 degrees Celsius in this embodiment) than the set temperature Ts, Compare (step S104). As a result of the comparison, when the room temperature becomes higher than the threshold value Ts-2, the control device 90 determines that there is a possibility that intermittent operation may occur, and determines the route to the cooling water bypass conduit 12 in the proportional three-way valve 11. The heat transfer process is started by opening the valve (step S105).

図4は、本実施形態に係るヒートポンプ式空調機1の冷房運転時における、室温に応じた、圧縮機14の制御および比例三方弁11の制御を示す図である。図4によれば、図3で説明した通り、室温が設定温度Tsより所定温度だけ高く設定された閾値Ts+2を下回ると、比例三方弁11における冷却水迂回管路12へのルートが開弁され、熱移転処理が開始されることが分かる。熱移転処理が開始されると、補助水熱交換器18へ冷却水が導入され、空調対象側を流れる冷媒から、空調負荷を超える余剰な冷熱が奪われる。このため、空調負荷に対する余剰な空調能力が抑えられ、短期間における圧縮機14の運転停止/再開である断続運転が防止され、ヒートポンプ式空調機1の連続運転が可能となる。図4によれば、空調能力と空調負荷とのバランスが改善されることで、室温が設定温度Tsに向けて低下する速度が遅くなり、ヒートポンプ式空調機1の断続運転が防止されていることが分かる。   FIG. 4 is a diagram showing the control of the compressor 14 and the control of the proportional three-way valve 11 according to the room temperature during the cooling operation of the heat pump air conditioner 1 according to the present embodiment. According to FIG. 4, as described in FIG. 3, when the room temperature falls below the threshold value Ts + 2 set higher than the set temperature Ts by a predetermined temperature, the route to the coolant bypass pipe 12 in the proportional three-way valve 11 is opened. It can be seen that the heat transfer process is started. When the heat transfer process is started, cooling water is introduced into the auxiliary water heat exchanger 18, and excess cooling heat exceeding the air conditioning load is taken away from the refrigerant flowing on the air conditioning target side. For this reason, the excess air conditioning capability with respect to an air conditioning load is suppressed, the intermittent operation which is the operation stop / resumption of the compressor 14 in a short period is prevented, and the heat pump air conditioner 1 can be continuously operated. According to FIG. 4, the balance between the air conditioning capability and the air conditioning load is improved, so that the rate at which the room temperature decreases toward the set temperature Ts is reduced, and the intermittent operation of the heat pump air conditioner 1 is prevented. I understand.

なお、上記説明した熱移転処理によっても、室温が設定温度よりも低くなった場合(暖房運転では、室温が設定温度よりも高くなった場合)には、圧縮機14の運転および熱移転処理の停止(比例三方弁11における冷却水迂回管路12へのルートの閉弁)が行われる(図4を参照)。   In addition, also when the room temperature becomes lower than the set temperature by the heat transfer process described above (in the heating operation, when the room temperature becomes higher than the set temperature), the operation of the compressor 14 and the heat transfer process are performed. Stopping (closing of the route to the coolant bypass pipe 12 in the proportional three-way valve 11) is performed (see FIG. 4).

また、外部熱源側へ移転した冷熱は、そのままであれば冷媒の流れによって空調対象側へ再度戻される。このため、冷却塔から供給される冷却水の水温を上げる(冷却塔の運転能力を下げる)、または膨張弁16の開度を調整する等することで、空調対象側の冷媒の温度が更に下がることを防止することとしてもよい。このようにすることで、部分負荷運転の状態であっても、室温が設定温度を維持した状態で、より長時間に亘って最小能力での連続運転を行うことが可能となり、COPを更に向上させることが可能となる。   Further, the cold transferred to the external heat source side is returned again to the air-conditioning target side by the flow of the refrigerant if it remains as it is. For this reason, the temperature of the refrigerant on the air conditioning target side further decreases by increasing the temperature of the cooling water supplied from the cooling tower (decreasing the operating capacity of the cooling tower) or adjusting the opening of the expansion valve 16. This may be prevented. In this way, even in the state of partial load operation, it becomes possible to perform continuous operation with the minimum capacity for a longer time with the room temperature maintained at the set temperature, further improving COP. It becomes possible to make it.

また、比例三方弁11は、連続運転の時間を長くするために、設定温度および外気温に対して必要な冷凍能力を除いた余剰分を、空調対象側の冷媒から外部熱源側の冷媒へ移転するように、開度制御される。本実施形態では、冷房運転の場合、通常負荷運転時に予め計測していた、冷却塔等から供給された冷却水の、水熱交換器17の出口冷却水温を基準水温として、温度センサ92で検出される水熱交換器17の出口冷却水温が「基準水温−ΔTa」となるように、比例三方弁11の開度をフィードバック制御する。   Further, the proportional three-way valve 11 transfers the surplus except for the refrigerating capacity necessary for the set temperature and the outside air temperature from the refrigerant on the air conditioning target side to the refrigerant on the external heat source side in order to lengthen the continuous operation time. Thus, the opening degree is controlled. In the present embodiment, in the cooling operation, the temperature sensor 92 detects the cooling water supplied from the cooling tower or the like, which has been measured in advance during normal load operation, as the reference cooling water temperature at the outlet of the water heat exchanger 17. The degree of opening of the proportional three-way valve 11 is feedback-controlled so that the outlet cooling water temperature of the water heat exchanger 17 is “reference water temperature−ΔTa”.

なお、水熱交換器17の出口冷却水温の目標水温を定めるために用いられるΔTaの値は、通常負荷運転時における水熱交換器17の出口冷却水温(図1に示した例では、摂氏30.2度)と、比例三方弁11によって冷却水の全量が補助水熱交換器18に送られた場合の水熱交換器17の出口冷却水温(図1に示した例では、摂氏28.53度)との差(図1に示した例では、摂氏30.2度−摂氏28.53度=1.67度)の範囲内で決定される。図1に示した例では、ΔTaは0から1.67度の範囲内から、予め実験やシミュレーション等で、部分負荷運転時のCOPが最も高くなるように、または熱移転処理開始後の連続運転時間が最も長くなるように、最適な値が選択される。例えば、ΔTaとして1度が選択された場合、水熱交換器17の出口冷却水温の目標水温は摂氏30.2度−1度=摂氏29.2度となり、制御装置90は、比例三方弁11の開度を、温度センサ92から検出される水熱交換器17の出口冷却水温がこの目標温度となるように制御する
。なお、本実施形態では、通常運転時および熱移転処理時における水熱交換器17の出口冷却水温の変動幅に基づいて比例三方弁11の開度を制御することとしているが、このような制御に代えて、補助水熱交換器18の入口冷却水温(図1に示した例では、摂氏25.2度)と出口冷却水温(図1に示した例では、摂氏23.53度)との変化幅(図1に示した例では、摂氏25.2度−摂氏23.53度=1.67度)に基づいて熱移転の量を把握し、比例三方弁11の開度制御(迂回する水量の調整)を行うこととしてもよい。この場合、補助水熱交換器18の入口と出口における冷却水の温度変化に基づいて迂回水量の調整が行われるため、余剰熱の移転量をより正確に反映した制御を行うことが可能となる。
The value of ΔTa used to determine the target water temperature of the outlet cooling water temperature of the water heat exchanger 17 is the outlet cooling water temperature of the water heat exchanger 17 during normal load operation (in the example shown in FIG. 1, 30 degrees Celsius). 2 degrees), and the cooling water temperature at the outlet of the water heat exchanger 17 when the total amount of cooling water is sent to the auxiliary water heat exchanger 18 by the proportional three-way valve 11 (in the example shown in FIG. 1, 28.53 Celsius). (In the example shown in FIG. 1), it is determined within a range of 30.2 degrees Celsius−28.53 degrees Celsius = 1.67 degrees. In the example shown in FIG. 1, ΔTa is within the range of 0 to 1.67 degrees so that the COP at the time of partial load operation becomes the highest by experiments or simulations in advance, or continuous operation after the start of the heat transfer process. The optimum value is selected so that the time is the longest. For example, when 1 degree is selected as ΔTa, the target water temperature of the outlet cooling water temperature of the water heat exchanger 17 is 30.2 degrees Celsius-1 degree = 29.2 degrees Celsius, and the control device 90 can control the proportional three-way valve 11. Is controlled so that the outlet cooling water temperature of the water heat exchanger 17 detected from the temperature sensor 92 becomes the target temperature. In the present embodiment, the opening degree of the proportional three-way valve 11 is controlled based on the fluctuation range of the outlet cooling water temperature of the water heat exchanger 17 during the normal operation and the heat transfer process. Instead of the inlet cooling water temperature of the auxiliary water heat exchanger 18 (25.2 degrees Celsius in the example shown in FIG. 1) and the outlet cooling water temperature (23.53 degrees Celsius in the example shown in FIG. 1). The amount of heat transfer is grasped based on the change width (in the example shown in FIG. 1, 25.2 degrees Celsius−23.53 degrees Celsius = 1.67 degrees), and the opening degree control of the proportional three-way valve 11 (bypassing) It is also possible to adjust the amount of water). In this case, since the amount of bypass water is adjusted based on the temperature change of the cooling water at the inlet and outlet of the auxiliary water heat exchanger 18, it is possible to perform control that more accurately reflects the amount of surplus heat transferred. .

