JP2007093100A - Control method of heat pump water heater, and heat pump water heater - Google Patents

Control method of heat pump water heater, and heat pump water heater Download PDF

Info

Publication number
JP2007093100A
JP2007093100A JP2005282556A JP2005282556A JP2007093100A JP 2007093100 A JP2007093100 A JP 2007093100A JP 2005282556 A JP2005282556 A JP 2005282556A JP 2005282556 A JP2005282556 A JP 2005282556A JP 2007093100 A JP2007093100 A JP 2007093100A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
expansion valve
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005282556A
Other languages
Japanese (ja)
Inventor
So Nomoto
宗 野本
Kazuaki Isono
一明 磯野
Takayuki Yoshida
孝行 吉田
Kunihiro Morishita
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005282556A priority Critical patent/JP2007093100A/en
Publication of JP2007093100A publication Critical patent/JP2007093100A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of a heat pump water heater capable of controlling the distribution of a refrigerant quantity in a refrigerating cycle used in the heat pump water heater without using a container having a volume to store a refrigerant such as an accumulator, and performing high outside air and high temperature boiling-up operation without increasing the withstand pressure of a refrigerant circuit and elemental components in the heat pump water heater. <P>SOLUTION: This heat pump water heater comprises a refrigerating cycle constituted by connecting a compressor, a radiator, a first expansion valve and an evaporator by refrigerant piping, a branch flow channel branching the refrigerating piping at a place from the radiator to the first expansion valve, and reconnecting the refrigerant piping at a place from the first expansion valve to the evaporator, and a high and low pressure heat exchanger for exchanging heat between a high-pressure refrigerant flowing in the branch flow channel and a low-pressure refrigerant sucked to the compressor, and an opening of the first expansion valve is adjusted to be reduced when discharge pressure is higher than prescribed pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機の制御方法及びヒートポンプ給湯機に関するものであり、特に二酸化炭素(CO2 )を冷媒として使用するヒートポンプ給湯機の制御方法及びヒートポンプ給湯機に関するものである。 The present invention relates to a heat pump water heater control method and a heat pump water heater, and more particularly to a heat pump water heater control method and a heat pump water heater using carbon dioxide (CO 2 ) as a refrigerant.

従来、「冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と被加熱流体とを熱交換する放熱器、冷媒を臨界圧力以下に減圧する膨張弁および蒸発器を順次接続して冷媒が循環する基本冷媒回路と、前記放熱器に流入する前記被加熱流体を冷却する冷却器とを備え、前記冷却器の熱交換量を調整することを特徴とするヒートポンプシステム」が開示されている(たとえば、特許文献1参照)。   Conventionally, “a compressor that compresses refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the fluid to be heated, an expansion valve that reduces the refrigerant below the critical pressure, and an evaporator are connected in sequence. A heat pump system comprising a basic refrigerant circuit through which refrigerant circulates and a cooler that cools the heated fluid flowing into the radiator, and adjusting a heat exchange amount of the cooler. '' (For example, refer to Patent Document 1).

このヒートポンプシステムは、冷媒を超臨界圧力まで圧縮する圧縮機と、圧縮機から吐出する冷媒と被加熱流体とを熱交換する放熱器と、冷媒を臨界圧以下に減圧する膨張弁と、蒸発器を接続して冷媒循環路を形成する冷媒回路と、前記放熱器に流入する被加熱流体を冷却する冷却器とを備え、前記冷却器で被加熱流体の冷却量を調整して放熱器からの冷媒の出口温度を所定温度以下に制御して、余剰冷媒を処理するようになっている。   The heat pump system includes a compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the fluid to be heated, an expansion valve that reduces the refrigerant to a critical pressure or less, and an evaporator. Are connected to each other to form a refrigerant circuit, and a cooler that cools the heated fluid flowing into the radiator, and the cooling amount of the heated fluid is adjusted by the cooler from the radiator. Excess refrigerant is processed by controlling the outlet temperature of the refrigerant below a predetermined temperature.

特開2004−003825号公報(第4−6頁、第1図)Japanese Unexamined Patent Publication No. 2004-003825 (page 4-6, FIG. 1)

しかしながら、上記のヒートポンプシステムの場合には、アキュムレータ等の容器が不要であるが、伝熱の悪い被加熱流体と熱交換する熱交換器が複数必要となり、機器が大きくなるという問題があった。また、沸上げ温度が高い場合に、高圧側圧力が高くなり、外気温度が高くなるとさらに高圧側圧力が高くなるため、冷媒回路や要素部品の耐圧をあげる必要があり、コストアップに繋がるという問題もあった。さらに、冷媒回路や要素部品の耐圧をあげなくて済むようにするには、能力を低下させて運転しなければならず、能力不足になるという問題もあった。   However, in the case of the above heat pump system, a container such as an accumulator is not necessary, but there is a problem that a plurality of heat exchangers for exchanging heat with a heated fluid with poor heat transfer are required, resulting in a large apparatus. In addition, when the boiling temperature is high, the high-pressure side pressure becomes high, and when the outside air temperature becomes high, the high-pressure side pressure becomes even higher. Therefore, it is necessary to increase the pressure resistance of the refrigerant circuit and component parts, leading to an increase in cost. There was also. Furthermore, in order not to increase the pressure resistance of the refrigerant circuit and the component parts, it is necessary to operate with a reduced capability, resulting in a problem of insufficient capability.

本発明は、以上のような問題を解決するためになされたもので、ヒートポンプ給湯機に用いる冷凍サイクル内の冷媒量分布の制御をアキュムレータ等の冷媒を貯留する容積を有した容器を用いずに実現するヒートポンプ給湯機の制御方法を提供するものである。また、ヒートポンプ給湯機内の冷媒回路や要素部品の耐圧を上げずに高外気、高温沸上げ運転を実現するヒートポンプ給湯機の制御方法を提供するものである。   The present invention has been made to solve the above-described problems, and controls the refrigerant amount distribution in the refrigeration cycle used in the heat pump water heater without using a container having a volume for storing refrigerant such as an accumulator. The present invention provides a control method for a heat pump water heater to be realized. Moreover, the control method of the heat pump water heater which implement | achieves high external air and a high temperature boiling operation, without raising the pressure | voltage resistance of the refrigerant circuit in a heat pump water heater, or component parts is provided.

本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器とを備えたヒートポンプ給湯機の制御方法であって、前記圧縮機から吐出された冷媒の吐出圧力を計測し、前記吐出圧力が所定の圧力よりも大きい場合、前記第1の膨張弁の開度を小さくするように調整することを特徴とする。   The method for controlling a heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first expansion that depressurizes the refrigerant. The refrigerant pipe is branched between the refrigeration cycle in which the refrigerant circulates by sequentially connecting the valve and the evaporator with the refrigerant pipe, and the refrigerant reaches the first expansion valve, and the evaporation from the first expansion valve. A branch passage reconnected to the refrigerant pipe while reaching the condenser, and a high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the branch passage and the low-pressure refrigerant sucked into the compressor A control method for a heat pump water heater, wherein the discharge pressure of the refrigerant discharged from the compressor is measured, and when the discharge pressure is greater than a predetermined pressure, the opening of the first expansion valve is reduced. It is characterized by adjusting to.

また、本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器とを備えたヒートポンプ給湯機の制御方法であって、前記圧縮機から吐出された冷媒の吐出圧力を計測し、前記吐出圧力が所定の圧力よりも大きい場合、前記圧縮機の駆動周波数を大きくするように調整することを特徴とする。   The control method of the heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first pressure reducing the refrigerant. The refrigerating cycle in which the refrigerant is circulated by sequentially connecting the expansion valve and the evaporator with a refrigerant pipe, and the refrigerant pipe is branched between the radiator and the first expansion valve, and the first expansion valve A branch flow path reconnected to the refrigerant pipe while reaching the evaporator, and a high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor. A method for controlling a heat pump water heater provided, wherein the discharge pressure of the refrigerant discharged from the compressor is measured, and when the discharge pressure is higher than a predetermined pressure, the drive frequency of the compressor is increased. It is characterized by adjusting .

さらに、本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器とを備えたヒートポンプ給湯機の制御方法であって、前記圧縮機から吐出された冷媒の吐出圧力を計測し、外気温度が所定の温度より高く、負荷側媒体の沸き上げ温度が所定の温度より高い場合には、外気温度が同一であり負荷側媒体の沸き上げ温度が所定の温度より低い場合に比べて、前記圧縮機の周波数を大きくするように調整することを特徴とする。   Furthermore, the control method of the heat pump water heater according to the present invention includes a compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, and a first pressure reducing the refrigerant. The refrigerating cycle in which the refrigerant is circulated by sequentially connecting the expansion valve and the evaporator with a refrigerant pipe, and the refrigerant pipe is branched between the radiator and the first expansion valve, and the first expansion valve A branch flow path reconnected to the refrigerant pipe while reaching the evaporator, and a high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor. A method of controlling a heat pump water heater provided, wherein the discharge pressure of the refrigerant discharged from the compressor is measured, the outside air temperature is higher than a predetermined temperature, and the boiling temperature of the load-side medium is higher than a predetermined temperature The outside air temperature is the same As compared with the case boiling temperature of the load-side medium is lower than a predetermined temperature, and adjusting to increase the frequency of the compressor.

本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記第1の膨張弁の開度を小さくするように調整する計測制御手段とを備えたことを特徴とする。   A heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, a first expansion valve that depressurizes the refrigerant, and evaporation. The refrigerant pipe is branched between the refrigeration cycle in which the refrigerant is sequentially connected by the refrigerant pipe and the refrigerant circulates, and from the radiator to the first expansion valve, and reaches the evaporator from the first expansion valve. A branch passage reconnected to the refrigerant pipe, a high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing in the branch passage and the low-pressure refrigerant sucked into the compressor, and discharging from the compressor A pressure detecting means for measuring and detecting the pressure of the refrigerant, and adjusting the opening of the first expansion valve when the refrigerant pressure measured and detected by the pressure detecting means is greater than a predetermined pressure. Measurement control means to And butterflies.

