JP2006234211A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2006234211A
JP2006234211A JP2005046760A JP2005046760A JP2006234211A JP 2006234211 A JP2006234211 A JP 2006234211A JP 2005046760 A JP2005046760 A JP 2005046760A JP 2005046760 A JP2005046760 A JP 2005046760A JP 2006234211 A JP2006234211 A JP 2006234211A
Authority
JP
Japan
Prior art keywords
water
heat
refrigerant
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005046760A
Other languages
Japanese (ja)
Other versions
JP4449779B2 (en
Inventor
Masahito Megata
雅人 目片
Kazuo Nakatani
和生 中谷
Noriho Okaza
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005046760A priority Critical patent/JP4449779B2/en
Publication of JP2006234211A publication Critical patent/JP2006234211A/en
Application granted granted Critical
Publication of JP4449779B2 publication Critical patent/JP4449779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater, wherein the discharge pressure of a compressor is less increased without worsening the coefficient of performance when the temperature of heated fluid is increased. <P>SOLUTION: The heat pump water heater comprises a heat pump unit which has the compressor 1, a high temperature refrigerant-water heat exchanger 2 for heat exchanging compressed heat medium with heated fluid, a pressure reducing device 3 for reducing the pressure of the heat medium on the downstream side of the high temperature refrigerant-water heat exchanger, and a refrigerant-air heat exchanger 5 for heat exchanging the heat medium on the downstream side of the pressure reducing device 3 with air are connected to one another in sequence. Herein, a low temperature refrigerant-water heat exchanger 4 is provided for heat exchanging the heated fluid with refrigerant on the downstream side of the pressure reducing device 3. When the temperature of the heated fluid entering into water in the high temperature refrigerant-water heat exchanger 2 is higher than a preset value, the heated fluid is heat exchanged with the low temperature refrigerant-water heat exchanger 4. Thus, the increased temperature of the heated fluid can be reduced to prevent the worsening of the coefficient of performance and an increase in the discharge pressure of the compressor 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、貯湯用のタンクを備えるヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater having a hot water storage tank.

現在、給湯機としてはガスや電気ヒータを用いて水を加熱する方式のものが大勢的であるが、近年のエネルギー利用高効率化の要望の観点からヒートポンプを利用した給湯機も徐々に一般世帯に普及していっている。   Currently, there are many hot water heaters that use gas or electric heaters to heat water. However, in recent years, water heaters that use heat pumps are gradually becoming more common households in view of demands for higher energy utilization. It is becoming popular.

図3に従来のヒートポンプ給湯機の構成図を示す。ヒートポンプ給湯機の場合、圧縮機1で高温・高圧に加熱された冷媒は高温冷媒対水用熱交換器2で循環ポンプ7にて貯湯タンク8から送られてきた水と熱交換される。この結果、水は加熱されて湯になり、同時に冷媒温度は低下する。湯は再び貯湯タンク8に戻され、利用されるまで貯湯タンク8に貯留される。温度の下がった冷媒は減圧装置3を通じることにより低温・低圧の二相流に変化し、冷媒対空気用熱交換器5へ送られる。前記冷媒対空気用熱交換器5では送風ファン11によって強制的に大気から熱を奪うことにより内部の冷媒は蒸発し、気化する。気化した冷媒は再び圧縮機1に吸い込まれ、高温・高圧に加熱されることにより再び水を加熱していく。   FIG. 3 shows a configuration diagram of a conventional heat pump water heater. In the case of a heat pump water heater, the refrigerant heated to high temperature and high pressure by the compressor 1 is heat-exchanged with the water sent from the hot water storage tank 8 by the circulation pump 7 in the heat exchanger 2 for high temperature refrigerant to water. As a result, the water is heated to hot water, and at the same time, the refrigerant temperature decreases. The hot water is returned to the hot water storage tank 8 and stored in the hot water storage tank 8 until it is used. The refrigerant that has fallen in temperature changes to a low-temperature / low-pressure two-phase flow through the decompression device 3 and is sent to the refrigerant-to-air heat exchanger 5. In the refrigerant-to-air heat exchanger 5, the internal refrigerant evaporates and vaporizes by forcibly removing heat from the atmosphere by the blower fan 11. The vaporized refrigerant is sucked into the compressor 1 again and heated to high temperature and high pressure to heat the water again.

この運転を繰り返していくにつれ、貯湯タンク8内は充分に加熱された湯で満たされていく。貯湯タンク8内の湯はコントローラー(図示せず)にて設定された温度で出湯するために混合弁(図示せず)で水道水と混ぜられ、所定の温度で各部の蛇口等で利用される。   As this operation is repeated, the hot water storage tank 8 is filled with sufficiently heated hot water. The hot water in the hot water storage tank 8 is mixed with tap water by a mixing valve (not shown) in order to take out hot water at a temperature set by a controller (not shown), and is used in a faucet or the like of each part at a predetermined temperature. .