<第二の実施形態>
図5は、第二の実施形態に係るヒートポンプ式空調機1bの概略構成を示す図である。第二の実施形態に係るヒートポンプ式空調機1bについても、部分負荷運転時の余剰な冷熱を空調対象側の冷媒から外部熱源側の冷媒へ移転させる熱移転処理を行うことによって、部分負荷時の断続運転を抑制し、連続運転を可能としている点については同様である。但し、第二の実施形態に係るヒートポンプ式空調機1bは、冷熱の移転に冷却水を介さず、冷媒熱交換器18bを用いて、空調対象側冷媒の余剰冷熱を外部熱源側冷媒に移転させる点で、第一の実施形態に示したヒートポンプ式空調機1と異なる。なお、本実施形態の説明において、第一の実施形態と概略同様の構成については、同一の符号を付して説明を省略する。
<Second Embodiment>
FIG. 5 is a diagram showing a schematic configuration of a heat pump air conditioner 1b according to the second embodiment. Also in the heat pump type air conditioner 1b according to the second embodiment, by performing heat transfer processing for transferring excess cold heat during partial load operation from the refrigerant on the air conditioning target side to the refrigerant on the external heat source side, The same applies to the point that intermittent operation is suppressed and continuous operation is possible. However, the heat pump type air conditioner 1b according to the second embodiment uses the refrigerant heat exchanger 18b to transfer the excessive cold heat of the air-conditioning target side refrigerant to the external heat source side refrigerant without using cooling water for the transfer of the cold heat. This is different from the heat pump air conditioner 1 shown in the first embodiment. Note that, in the description of the present embodiment, the same reference numerals are given to components that are substantially the same as those in the first embodiment, and the description thereof is omitted.

ヒートポンプ式空調機1bは、水熱源ヒートポンプ式の空調機であり、水熱交換器17、圧縮機14、膨張弁16、空調対象熱交換器としての空気熱交換器13、および四方弁15を有する点では第一の実施形態に係るヒートポンプ式空調機1と同様である。但し、ヒートポンプ式空調機1bは、熱移転処理のために、第一の実施形態に係るヒートポンプ式空調機1が備える比例三方弁11、冷却水迂回管路12および補助水熱交換器18に代えて、冷媒迂回管路19b、閉止弁31、流量調整弁32および冷媒熱交換器18bを備える点で、第一の実施形態に係るヒートポンプ式空調機1と異なる。   The heat pump type air conditioner 1b is a water heat source heat pump type air conditioner, and includes a water heat exchanger 17, a compressor 14, an expansion valve 16, an air heat exchanger 13 as an air conditioning target heat exchanger, and a four-way valve 15. This is the same as the heat pump air conditioner 1 according to the first embodiment. However, the heat pump air conditioner 1b is replaced with the proportional three-way valve 11, the cooling water bypass conduit 12, and the auxiliary water heat exchanger 18 included in the heat pump air conditioner 1 according to the first embodiment for heat transfer processing. Thus, it differs from the heat pump air conditioner 1 according to the first embodiment in that it includes the refrigerant bypass duct 19b, the closing valve 31, the flow rate adjustment valve 32, and the refrigerant heat exchanger 18b.

なお、本実施形態では、流量調整弁32として膨張弁が用いられる。但し、流量調整弁32は、冷媒の減圧目的ではなく流量調整に用いられるものであるため、開度調整等によって冷媒熱交換器18bへ送られる冷媒と送られない冷媒との流量調整が可能なものであればよい。また、冷媒の流量調整を行わず、熱移転処理時に冷媒の全量を冷媒熱交換器18bへ送ってよい実施形態の場合には、流量調整弁32に代えて、開閉のみ制御可能な閉止弁が採用されてもよい(図示は省略する)。   In the present embodiment, an expansion valve is used as the flow rate adjustment valve 32. However, since the flow rate adjusting valve 32 is used not for the purpose of reducing the refrigerant pressure but for adjusting the flow rate, it is possible to adjust the flow rate between the refrigerant sent to the refrigerant heat exchanger 18b and the refrigerant not sent by adjusting the opening degree or the like. Anything is acceptable. In the case of an embodiment in which the entire amount of refrigerant may be sent to the refrigerant heat exchanger 18b during the heat transfer process without adjusting the refrigerant flow rate, instead of the flow rate adjustment valve 32, a closing valve that can be controlled only for opening and closing is provided. It may be adopted (illustration is omitted).

通常負荷運転時には、閉止弁31は閉弁され、流量調整弁32は全開される。これに対して、部分負荷運転において熱移転処理が開始されると、本実施形態では、閉止弁31が開弁され、流量調整弁32が閉止または開度調整される。本実施形態では、このような制御が行われることで、外部熱源側の冷媒の一部または全部が、膨張弁16に到達する前に一旦冷媒熱交換器18bに導入され、外部熱源側の冷媒と空調対象側の冷媒との間で、熱交換が行われ、空調対象側の冷媒が有する余剰な冷熱が外部熱源側の冷媒へ移転する。   During normal load operation, the closing valve 31 is closed and the flow rate adjusting valve 32 is fully opened. On the other hand, when the heat transfer process is started in the partial load operation, in this embodiment, the closing valve 31 is opened, and the flow rate adjusting valve 32 is closed or the opening degree is adjusted. In this embodiment, by performing such control, part or all of the refrigerant on the external heat source side is once introduced into the refrigerant heat exchanger 18b before reaching the expansion valve 16, and the refrigerant on the external heat source side And the refrigerant on the air conditioning target side are subjected to heat exchange, and excess cold heat of the refrigerant on the air conditioning target side is transferred to the refrigerant on the external heat source side.