また、本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記圧縮機の駆動周波数を大きくするように調整する計測制御手段とを備えたことを特徴とする。   The heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first expansion valve that depressurizes the refrigerant. And a refrigerating cycle in which the refrigerant circulates by sequentially connecting the evaporator with a refrigerant pipe, and the refrigerant pipe is branched between the radiator and the first expansion valve, and the evaporator is connected to the evaporator from the first expansion valve. A high-low pressure heat exchanger that exchanges heat between the branch flow path reconnected to the refrigerant pipe, the high-pressure refrigerant flowing through the branch flow path, and the low-pressure refrigerant sucked into the compressor, and the compressor And a pressure detection means for measuring and detecting the pressure of the refrigerant discharged from the refrigerant, and when the refrigerant pressure measured and detected by the pressure detection means is greater than a predetermined pressure, the drive frequency of the compressor is adjusted to be increased With measurement control means And wherein the door.

さらに、本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、外気温度が所定の温度より高く、負荷側媒体の沸き上げ温度が所定の温度より高い場合には、外気温度が同一であり負荷側媒体の沸き上げ温度が所定の温度より低い場合に比べて、前記圧縮機の駆動周波数を大きくするように調整する計測制御手段とを備えたことを特徴とする。   Furthermore, the heat pump water heater according to the present invention includes a compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, and a first expansion valve that depressurizes the refrigerant. And a refrigerating cycle in which the refrigerant circulates by sequentially connecting the evaporator with a refrigerant pipe, and the refrigerant pipe is branched between the radiator and the first expansion valve, and the evaporator is connected to the evaporator from the first expansion valve. A high-low pressure heat exchanger that exchanges heat between the branch flow path reconnected to the refrigerant pipe, the high-pressure refrigerant flowing through the branch flow path, and the low-pressure refrigerant sucked into the compressor, and the compressor Pressure detection means for measuring and detecting the pressure of the refrigerant discharged from the refrigerant, and when the outside air temperature is higher than the predetermined temperature and the boiling temperature of the load side medium is higher than the predetermined temperature, the outside air temperature is the same and the load side The boiling temperature of the medium is a predetermined temperature Ri than when low, is characterized in that a measurement control unit for adjusting so as to increase the driving frequency of the compressor.

本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記蒸発器から前記圧縮機に至る間に設けられた高低圧熱交換器と、前記冷凍サイクルを循環する冷媒を前記高低圧熱交換器に導くために、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記高低圧熱交換器から前記蒸発器に至る間で前記冷媒配管に再接続する分岐流路と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、前記圧縮機及び前記膨張弁を制御する計測制御手段とを備え、前記計測制御手段は、前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記第1の膨張弁の開度を小さくするように調整するので、冷凍サイクルの冷媒回路内に存在する冷媒量分布を制御しながら、ヒートポンプ給湯機の運転状態をCOP最大となる高圧に制御することができる。また、高効率のヒートポンプ給湯機の運転を実現できるとともに、冷媒量分布を制御するための容器を必要とせず、低コストのヒートポンプ給湯機を提供することが可能となる。さらに、ヒートポンプ給湯機の耐圧を上げずに低コストで高外気、高温沸上げ運転を実現でき、所定能力を得るヒートポンプ給湯機を得られるという効果がある。   The method for controlling a heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first expansion that depressurizes the refrigerant. A refrigeration cycle in which a refrigerant is circulated by sequentially connecting a valve and an evaporator with a refrigerant pipe, a high-low pressure heat exchanger provided between the evaporator and the compressor, and a refrigerant circulated in the refrigeration cycle In order to lead to the high-low pressure heat exchanger, the refrigerant pipe is branched between the radiator and the first expansion valve, and the refrigerant pipe is reused between the high-low pressure heat exchanger and the evaporator. A branch flow path to be connected; pressure detection means for measuring and detecting the pressure of the refrigerant discharged from the compressor; and measurement control means for controlling the compressor and the expansion valve. Measured and detected by pressure detection means When the refrigerant pressure is higher than a predetermined pressure, the opening of the first expansion valve is adjusted to be small, so that the heat pump hot water supply is controlled while controlling the refrigerant amount distribution existing in the refrigerant circuit of the refrigeration cycle. The operating state of the machine can be controlled to a high pressure that maximizes the COP. In addition, a highly efficient heat pump water heater can be operated, and a container for controlling the refrigerant amount distribution is not required, and a low-cost heat pump water heater can be provided. Furthermore, there is an effect that a high-temperature outdoor air and high-temperature boiling operation can be realized at low cost without increasing the pressure resistance of the heat pump water heater, and a heat pump water heater having a predetermined capacity can be obtained.

また、本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記蒸発器から前記圧縮機に至る間に設けられた高低圧熱交換器と、前記冷凍サイクルを循環する冷媒を前記高低圧熱交換器に導くために、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記高低圧熱交換器から前記蒸発器に至る間で前記冷媒配管に再接続する分岐流路と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、前記圧縮機及び前記膨張弁を制御する計測制御手段とを備え、前記計測制御手段は、前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記圧縮機の周波数を大きくするように調整するので、上記と同様な効果が得られる。   The control method of the heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first pressure reducing the refrigerant. A refrigerating cycle in which refrigerant is circulated by sequentially connecting expansion valves and an evaporator through refrigerant piping, a high-low pressure heat exchanger provided between the evaporator and the compressor, and a refrigerant circulating in the refrigerating cycle In order to guide the refrigerant to the high-low pressure heat exchanger, the refrigerant pipe is branched between the radiator and the first expansion valve, and between the high-low pressure heat exchanger and the evaporator, the refrigerant pipe is branched. A branch flow path that is reconnected to the pressure sensor, a pressure detection means that measures and detects the pressure of the refrigerant discharged from the compressor, and a measurement control means that controls the compressor and the expansion valve. , Measured by the pressure detection means If the pressure of knowledge refrigerant is greater than a predetermined pressure, so adjusted as to increase the frequency of the compressor, the same effect as described above can be obtained.

さらに、本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記蒸発器から前記圧縮機に至る間に設けられた高低圧熱交換器と、前記冷凍サイクルを循環する冷媒を前記高低圧熱交換器に導くために、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記高低圧熱交換器から前記蒸発器に至る間で前記冷媒配管に再接続する分岐流路と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、前記圧縮機及び前記膨張弁を制御する計測制御手段とを備え、前記計測制御手段は、外気温度が所定の温度より高く、負荷側媒体の沸き上げ温度が所定の温度より高い場合には、外気温度が同一であり、負荷側媒体の沸き上げ温度が所定の温度より低い場合に比べて、前記圧縮機の周波数を大きくするように調整するので、上記と同様の効果が得られる。   Furthermore, the control method of the heat pump water heater according to the present invention includes a compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, and a first pressure reducing the refrigerant. A refrigerating cycle in which refrigerant is circulated by sequentially connecting expansion valves and an evaporator through refrigerant piping, a high-low pressure heat exchanger provided between the evaporator and the compressor, and a refrigerant circulating in the refrigerating cycle In order to guide the refrigerant to the high-low pressure heat exchanger, the refrigerant pipe is branched between the radiator and the first expansion valve, and between the high-low pressure heat exchanger and the evaporator, the refrigerant pipe is branched. A branch flow path that is reconnected to the pressure sensor, a pressure detection means that measures and detects the pressure of the refrigerant discharged from the compressor, and a measurement control means that controls the compressor and the expansion valve. , Outside temperature is a predetermined temperature When the boiling temperature of the load-side medium is higher than the predetermined temperature, the outside air temperature is the same, and the frequency of the compressor is higher than when the boiling temperature of the load-side medium is lower than the predetermined temperature. Since the adjustment is performed to increase the value, the same effect as described above can be obtained.

本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記第1の膨張弁の開度を小さくするように調整する計測制御手段とを備えたので、冷凍サイクルの冷媒回路内に存在する冷媒量分布を制御しながら、ヒートポンプ給湯機の運転状態をCOP最大となる高圧に制御することができる。また、高効率のヒートポンプ給湯機の運転を実現できるとともに、冷媒量分布を制御するための容器を必要とせず、低コストのヒートポンプ給湯機を提供することが可能となる。さらに、ヒートポンプ給湯機の耐圧を上げずに低コストで高外気、高温沸上げ運転を実現でき、所定能力を得るヒートポンプ給湯機を得られるという効果がある。   A heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, a first expansion valve that depressurizes the refrigerant, and evaporation. The refrigerant pipe is branched between the refrigeration cycle in which the refrigerant is sequentially connected by the refrigerant pipe and the refrigerant circulates, and from the radiator to the first expansion valve, and the refrigerant pipe is reconnected to the evaporator. Measures the pressure of the refrigerant discharged from the compressor, and the connected branch channel, the high- and low-pressure heat exchanger that exchanges heat between the high-pressure refrigerant flowing through the branch channel and the low-pressure refrigerant sucked into the compressor Pressure detecting means for detecting, and measurement control means for adjusting the opening of the first expansion valve to be small when the refrigerant pressure measured and detected by the pressure detecting means is greater than a predetermined pressure. The refrigerant cycle of the refrigeration cycle While controlling the amount of refrigerant distributions existing within the operating conditions of the heat pump water heater can be controlled to a high pressure as the COP maximum. In addition, a highly efficient heat pump water heater can be operated, and a container for controlling the refrigerant amount distribution is not required, and a low-cost heat pump water heater can be provided. Furthermore, there is an effect that a high-temperature outdoor air and high-temperature boiling operation can be realized at low cost without increasing the pressure resistance of the heat pump water heater, and a heat pump water heater having a predetermined capacity can be obtained.

また、本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記圧縮機の周波数を大きくするように調整する計測制御手段とを備えたので、上記と同様の効果が得られる。   The heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first expansion valve that depressurizes the refrigerant. And a refrigerating cycle in which the refrigerant is circulated by sequentially connecting the evaporator with a refrigerant pipe, and the refrigerant pipe is branched between the radiator and the first expansion valve, and between the refrigerant and the evaporator. A high-low pressure heat exchanger for exchanging heat between the branch flow path reconnected to the low-pressure refrigerant, the high-pressure refrigerant flowing through the branch flow path, and the low-pressure refrigerant sucked into the compressor, and the pressure of the refrigerant discharged from the compressor A pressure detection means for measuring and detecting the pressure, and a measurement control means for adjusting the frequency of the compressor to be increased when the refrigerant pressure measured and detected by the pressure detection means is greater than a predetermined pressure. The same effect as above It is.