通常条件においては、ヒートポンプ給湯機はガス式及び電気式給湯機を上回る成績係数で湯を沸き上げることが可能であり、省エネの見地からも非常に注目を集めているが、被加熱流体の温度が上昇するにつれ成績係数が悪化する傾向にあり、この点の改善が今後の課題となっている。この点を改善するため、床暖房機能等を有する多機能タイプと呼ばれる方式のものについては、他の方式が提案されている(例えば、特許文献1参照)。
特開2004−211986号公報
Under normal conditions, the heat pump water heater can boil hot water with a coefficient of performance that exceeds that of gas and electric water heaters, and is attracting a great deal of attention from an energy-saving perspective. The coefficient of performance tends to get worse as the value rises, and the improvement of this point is an issue for the future. In order to improve this point, another method has been proposed for a method called a multi-function type having a floor heating function or the like (see, for example, Patent Document 1).
JP 2004-211986

しかしながら、通常の給湯専用タイプと呼ばれるものについても、被加熱流体温度上昇に伴う成績係数の悪化は大きな課題となっており、年間を通じた成績係数の向上を行う際のネックになっていた。また、成績係数を追求するために沸き上げ完了温度を低く設定すると、貯湯タンク下部に給湯に利用できない流体を貯めることになり、タンク容積が充分活用されていなかった。   However, the deterioration of the coefficient of performance accompanying the rise in the temperature of the fluid to be heated has been a major issue for what is called a normal hot water supply type, which has been a bottleneck in improving the coefficient of performance throughout the year. In addition, if the boiling completion temperature is set low in order to pursue a coefficient of performance, fluid that cannot be used for hot water supply is stored in the lower part of the hot water storage tank, and the tank volume is not fully utilized.

本発明は、前記従来の課題を解決するもので、被加熱流体の温度上昇による成績係数の悪化を防止し、加熱運転時の圧縮機の吐出圧力上昇を抑えることで冷却システムの負荷を低減したヒートポンプ給湯機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, prevents deterioration of the coefficient of performance due to the temperature rise of the fluid to be heated, and reduces the load on the cooling system by suppressing the increase in the discharge pressure of the compressor during the heating operation. An object is to provide a heat pump water heater.

前記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、前記圧縮機により圧縮された熱媒体と被加熱流体とを熱交換する高温冷媒対水用熱交換器、前記高温冷媒対水用熱交換器の下流側の熱媒体を減圧する減圧装置、前記減圧装置の下流側の熱媒体と空気とを熱交換する冷媒対空気用熱交換器を順次接続してなるヒートポンプユニッ
トと、前記高温冷媒対水用熱交換器に接続され、前記被加熱流体を有する温水ユニットとを備え、前記被加熱流体と前記減圧装置の下流側の冷媒と熱交換する低温冷媒対水用熱交換器を設けるとともに、前記高温冷媒対水用熱交換器へ入水する被加熱流体の温度が所定値より高い場合には、前記被加熱流体は前記低温冷媒対水用熱交換器と熱交換する構成としたしたもので、被加熱流体の温度が上昇した場合には低温冷媒対水熱交換器で冷却してから加熱を行うことで成績係数の悪化を防止するものである。
In order to solve the conventional problems, a heat pump water heater of the present invention includes a compressor, a heat exchanger for high-temperature refrigerant that exchanges heat between a heat medium compressed by the compressor and a fluid to be heated, and the high temperature A heat pump unit comprising a pressure reducing device that depressurizes a heat medium downstream of a refrigerant-to-water heat exchanger, and a refrigerant-to-air heat exchanger that heat-exchanges heat between the heat medium downstream of the pressure reducing device and air. And a hot water unit connected to the high-temperature refrigerant-to-water heat exchanger and having the heated fluid, and heat exchange between the heated fluid and the refrigerant on the downstream side of the decompression device to exchange heat with the low-temperature refrigerant against water When the temperature of the heated fluid entering the high-temperature refrigerant / water heat exchanger is higher than a predetermined value, the heated fluid exchanges heat with the low-temperature refrigerant / water heat exchanger. The structure of the fluid to be heated If degrees rises is to prevent deterioration of the coefficient of performance by performing heat is cooled by the low temperature refrigerant to water heat exchanger.

本発明によれば、被加熱流体の温度上昇による成績係数の悪化を防止し、加熱運転時の圧縮機の吐出圧力上昇を抑えることで冷却システムの負荷を低減したヒートポンプ給湯機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration of a coefficient of performance by the temperature rise of a to-be-heated fluid can be prevented, and the heat pump water heater which reduced the load of the cooling system by suppressing the discharge pressure rise of the compressor at the time of heating operation can be provided.