熱移転処理の開始処理の流れについては、図3および図4を用いて説明した流れと概略同様であるため、説明を省略する。また、室温が設定温度を通過した場合に、熱移転処理および圧縮機の運転が停止されることについても、第一の実施形態と概略同様である。   Since the flow of the heat transfer process start process is substantially the same as the flow described with reference to FIGS. 3 and 4, the description thereof is omitted. Further, when the room temperature passes the set temperature, the heat transfer process and the operation of the compressor are stopped as in the first embodiment.

ここで、本実施形態の熱移転処理における流量調整弁32の開度制御について説明する。流量調整弁32は、連続運転の時間を長くするために、設定温度および外気温に対して必要な冷凍能力を除いた余剰分を、空調対象側の冷媒から外部熱源側の冷媒へ移転するよ
うに、開度制御される。本実施形態では、制御装置90は、通常負荷運転時に予め温度センサ93a、93bで計測されていた、膨張弁16の前後の冷媒温度の差(即ち、流量調整弁32の開度が0%の場合の冷媒温度差)と、部分負荷運転時に流量調整弁32が全開(開度100%)された場合(冷媒の全量が冷媒熱交換器18bに送られる場合)の膨張弁16の前後の冷媒温度の差と、を予め取得し、更に、取得された冷媒温度差の変動幅、即ち、通常負荷運転時の冷媒温度差から部分負荷運転時に流量調整弁32が全開された場合の冷媒温度差への最大変動幅を算出しておく。そして、制御装置90は、予め算出された最大変動幅に対する、部分負荷運転時の膨張弁16前後の冷媒温度差の変動幅の割合を定め、この目標値とする変動幅の割合に応じて、流量調整弁32の開度を決定する。
Here, the opening degree control of the flow rate adjustment valve 32 in the heat transfer process of the present embodiment will be described. In order to lengthen the continuous operation time, the flow rate adjustment valve 32 transfers the surplus except for the refrigerating capacity necessary for the set temperature and the outside air temperature from the refrigerant on the air conditioning target side to the refrigerant on the external heat source side. Then, the opening degree is controlled. In the present embodiment, the control device 90 is configured so that the difference between the refrigerant temperatures before and after the expansion valve 16 (that is, the degree of opening of the flow rate adjustment valve 32 is 0%) that has been previously measured by the temperature sensors 93a and 93b during the normal load operation. Refrigerant temperature difference) and refrigerant before and after the expansion valve 16 when the flow rate adjustment valve 32 is fully opened (opening degree 100%) during partial load operation (when the entire amount of refrigerant is sent to the refrigerant heat exchanger 18b). The temperature difference is obtained in advance, and the fluctuation range of the obtained refrigerant temperature difference, that is, the refrigerant temperature difference when the flow rate adjustment valve 32 is fully opened during partial load operation from the refrigerant temperature difference during normal load operation. The maximum fluctuation range is calculated. And the control apparatus 90 determines the ratio of the fluctuation range of the refrigerant temperature difference before and after the expansion valve 16 during the partial load operation with respect to the maximum fluctuation range calculated in advance, and according to the ratio of the fluctuation range as the target value, The opening degree of the flow rate adjustment valve 32 is determined.

例えば、冷房運転の通常負荷運転時(流量調整弁32の開度は0%)に、温度センサ93a、93bで計測された冷媒温度が夫々摂氏34度、摂氏12度であり、部分負荷運転時の熱移転処理で、流量調整弁32の開度を100%とした場合に、温度センサ93a、93bで計測された冷媒温度が夫々摂氏22度、摂氏14度であったとする。この場合、膨張弁16前後の冷媒温度差は、流量調整弁32の開度が0%の場合に34−12=22度、開度が100%の場合に28−14=14度であり、通常負荷運転時の冷媒温度差(22度)から部分負荷運転時に流量調整弁32が全開された場合の冷媒温度差(14度)への最大変動幅は、22度−14度=8度である。このため、膨張弁16前後の冷媒温度差の目標値を4度としたい場合には、制御装置90は、流量調整弁32の開度を50%とする。このような開度決定処理を行い、制御装置90が流量調整弁32の開度を調整することで、部分負荷運転時に、適正な量の冷媒を冷媒熱交換器18bへ送ることが出来る。なお、本実施形態においても、温度センサ93a、93bによって計測される冷媒温度に目標温度を設け、この目標温度を達成するように、流量調整弁32の開度をフィードバック制御することとしてもよい。   For example, during normal load operation of cooling operation (the opening degree of the flow rate adjustment valve 32 is 0%), the refrigerant temperatures measured by the temperature sensors 93a and 93b are 34 degrees Celsius and 12 degrees Celsius, respectively, and during partial load operation In the heat transfer process, when the opening degree of the flow rate adjustment valve 32 is 100%, the refrigerant temperatures measured by the temperature sensors 93a and 93b are 22 degrees Celsius and 14 degrees Celsius, respectively. In this case, the refrigerant temperature difference before and after the expansion valve 16 is 34-12 = 22 degrees when the opening degree of the flow rate adjustment valve 32 is 0%, and 28-14 = 14 degrees when the opening degree is 100%. The maximum fluctuation range from the refrigerant temperature difference (22 degrees) during normal load operation to the refrigerant temperature difference (14 degrees) when the flow rate adjustment valve 32 is fully opened during partial load operation is 22 degrees-14 degrees = 8 degrees. is there. For this reason, when it is desired to set the target value of the refrigerant temperature difference before and after the expansion valve 16 to 4 degrees, the control device 90 sets the opening degree of the flow rate adjustment valve 32 to 50%. By performing such opening degree determination processing and the control device 90 adjusting the opening degree of the flow rate adjustment valve 32, an appropriate amount of refrigerant can be sent to the refrigerant heat exchanger 18b during partial load operation. Also in this embodiment, a target temperature may be provided for the refrigerant temperature measured by the temperature sensors 93a and 93b, and the opening degree of the flow rate adjustment valve 32 may be feedback controlled so as to achieve this target temperature.

また、図5に示した本実施形態に係るヒートポンプ式空調機1bにおいて、閉止弁31が設けられている位置に、閉止弁31に代えて第二の流量調整弁(例えば、膨張弁。図示は省略する)を設けることとしてもよい。この場合には、通常運転時には流量調整弁を閉止することで冷媒熱交換器18bへ冷媒を流さず、熱移転処理時には第二の流量調整弁の開度を一定の開度とし、流量調整弁32の開度を制御することで、冷媒の迂回量を調整することが出来る。   Further, in the heat pump air conditioner 1b according to the present embodiment shown in FIG. 5, a second flow rate adjustment valve (for example, an expansion valve; for example, shown in the figure) is provided instead of the stop valve 31 at the position where the close valve 31 is provided. (Omitted) may be provided. In this case, the flow rate adjustment valve is closed during normal operation so that the refrigerant does not flow to the refrigerant heat exchanger 18b, and during the heat transfer process, the opening of the second flow rate adjustment valve is kept constant, and the flow rate adjustment valve By controlling the opening degree of 32, the bypass amount of the refrigerant can be adjusted.