さらに、本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、外気温度が所定の温度より高く、負荷側媒体の沸き上げ温度が所定の温度より高い場合には、外気温度が同一であり、負荷側媒体の沸き上げ温度が所定の温度より低い場合に比べて、前記圧縮機の周波数を大きくするように調整する計測制御手段とを備えたので、上記と同様の効果が得られる。   Furthermore, the heat pump water heater according to the present invention includes a compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, and a first expansion valve that depressurizes the refrigerant. And a refrigerating cycle in which the refrigerant is circulated by sequentially connecting the evaporator with a refrigerant pipe, and the refrigerant pipe is branched between the radiator and the first expansion valve, and between the refrigerant and the evaporator. A high-low pressure heat exchanger for exchanging heat between the branch flow path reconnected to the high-pressure refrigerant, the high-pressure refrigerant flowing through the branch flow path, and the low-pressure refrigerant sucked into the compressor, and the pressure of the refrigerant discharged from the compressor When the outside air temperature is higher than the predetermined temperature and the boiling temperature of the load side medium is higher than the predetermined temperature, the outside air temperature is the same, and the boiling temperature of the load side medium is Compared to when the temperature is lower than the specified temperature , Since a measurement control unit for adjusting so as to increase the frequency of the compressor, the same effect as described above can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の実施の形態に係るヒートポンプ給湯機100の冷媒回路構成を示す概略構成図である。このヒートポンプ給湯機1は、大きく分けてヒートポンプユニット1と、タンクユニット2とで構成されている。このヒートポンプユニット1には、圧縮機3と、放熱器4と、第1の膨張弁5と、蒸発器6とを冷媒配管15で順次環状に接続した冷凍サイクル20が搭載されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a refrigerant circuit configuration of a heat pump water heater 100 according to an embodiment of the present invention. The heat pump water heater 1 is roughly composed of a heat pump unit 1 and a tank unit 2. The heat pump unit 1 is equipped with a refrigeration cycle 20 in which a compressor 3, a radiator 4, a first expansion valve 5, and an evaporator 6 are sequentially connected in an annular manner by a refrigerant pipe 15.

冷凍サイクル20は、一般にヒートポンプサイクルと称されおり、冷媒を循環させて水を湯に加熱する機能を有している。圧縮機3は、冷媒を圧縮して高温高圧の冷媒とするものである。放熱器4は、一般に熱交換器と称されており、圧縮機3から吐出された高温高圧の冷媒と給湯用の水との熱交換を行い、水を加熱するものである。第1の膨張弁5は、加熱を行った後の冷媒を減圧し低温低圧の冷媒にするものである。蒸発器6は、一般に室外熱交換器と称されており、冷媒に空気から吸熱させるものである。   The refrigeration cycle 20 is generally called a heat pump cycle, and has a function of heating water to hot water by circulating a refrigerant. The compressor 3 compresses the refrigerant into a high-temperature and high-pressure refrigerant. The radiator 4 is generally called a heat exchanger, and heats water by exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor 3 and hot water. The first expansion valve 5 is used to depressurize the refrigerant after being heated to obtain a low-temperature and low-pressure refrigerant. The evaporator 6 is generally called an outdoor heat exchanger, and causes the refrigerant to absorb heat from the air.

冷媒配管15は、冷凍サイクル20内において冷媒を循環させるものである。この冷媒配管15は、放熱器4から第1の膨張弁5に至る間で分岐し、第1の膨張弁5から蒸発器6に至る間に接続するようになっている。この分岐させた方の冷媒配管15を、分岐流路8と称する。なお、冷媒には、冷凍サイクル20における高圧側が臨界圧力(約73kg/cm2 )以上で超臨界状態となり、かつ容易に入手できる二酸化炭素(CO2 )を使用している。 The refrigerant pipe 15 circulates the refrigerant in the refrigeration cycle 20. The refrigerant pipe 15 branches from the radiator 4 to the first expansion valve 5 and is connected to the evaporator 6 from the first expansion valve 5. The branched refrigerant pipe 15 is referred to as a branch flow path 8. As the refrigerant, carbon dioxide (CO 2 ), which is in a supercritical state at the high pressure side in the refrigeration cycle 20 and reaches a critical pressure (about 73 kg / cm 2 ) or more and is easily available, is used.

また、ヒートポンプユニット1には、ファン7と、高低圧熱交換器9と、第2の膨張弁10と、ポンプ11とが搭載されている。ファン7は、蒸発器6に外気を送風する機能を果たす。高低圧熱交換器9は、蒸発器6から圧縮機3に至る間に配置されており、冷媒配管15及び分岐流路8に接続している。図1では、高低圧熱交換器9が二重管熱交換器である場合を例に示している。この高低圧熱交換器9は、外管側を高圧側流路、内管側を低圧側流路としている場合を図示しているが、外管側を低圧側流路、内管側を高圧側流路としてもよい。なお、内管側と外管側とを流れる冷媒の流れ方向は、対向流であることが望ましく、ここでは対向流であるものとする。   The heat pump unit 1 is equipped with a fan 7, a high / low pressure heat exchanger 9, a second expansion valve 10, and a pump 11. The fan 7 functions to blow outside air to the evaporator 6. The high-low pressure heat exchanger 9 is disposed between the evaporator 6 and the compressor 3, and is connected to the refrigerant pipe 15 and the branch flow path 8. In FIG. 1, the case where the high-low pressure heat exchanger 9 is a double pipe heat exchanger is shown as an example. This high / low pressure heat exchanger 9 shows a case where the outer pipe side is a high pressure side flow path and the inner pipe side is a low pressure side flow path, but the outer pipe side is a low pressure side flow path and the inner pipe side is a high pressure side. It is good also as a side channel. In addition, as for the flow direction of the refrigerant | coolant which flows through the inner pipe side and the outer pipe side, it is desirable that it is a counterflow, and shall be a counterflow here.

第2の膨張弁10は、高低圧熱交換器9から冷媒配管15に至るまでの間の分岐流路8に配置されている。この第2の膨張弁10は、高低圧熱交換器9で低圧冷媒と熱交換して冷却された冷媒を減圧し低温低圧の冷媒にするものである。ポンプ11は、給湯水回路30を構成しており、負荷側媒体である水をタンク12から放熱器4に送水し、放熱器4で加熱された温水をタンク12に送水する機能を果たす。   The second expansion valve 10 is disposed in the branch flow path 8 from the high-low pressure heat exchanger 9 to the refrigerant pipe 15. The second expansion valve 10 serves to depressurize the refrigerant cooled by heat exchange with the low-pressure refrigerant in the high-low pressure heat exchanger 9 to obtain a low-temperature and low-pressure refrigerant. The pump 11 constitutes a hot water supply circuit 30 and functions to supply water as a load-side medium from the tank 12 to the radiator 4 and supply hot water heated by the radiator 4 to the tank 12.

タンクユニット2には、ポンプ11からの送水により放熱器4を介して加熱された温水を貯留するためのタンク12が搭載されている。なお、タンクユニット2内のタンク12と、ヒートポンプユニット1内の放熱器4とを水配管16で接続して給湯水回路30を構成している。水配管16は、給湯水回路30内において負荷側媒体である水及び温水を循環させるものである。すなわち、給湯水回路30は、タンク12内の負荷側媒体である水を放熱器4で加熱させ、その温水をポンプ11によってタンク12に貯留させるようになっているのである。   The tank unit 2 is equipped with a tank 12 for storing hot water heated via the radiator 4 by water supplied from the pump 11. In addition, the tank 12 in the tank unit 2 and the radiator 4 in the heat pump unit 1 are connected by a water pipe 16 to constitute a hot water supply water circuit 30. The water pipe 16 circulates water and hot water that are load-side media in the hot water supply circuit 30. That is, the hot water supply circuit 30 heats the water that is the load-side medium in the tank 12 by the radiator 4 and stores the hot water in the tank 12 by the pump 11.

ヒートポンプユニット1内には、給水温度センサ13aが放熱器4の水入口側に、出湯温度センサ13bが放熱器4の水出口側にそれぞれ設けられている。この給水温度センサ13a及び出湯温度センサ13bは、それぞれの設置場所において水配管16内を流れている水温度を計測する機能を果たす。また、ヒートポンプユニット1内には、外気の温度を計測するための外気温度センサ13cが設けられている。この外気温度センサ13cは、ヒートポンプユニット1内であればどこに設けられていてもよい。たとえば、外気温度センサ13cを外気と接触するような場所に設けるとよい。   In the heat pump unit 1, a feed water temperature sensor 13 a is provided on the water inlet side of the radiator 4, and a tapping temperature sensor 13 b is provided on the water outlet side of the radiator 4. The feed water temperature sensor 13a and the tapping temperature sensor 13b serve to measure the temperature of the water flowing in the water pipe 16 at each installation location. In addition, in the heat pump unit 1, an outside air temperature sensor 13c for measuring the temperature of outside air is provided. The outside air temperature sensor 13 c may be provided anywhere within the heat pump unit 1. For example, the outside air temperature sensor 13c may be provided in a place that comes into contact with outside air.

さらに、ヒートポンプユニット1内には、吐出温度センサ13dが圧縮機3の冷媒出口側に、吸入温度センサ13eが圧縮機の冷媒入口側に、蒸発温度センサ13fが蒸発器6の入口から中間部までの間に、膨張弁入口温度センサ13gが第2の膨張弁10の入口にそれぞれ設けられている。この吐出温度センサ13d、吸入温度センサ13e、蒸発温度センサ13f及び膨張弁入口温度センサ13gは、それぞれの設置場所において冷媒配管15及び分岐流路8内を流れている冷媒の温度を計測する機能を果たす。   Further, in the heat pump unit 1, the discharge temperature sensor 13 d is on the refrigerant outlet side of the compressor 3, the suction temperature sensor 13 e is on the refrigerant inlet side of the compressor, and the evaporation temperature sensor 13 f is from the inlet of the evaporator 6 to the middle part. The expansion valve inlet temperature sensor 13g is provided at the inlet of the second expansion valve 10, respectively. The discharge temperature sensor 13d, the suction temperature sensor 13e, the evaporation temperature sensor 13f, and the expansion valve inlet temperature sensor 13g have a function of measuring the temperature of the refrigerant flowing through the refrigerant pipe 15 and the branch flow path 8 at the respective installation locations. Fulfill.