第1の発明は、圧縮機、前記圧縮機により圧縮された熱媒体と被加熱流体とを熱交換する高温冷媒対水用熱交換器、前記高温冷媒対水用熱交換器の下流側の熱媒体を減圧する減圧装置、前記減圧装置の下流側の熱媒体と空気とを熱交換する冷媒対空気用熱交換器を順次接続してなるヒートポンプユニットと、前記高温冷媒対水用熱交換器に接続され、前記被加熱流体を有する温水ユニットとを備え、前記被加熱流体と前記減圧装置の下流側の冷媒と熱交換する低温冷媒対水用熱交換器を設けるとともに、前記高温冷媒対水用熱交換器へ入水する被加熱流体の温度が所定値より高い場合には、前記被加熱流体は前記低温冷媒対水用熱交換器と熱交換する構成としたしたもので、上昇した被加熱流体の温度を低減させることができ、成績係数の悪化と圧縮機の吐出圧力の上昇を防止することができる。   The first invention is a compressor, a heat exchanger for high-temperature refrigerant to water that exchanges heat between the heat medium compressed by the compressor and the fluid to be heated, and heat on the downstream side of the heat exchanger for high-temperature refrigerant to water. A decompression device that decompresses the medium, a heat pump unit in which a heat exchanger for air to air that exchanges heat between the heat medium downstream of the decompression device and air, and a heat exchanger for high temperature refrigerant to water are connected to the heat exchanger A low-temperature refrigerant-to-water heat exchanger for exchanging heat between the heated fluid and a refrigerant on the downstream side of the decompression device. When the temperature of the heated fluid that enters the heat exchanger is higher than a predetermined value, the heated fluid is configured to exchange heat with the low-temperature refrigerant-to-water heat exchanger. The temperature of the It is possible to prevent an increase of the discharge pressure of the compressor.

第2の発明は、圧縮機、前記圧縮機により圧縮された熱媒体と被加熱流体とを熱交換する高温冷媒対水用熱交換器、前記高温冷媒対水用熱交換器の下流側の熱媒体を減圧する減圧装置、前記減圧装置の下流側の熱媒体と空気とを熱交換する冷媒対空気用熱交換器を順次接続してなるヒートポンプユニットと、前記高温冷媒対水用熱交換器に接続され、前記被加熱流体を有する温水ユニットとを備え、前記被加熱流体と前記減圧装置の下流側の冷媒と熱交換する低温冷媒対水用熱交換器を設けるとともに、前記冷媒対空気用熱交換器における冷媒の蒸発温度が所定値より低い場合には、前記被加熱流体は前記低温冷媒対水用熱交換器と熱交換する構成としたもので、冷媒対空気用熱交換器に着霜が発生する領域まで蒸発温度が低下したときには、大気からではなく、被加熱流体から熱交換することで、成績係数の悪化を防止することができる。   The second invention is a compressor, a heat exchanger for high-temperature refrigerant to water that exchanges heat between the heat medium compressed by the compressor and the fluid to be heated, and heat downstream of the heat exchanger for high-temperature refrigerant and water. A decompression device that decompresses the medium, a heat pump unit in which a heat exchanger for air to air that exchanges heat between the heat medium downstream of the decompression device and air, and a heat exchanger for high temperature refrigerant to water are connected to the heat exchanger A low-temperature refrigerant-to-water heat exchanger for exchanging heat between the heated fluid and a refrigerant on the downstream side of the decompression device. When the evaporating temperature of the refrigerant in the exchanger is lower than a predetermined value, the heated fluid is configured to exchange heat with the low-temperature refrigerant-to-water heat exchanger, and the refrigerant-to-air heat exchanger is frosted. When the evaporation temperature drops to the area where Not from the atmosphere, by heat exchange from the heated fluid, it is possible to prevent deterioration of the coefficient of performance.

第3の発明は、特に、第1の発明または第2の発明のヒートポンプ給湯機において、温水ユニットに加熱後の流体を貯湯する貯湯手段を備え、低温冷媒対水用熱交換器にて冷媒と熱交換後の被加熱流体は、高温冷媒対水用熱交換器にて加熱後、前記貯湯手段の上部から流入させる構成としたもので、貯湯手段である貯湯タンクの上部に確実に高温水を確保することができ、使い勝手の良いヒートポンプ給湯機を提供することができる。   The third invention is the heat pump water heater of the first invention or the second invention, in particular, comprising a hot water storage means for storing the heated fluid in the hot water unit, and the refrigerant in the low temperature refrigerant to water heat exchanger. The fluid to be heated after heat exchange is configured to flow from the upper part of the hot water storage means after being heated in a heat exchanger for high-temperature refrigerant to water. A heat pump water heater that can be secured and is easy to use can be provided.

第4の発明は、特に、第1の発明または第2の発明のヒートポンプ給湯機において、低温冷媒対水用熱交換器の被加熱流体の流路出口側に水温検知手段を設け、前記検知温度が所定値より高いときには、加熱運転を停止する構成としたもので、成績係数の悪化と圧縮機の吐出圧力の上昇を防止することができる。   In a fourth aspect of the invention, in particular, in the heat pump water heater of the first or second aspect of the invention, a water temperature detecting means is provided on the channel outlet side of the fluid to be heated of the heat exchanger for low-temperature refrigerant versus water, and the detected temperature When is higher than a predetermined value, the heating operation is stopped, so that the deterioration of the coefficient of performance and the increase in the discharge pressure of the compressor can be prevented.