<第三の実施形態>
図6は、第三の実施形態に係るヒートポンプ式空調機1cの概略構成を示す図である。ヒートポンプ式空調機1cは、第一および第二の実施形態において示した水熱源ヒートポンプ式空調機1、1bと異なり、所謂室外機としての空気熱交換器によって冷媒の温度調節を行う空気熱源ヒートポンプ式の空調機である。ヒートポンプ式空調機1cは、外気を外部の熱源として冷媒との間で熱交換を行う外部熱源熱交換器としての空気熱交換器17b、冷媒を圧縮する圧縮機14、冷媒を膨張させる膨張弁16、冷媒と空調対象の空気との間で熱交換を行うことで空調を行う空調対象熱交換器としての空気熱交換器13、および冷媒の流路を切り替えることで冷房運転と暖房運転とを切り替える四方弁15を有する。なお、本実施形態の説明において、第一の実施形態または第二の実施形態と概略同様の構成については、同一の符号を付して説明を省略する。
<Third embodiment>
FIG. 6 is a diagram showing a schematic configuration of a heat pump air conditioner 1c according to the third embodiment. Unlike the water heat source heat pump air conditioners 1 and 1b shown in the first and second embodiments, the heat pump air conditioner 1c is an air heat source heat pump type that adjusts the temperature of the refrigerant by an air heat exchanger as a so-called outdoor unit. It is an air conditioner. The heat pump air conditioner 1c includes an air heat exchanger 17b as an external heat source heat exchanger that exchanges heat with refrigerant using outside air as an external heat source, a compressor 14 that compresses refrigerant, and an expansion valve 16 that expands refrigerant. The air heat exchanger 13 as an air conditioning target heat exchanger that performs air conditioning by performing heat exchange between the refrigerant and the air to be air conditioned, and the cooling operation and the heating operation are switched by switching the refrigerant flow path. A four-way valve 15 is provided. Note that, in the description of the present embodiment, the same reference numerals are given to configurations that are substantially the same as those in the first embodiment or the second embodiment, and the description thereof is omitted.

また、ヒートポンプ式空調機1cは、室内機用の送風機21に加えて、更に送風機22を有している。送風機22によって、外気が外部熱源熱交換器としての空気熱交換器17bに取り込まれ、空気熱交換器17bを通過する冷媒の温度調節が行われる。   The heat pump air conditioner 1c further includes a blower 22 in addition to the blower 21 for indoor units. The blower 22 takes outside air into the air heat exchanger 17b as an external heat source heat exchanger and adjusts the temperature of the refrigerant passing through the air heat exchanger 17b.

第三の実施形態に係るヒートポンプ式空調機1cについても、部分負荷運転時の余剰な冷熱を空調対象側の冷媒から外部熱源側の冷媒へ移転させる熱移転処理を行うことによっ
て、部分負荷時の断続運転を抑制し、連続運転を可能としている点について、他の実施形態と同様である。ヒートポンプ式空調機1cは、熱移転処理のために、第二の実施形態に示したヒートポンプ式空調機1bと同様、冷媒迂回管路19b、閉止弁31、流量調整弁32および冷媒熱交換器18bを備える。また、通常負荷運転時に閉止弁31が閉弁され、流量調整弁32が全開されること、および、部分負荷運転において熱移転処理が開始されると、閉止弁31が開弁され、流量調整弁32が閉止または開度調整されることについても、第二の実施形態と概略同様であるため、説明を省略する。
Also in the heat pump type air conditioner 1c according to the third embodiment, by performing heat transfer processing for transferring excess cold heat during partial load operation from the refrigerant on the air conditioning target side to the refrigerant on the external heat source side, It is the same as that of other embodiment about the point which suppresses intermittent operation and enables continuous operation. The heat pump type air conditioner 1c is similar to the heat pump type air conditioner 1b shown in the second embodiment for the heat transfer process, and the refrigerant bypass pipe 19b, the closing valve 31, the flow rate adjusting valve 32, and the refrigerant heat exchanger 18b. Is provided. Further, when the closing valve 31 is closed during the normal load operation and the flow rate adjusting valve 32 is fully opened, and when the heat transfer process is started during the partial load operation, the closing valve 31 is opened and the flow rate adjusting valve is opened. The closing or opening degree adjustment of 32 is also substantially the same as in the second embodiment, and thus the description thereof is omitted.

熱移転処理の開始処理の流れについては、図3および図4を用いて説明した流れと概略同様であるため、説明を省略する。また、室温が設定温度を通過した場合に、熱移転処理および圧縮機の運転が停止されることや、流量調整弁32の開度制御、閉止弁31に代えて第二の流量調整弁を設けてもよいこと、についても、第一または第二の実施形態と概略同様である。   Since the flow of the heat transfer process start process is substantially the same as the flow described with reference to FIGS. 3 and 4, the description thereof is omitted. Further, when the room temperature passes the set temperature, the heat transfer process and the operation of the compressor are stopped, the opening degree control of the flow rate adjustment valve 32, and a second flow rate adjustment valve is provided instead of the stop valve 31. This may be the same as in the first or second embodiment.

<第四の実施形態>
図7は、第四の実施形態に係るヒートポンプ式空調機1dの概略構成を示す図である。ヒートポンプ式空調機1dは、建物に設置され、空気熱源によって冷媒の温度調整を行う室外機2dに接続された複数の室内機によって空調を行うビルマルチ用のヒートポンプ式空調機であり、外気を外部の熱源として冷媒との間で熱交換を行う外部熱源熱交換器としての空気熱交換器17d、空気熱交換器17dに外気を取り込むための送風機22d、冷媒を圧縮する圧縮機14、冷房運転時に冷媒を膨張させる冷房用膨張弁16a、暖房運転時に冷媒を膨張させる暖房用膨張弁16b、冷媒と空調対象の空気との間で熱交換を行うことで空調を行う空調対象熱交換器としての、複数の空気熱交換器13d、空気熱交換器13dに空調対象の空気を取り込むための送風機21d、および冷媒の流路を切り替えることで冷房運転と暖房運転とを切り替える四方弁15を有する。なお、本実施形態の説明において、第一の実施形態または第二の実施形態と概略同様の構成については、同一の符号を付して説明を省略する。
<Fourth embodiment>
FIG. 7 is a diagram illustrating a schematic configuration of a heat pump air conditioner 1d according to the fourth embodiment. The heat pump air conditioner 1d is a building multi-use heat pump air conditioner that is installed in a building and performs air conditioning with a plurality of indoor units connected to an outdoor unit 2d that adjusts the temperature of the refrigerant with an air heat source. The air heat exchanger 17d as an external heat source heat exchanger that exchanges heat with the refrigerant as the heat source of the air, the blower 22d for taking outside air into the air heat exchanger 17d, the compressor 14 for compressing the refrigerant, and the cooling operation As a cooling expansion valve 16a that expands the refrigerant, a heating expansion valve 16b that expands the refrigerant during heating operation, an air conditioning target heat exchanger that performs air conditioning by performing heat exchange between the refrigerant and the air to be air-conditioned, By switching the air heat exchanger 13d, the air heat exchanger 13d, the air blower 21d for taking in air to be air-conditioned, and the refrigerant flow path, Having a four-way valve 15 for switching. Note that, in the description of the present embodiment, the same reference numerals are given to configurations that are substantially the same as those in the first embodiment or the second embodiment, and the description thereof is omitted.

第四の実施形態に係るヒートポンプ式空調機1dについても、部分負荷運転時の余剰な冷熱を空調対象側の冷媒から外部熱源側の冷媒へ移転させる熱移転処理を行うことによって、部分負荷時の断続運転を抑制し、連続運転を可能としている点について、他の実施形態と同様である。ヒートポンプ式空調機1dは、熱移転処理のために、冷媒迂回管路19d、流量調整弁33、34および冷媒熱交換器18dを備える。   Also in the heat pump air conditioner 1d according to the fourth embodiment, by performing a heat transfer process for transferring excess cold heat during partial load operation from the refrigerant on the air conditioning target side to the refrigerant on the external heat source side, It is the same as that of other embodiment about the point which suppresses intermittent operation and enables continuous operation. The heat pump air conditioner 1d includes a refrigerant bypass pipe 19d, flow rate adjusting valves 33 and 34, and a refrigerant heat exchanger 18d for heat transfer processing.