なお、ヒートポンプユニット1内には、計測制御装置14が設けられている。この計測制御装置14は、給水温度センサ13aや出湯温度センサ13b、外気温度センサ13c、吐出温度センサ13d、吸入温度センサ13e、蒸発温度センサ13fが計測した温度情報や、ヒートポンプ給湯機100の使用者から図示省略の操作部を介して指示される運転指令情報等に基づいて、圧縮機3の運転方法や第1の膨張弁5の開度、第2の膨張弁10の開度、ポンプ11の運転方法等を制御する機能を有している。   Note that a measurement control device 14 is provided in the heat pump unit 1. The measurement control device 14 includes temperature information measured by the feed water temperature sensor 13a, the tapping temperature sensor 13b, the outside air temperature sensor 13c, the discharge temperature sensor 13d, the suction temperature sensor 13e, and the evaporation temperature sensor 13f, and the user of the heat pump water heater 100. From the operation command information instructed through the operation unit (not shown), the operation method of the compressor 3, the opening of the first expansion valve 5, the opening of the second expansion valve 10, the pump 11 It has a function to control the driving method.

また、ヒートポンプユニット1内には、圧力センサ25が設けられている。この圧力センサ25は、放熱器4と第1の膨張弁5との間に設けられており、冷凍サイクル20の高圧側となる設置場所において冷媒の圧力を計測する機能を果たす。ここでは、圧力センサ25が放熱器4と第1の膨張弁5との間に設けられている場合を図示しているが、放熱器4より上流側の圧縮機3と放熱器4との間に設けるようにしてもよい。   A pressure sensor 25 is provided in the heat pump unit 1. The pressure sensor 25 is provided between the radiator 4 and the first expansion valve 5, and fulfills the function of measuring the refrigerant pressure at an installation location on the high pressure side of the refrigeration cycle 20. Here, the case where the pressure sensor 25 is provided between the radiator 4 and the first expansion valve 5 is illustrated, but between the compressor 3 and the radiator 4 on the upstream side of the radiator 4. You may make it provide in.

次に、このヒートポンプ給湯機100の運転動作について説明する。ヒートポンプユニット1の冷凍サイクル20において、圧縮機3から吐出された高温高圧のガス冷媒は、放熱器4で給湯水回路30側へ放熱(水を加熱)しながら温度低下する。このとき、高圧側冷媒圧力が臨界圧以上であれば、この冷媒は超臨界状態のまま気液相転移しないで温度低下して放熱する。また、高圧側冷媒圧力が臨界圧以下であれば、この冷媒は液化しながら放熱する。   Next, the operation of the heat pump water heater 100 will be described. In the refrigeration cycle 20 of the heat pump unit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 decreases in temperature while radiating heat (heats water) to the hot water supply circuit 30 side by the radiator 4. At this time, if the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the refrigerant radiates heat at a reduced temperature without undergoing a gas-liquid phase transition in a supercritical state. Further, if the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant radiates heat while being liquefied.

つまり、冷媒から放熱された熱を負荷側媒体(給湯水回路30を流れる水等)に与えることで給湯加熱を行うのである。給湯加熱して放熱器4から流出した高圧低温の冷媒は、第1の膨張弁5を通過するものと分岐流路8に流入するものとに分岐される。第1の膨張弁5を通過する冷媒は、ここで低圧気液二相の状態に減圧される。一方、分岐流路8に流入する冷媒は、高低圧熱交換器9の高圧側流路(外側管)を通過し、蒸発器6から流出した高低圧熱交換器9の低圧側流路(内側管)を通過する低圧冷媒との熱交換に利用される。   That is, hot water heating is performed by applying heat radiated from the refrigerant to a load-side medium (water flowing through the hot water supply circuit 30). The high-pressure and low-temperature refrigerant flowing out of the radiator 4 by heating with hot water is branched into one that passes through the first expansion valve 5 and one that flows into the branch flow path 8. Here, the refrigerant passing through the first expansion valve 5 is decompressed to a low-pressure gas-liquid two-phase state. On the other hand, the refrigerant flowing into the branch flow path 8 passes through the high pressure side flow path (outer pipe) of the high and low pressure heat exchanger 9 and flows out from the evaporator 6, and then flows through the low pressure side flow path (inside This is used for heat exchange with the low-pressure refrigerant passing through the pipe.

この分岐流路8に流入する冷媒は、高低圧熱交換器9において低圧側流路を通過する低圧冷媒に熱を与えて冷却され、その後、第2の膨張弁10を通過して低圧気液二相の状態に減圧される。第1の膨張弁5を通過した冷媒及び第2の膨張弁10を通過した冷媒は、蒸発器6の入口前で合流して蒸発器6に流入する。そして、冷媒は、そこで外気空気から吸熱し、蒸発ガス化される。蒸発器6を出た低圧冷媒は、高低圧熱交換器9を通過することで高圧側流路を通過する高圧冷媒と熱交換して加熱ガス化される。それから、圧縮機3に吸入されるようになっている。こうして、冷媒が循環することによって冷凍サイクル20を形成している。   The refrigerant flowing into the branch channel 8 is cooled by applying heat to the low-pressure refrigerant that passes through the low-pressure side channel in the high-low pressure heat exchanger 9, and then passes through the second expansion valve 10 and passes through the low-pressure gas-liquid. Depressurized to a two-phase state. The refrigerant that has passed through the first expansion valve 5 and the refrigerant that has passed through the second expansion valve 10 merge before entering the evaporator 6 and flow into the evaporator 6. Then, the refrigerant absorbs heat from outside air and is evaporated and gasified. The low-pressure refrigerant that has exited the evaporator 6 passes through the high-low pressure heat exchanger 9 to exchange heat with the high-pressure refrigerant that passes through the high-pressure channel, and is heated and gasified. Then, it is sucked into the compressor 3. In this way, the refrigeration cycle 20 is formed by circulating the refrigerant.

一方、給湯水回路30側では、放熱器4で放熱された熱が水等の負荷側媒体に与えられる。この負荷側媒体は、放熱器4の流入側に設けられたポンプ11によりタンク12の下部から導かれて放熱器4に送水されるようになっている。そして、ここで加熱された負荷側媒体は、ポンプ11によりタンク12の上部へ送水されるようになっている。こうして、負荷側媒体がタンク12上部から流入し、タンク12内に貯留され蓄熱されるようになっているのである。   On the other hand, on the hot water supply circuit 30 side, the heat radiated by the radiator 4 is given to a load side medium such as water. This load-side medium is guided from the lower part of the tank 12 by the pump 11 provided on the inflow side of the radiator 4 and is sent to the radiator 4. The load-side medium heated here is fed to the upper part of the tank 12 by the pump 11. Thus, the load side medium flows in from the upper part of the tank 12 and is stored in the tank 12 so as to store heat.

次に、このヒートポンプ給湯機100での運転制御動作について説明する。
図2は、放熱器4の出口における冷媒の温度が同一となるように高圧を変化させたときの冷凍サイクル20の圧力とエンタルピとの関係を示す説明図(P−H線図)である。冷媒としてCO2 等のように高圧側が超臨界状態で運転される冷凍サイクル20では、よく知られているように運転効率が最大となる高圧が存在する。
Next, the operation control operation in the heat pump water heater 100 will be described.
FIG. 2 is an explanatory diagram (PH diagram) showing the relationship between the pressure of the refrigeration cycle 20 and enthalpy when the high pressure is changed so that the temperature of the refrigerant at the outlet of the radiator 4 becomes the same. In the refrigeration cycle 20 in which the high pressure side is operated in a supercritical state such as CO 2 as a refrigerant, there is a high pressure at which the operation efficiency is maximized as is well known.

図2では、縦軸が圧力(P)を、横軸がエンタルピ(H)をそれぞれ表している。ここでは、冷凍サイクル20の高圧がP1、P2、P3の順に上昇するにつれて放熱器4でのエンタルピの差ΔHgが拡大し、その分加熱能力が増加することを表している。また、冷凍サイクル20の高圧がP1、P2、P3の順に上昇するにつれて圧縮機3の入力に相当する圧縮機3でのエンタルピの差ΔHcも増大することを表している。   In FIG. 2, the vertical axis represents pressure (P) and the horizontal axis represents enthalpy (H). Here, as the high pressure of the refrigeration cycle 20 increases in the order of P1, P2, and P3, the enthalpy difference ΔHg in the radiator 4 increases, and the heating capacity increases accordingly. Further, the enthalpy difference ΔHc in the compressor 3 corresponding to the input of the compressor 3 increases as the high pressure of the refrigeration cycle 20 increases in the order of P1, P2, and P3.

図3は、冷凍サイクル20の高圧による変化とCOP(運転効率)、ΔHg及びΔHcとの関係を示す説明図である。すなわち、図2で説示したΔHg、ΔHcにおける冷凍サイクル20の高圧による変化の傾向を示したものである。図3では、横軸が冷凍サイクル20における高圧側の圧力を、縦軸が比率をそれぞれ表している。線Bが放熱器4でのエンタルピ差ΔHgを、線Bが圧縮機3でのエンタルピ差ΔHcを、線AがCOPをそれぞれ表している。   FIG. 3 is an explanatory diagram showing a relationship between a change due to high pressure of the refrigeration cycle 20 and COP (operation efficiency), ΔHg, and ΔHc. That is, the tendency of change due to the high pressure of the refrigeration cycle 20 in ΔHg and ΔHc explained in FIG. 2 is shown. In FIG. 3, the horizontal axis represents the high-pressure side pressure in the refrigeration cycle 20, and the vertical axis represents the ratio. Line B represents the enthalpy difference ΔHg in the radiator 4, line B represents the enthalpy difference ΔHc in the compressor 3, and line A represents the COP.