第5の発明は、特に、第1の発明から第4の発明のヒートポンプ給湯機の冷媒に二酸化炭素を使用することにより、高温高効率の貯湯運転と地球環境保全を実現することができる。   In the fifth aspect of the invention, in particular, by using carbon dioxide as the refrigerant of the heat pump water heater of the first to fourth aspects, it is possible to realize a high-temperature and high-efficiency hot water storage operation and global environmental conservation.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形
態によって本発明が限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は本発明の実施の形態1におけるヒートポンプ給湯機の構成図である。また、本発明のヒートポンプ給湯機に用いる冷媒としては、従来広く用いられているR22等のフロン系冷媒でも良いが、オゾン層保全及び地球温暖化防止等の環境保護的側面から近年盛んに研究されている自然冷媒である二酸化炭素冷媒の方が、より大きな効果を得ることが可能である。以下では、冷媒として二酸化炭素を用いるが、その他の冷媒であってもよいものである。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. In addition, the refrigerant used in the heat pump water heater of the present invention may be a fluorocarbon refrigerant such as R22 which has been widely used in the past. The carbon dioxide refrigerant, which is a natural refrigerant, can obtain a greater effect. In the following, carbon dioxide is used as the refrigerant, but other refrigerants may be used.

ヒートポンプ給湯機は、圧縮機1、高温冷媒対水用熱交換器2、減圧装置3、低温冷媒対水用熱交換器4、冷媒対空気用熱交換器5、電磁弁6a、6bからなる冷媒循環回路Aと、前記高温冷媒対水用熱交換器2、低温冷媒対水用熱交換器4、循環ポンプ7、貯湯タンク8、三方弁9、逆止弁10を接続した給湯回路Bからなり、前記圧縮機1、冷媒対水用熱交換器2、減圧装置3、低温冷媒対水用熱交換器4、冷媒対空気用熱交換器5、電磁弁6a、6b、送風ファン11等はヒートポンプユニット内に収容されている。また、前記循環ポンプ7、貯湯タンク8、三方弁9、逆止弁10、制御手段(図示せず)等は温水ユニット内に収容されている。   The heat pump water heater is a refrigerant comprising a compressor 1, a high-temperature refrigerant-to-water heat exchanger 2, a decompression device 3, a low-temperature refrigerant-to-water heat exchanger 4, a refrigerant-to-air heat exchanger 5, and electromagnetic valves 6a and 6b. It comprises a circulation circuit A and a hot water supply circuit B to which the high temperature refrigerant / water heat exchanger 2, a low temperature refrigerant / water heat exchanger 4, a circulation pump 7, a hot water storage tank 8, a three-way valve 9, and a check valve 10 are connected. The compressor 1, the heat exchanger 2 for refrigerant / water, the decompressor 3, the heat exchanger 4 for low temperature refrigerant / water, the heat exchanger 5 for refrigerant / air, the electromagnetic valves 6a, 6b, the blower fan 11, etc. are heat pumps. Contained in the unit. The circulating pump 7, hot water storage tank 8, three-way valve 9, check valve 10, control means (not shown) and the like are accommodated in a hot water unit.

入水温検知手段12は三方弁9の入口に設置されており、貯湯タンク8から供給された入水温度を検出する。出水温検知手段13は低温冷媒対水用熱交換器4の水側出口に設置されており、ヒートポンプ給湯機で冷却された出水温度を検出する。出湯温検知手段14は高温冷媒対水用熱交換器2の水側出口に設置されており、ヒートポンプ給湯機で加熱された出湯温度を検出する。制御手段は室内に設置されているコントローラー(図示せず)で設定された温度と前記出湯温検知手段14で検知している温度が等しくなるように圧縮機1の運転周波数、減圧装置3の開度、循環ポンプ7の回転数、送風ファン11の回転数等を制御する。   The incoming water temperature detecting means 12 is installed at the inlet of the three-way valve 9 and detects the incoming water temperature supplied from the hot water storage tank 8. The outlet water temperature detection means 13 is installed at the water-side outlet of the low-temperature refrigerant-to-water heat exchanger 4 and detects the outlet water temperature cooled by the heat pump water heater. The hot water temperature detection means 14 is installed at the water-side outlet of the high-temperature refrigerant-to-water heat exchanger 2 and detects the temperature of the hot water heated by the heat pump water heater. The control means controls the operating frequency of the compressor 1 and opens the decompression device 3 so that the temperature set by a controller (not shown) installed in the room is equal to the temperature detected by the tapping temperature detection means 14. The rotational speed of the circulation pump 7 and the rotational speed of the blower fan 11 are controlled.