なお、本実施形態では、流量調整弁33、34として膨張弁が用いられる。但し、流量調整弁33、34は、冷媒の減圧目的ではなく流量調整に用いられるものであるため、開度調整等によって冷媒熱交換器18dへ送られる冷媒と送られない冷媒との流量調整が可能なものであればよい。また、冷媒の流量調整を行わず、熱移転処理時に冷媒の全量を冷媒熱交換器18dへ送ってよい実施形態の場合には、流量調整弁33、34に代えて、開閉のみ制御可能な閉止弁が採用されてもよい(図示は省略する)。   In the present embodiment, expansion valves are used as the flow rate adjusting valves 33 and 34. However, since the flow rate adjusting valves 33 and 34 are used not for the purpose of reducing the refrigerant pressure but for adjusting the flow rate, the flow rate adjustment between the refrigerant sent to the refrigerant heat exchanger 18d and the refrigerant not sent by adjusting the opening degree or the like is performed. Anything is possible. In the case of an embodiment in which the entire amount of refrigerant may be sent to the refrigerant heat exchanger 18d during the heat transfer process without adjusting the refrigerant flow rate, instead of the flow rate adjustment valves 33 and 34, the closing can be controlled only for opening and closing. A valve may be employed (not shown).

通常負荷運転時には、流量調整弁34は閉弁され、流量調整弁33は全開される。これに対して、部分負荷運転において熱移転処理が開始されると、本実施形態では、流量調整弁34が一定の開度(全開であってもよい)で開弁され、流量調整弁33が閉止または開度調整される。本実施形態では、このような制御が行われることで、外部熱源側の冷媒の一部または全部が、膨張弁16aまたは16b(冷房運転時には膨張弁16a、暖房運転時には膨張弁16b)に到達する前に一旦冷媒熱交換器18dに導入され、外部熱源側の冷媒と空調対象側の冷媒との間で、熱交換が行われ、空調対象側の冷媒が有する余剰な冷熱が外部熱源側の冷媒へ移転する。   During normal load operation, the flow rate adjustment valve 34 is closed and the flow rate adjustment valve 33 is fully opened. On the other hand, when the heat transfer process is started in the partial load operation, in the present embodiment, the flow rate adjustment valve 34 is opened at a constant opening (may be fully open), and the flow rate adjustment valve 33 is Closed or opened. In this embodiment, by performing such control, a part or all of the refrigerant on the external heat source side reaches the expansion valve 16a or 16b (the expansion valve 16a during the cooling operation and the expansion valve 16b during the heating operation). The refrigerant is once introduced into the refrigerant heat exchanger 18d before, and heat exchange is performed between the refrigerant on the external heat source side and the refrigerant on the air conditioning target side, and the excessive cold heat of the refrigerant on the air conditioning target side is transferred to the refrigerant on the external heat source side. Move to.

熱移転処理の開始処理の流れについては、図3および図4を用いて説明した流れと概略同様の処理が用いられてもよいが、ヒートポンプ式空調機1dは複数の室内機(空気熱交換器13d)を有しているため、室内温度に加えて、部分負荷運転状態となった室内機の台数についても、熱移転処理の開始にあたっての判断材料として用いられてもよい。例えば、室温が設定温度Tsまたは所定の閾値(例えば、第一の実施形態で用いた閾値Ts−2やTs+2)に達した室内機が所定台数以上となった場合に、流量調整弁34の開放制御を行い、熱移転処理を開始することとしてもよい。なお、設定温度Tsまたは所定の閾値に達した室内機が全台に達した場合には、熱移転処理および圧縮機の運転が停止される。   As for the flow of the heat transfer process start process, a process similar to the process described with reference to FIGS. 3 and 4 may be used. However, the heat pump air conditioner 1d includes a plurality of indoor units (air heat exchangers). 13d), in addition to the room temperature, the number of indoor units in the partial load operation state may also be used as a judgment material when starting the heat transfer process. For example, when the number of indoor units that have reached the set temperature Ts or a predetermined threshold (for example, the threshold Ts-2 or Ts + 2 used in the first embodiment) exceeds a predetermined number, the flow rate adjustment valve 34 is opened. Control may be performed to start the heat transfer process. When all the indoor units that have reached the set temperature Ts or the predetermined threshold have reached all units, the heat transfer process and the operation of the compressor are stopped.

ここで、本実施形態の熱移転処理における流量調整弁33の開度制御について説明する。流量調整弁33は、連続運転の時間を長くするために、設定温度および外気温に対して必要な冷凍能力を除いた余剰分を、空調対象側の冷媒から外部熱源側の冷媒へ移転するように、開度制御される。本実施形態では、通常負荷運転時に予め温度センサ94a、94bで計測されていた、流量調整弁33の前後の冷媒温度t1(通常負荷運転時には、流量調整弁33は全開状態であるため、温度センサ94a、94bでは略同一の温度が検出される)と、部分負荷運転時に流量調整弁33が閉止(開度0%)且つ流量調整弁34が全開(開度100%)された場合(冷媒の全量が冷媒熱交換器18dに送られる場合)の流量調整弁33の前後の冷媒温度t2、t1と、を予め取得しておく。そして、制御装置90は、流量調整弁33の前後の冷媒の最大温度差(t2−t1)に対する、部分負荷運転時の流量調整弁33前後の冷媒温度差の割合を定め、この目標値とする温度差の割合に応じて、流量調整弁33の開度を決定する。   Here, the opening degree control of the flow rate adjustment valve 33 in the heat transfer process of the present embodiment will be described. In order to lengthen the continuous operation time, the flow rate adjustment valve 33 is configured to transfer the surplus except for the refrigerating capacity necessary for the set temperature and the outside air temperature from the refrigerant on the air conditioning target side to the refrigerant on the external heat source side. Then, the opening degree is controlled. In the present embodiment, the refrigerant temperature t1 before and after the flow rate adjustment valve 33, which is measured in advance by the temperature sensors 94a and 94b during the normal load operation (the temperature sensor because the flow rate adjustment valve 33 is fully open during the normal load operation). 94a and 94b detect substantially the same temperature), and when the flow regulating valve 33 is closed (opening degree 0%) and the flow regulating valve 34 is fully opened (opening degree 100%) during partial load operation (refrigerant of the refrigerant). The refrigerant temperatures t2 and t1 before and after the flow rate adjustment valve 33 (when the whole amount is sent to the refrigerant heat exchanger 18d) are acquired in advance. Then, the control device 90 determines the ratio of the refrigerant temperature difference before and after the flow rate adjustment valve 33 during the partial load operation to the maximum temperature difference (t2−t1) between the refrigerant before and after the flow rate adjustment valve 33, and sets this target value. The opening degree of the flow rate adjustment valve 33 is determined according to the temperature difference ratio.