図3において、高圧上昇に伴う能力に相当するΔHgの増加率が入力に相当するΔHcの増加率よりも上回る領域(P1からP2の範囲)では、ΔHg/ΔHcで表される冷凍サイクル20のCOPが上昇することがわかる。反対に、高圧上昇に伴う能力に相当するΔHgの増加率が入力に相当するΔHcの増加率よりも下回る領域(P2からP3の範囲)では、COPが低下することがわかる。すなわち、COPが最大となる高圧が存在するのである。それは、図3に示すP2の点が該当する。   In FIG. 3, in the region where the increase rate of ΔHg corresponding to the capacity accompanying the increase in high pressure exceeds the increase rate of ΔHc corresponding to the input (range from P1 to P2), the COP of the refrigeration cycle 20 represented by ΔHg / ΔHc. Can be seen to rise. On the other hand, it can be seen that COP decreases in a region (in the range of P2 to P3) where the increase rate of ΔHg corresponding to the capacity accompanying the increase in high pressure is lower than the increase rate of ΔHc corresponding to the input. That is, there is a high pressure at which COP is maximized. This corresponds to the point P2 shown in FIG.

冷媒としてCO2 を用いたこのヒートポンプ給湯機100での冷凍サイクル20における高圧は、放熱器4内に存在する冷媒量によって決定される。冷媒状態が超臨界であるとき、冷媒の密度は圧力の上昇に応じて増加するので、図2に示す高圧状態P3で運転されるときの放熱器4内の冷媒量は、高圧状態P1で運転されるときの放熱器4内の冷媒量よりも多くなる。 The high pressure in the refrigeration cycle 20 in the heat pump water heater 100 using CO 2 as the refrigerant is determined by the amount of refrigerant present in the radiator 4. When the refrigerant state is supercritical, the density of the refrigerant increases as the pressure increases, so the amount of refrigerant in the radiator 4 when operating in the high pressure state P3 shown in FIG. 2 is operated in the high pressure state P1. The amount of refrigerant in the radiator 4 is larger than that when the operation is performed.

すなわち、放熱器4内に存在する冷媒量が多くなるように運転を調整すれば、高圧は上昇することになり、逆に放熱器4内に存在する冷媒量が少なくなるように運転を調整すれば、高圧は低下することになるのである。そこで、放熱器4内に存在する冷媒量を制御するように運転することで、高圧をCOP最大となる圧力となるように設定することができる。そうすることにより、ヒートポンプ給湯機100の有する能力を大きく発揮することができるのである。   That is, if the operation is adjusted so that the amount of refrigerant existing in the radiator 4 is increased, the high pressure is increased, and conversely, the operation is adjusted so that the amount of refrigerant existing in the radiator 4 is decreased. In this case, the high pressure will decrease. Therefore, by operating so as to control the amount of refrigerant present in the radiator 4, the high pressure can be set to be the pressure that maximizes the COP. By doing so, the capability of the heat pump water heater 100 can be greatly exerted.

次に、このヒートポンプ給湯機100の運転制御動作について説明する。まず、回転数等で制御される圧縮機3の運転容量及びポンプ11の回転数は、外気温度センサ13cで計測検知される周囲の外気温度や給水温度センサ13aで計測検知される給水温度の情報等に基づいて調整される。つまり、それらの情報に基づいて、加熱能力及び温度センサ13bで計測検知される放熱器4の出口における水の温度が予め定められた目標値となるように調整制御されるのである。たとえば、目標加熱能力4.5kW、目標水出口温度65℃となるように、圧縮機3及びポンプ11の回転数が制御される。また、蒸発器6の熱交換量は、伝熱媒体である空気を搬送するファン7の回転数を予め定められた状態で運転して制御される。   Next, the operation control operation of the heat pump water heater 100 will be described. First, the operating capacity of the compressor 3 controlled by the rotational speed and the rotational speed of the pump 11 are information on the ambient outside temperature measured and detected by the outside temperature sensor 13c and the feed water temperature measured and detected by the feed water temperature sensor 13a. It is adjusted based on etc. That is, based on such information, adjustment control is performed so that the temperature of water at the outlet of the radiator 4 measured and detected by the heating capacity and the temperature sensor 13b becomes a predetermined target value. For example, the rotation speeds of the compressor 3 and the pump 11 are controlled so that the target heating capacity is 4.5 kW and the target water outlet temperature is 65 ° C. Further, the heat exchange amount of the evaporator 6 is controlled by operating the rotational speed of the fan 7 that conveys the air as the heat transfer medium in a predetermined state.

この状態で運転したときの冷凍サイクル20の高圧Phを圧力センサ15で計測する。そして、ヒートポンプ給湯機100の利用者により設定された加熱能力や、給水温度センサ13aで計測検知される給水温度や外気温度センサ13cで計測検知される外気温度や圧縮機3の運転容量等から、予め定められた演算式でCOP最大となる最適高圧を算出し、この最適高圧となる目標圧力を検出された高圧Phとを比較する。このようにして、現在の高圧が最適高圧より低ければ、放熱器4内の冷媒量が多くなるように調整すればよい。反対に、現在の高圧が最適高圧より高ければ、放熱器4内の冷媒量が少なくなるように調整すればよい。   The high pressure Ph of the refrigeration cycle 20 when operated in this state is measured by the pressure sensor 15. And from the heating capacity set by the user of the heat pump water heater 100, the feed water temperature measured and detected by the feed water temperature sensor 13a, the outside air temperature measured and detected by the outside air temperature sensor 13c, the operating capacity of the compressor 3, etc. The optimum high pressure that maximizes the COP is calculated using a predetermined arithmetic expression, and the target pressure that is the optimum high pressure is compared with the detected high pressure Ph. In this way, if the current high pressure is lower than the optimum high pressure, the amount of refrigerant in the radiator 4 may be adjusted to increase. On the contrary, if the current high pressure is higher than the optimum high pressure, the amount of refrigerant in the radiator 4 may be adjusted to be small.

この放熱器4内の冷媒量の制御は、第1の膨張弁5及び第2の膨張弁10の開度を調整することにより実施する。ここで、第1の膨張弁5の開度を変化させた場合の動作について説明する。第1の膨張弁5の開度を大きくすると、分岐流路8を流れる冷媒量が少なくなり、高低圧熱交換器9の熱交換量は少なくなる。一方、第1の膨張弁5の開度を小さくすると、分岐流路8を流れる冷媒量が多くなり、高低圧熱交換器9の熱交換量は多くなる。   Control of the amount of refrigerant in the radiator 4 is performed by adjusting the opening degree of the first expansion valve 5 and the second expansion valve 10. Here, the operation when the opening degree of the first expansion valve 5 is changed will be described. When the opening degree of the first expansion valve 5 is increased, the amount of refrigerant flowing through the branch flow path 8 is reduced, and the heat exchange amount of the high / low pressure heat exchanger 9 is reduced. On the other hand, when the opening degree of the first expansion valve 5 is reduced, the amount of refrigerant flowing through the branch flow path 8 is increased, and the heat exchange amount of the high-low pressure heat exchanger 9 is increased.

図4は、高低圧熱交換器9における熱交換量が変動したときの冷凍サイクル20の圧力とエンタルピとの関係を示す説明図(P−H線図)である。図4では、縦軸が圧力(P)を、横軸がエンタルピ(H)をそれぞれ表している。また、実線が高低圧熱交換器9における熱交換量小の場合を、破線が高低圧熱交換器9における熱交換量大の場合をそれぞれ表している。さらに、点Cは、高低圧熱交換器9を流出した冷媒が第2の膨張弁10で減圧された状態を示しており、点Dは、放熱器4の出口における冷媒が第1の膨張弁5で減圧された状態を示している。   FIG. 4 is an explanatory diagram (PH diagram) showing the relationship between the pressure of the refrigeration cycle 20 and the enthalpy when the amount of heat exchange in the high-low pressure heat exchanger 9 varies. In FIG. 4, the vertical axis represents pressure (P), and the horizontal axis represents enthalpy (H). Further, the solid line represents the case where the heat exchange amount in the high / low pressure heat exchanger 9 is small, and the broken line represents the case where the heat exchange amount in the high / low pressure heat exchanger 9 is large. Further, point C shows a state in which the refrigerant flowing out of the high and low pressure heat exchanger 9 is decompressed by the second expansion valve 10, and point D shows that the refrigerant at the outlet of the radiator 4 is the first expansion valve. 5 shows a state where the pressure is reduced.

なお、点Eは、点Cと点Dとが合流した蒸発器6の入口における冷媒の状態を示しており、分岐回路8を流れる冷媒流量と第1の膨張弁5を通過する冷媒流量との比率で決定する。図4に示すように、高低圧熱交換器9における熱交換量が多くなると、第2の膨張弁10の入口における冷媒の温度は低下し、冷却量が増加する。すなわち、蒸発器6の入口における冷媒状態は、エンタルピが低く、乾き度が小さくなる。この場合の冷凍サイクル20は、図中の破線で示す経路をたどる。   Point E indicates the state of the refrigerant at the inlet of the evaporator 6 where point C and point D merge. The refrigerant flow rate flowing through the branch circuit 8 and the refrigerant flow rate passing through the first expansion valve 5 Determine by ratio. As shown in FIG. 4, when the amount of heat exchange in the high / low pressure heat exchanger 9 increases, the temperature of the refrigerant at the inlet of the second expansion valve 10 decreases, and the amount of cooling increases. That is, the refrigerant state at the inlet of the evaporator 6 has a low enthalpy and a low dryness. The refrigeration cycle 20 in this case follows a path indicated by a broken line in the figure.

一方、高低圧熱交換器9における熱交換量が少なくなると、第2の膨張弁10の入口における冷媒の温度は上昇し、冷却量が低下する。すなわち、蒸発器6の入口における冷媒状態は、エンタルピが高く、乾き度が大きくなる。この場合の冷媒サイクルは、図中の実線で示す経路をたどる。つまり、第1の膨張弁5の開度を大きくすると、高低圧熱交換器9の熱交換量が少なくなるために、吸入過熱度が小さくなり、第1の膨張弁5の開度を小さくすると、高低圧熱交換器9の熱交換量が多くなるために、吸入過熱度が大きくなるのである。   On the other hand, when the amount of heat exchange in the high / low pressure heat exchanger 9 decreases, the temperature of the refrigerant at the inlet of the second expansion valve 10 increases and the amount of cooling decreases. That is, the refrigerant state at the inlet of the evaporator 6 has a high enthalpy and a high dryness. The refrigerant cycle in this case follows a path indicated by a solid line in the figure. That is, if the opening degree of the first expansion valve 5 is increased, the heat exchange amount of the high / low pressure heat exchanger 9 is reduced, so that the suction superheat degree is reduced and the opening degree of the first expansion valve 5 is reduced. Since the heat exchange amount of the high / low pressure heat exchanger 9 increases, the suction superheat degree increases.