上記のヒートポンプ給湯機の動作を説明する。運転を開始後、貯湯タンク8下部から供給される水の水温を検知するために一定時間循環ポンプ7を運転する。ここで、入水温検知手段12が所定温度よりも低い温度(例えば25℃)を検知した場合、三方弁9が水を直接高温冷媒対水用熱交換器2に送る経路に切り替え、前記循環ポンプ7を通じて水を高温冷媒対水用熱交換器2に送り、前記圧縮機1より吐出された高温・高圧の過熱ガス冷媒が流入する前記高温冷媒対水用熱交換器2と熱交換されることで水を加熱する。所定の温度に加熱された湯は貯湯タンク8の上部に戻され貯留される。   The operation of the heat pump water heater will be described. After the operation is started, the circulation pump 7 is operated for a predetermined time in order to detect the temperature of the water supplied from the lower part of the hot water storage tank 8. Here, when the incoming water temperature detecting means 12 detects a temperature lower than a predetermined temperature (for example, 25 ° C.), the three-way valve 9 switches to a route for directly sending water to the high-temperature refrigerant-to-water heat exchanger 2, and the circulation pump 7 through which water is sent to the high-temperature refrigerant-to-water heat exchanger 2 and heat-exchanged with the high-temperature refrigerant-to-water heat exchanger 2 into which the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows. Heat the water with. Hot water heated to a predetermined temperature is returned to the upper part of the hot water storage tank 8 and stored.

二酸化炭素冷媒は凝縮域がなく超臨界域で熱交換されるため、冷媒温度は前記高温冷媒対水用熱交換器2内で緩やかに低下し、前記減圧装置3で減圧される。貯湯タンク8内の水は直接高温冷媒対水用熱交換器2に送られているため、電磁弁6aは閉、電磁弁6bは開となり、冷媒は冷媒対空気用熱交換器5に送られる。冷媒対空気用熱交換器5では、冷媒は送風ファン11によって強制的に大気から熱を奪われることにより蒸発ガス化し、前記圧縮機1へ戻る。   Since the carbon dioxide refrigerant does not have a condensing region and is heat-exchanged in the supercritical region, the refrigerant temperature gradually decreases in the high-temperature refrigerant-to-water heat exchanger 2 and is decompressed by the decompression device 3. Since the water in the hot water storage tank 8 is directly sent to the high-temperature refrigerant-to-water heat exchanger 2, the solenoid valve 6a is closed, the solenoid valve 6b is opened, and the refrigerant is sent to the refrigerant-to-air heat exchanger 5. . In the refrigerant-to-air heat exchanger 5, the refrigerant is vaporized by forcibly removing heat from the atmosphere by the blower fan 11, and returns to the compressor 1.

上記の運転を繰り返すと貯湯タンク8内の低温の水は高温の湯に置きかえられていき、入水温検知手段12の検知する温度が徐々に上昇していく。この過程で入水温検知手段12が所定温度よりも高い温度(例えば25℃)を検知した場合、三方弁9が切り替わり、水は低温冷媒対水用熱交換器4に送られる。このとき同時に電磁弁6aは開、電磁弁6bは閉となり、減圧装置3で減圧された低温冷媒が低温冷媒対水用熱交換器4に送られる。ここで水と冷媒が熱交換され、水温は低下した状態で高温冷媒対水用熱交換器2に送られ、高温・高圧の過熱ガス冷媒と熱交換されることで所定温度まで水を加熱し、貯湯タンク
8上部に戻され貯留される。
When the above operation is repeated, the low temperature water in the hot water storage tank 8 is replaced with high temperature hot water, and the temperature detected by the incoming water temperature detecting means 12 gradually increases. In this process, when the incoming water temperature detecting means 12 detects a temperature (for example, 25 ° C.) higher than a predetermined temperature, the three-way valve 9 is switched, and water is sent to the low-temperature refrigerant-to-water heat exchanger 4. At the same time, the electromagnetic valve 6 a is opened and the electromagnetic valve 6 b is closed, and the low-temperature refrigerant decompressed by the decompression device 3 is sent to the low-temperature refrigerant-to-water heat exchanger 4. Here, the water and the refrigerant are subjected to heat exchange, and the water temperature is lowered and sent to the high-temperature refrigerant-to-water heat exchanger 2 to exchange heat with the high-temperature and high-pressure superheated gas refrigerant to heat the water to a predetermined temperature. The hot water storage tank 8 is returned and stored.

さらに上記の運転を繰り返すと入水温検知手段12の検知する温度も上昇し、低温冷媒対水用熱交換器4での冷却が追いつかなくなり出水温検知手段13の検知する温度も上昇するようになる。ここで、出水温検知手段13が所定の温度(例えば25℃)を検知した場合、貯湯タンク8内は湯で満たされたと判断し、圧縮機1を停止させ、加熱運転を終了する。   Further, when the above operation is repeated, the temperature detected by the incoming water temperature detecting means 12 also rises, the cooling at the low temperature refrigerant-to-water heat exchanger 4 cannot catch up, and the temperature detected by the outlet water temperature detecting means 13 also increases. . Here, when the outlet water temperature detection means 13 detects a predetermined temperature (for example, 25 ° C.), it is determined that the hot water storage tank 8 is filled with hot water, the compressor 1 is stopped, and the heating operation is terminated.