例えば、冷房運転の通常負荷運転時(流量調整弁33の開度100%、流量調整弁34の開度0%)に、温度センサ94a、94bで計測された冷媒温度が何れもt1であり、部分負荷運転時の熱移転処理で、流量調整弁33の開度を0%、流量調整弁34の開度を100%とした場合に、温度センサ94a、94bで計測された冷媒温度が夫々t2、t1であったとする。この場合、流量調整弁33前後の冷媒温度差は、流量調整弁33の開度が100%の場合に0度、開度が0%の場合にt2−t1であるため、流量調整弁33前後の冷媒温度差の目標値に従って、流量調整弁33の開度を決定する(例えば、冷媒温度差を(t2−t1)/2としたい場合には、流量調整弁33の開度を50%とする)。このような開度決定処理を行い、制御装置90が流量調整弁33の開度を調整することで、部分負荷運転時に、適正な量の冷媒を冷媒熱交換器18dへ送ることが出来る。なお、本実施形態においても、温度センサ94a、94bによって計測される冷媒温度に目標温度を設け、この目標温度を達成するように、流量調整弁33の開度をフィードバック制御することとしてもよい。   For example, during the normal load operation of the cooling operation (the opening degree of the flow rate adjustment valve 33 is 100%, the opening degree of the flow rate adjustment valve 34 is 0%), the refrigerant temperatures measured by the temperature sensors 94a and 94b are both t1. In the heat transfer process during partial load operation, when the opening degree of the flow rate adjustment valve 33 is 0% and the opening degree of the flow rate adjustment valve 34 is 100%, the refrigerant temperatures measured by the temperature sensors 94a and 94b are t2. , T1. In this case, the refrigerant temperature difference before and after the flow rate adjustment valve 33 is 0 degree when the opening degree of the flow rate adjustment valve 33 is 100% and t2−t1 when the opening degree is 0%. The degree of opening of the flow rate adjustment valve 33 is determined according to the target value of the refrigerant temperature difference (for example, when the refrigerant temperature difference is set to (t2−t1) / 2), the degree of opening of the flow rate adjustment valve 33 is set to 50%. To do). By performing such opening degree determination processing and the control device 90 adjusting the opening degree of the flow rate adjusting valve 33, an appropriate amount of refrigerant can be sent to the refrigerant heat exchanger 18d during partial load operation. Also in this embodiment, a target temperature may be provided for the refrigerant temperature measured by the temperature sensors 94a and 94b, and the opening degree of the flow rate adjustment valve 33 may be feedback controlled so as to achieve this target temperature.

なお、流量調整弁34に代えて閉止弁を採用した場合は、通常負荷運転時にはこの閉止弁を閉止し、部分負荷運転時の熱移転処理ではこの閉止弁を開放する。この場合、熱移転処理においては、流量調整弁33の開度によって、冷媒熱交換器18dに送られる冷媒の流量を調整することが出来る。   When a closing valve is employed instead of the flow rate adjusting valve 34, the closing valve is closed during normal load operation, and the closing valve is opened during heat transfer processing during partial load operation. In this case, in the heat transfer process, the flow rate of the refrigerant sent to the refrigerant heat exchanger 18d can be adjusted by the opening degree of the flow rate adjustment valve 33.

<効果>
上記第一から第四の実施形態に示したヒートポンプ式空調機によれば、部分負荷運転時における連続運転が可能となり、COPの低下を防止することが可能となる。具体的には、従来のような断続運転が行われた場合には、空調負荷に比べ空調能力が大きいため、必要以上の空調能力が得られて電力が必要以上に消費されるが、本実施形態に示したヒートポンプ式空調機によれば、部分負荷時にも連続運転を行うことが可能であるため、空調負荷に見合った能力を発揮することが出来、断続運転に比べて期間消費電力が少なくなる。本願発明者の試算によると、従来の空調機では圧縮機が断続運転となる中間期の外気温条
件下で、従来の空調機の断続運転による総消費電力と、本実施形態に示したヒートポンプ式空調機の連続運転による総消費電力と、を比較すると、本実施形態に示したヒートポンプ式空調機の総消費電力は、従来の空調機の総消費電力に比べて57%減少するとの試算結果が得られた。
<Effect>
According to the heat pump type air conditioners shown in the first to fourth embodiments, continuous operation at the time of partial load operation becomes possible, and it becomes possible to prevent a decrease in COP. Specifically, when the intermittent operation as in the past is performed, the air conditioning capacity is larger than the air conditioning load, so that more air conditioning capacity than necessary is obtained and power is consumed more than necessary. According to the heat pump type air conditioner shown in the embodiment, it is possible to perform continuous operation even at a partial load, so that it is possible to demonstrate the ability corresponding to the air conditioning load, and the period power consumption is less than that of intermittent operation Become. According to the calculation of the present inventor, in the conventional air conditioner, the total power consumption due to the intermittent operation of the conventional air conditioner under the intermediate air temperature condition in which the compressor is intermittently operated, and the heat pump type shown in the present embodiment Comparing the total power consumption by continuous operation of the air conditioner, the calculation result shows that the total power consumption of the heat pump type air conditioner shown in this embodiment is reduced by 57% compared to the total power consumption of the conventional air conditioner. Obtained.

また、本実施形態に係るヒートポンプ式空調機によれば、部分負荷運転時にも、空調対象の室温が短時間に上昇/下降を繰り返すことがなく、居住者の快適性を向上させることが出来る。更に、本実施形態に係るヒートポンプ式空調機によれば、断続運転による運転の停止/再開が抑制されるため、オン/オフに伴う機械部品の接触回数等が減少し、圧縮機14の寿命や、圧縮機14に用いられるマグネット等の寿命が延びる。   Moreover, according to the heat pump type air conditioner according to the present embodiment, the occupant's comfort can be improved without repeatedly increasing / decreasing the room temperature of the air-conditioning target in a short time even during partial load operation. Furthermore, according to the heat pump type air conditioner according to the present embodiment, since the stop / restart of the operation due to the intermittent operation is suppressed, the number of times of contact of the machine parts due to on / off is reduced, and the life of the compressor 14 is reduced. The life of the magnet used for the compressor 14 is extended.

<その他の実施形態>
また、上記実施形態では、空調対象側の冷媒から外部熱源側の冷媒に熱の移転を行うための手段(例えば、補助水熱交換器18や、冷媒熱交換器18b、18d等)は、膨張弁16と空気熱交換器13との間の冷媒流路に設けられるが、空調対象側冷媒から外部熱源側冷媒に熱移転を行うための手段は、例えば、空気熱交換器13と圧縮機14の間の冷媒流路等、空調対象側の何れの位置に設けられてもよい。また、上記実施形態では、外部熱源側の冷媒管路を延長して空調対象側の熱交換器(冷媒熱交換器18b、18d等)に引き込むことで、冷媒間の熱交換を実現しているが、反対に、空調対象側の冷媒管路を延長して外部熱源側の熱交換器に引き込むこととしてもよいし、外部熱源側および空調対象側の冷媒管路の両方を延長して、他の位置に設けられた冷媒熱交換器に引き込むこととしてもよい。
<Other embodiments>
In the above embodiment, the means for transferring heat from the air conditioning target side refrigerant to the external heat source side refrigerant (for example, the auxiliary water heat exchanger 18 and the refrigerant heat exchangers 18b and 18d) is expanded. Although provided in the refrigerant flow path between the valve 16 and the air heat exchanger 13, means for transferring heat from the air-conditioning target side refrigerant to the external heat source side refrigerant are, for example, the air heat exchanger 13 and the compressor 14. It may be provided at any position on the air-conditioning target side such as a refrigerant flow path between them. Moreover, in the said embodiment, the heat exchanger between refrigerant | coolants is implement | achieved by extending the refrigerant | coolant pipe line by the side of an external heat source, and drawing in to the heat exchanger (refrigerant heat exchanger 18b, 18d etc.) by the side of air-conditioning. However, on the contrary, the refrigerant line on the air conditioning target side may be extended to be drawn into the heat exchanger on the external heat source side, or both the external heat source side and the refrigerant line on the air conditioning target side may be extended. It is good also as drawing in to the refrigerant | coolant heat exchanger provided in this position.