蒸発器6の入口における冷媒状態が、より低乾き度であると、少なくとも蒸発器6の入口近傍は、液冷媒の占める容積が多くなる。その結果、蒸発器6全体で見ると、ここに存在する冷媒量は多くなる。したがって、高低圧熱交換器9での熱交換量が多く、そこでの冷却量が増加すると、膨張弁入口温度センサ13gで検出される冷媒温度は低下し、蒸発器6の入口における冷媒状態はより乾き度が低く、液冷媒の多い二相状態となって蒸発器6に存在する冷媒量が増加する。   If the refrigerant state at the inlet of the evaporator 6 is a lower dryness, the volume occupied by the liquid refrigerant increases at least near the inlet of the evaporator 6. As a result, when the evaporator 6 is viewed as a whole, the amount of refrigerant existing here increases. Therefore, when the amount of heat exchange in the high / low pressure heat exchanger 9 is large, and the amount of cooling there increases, the refrigerant temperature detected by the expansion valve inlet temperature sensor 13g decreases, and the refrigerant state at the inlet of the evaporator 6 becomes more. The degree of dryness is low and the amount of refrigerant present in the evaporator 6 increases in a two-phase state with a large amount of liquid refrigerant.

一方、高低圧熱交換器9での熱交換量が少なく、そこでの冷却量が減少すると、膨張弁入口温度センサ13gで検出される冷媒温度は上昇し、蒸発器6入口の冷媒状態は乾き度が高い状態のままとなり、ガス冷媒の多い二相状態となり、蒸発器6に存在する冷媒量が減少する。このように、第1の膨張弁5での流量制御により、高低圧熱交換器9での熱交換量を変化させることにより、蒸発器6に存在する冷媒量を変化させることができるのである。   On the other hand, when the amount of heat exchange in the high / low pressure heat exchanger 9 is small and the amount of cooling is reduced, the refrigerant temperature detected by the expansion valve inlet temperature sensor 13g rises, and the refrigerant state at the inlet of the evaporator 6 is dry. Remains in a high state, a two-phase state with a large amount of gas refrigerant, and the amount of refrigerant present in the evaporator 6 decreases. As described above, the amount of refrigerant existing in the evaporator 6 can be changed by changing the heat exchange amount in the high-low pressure heat exchanger 9 by controlling the flow rate in the first expansion valve 5.

すなわち、第1の膨張弁5の開度を大きくすると、高低圧熱交換器9の熱交換量が少なくなるために蒸発器6に存在する冷媒量が減少し、第1の膨張弁5の開度を小さくすると、高低圧熱交換器9の熱交換量が多くなるために蒸発器6に存在する冷媒量が増加するのである。また、給水温度センサ13aや出湯温度センサ13b、外気温度センサ13c、吐出温度センサ13d、吸入温度センサ13e、蒸発温度センサ13f、膨張弁入口温度センサ13g等の計測情報やヒートポンプ給湯機100の利用者から指示される運転指令情報の内容に基づいて、あらかじめ高圧圧力との対応が既知の場合には、計測制御装置14にマップや関数を組み込んでおけば、冷凍サイクル20の高圧側圧力を検出する圧力センサ25を設けなくて済む。   That is, when the opening degree of the first expansion valve 5 is increased, the heat exchange amount of the high / low pressure heat exchanger 9 is reduced, so that the amount of refrigerant existing in the evaporator 6 is reduced and the first expansion valve 5 is opened. When the degree is reduced, the amount of refrigerant existing in the evaporator 6 increases because the heat exchange amount of the high-low pressure heat exchanger 9 increases. Also, measurement information such as the feed water temperature sensor 13a, the hot water temperature sensor 13b, the outside air temperature sensor 13c, the discharge temperature sensor 13d, the suction temperature sensor 13e, the evaporation temperature sensor 13f, the expansion valve inlet temperature sensor 13g, etc., and the user of the heat pump water heater 100 If the correspondence with the high pressure is known in advance based on the content of the operation command information instructed from the above, if a map or function is incorporated in the measurement control device 14, the high pressure side pressure of the refrigeration cycle 20 is detected. There is no need to provide the pressure sensor 25.

そうすれば、圧力センサ25が不要となるので、コストのかからない、より効率の高いヒートポンプ給湯機100の運転を実現できる。その際には、たとえば、第1の膨張弁5と第2の膨張弁10とを組み合わせ、吐出温度と吸入過熱度とを制御する等、新たな制御を加えてもよい。なお、そのために必要な冷凍サイクル20の冷媒状態を測定するようなセンサ等を設けるようにしてもよい。   By doing so, the pressure sensor 25 is not required, and thus it is possible to realize a more efficient operation of the heat pump water heater 100 without cost. In that case, for example, the first expansion valve 5 and the second expansion valve 10 may be combined, and new control may be added such as controlling the discharge temperature and the suction superheat degree. In addition, you may make it provide the sensor etc. which measure the refrigerant | coolant state of the refrigerating cycle 20 required for that.

次に、このヒートポンプ給湯機100の運転制御動作について説明する。
図5は、第1の膨張弁5及び第2の膨張弁10の開度を調整して、吐出温度及び吸入過熱度を制御する動作の流れを示すフローチャートである。まず、吐出温度センサ13dで圧縮機3の出口における冷媒の温度が計測検知される(ステップS101)。そして、計測制御装置14は、吐出温度センサ13dで計測検知された冷媒の吐出温度が予め定められた目標値となるように第2の膨張弁10を制御する(ステップS102)。つまり、吐出温度が目標値に達している場合(ステップS102;N)は、第2の膨張弁10の開度が増加される(ステップS103)。反対に、吐出温度が目標値に満たない場合(ステップS102;Y)は、第2の膨張弁10の開度が減少される(ステップS104)。
Next, the operation control operation of the heat pump water heater 100 will be described.
FIG. 5 is a flowchart showing the flow of operations for controlling the discharge temperature and the suction superheat degree by adjusting the opening degree of the first expansion valve 5 and the second expansion valve 10. First, the refrigerant temperature at the outlet of the compressor 3 is measured and detected by the discharge temperature sensor 13d (step S101). Then, the measurement control device 14 controls the second expansion valve 10 so that the refrigerant discharge temperature measured and detected by the discharge temperature sensor 13d becomes a predetermined target value (step S102). That is, when the discharge temperature has reached the target value (step S102; N), the opening degree of the second expansion valve 10 is increased (step S103). On the other hand, when the discharge temperature is less than the target value (step S102; Y), the opening degree of the second expansion valve 10 is decreased (step S104).

次に、圧力センサ25で冷媒の高圧圧力が計測検知される(ステップS105)。そして、計測制御装置14は、圧力センサ25で計測検知された冷媒の高圧圧力が予め設定された値であるかどうか判定する(ステップS106)。つまり、冷媒の高圧圧力が設定値に達している場合(ステップS106;N)は、第1の膨張弁5の開度を減少させる(ステップS107)。この第1の膨張弁5の開度を減少させることにより、高低圧熱交換器9の熱交換量を増加させるのである。   Next, the high pressure of the refrigerant is measured and detected by the pressure sensor 25 (step S105). And the measurement control apparatus 14 determines whether the high pressure of the refrigerant | coolant measured and detected by the pressure sensor 25 is a preset value (step S106). That is, when the high pressure of the refrigerant has reached the set value (step S106; N), the opening degree of the first expansion valve 5 is decreased (step S107). By reducing the opening degree of the first expansion valve 5, the heat exchange amount of the high / low pressure heat exchanger 9 is increased.

そして、計測制御装置14は、第1の膨張弁5の開度が0(全閉状態)であるかどうかを判定する(ステップS108)。第1の膨張弁5の開度が0でない場合(ステップS108;N)、制御動作の最初に戻り吐出温度の検出が行われる。一方、第1の膨張弁5の開度が0である場合(ステップS108;Y)、圧縮機3の周波数を更に増加させる(ステップS109)。つまり、圧縮機3の周波数を増加させることにより、高低圧熱交換器9での熱交換量を増加させるのである。その後、制御動作の最初に戻り吐出温度の検出が行われる。   And the measurement control apparatus 14 determines whether the opening degree of the 1st expansion valve 5 is 0 (fully closed state) (step S108). When the opening degree of the first expansion valve 5 is not 0 (step S108; N), the discharge temperature is detected at the beginning of the control operation. On the other hand, when the opening degree of the first expansion valve 5 is 0 (step S108; Y), the frequency of the compressor 3 is further increased (step S109). That is, the amount of heat exchange in the high-low pressure heat exchanger 9 is increased by increasing the frequency of the compressor 3. Thereafter, returning to the beginning of the control operation, the discharge temperature is detected.

反対に、冷媒の高圧圧力が設定値に満たない場合(ステップS106;Y)は、吸入温度センサ13eで圧縮機3に吸入される冷媒の吸入温度が計測検知される(ステップS110)。また、蒸発温度センサ13fで蒸発器4内の冷媒の蒸発温度が計測検知される(ステップS111)。これら計測検知された吸入温度と蒸発温度とに基づいて、計測制御装置14は、吸入過熱度を算出する(ステップS112)。計測制御装置14は、算出した吸入過熱度が予め定められている目標値であるかどうか判定する(ステップS113)。   On the contrary, when the high pressure of the refrigerant is less than the set value (step S106; Y), the suction temperature of the refrigerant sucked into the compressor 3 is measured and detected by the suction temperature sensor 13e (step S110). Further, the evaporating temperature of the refrigerant in the evaporator 4 is measured and detected by the evaporating temperature sensor 13f (step S111). Based on the measured suction temperature and evaporation temperature, the measurement controller 14 calculates the suction superheat degree (step S112). The measurement control device 14 determines whether or not the calculated suction superheat degree is a predetermined target value (step S113).