今まで述べてきたような運転を行うことにより、高温冷媒対水用熱交換器2に供給される水温は一定温度以下に抑えることができ、成績係数の悪化と圧縮機の吐出圧力上昇を抑えることができる。   By performing the operation as described above, the water temperature supplied to the high-temperature refrigerant-to-water heat exchanger 2 can be suppressed to a certain temperature or less, and the deterioration of the coefficient of performance and the increase in the discharge pressure of the compressor can be suppressed. be able to.

なお、本実施の形態に示した各種材料や数値などは必ずしもこれに限定されるものではなく、所定の役割を果たすことができるならば別の材料や数値で何ら問題はない。   Note that the various materials and numerical values shown in this embodiment are not necessarily limited to these, and there is no problem with other materials and numerical values as long as they can play a predetermined role.

(実施の形態2)
図2は本発明の実施の形態2におけるヒートポンプ給湯機の構成図である。ヒートポンプ給湯機の構造は冷媒対空気用熱交換器5の出口に蒸発温検知手段15を追加し、高温冷媒対水用熱交換器2の水側入口に流量調整弁16を追加した以外は実施の形態1と同様である。
(Embodiment 2)
FIG. 2 is a configuration diagram of a heat pump water heater in Embodiment 2 of the present invention. The structure of the heat pump water heater is implemented except that an evaporating temperature detecting means 15 is added to the outlet of the refrigerant-to-air heat exchanger 5 and a flow rate adjusting valve 16 is added to the water-side inlet of the high-temperature refrigerant-to-water heat exchanger 2. This is the same as the first embodiment.

上記のヒートポンプ給湯機の動作を説明する。三方弁9は水を直接高温冷媒対水用熱交換器2に送る経路に切り替え、流量調整弁16はすべての水を高温冷媒対水用熱交換器2に送るように調整し、循環ポンプ7を通じて水は高温冷媒対水用熱交換器2に送られる。高温冷媒対水用熱交換器2では、圧縮機1より吐出された高温・高圧の過熱ガス冷媒と水が熱交換され、加熱される。所定の温度に加熱された湯は貯湯タンク8上部に戻され貯留される。   The operation of the heat pump water heater will be described. The three-way valve 9 switches to a route for sending water directly to the high-temperature refrigerant-to-water heat exchanger 2, and the flow control valve 16 adjusts so that all water is sent to the high-temperature refrigerant-to-water heat exchanger 2, and the circulation pump 7 Through, the water is sent to the high temperature refrigerant to water heat exchanger 2. In the high-temperature refrigerant-to-water heat exchanger 2, heat is exchanged between the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 and water. Hot water heated to a predetermined temperature is returned to the hot water storage tank 8 and stored.

二酸化炭素冷媒は凝縮域がなく超臨界域で熱交換されるため、冷媒温度は前記高温冷媒対水用熱交換器2内で緩やかに低下し、前記減圧装置3で減圧される。貯湯タンク8内の水は直接高温冷媒対水用熱交換器2に送られているため、電磁弁6aは閉、電磁弁6bは開となり、冷媒は冷媒対空気用熱交換器5に送られる。冷媒対空気用熱交換器5では、冷媒は送風ファン11によって強制的に大気から熱を奪われることにより蒸発ガス化し、前記圧縮機1へ戻る。   Since the carbon dioxide refrigerant does not have a condensing region and is heat-exchanged in the supercritical region, the refrigerant temperature gradually decreases in the high-temperature refrigerant-to-water heat exchanger 2 and is decompressed by the decompression device 3. Since the water in the hot water storage tank 8 is directly sent to the high-temperature refrigerant-to-water heat exchanger 2, the solenoid valve 6a is closed, the solenoid valve 6b is opened, and the refrigerant is sent to the refrigerant-to-air heat exchanger 5. . In the refrigerant-to-air heat exchanger 5, the refrigerant is vaporized by forcibly removing heat from the atmosphere by the blower fan 11, and returns to the compressor 1.

ここで、外気温の低下や出湯温度の変更等が生じると、冷媒対空気用熱交換器5での蒸発温度が低下し、所定の温度(例えば−3℃)を下回る状態で運転を行うことがある。蒸発温度が低い状態で長時間運転を行うと、冷媒対空気用熱交換器5に着霜するため、熱交換性能の低下及び除霜運転が必要となり成績係数の悪化につながる。   Here, when a decrease in the outside air temperature, a change in the hot water temperature, or the like occurs, the evaporating temperature in the refrigerant-to-air heat exchanger 5 decreases, and the operation is performed in a state below a predetermined temperature (for example, −3 ° C.). There is. If the operation is performed for a long time in a state where the evaporation temperature is low, the refrigerant-to-air heat exchanger 5 is frosted, so that the heat exchange performance is lowered and the defrosting operation is required, leading to deterioration in the coefficient of performance.