なお、熱移転処理の開始制御は、制御装置90から発せられた圧縮機の停止信号の回数に応じて制御されてもよい。具体的には、圧縮機停止信号が設定回数(例えば、3回)に達した場合に、熱移転処理を開始することとしてもよい。このようにすることで、簡易な構成で、実際に断続運転が始まったことを契機として、断続運転を抑制するための熱移転処理を開始することが出来る。なお、この場合、熱移転処理および圧縮機の停止に関しても、圧縮機の停止信号の回数に従って制御することが可能である。即ち、圧縮機停止信号が上記設定回数プラス1回(例えば、3+1=4回)となった場合に、熱移転処理を終了し、圧縮機を停止する。   The start control of the heat transfer process may be controlled in accordance with the number of compressor stop signals issued from the control device 90. Specifically, the heat transfer process may be started when the compressor stop signal reaches a set number of times (for example, 3 times). By doing in this way, it is possible to start the heat transfer process for suppressing the intermittent operation with a simple configuration, when the intermittent operation has actually started. In this case, the heat transfer process and the stop of the compressor can be controlled according to the number of stop signals of the compressor. That is, when the compressor stop signal becomes the set number plus one (for example, 3 + 1 = 4 times), the heat transfer process is terminated and the compressor is stopped.

1、1b、1c、1d ヒートポンプ式空調機
11 比例三方弁
12 冷却水迂回管路
13 空気熱交換器
14 圧縮機
15 四方弁
16 膨張弁
17 水熱交換器
18 補助水熱交換器
18b、18d 冷媒熱交換器
19 冷媒管路
21、22 送風機
31 閉止弁
32、33、34 流量調整弁
90 制御装置
91 室温センサ
92、93a、93b、94a、94b 温度センサ
1, 1b, 1c, 1d Heat pump air conditioner 11 Proportional three-way valve 12 Cooling water bypass pipe 13 Air heat exchanger 14 Compressor 15 Four-way valve 16 Expansion valve 17 Water heat exchanger 18 Auxiliary water heat exchanger 18b, 18d Refrigerant Heat exchanger 19 Refrigerant pipe line 21, 22 Blower 31 Stop valve 32, 33, 34 Flow rate adjusting valve 90 Controller 91 Room temperature sensor 92, 93a, 93b, 94a, 94b Temperature sensor

Claims (9)

圧縮機、空調対象熱交換器、膨張弁および外部熱源熱交換器が冷凍サイクルを形成するように、冷媒流路を介して接続されたヒートポンプ式空調機であって、
前記冷凍サイクルのうち前記空調対象熱交換器側を流れる空調対象側冷媒の冷熱または温熱の一部を、熱交換によって、前記外部熱源熱交換器側を流れる外部熱源側冷媒に移転させる熱移転手段を備える、
ヒートポンプ式空調機。
A heat pump air conditioner connected via a refrigerant flow path so that the compressor, the heat exchanger subject to air conditioning, the expansion valve, and the external heat source heat exchanger form a refrigeration cycle,
Heat transfer means for transferring a part of the cold or hot air of the air-conditioning target side refrigerant flowing on the air-conditioning target heat exchanger side in the refrigeration cycle to the external heat source side refrigerant flowing on the external heat source heat exchanger side by heat exchange. Comprising
Heat pump air conditioner.
前記熱移転手段は、前記空調対象側冷媒の冷熱または温熱のうち、空調の目標温度に対する空調能力の余剰分に相当する冷熱または温熱を、熱交換によって前記外部熱源側冷媒に移転させる、
請求項1に記載のヒートポンプ式空調機。
The heat transfer means transfers, to the external heat source side refrigerant by heat exchange, cold heat or hot heat corresponding to a surplus of air conditioning capability with respect to a target temperature of air conditioning among the cold heat or hot heat of the air conditioning target side refrigerant,
The heat pump type air conditioner according to claim 1.
前記ヒートポンプ式空調機は、外部熱源として熱源水の供給を受けて運転を行うヒートポンプであり、
前記熱移転手段は、前記外部熱源熱交換器に導入される前記熱源水の少なくとも一部を、前記空調対象側冷媒と熱交換した後に、前記外部熱源熱交換器に導入することで、前記空調対象側冷媒の冷熱または温熱の一部を、前記外部熱源側冷媒に移転させる、
請求項1または2に記載のヒートポンプ式空調機。
The heat pump air conditioner is a heat pump that operates by receiving supply of heat source water as an external heat source,
The heat transfer means exchanges heat with at least a part of the heat source water introduced into the external heat source heat exchanger with the air conditioning target-side refrigerant, and then introduces the heat into the external heat source heat exchanger. Transferring a part of the cold or warm heat of the target side refrigerant to the external heat source side refrigerant,
The heat pump type air conditioner according to claim 1 or 2.
前記熱移転手段による、前記外部熱源熱交換器に導入される前記熱源水の、前記空調対象側冷媒との熱交換に用いられる水量を調整する水量調整手段を更に備える、
請求項3に記載のヒートポンプ式空調機。
The heat transfer means further includes water amount adjusting means for adjusting the amount of water used for heat exchange with the air conditioning target side refrigerant of the heat source water introduced into the external heat source heat exchanger.
The heat pump type air conditioner according to claim 3.
前記熱移転手段は、前記外部熱源側冷媒と前記空調対象側冷媒とが導入される冷媒熱交換器を用いて、前記空調対象側冷媒の冷熱または温熱の一部を、前記外部熱源側冷媒に移転させる、
請求項1または2に記載のヒートポンプ式空調機。
The heat transfer means uses a refrigerant heat exchanger into which the external heat source side refrigerant and the air conditioning target side refrigerant are introduced, and uses a part of the cold or warm heat of the air conditioning target side refrigerant as the external heat source side refrigerant. Move,
The heat pump type air conditioner according to claim 1 or 2.
前記冷媒熱交換器において熱交換に用いられる前記冷媒の量を調整する冷媒量調整手段を更に備える、
請求項5に記載のヒートポンプ式空調機。
A refrigerant amount adjusting means for adjusting the amount of the refrigerant used for heat exchange in the refrigerant heat exchanger;
The heat pump type air conditioner according to claim 5.
空調対象の温度を取得する温度取得手段と、
前記空調対象の温度と空調の目標温度との差が所定以下になった場合に、前記熱移転手段による熱移転を開始させる制御手段と、
を更に備える、請求項1から6の何れか一項に記載のヒートポンプ式空調機。
Temperature acquisition means for acquiring the temperature of the air-conditioning target;
Control means for starting heat transfer by the heat transfer means when the difference between the temperature of the air-conditioning target and the target temperature of the air-conditioning becomes a predetermined value or less;
The heat pump air conditioner according to any one of claims 1 to 6, further comprising:
前記圧縮機および前記外部熱源熱交換器に対して、複数の前記空調対象熱交換器が接続され、
前記複数の空調対象熱交換器のうち、運転停止に係る空調対象熱交換器の数が所定以下となった場合に、前記熱移転手段による熱移転を開始させる制御手段を更に備える、
請求項1から6の何れか一項に記載のヒートポンプ式空調機。
A plurality of the air conditioning target heat exchangers are connected to the compressor and the external heat source heat exchanger,
Of the plurality of air-conditioning target heat exchangers, when the number of air-conditioning target heat exchangers related to operation stop is equal to or less than a predetermined value, the control unit further starts a heat transfer by the heat transfer means,
The heat pump type air conditioner according to any one of claims 1 to 6.
圧縮機、空調対象熱交換器、膨張弁および外部熱源熱交換器が冷凍サイクルを形成するように、冷媒流路を介して接続され、前記冷凍サイクルのうち前記空調対象熱交換器側を流れる空調対象側冷媒の冷熱または温熱の一部を、熱交換によって、前記外部熱源熱交換器側を流れる外部熱源側冷媒に移転させる熱移転手段を備えるヒートポンプ式空調機において、
空調対象の温度を取得する温度取得ステップと、
前記空調対象の温度と空調の目標温度との差が所定以下になった場合に、前記熱移転ステップにおける熱移転を開始させる制御ステップと、
を実行する、ヒートポンプ式空調機の制御方法。
The compressor, the air conditioning target heat exchanger, the expansion valve, and the external heat source heat exchanger are connected via a refrigerant flow path so as to form a refrigeration cycle, and the air conditioning that flows on the air conditioning target heat exchanger side in the refrigeration cycle. In a heat pump type air conditioner comprising heat transfer means for transferring a part of the cold or warm heat of the target side refrigerant to the external heat source side refrigerant flowing through the external heat source heat exchanger side by heat exchange,
A temperature acquisition step for acquiring the temperature of the air-conditioning target;
A control step of starting heat transfer in the heat transfer step when the difference between the temperature of the air-conditioning target and the target temperature of the air-conditioning becomes a predetermined value or less;
A control method for a heat pump air conditioner.
JP2009086568A 2009-03-31 2009-03-31 Heat pump type air conditioner and method of controlling heat pump type air conditioner Pending JP2010236816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086568A JP2010236816A (en) 2009-03-31 2009-03-31 Heat pump type air conditioner and method of controlling heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086568A JP2010236816A (en) 2009-03-31 2009-03-31 Heat pump type air conditioner and method of controlling heat pump type air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014014121A Division JP5768151B2 (en) 2014-01-29 2014-01-29 Heat pump type air conditioner and control method of heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JP2010236816A true JP2010236816A (en) 2010-10-21