つまり、吸入過熱度が目標値に達している場合(ステップS113;N)は、第1の膨張弁5の開度が増加される(ステップS114)。この第1の膨張弁5の開度を増加させることにより、高低圧熱交換器9での熱交換量を減少させるのである。その後、制御動作の最初に戻り吐出温度の検出が行われる。一方、吸入過熱度が目標値に満たない場合(ステップS113;Y)は、第1の膨張弁5の開度が減少される(ステップS110)。この第1の膨張弁5の開度を減少させることにより、高低圧熱交換器9での熱交換量を増加させるのである。その後、制御動作の最初に戻り吐出温度の検出が行われる。   That is, when the suction superheat degree has reached the target value (step S113; N), the opening degree of the first expansion valve 5 is increased (step S114). By increasing the opening degree of the first expansion valve 5, the amount of heat exchange in the high / low pressure heat exchanger 9 is decreased. Thereafter, returning to the beginning of the control operation, the discharge temperature is detected. On the other hand, when the suction superheat degree is less than the target value (step S113; Y), the opening degree of the first expansion valve 5 is decreased (step S110). The amount of heat exchange in the high / low pressure heat exchanger 9 is increased by decreasing the opening degree of the first expansion valve 5. Thereafter, returning to the beginning of the control operation, the discharge temperature is detected.

図6は、圧縮機3の周波数を増加させた場合の冷媒の状態を示す説明図(P−H線図)である。図6では、縦軸が圧力(P)を、横軸がエンタルピ(H)をそれぞれ表している。図において、実線は、沸上げ温度を高く、第1の膨張弁5を開度0(全閉状態)、圧縮機3を低周波数に設定してある状態を示しており、破線は、沸上げ温度を高く、第1の膨張弁5の開度を全閉、圧縮機3を高周波数に設定してある状態を示している。また、Ta1及びTb1が放熱器4の出口における冷媒温度(放熱器出口冷媒温度)を、Ta2及びTb2が圧縮機3に吸入される冷媒の温度(圧縮機吸入温度)をそれぞれ示している。   FIG. 6 is an explanatory diagram (PH diagram) showing the state of the refrigerant when the frequency of the compressor 3 is increased. In FIG. 6, the vertical axis represents pressure (P) and the horizontal axis represents enthalpy (H). In the figure, the solid line indicates a state where the boiling temperature is high, the first expansion valve 5 is set to 0 (full closed state), and the compressor 3 is set to a low frequency. The state is shown in which the temperature is high, the opening of the first expansion valve 5 is fully closed, and the compressor 3 is set to a high frequency. Further, Ta1 and Tb1 indicate the refrigerant temperature at the outlet of the radiator 4 (radiator outlet refrigerant temperature), and Ta2 and Tb2 indicate the temperature of the refrigerant drawn into the compressor 3 (compressor intake temperature), respectively.

一般的に、沸上げ温度を高くすると、冷媒の高圧圧力が高くなる。そこで、第1の膨張弁5が開度0(全閉状態)で上限圧力を超えている場合、圧縮機3の周波数を増加させると放熱器出口冷媒温度が上昇することになる。なお、高低圧熱交換器9は、高圧流路と低圧流路とが対向流で構成されており、高低圧熱交換器9の高圧側入口温度は放熱器出口冷媒温度に等しく、低圧側出口温度は圧縮機吸入温度に等しい。そのために、放熱器出口冷媒温度がTa1からTb1に上昇すると、圧縮機吸入温度もTa2からTb2に上昇してしまう。したがって、第2の膨張弁10のみで吐出温度を制御しようとすると、圧縮機3の周波数を増加した場合は、冷媒の高圧圧力が低下することになる。   Generally, when the boiling temperature is increased, the high pressure of the refrigerant is increased. Therefore, when the first expansion valve 5 is at the opening degree 0 (fully closed state) and exceeds the upper limit pressure, if the frequency of the compressor 3 is increased, the radiator outlet refrigerant temperature rises. Note that the high and low pressure heat exchanger 9 has a high pressure channel and a low pressure channel that are opposed to each other, and the high pressure side inlet temperature of the high and low pressure heat exchanger 9 is equal to the radiator outlet refrigerant temperature, and the low pressure side outlet The temperature is equal to the compressor intake temperature. Therefore, when the radiator outlet refrigerant temperature rises from Ta1 to Tb1, the compressor suction temperature also rises from Ta2 to Tb2. Therefore, if it is going to control discharge temperature only with the 2nd expansion valve 10, when the frequency of the compressor 3 is increased, the high pressure of a refrigerant | coolant will fall.

以上のことから、第2の膨張弁10の開度を調整するだけでなく、第1の膨張弁5の開度も併せて調整することにより、冷凍サイクル20の吐出温度を予め定められた目標値に近づけることができるのである。すなわち、このヒートポンプ給湯機100は、冷媒の高圧圧力が目標値より大きい場合に、第1の膨張弁5の開度を小さくすることで冷凍サイクル20内に存在する冷媒量の分布を調整し、運転状態をCOP最大となる高圧に制御するのである。なお、高圧センサが設置されていなければ、予め外気温度が所定値より高く、沸上げ温度が所定値より高い場合には、同一外気温度の沸上げ温度が所定値より小さい場合と比較して圧縮機3の周波数を大きくするようなマップを作成しておいてもよい。   From the above, not only the opening degree of the second expansion valve 10 but also the opening degree of the first expansion valve 5 is adjusted to set the discharge temperature of the refrigeration cycle 20 to a predetermined target. It can be close to the value. That is, the heat pump water heater 100 adjusts the distribution of the amount of refrigerant existing in the refrigeration cycle 20 by reducing the opening of the first expansion valve 5 when the high pressure of the refrigerant is larger than the target value. The operating state is controlled to a high pressure that maximizes the COP. If no high-pressure sensor is installed, if the outside air temperature is higher than the predetermined value and the boiling temperature is higher than the predetermined value, the boiling temperature of the same outside air temperature is compressed as compared with the case where the boiling temperature is lower than the predetermined value. A map that increases the frequency of the machine 3 may be created.

本発明の実施の形態に係るヒートポンプ給湯機の冷媒回路構成を示す概略構成図である。It is a schematic block diagram which shows the refrigerant circuit structure of the heat pump water heater which concerns on embodiment of this invention. 放熱器出口冷媒温度が同一となるように高圧を変化させたときの冷凍サイクルの圧力とエンタルピとの関係を示すP−H線図である。It is a PH diagram which shows the relationship between the pressure of a refrigerating cycle, and enthalpy when changing a high voltage | pressure so that a radiator exit refrigerant | coolant temperature may become the same. 冷凍サイクルの高圧による変化とCOP、ΔHg及びΔHcとの関係を示す説明図である。It is explanatory drawing which shows the relationship with the change by the high voltage | pressure of a refrigerating cycle, and COP, (DELTA) Hg, and (DELTA) Hc. 高低圧熱交換器における熱交換量が変動したときの冷凍サイクルの圧力とエンタルピとの関係を示すP−H線図である。It is a PH diagram which shows the relationship between the pressure of a refrigerating cycle when the amount of heat exchange in a high-low pressure heat exchanger fluctuates, and enthalpy. 第1の膨張弁及び第2の膨張弁の開度を調整して、吐出温度及び吸入過熱度を制御する動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement which adjusts the opening degree of a 1st expansion valve and a 2nd expansion valve, and controls discharge temperature and suction | inhalation superheat degree. 圧縮機の周波数を増加させた場合の冷媒の状態を示すP−H線図である。It is a PH diagram which shows the state of the refrigerant | coolant at the time of increasing the frequency of a compressor.

符号の説明Explanation of symbols

1 ヒートポンプユニット、2 タンクユニット、3 圧縮機、4 放熱器、5 第1の膨張弁、6 蒸発器、7 ファン、8 分岐流路、9 高低圧熱交換器、10 第2の膨張弁、11 ポンプ、12 タンク、13a 給水温度センサ、13b 出湯温度センサ、13c 外気温度センサ、13d 吐出温度センサ、13e 吸入温度センサ、13f 蒸発温度センサ、13g 膨張弁入口温度センサ、14 計測制御装置、15 冷媒配管、16 水配管、20 冷凍サイクル、25 圧力センサ、30 給湯水回路、100 ヒートポンプ給湯機。
DESCRIPTION OF SYMBOLS 1 Heat pump unit, 2 Tank unit, 3 Compressor, 4 Heat radiator, 5 1st expansion valve, 6 Evaporator, 7 Fan, 8 Branch flow path, 9 High-low pressure heat exchanger, 10 2nd expansion valve, 11 Pump, 12 tank, 13a Feed water temperature sensor, 13b Hot water temperature sensor, 13c Outside air temperature sensor, 13d Discharge temperature sensor, 13e Suction temperature sensor, 13f Evaporation temperature sensor, 13g Expansion valve inlet temperature sensor, 14 Measurement control device, 15 Refrigerant piping , 16 water piping, 20 refrigeration cycle, 25 pressure sensor, 30 hot water supply circuit, 100 heat pump water heater.

Claims (8)

冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器とを備えたヒートポンプ給湯機の制御方法であって、
前記圧縮機から吐出された冷媒の吐出圧力を計測し、
前記吐出圧力が所定の圧力よりも大きい場合、前記第1の膨張弁の開度を小さくするように調整する
ことを特徴とするヒートポンプ給湯機の制御方法。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A control method for a heat pump water heater comprising a high-low pressure heat exchanger for exchanging heat between a high-pressure refrigerant flowing through the branch flow path and a low-pressure refrigerant sucked into the compressor,
Measure the discharge pressure of the refrigerant discharged from the compressor,
When the discharge pressure is higher than a predetermined pressure, the opening degree of the first expansion valve is adjusted to be small. A method for controlling a heat pump water heater.
冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器とを備えたヒートポンプ給湯機の制御方法であって、
前記圧縮機から吐出された冷媒の吐出圧力を計測し、
前記吐出圧力が所定の圧力よりも大きい場合、前記圧縮機の駆動周波数を大きくするように調整する
ことを特徴とするヒートポンプ給湯機の制御方法。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A control method for a heat pump water heater comprising a high-low pressure heat exchanger for exchanging heat between a high-pressure refrigerant flowing through the branch flow path and a low-pressure refrigerant sucked into the compressor,
Measure the discharge pressure of the refrigerant discharged from the compressor,
When the discharge pressure is larger than a predetermined pressure, adjustment is made to increase the drive frequency of the compressor.
冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器とを備えたヒートポンプ給湯機の制御方法であって、
前記圧縮機から吐出された冷媒の吐出圧力を計測し、
外気温度が所定の温度より高く、負荷側媒体の沸き上げ温度が所定の温度より高い場合には、外気温度が同一であり負荷側媒体の沸き上げ温度が所定の温度より低い場合に比べて、前記圧縮機の駆動周波数を大きくするように調整する
ことを特徴とするヒートポンプ給湯機の制御方法。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A control method for a heat pump water heater comprising a high-low pressure heat exchanger for exchanging heat between a high-pressure refrigerant flowing through the branch flow path and a low-pressure refrigerant sucked into the compressor,
Measure the discharge pressure of the refrigerant discharged from the compressor,
When the outside air temperature is higher than the predetermined temperature and the boiling temperature of the load side medium is higher than the predetermined temperature, compared to the case where the outside air temperature is the same and the boiling temperature of the load side medium is lower than the predetermined temperature, A control method for a heat pump water heater, wherein the drive frequency of the compressor is adjusted to be increased.
前記高低圧熱交換器から前記蒸発器に至る間の前記分岐流路に設けられ、冷媒を減圧する第2の膨張弁を設け、
前記第1の膨張弁及び前記圧縮機と併せて前記第2の膨張弁も調整する
ことを特徴とする請求項1〜3のいずれかに記載のヒートポンプ給湯機の制御方法。
A second expansion valve is provided in the branch passage between the high-low pressure heat exchanger and the evaporator, and decompresses the refrigerant;
The method for controlling a heat pump water heater according to any one of claims 1 to 3, wherein the second expansion valve is also adjusted together with the first expansion valve and the compressor.
前記高低圧熱交換器は、
高圧冷媒が流れる前記分岐流路と前記圧縮機に吸入される低圧冷媒が流れる冷媒配管とを対向流にした
ことを特徴とする請求項1〜3のいずれかに記載のヒートポンプ給湯機の制御方法。
The high-low pressure heat exchanger is
The control method for a heat pump water heater according to any one of claims 1 to 3, wherein the branch flow path through which the high-pressure refrigerant flows and the refrigerant pipe through which the low-pressure refrigerant sucked into the compressor flow are opposed to each other. .
冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、
前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、
前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記第1の膨張弁の開度を小さくするように調整する計測制御手段とを備えた
ことを特徴とするヒートポンプ給湯機。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A high-low pressure heat exchanger that exchanges heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor;
Pressure detection means for measuring and detecting the pressure of the refrigerant discharged from the compressor;
A heat pump comprising: a measurement control means for adjusting the opening of the first expansion valve when the pressure of the refrigerant measured and detected by the pressure detection means is greater than a predetermined pressure. Water heater.
冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、
前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、
前記圧力検知手段で計測検知された冷媒の圧力が所定の圧力よりも大きい場合、前記圧縮機の駆動周波数を大きくするように調整する計測制御手段とを備えた
ことを特徴とするヒートポンプ給湯機。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A high-low pressure heat exchanger that exchanges heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor;
Pressure detection means for measuring and detecting the pressure of the refrigerant discharged from the compressor;
A heat pump water heater comprising: a measurement control unit configured to adjust the drive frequency of the compressor to be increased when the refrigerant pressure measured and detected by the pressure detection unit is greater than a predetermined pressure.
冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、
前記圧縮機から吐出された冷媒の圧力を計測検知する圧力検知手段と、
外気温度が所定の温度より高く、負荷側媒体の沸き上げ温度が所定の温度より高い場合には、外気温度が同一であり、負荷側媒体の沸き上げ温度が所定の温度より低い場合に比べて、前記圧縮機の駆動周波数を大きくするように調整する計測制御手段とを備えた
ことを特徴とするヒートポンプ給湯機。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A high-low pressure heat exchanger that exchanges heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor;
Pressure detection means for measuring and detecting the pressure of the refrigerant discharged from the compressor;
When the outside air temperature is higher than the predetermined temperature and the boiling temperature of the load side medium is higher than the predetermined temperature, the outside air temperature is the same, compared with the case where the boiling temperature of the load side medium is lower than the predetermined temperature. And a measurement control means for adjusting so as to increase the driving frequency of the compressor.
JP2005282556A 2005-09-28 2005-09-28 Control method of heat pump water heater, and heat pump water heater Pending JP2007093100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282556A JP2007093100A (en) 2005-09-28 2005-09-28 Control method of heat pump water heater, and heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282556A JP2007093100A (en) 2005-09-28 2005-09-28 Control method of heat pump water heater, and heat pump water heater

Publications (1)

Publication Number Publication Date
JP2007093100A true JP2007093100A (en) 2007-04-12

Family

ID=37979032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282556A Pending JP2007093100A (en) 2005-09-28 2005-09-28 Control method of heat pump water heater, and heat pump water heater

Country Status (1)

Country Link
JP (1) JP2007093100A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304134A (en) * 2007-06-08 2008-12-18 Mitsubishi Electric Corp Heat pump device
WO2009069524A1 (en) * 2007-11-30 2009-06-04 Mitsubishi Electric Corporation Refrigeration cycle device
JP2010038469A (en) * 2008-08-06 2010-02-18 Mayekawa Mfg Co Ltd Drying method and drying device
CN101799233A (en) * 2010-03-30 2010-08-11 南京都乐制冷设备有限公司 Method for controlling suction temperature of compressor in low temperature refrigeration system
JP2011242056A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigeration device
JP2012047415A (en) * 2010-08-27 2012-03-08 Hitachi Appliances Inc Waste heat utilizing system of refrigerating device
JP2012132680A (en) * 2012-04-12 2012-07-12 Mitsubishi Electric Corp Refrigeration device
WO2015092845A1 (en) * 2013-12-16 2015-06-25 三菱電機株式会社 Heat pump hot water supply device
JP2016003789A (en) * 2014-06-16 2016-01-12 パナソニックIpマネジメント株式会社 Hot water generation device
CN105890210A (en) * 2016-06-01 2016-08-24 珠海格力电器股份有限公司 High-temperature air conditioning unit
CN106123333A (en) * 2014-03-04 2016-11-16 江门菲普森电器制造有限公司 It is automatically adjusted the air-source water heater of heat exchange efficiency
US10823471B2 (en) 2018-05-23 2020-11-03 Carrier Corporation Refrigerant transfer control in multi mode air conditioner with hot water generator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304134A (en) * 2007-06-08 2008-12-18 Mitsubishi Electric Corp Heat pump device
EP2647925A3 (en) * 2007-11-30 2015-08-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2647926A3 (en) * 2007-11-30 2015-07-29 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2196745A1 (en) * 2007-11-30 2010-06-16 Mitsubishi Electric Corporation Refrigeration cycle device
JP2009133547A (en) * 2007-11-30 2009-06-18 Mitsubishi Electric Corp Refrigerating cycle apparatus
WO2009069524A1 (en) * 2007-11-30 2009-06-04 Mitsubishi Electric Corporation Refrigeration cycle device
EP2647927A3 (en) * 2007-11-30 2015-07-29 Mitsubishi Electric Corporation Refrigeration cycle apparatus
EP2196745A4 (en) * 2007-11-30 2013-02-13 Mitsubishi Electric Corp Refrigeration cycle device
EP2647928A3 (en) * 2007-11-30 2015-08-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2010038469A (en) * 2008-08-06 2010-02-18 Mayekawa Mfg Co Ltd Drying method and drying device
CN101799233B (en) * 2010-03-30 2012-09-05 南京都乐制冷设备有限公司 Method for controlling suction temperature of compressor in low temperature refrigeration system
CN101799233A (en) * 2010-03-30 2010-08-11 南京都乐制冷设备有限公司 Method for controlling suction temperature of compressor in low temperature refrigeration system
JP2011242056A (en) * 2010-05-18 2011-12-01 Mitsubishi Electric Corp Refrigeration device
JP2012047415A (en) * 2010-08-27 2012-03-08 Hitachi Appliances Inc Waste heat utilizing system of refrigerating device
JP2012132680A (en) * 2012-04-12 2012-07-12 Mitsubishi Electric Corp Refrigeration device
JP5985077B2 (en) * 2013-12-16 2016-09-06 三菱電機株式会社 Heat pump water heater
JPWO2015092845A1 (en) * 2013-12-16 2017-03-16 三菱電機株式会社 Heat pump water heater
WO2015092845A1 (en) * 2013-12-16 2015-06-25 三菱電機株式会社 Heat pump hot water supply device
CN106123333A (en) * 2014-03-04 2016-11-16 江门菲普森电器制造有限公司 It is automatically adjusted the air-source water heater of heat exchange efficiency
JP2016003789A (en) * 2014-06-16 2016-01-12 パナソニックIpマネジメント株式会社 Hot water generation device
US10955172B2 (en) 2016-06-01 2021-03-23 Gree Electric Appliances, Inc. Of Zhuhai High-temperature air conditioning device
CN105890210A (en) * 2016-06-01 2016-08-24 珠海格力电器股份有限公司 High-temperature air conditioning unit
US10823471B2 (en) 2018-05-23 2020-11-03 Carrier Corporation Refrigerant transfer control in multi mode air conditioner with hot water generator

Similar Documents

Publication Publication Date Title
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
JP4269323B2 (en) Heat pump water heater
EP2182304B1 (en) Refrigerating cycle apparatus operation control method
EP2096378B1 (en) Refrigeration cycle apparatus
KR101212698B1 (en) Heat pump type speed heating apparatus
JP4375171B2 (en) Refrigeration equipment
JP3708536B1 (en) Refrigeration cycle apparatus and control method thereof
US20130213083A1 (en) Refrigeration cycle apparatus and refrigerant circulating method
WO2007110908A9 (en) Refrigeration air conditioning device
JP2008232508A (en) Water heater
EP3273178B1 (en) Heat pump system
JP4273493B2 (en) Refrigeration air conditioner
JP4407689B2 (en) Heat pump water heater
CN102725596A (en) Heat pump system
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP2009052880A (en) Heat pump water heater
JP2007303806A (en) Refrigerating cycle device and its operation method
KR20110062457A (en) Heat pump system
JP2009109069A (en) Heat pump water heater
JP2009085479A (en) Hot water supply device
JP2006194537A (en) Heat pump device
JPWO2019234986A1 (en) Refrigeration cycle device and liquid heating device equipped with it
JP2005351588A (en) Heat pump water heater
US20240027077A1 (en) Hybrid multi-air conditioning system and method for controlling a hybrid multi-air conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080725

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080829