このため、冷媒対空気用熱交換器5の出口に取り付けている蒸発温検知手段15が所定の温度(例えば−3℃)を検知した場合、三方弁9を低温冷媒対水用熱交換器4に送る経路に切り替え、同時に電磁弁6aは開、電磁弁6bは閉とし、冷媒対空気用熱交換器5を使用せず、低温冷媒対水用熱交換器4を利用して冷媒を蒸発ガス化する。水の出口温度は下がりすぎると凍結の恐れがあるため、出水温検知手段13が所定の温度(例えば3℃)を下回らないように制御手段によって循環ポンプ7の循環量を調整する。   For this reason, when the evaporating temperature detecting means 15 attached to the outlet of the refrigerant-to-air heat exchanger 5 detects a predetermined temperature (for example, −3 ° C.), the three-way valve 9 is connected to the low-temperature refrigerant-to-water heat exchanger 4. At the same time, the solenoid valve 6a is opened, the solenoid valve 6b is closed, the refrigerant-to-air heat exchanger 5 is not used, and the refrigerant is evaporated by using the low-temperature refrigerant-to-water heat exchanger 4. Turn into. If the outlet temperature of the water is too low, there is a risk of freezing. Therefore, the amount of circulation of the circulation pump 7 is adjusted by the control means so that the outlet temperature detection means 13 does not fall below a predetermined temperature (for example, 3 ° C.).

また、熱交換された水は高温冷媒対水用熱交換器2に送られ、高温冷媒と熱交換されることで加熱されるが、水の循環量が多いときには流量調整弁16にて余剰分を貯湯タンク8下部に戻すことにより、出湯温検知手段14が所定の温度(例えば90℃)を保つこと
を可能にする。
Also, the heat-exchanged water is sent to the high-temperature refrigerant-to-water heat exchanger 2 and heated by exchanging heat with the high-temperature refrigerant. Is returned to the lower part of the hot water storage tank 8 to enable the hot water temperature detection means 14 to maintain a predetermined temperature (for example, 90 ° C.).

今まで述べてきたような運転を行うことにより、低外気温でも除霜運転が不必要となり、また成績係数の悪化を抑えることができる。   By performing the operation as described so far, the defrosting operation becomes unnecessary even at a low outside temperature, and the deterioration of the coefficient of performance can be suppressed.

なお、本実施の形態では冷媒蒸発温度を冷媒対空気熱交換器出口で検知しているが、支障が無ければ入口側で検知してもよい。なお、本実施の形態に示した各種材料や数値などは必ずしもこれに限定されるものではなく、所定の役割を果たすことができるならば別の材料や数値で何ら問題はない。   In this embodiment, the refrigerant evaporation temperature is detected at the refrigerant-to-air heat exchanger outlet, but may be detected at the inlet side if there is no problem. Note that the various materials and numerical values shown in this embodiment are not necessarily limited to these, and there is no problem with other materials and numerical values as long as they can play a predetermined role.

以上のように、本発明にかかるヒートポンプ給湯機は、冷却システムの低温側排熱を用いて、高温側の負荷を低減することができるため、水冷式空調装置等にも適用できる。   As described above, the heat pump water heater according to the present invention can be applied to a water-cooled air conditioner and the like because it can reduce the load on the high temperature side by using the low temperature side exhaust heat of the cooling system.

本発明の実施の形態1におけるヒートポンプ給湯機の構成図Configuration diagram of heat pump water heater in Embodiment 1 of the present invention 本発明の実施の形態2におけるヒートポンプ給湯機の構成図The block diagram of the heat pump water heater in Embodiment 2 of this invention 従来のヒートポンプ給湯機の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

1 圧縮機
2 高温冷媒対水用熱交換器
3 減圧装置
4 低温冷媒対水用熱交換器
5 冷媒対空気用熱交換器
8 貯湯タンク
13 出水温検知手段
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat exchanger for high temperature refrigerant | coolant versus water 3 Pressure reducing device 4 Heat exchanger for low temperature refrigerant | coolant versus water 5 Heat exchanger for refrigerant | coolant versus air 8 Hot water storage tank 13 Outlet temperature detection means

Claims (5)