Family

ID=43091292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086568A Pending JP2010236816A (en) 2009-03-31 2009-03-31 Heat pump type air conditioner and method of controlling heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP2010236816A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020687A (en) * 2012-07-19 2014-02-03 Mitsubishi Electric Corp Air conditioner
JP2014031954A (en) * 2012-08-03 2014-02-20 Panasonic Corp Air conditioner
JP2014098547A (en) * 2014-01-29 2014-05-29 Nippon Pmac Co Ltd Heat-pump air conditioner and heat-pump air conditioner control method
JP2014178057A (en) * 2013-03-14 2014-09-25 Nippon Pmac Co Ltd Air-conditioning system and air conditioner
CN104236154A (en) * 2013-06-19 2014-12-24 杭州三花研究院有限公司 Heat pump type air conditioning system and control method thereof
WO2016059837A1 (en) * 2014-10-16 2016-04-21 サンデンホールディングス株式会社 Heat pump heating apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564028U (en) * 1978-10-27 1980-05-01
JPH07127929A (en) * 1993-11-08 1995-05-19 Hitachi Plant Eng & Constr Co Ltd Cold water-supplying method for air-conditioning at nuclear power plant, and equipment therefor
JPH094881A (en) * 1995-06-20 1997-01-10 Toyo Eng Works Ltd Cooling device
JP2003065588A (en) * 2001-08-27 2003-03-05 Hitachi Ltd Air conditioning apparatus
JP2006242441A (en) * 2005-03-02 2006-09-14 Mitsubishi Electric Corp Air conditioner
JP2007303806A (en) * 2006-04-11 2007-11-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its operation method
JP2007315682A (en) * 2006-05-25 2007-12-06 Takasago Thermal Eng Co Ltd Control method for water heat source heat pump unit system
JP2009002635A (en) * 2007-06-25 2009-01-08 Mitsubishi Heavy Ind Ltd Heat source machine, its control method, heat source system and its operating method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564028U (en) * 1978-10-27 1980-05-01
JPH07127929A (en) * 1993-11-08 1995-05-19 Hitachi Plant Eng & Constr Co Ltd Cold water-supplying method for air-conditioning at nuclear power plant, and equipment therefor
JPH094881A (en) * 1995-06-20 1997-01-10 Toyo Eng Works Ltd Cooling device
JP2003065588A (en) * 2001-08-27 2003-03-05 Hitachi Ltd Air conditioning apparatus
JP2006242441A (en) * 2005-03-02 2006-09-14 Mitsubishi Electric Corp Air conditioner
JP2007303806A (en) * 2006-04-11 2007-11-22 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its operation method
JP2007315682A (en) * 2006-05-25 2007-12-06 Takasago Thermal Eng Co Ltd Control method for water heat source heat pump unit system
JP2009002635A (en) * 2007-06-25 2009-01-08 Mitsubishi Heavy Ind Ltd Heat source machine, its control method, heat source system and its operating method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020687A (en) * 2012-07-19 2014-02-03 Mitsubishi Electric Corp Air conditioner
JP2014031954A (en) * 2012-08-03 2014-02-20 Panasonic Corp Air conditioner
JP2014178057A (en) * 2013-03-14 2014-09-25 Nippon Pmac Co Ltd Air-conditioning system and air conditioner
CN104236154A (en) * 2013-06-19 2014-12-24 杭州三花研究院有限公司 Heat pump type air conditioning system and control method thereof
CN104236154B (en) * 2013-06-19 2018-01-19 杭州三花研究院有限公司 A kind of heat pump type air conditioner system and its control method
JP2014098547A (en) * 2014-01-29 2014-05-29 Nippon Pmac Co Ltd Heat-pump air conditioner and heat-pump air conditioner control method
WO2016059837A1 (en) * 2014-10-16 2016-04-21 サンデンホールディングス株式会社 Heat pump heating apparatus
US10060654B2 (en) 2014-10-16 2018-08-28 Sanden Holdings Corporation Heat pump type heating apparatus

Similar Documents

Publication Publication Date Title
JP5265010B2 (en) Heat pump equipment
JP5657110B2 (en) Temperature control system and air conditioning system
JP5958503B2 (en) Room temperature adjustment system
JP2007315682A (en) Control method for water heat source heat pump unit system
CN103154621B (en) Air conditioner
JP2005156017A (en) Air conditioner
JP2010236816A (en) Heat pump type air conditioner and method of controlling heat pump type air conditioner
WO2017204287A1 (en) Heat source system and heat source system control method
WO2019116599A1 (en) Air-conditioning device and air-conditioning system
JP4651551B2 (en) Air conditioning system
CN104930770A (en) Defrosting method and defrosting device of heat pump air conditioner
JP4290480B2 (en) Temperature control method
JP6221198B2 (en) External control device
JP6672619B2 (en) Air conditioning system
JP2013130344A (en) Hot water supply/air conditioning system, and control method thereof
JP5677198B2 (en) Air cooling heat pump chiller
JP5768151B2 (en) Heat pump type air conditioner and control method of heat pump type air conditioner
JP6024726B2 (en) External control device
JP6890706B1 (en) Air conditioning system and control method
JP6545378B2 (en) Air conditioning system and relay unit
WO2017050072A1 (en) Water chiller-heater unit of air cooled heat pump and defrosting control method therefor
JP7199529B2 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium
JP5531246B2 (en) Compressed air dehumidifier
JP2004044946A (en) Air conditioner
KR20070064908A (en) Air conditioner and driving method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029