圧縮機、前記圧縮機により圧縮された熱媒体と被加熱流体とを熱交換する高温冷媒対水用熱交換器、前記高温冷媒対水用熱交換器の下流側の熱媒体を減圧する減圧装置、前記減圧装置の下流側の熱媒体と空気とを熱交換する冷媒対空気用熱交換器を順次接続してなるヒートポンプユニットと、前記高温冷媒対水用熱交換器に接続され、前記被加熱流体を有する温水ユニットとを備え、前記被加熱流体と前記減圧装置の下流側の冷媒と熱交換する低温冷媒対水用熱交換器を設けるとともに、前記高温冷媒対水用熱交換器へ入水する被加熱流体の温度が所定値より高い場合には、前記被加熱流体は前記低温冷媒対水用熱交換器と熱交換する構成としたヒートポンプ給湯機。 A compressor, a heat exchanger for high-temperature refrigerant to water that exchanges heat between the heat medium compressed by the compressor and the fluid to be heated, and a decompression device that depressurizes the heat medium downstream of the heat exchanger for high-temperature refrigerant to water A heat pump unit formed by sequentially connecting a refrigerant-to-air heat exchanger for exchanging heat between the heat medium and air downstream of the decompression device, and connected to the high-temperature refrigerant-to-water heat exchanger, A low-temperature refrigerant-to-water heat exchanger that exchanges heat between the heated fluid and a refrigerant downstream of the decompression device, and enters the high-temperature refrigerant-to-water heat exchanger. When the temperature of the fluid to be heated is higher than a predetermined value, the heat pump water heater is configured such that the fluid to be heated exchanges heat with the heat exchanger for low-temperature refrigerant versus water. 圧縮機、前記圧縮機により圧縮された熱媒体と被加熱流体とを熱交換する高温冷媒対水用熱交換器、前記高温冷媒対水用熱交換器の下流側の熱媒体を減圧する減圧装置、前記減圧装置の下流側の熱媒体と空気とを熱交換する冷媒対空気用熱交換器を順次接続してなるヒートポンプユニットと、前記高温冷媒対水用熱交換器に接続され、前記被加熱流体を有する温水ユニットとを備え、前記被加熱流体と前記減圧装置の下流側の冷媒と熱交換する低温冷媒対水用熱交換器を設けるとともに、前記冷媒対空気用熱交換器における冷媒の蒸発温度が所定値より低い場合には、前記被加熱流体は前記低温冷媒対水用熱交換器と熱交換する構成としたヒートポンプ給湯機。 A compressor, a heat exchanger for high-temperature refrigerant to water that exchanges heat between the heat medium compressed by the compressor and the fluid to be heated, and a decompression device that depressurizes the heat medium downstream of the heat exchanger for high-temperature refrigerant to water A heat pump unit formed by sequentially connecting a refrigerant-to-air heat exchanger for exchanging heat between the heat medium and air downstream of the decompression device, and connected to the high-temperature refrigerant-to-water heat exchanger, A low-temperature refrigerant-to-water heat exchanger that exchanges heat with the fluid to be heated and a refrigerant on the downstream side of the decompression device, and evaporating the refrigerant in the refrigerant-to-air heat exchanger When the temperature is lower than a predetermined value, the heat pump water heater is configured such that the heated fluid exchanges heat with the low-temperature refrigerant-to-water heat exchanger. 温水ユニットに加熱後の流体を貯湯する貯湯手段を備え、低温冷媒対水用熱交換器にて冷媒と熱交換後の被加熱流体は、高温冷媒対水用熱交換器にて加熱後、前記貯湯手段の上部から流入させる構成とした請求項1または2に記載のヒートポンプ給湯機。 The hot water unit is provided with hot water storage means for storing the heated fluid, and the heated fluid after heat exchange with the refrigerant in the low-temperature refrigerant-to-water heat exchanger is heated in the high-temperature refrigerant-to-water heat exchanger, The heat pump water heater according to claim 1, wherein the heat pump water heater is configured to flow from an upper portion of the hot water storage means. 低温冷媒対水用熱交換器の被加熱流体の流路出口側に水温検知手段を設け、前記検知温度が所定値より高いときには、加熱運転を停止する構成とした請求項3に記載のヒートポンプ給湯機。 The heat pump hot water supply according to claim 3, wherein a water temperature detecting means is provided on the outlet side of the fluid to be heated of the heat exchanger for low-temperature refrigerant to water, and the heating operation is stopped when the detected temperature is higher than a predetermined value. Machine. 冷媒が二酸化炭素であることを特徴とする請求項1〜4のいずれか1項に記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 4, wherein the refrigerant is carbon dioxide.
JP2005046760A 2005-02-23 2005-02-23 Heat pump water heater Expired - Fee Related JP4449779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046760A JP4449779B2 (en) 2005-02-23 2005-02-23 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046760A JP4449779B2 (en) 2005-02-23 2005-02-23 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2006234211A true JP2006234211A (en) 2006-09-07
JP4449779B2 JP4449779B2 (en) 2010-04-14

Family

ID=37042071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046760A Expired - Fee Related JP4449779B2 (en) 2005-02-23 2005-02-23 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4449779B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070019A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Heat storage type water heater
KR100933869B1 (en) 2009-06-03 2009-12-24 김만호 Hot water generating apparatus using heat pump
JP2020026910A (en) * 2018-08-10 2020-02-20 三菱電機株式会社 Water heater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070019A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Heat storage type water heater
KR100933869B1 (en) 2009-06-03 2009-12-24 김만호 Hot water generating apparatus using heat pump
JP2020026910A (en) * 2018-08-10 2020-02-20 三菱電機株式会社 Water heater
JP7149763B2 (en) 2018-08-10 2022-10-07 三菱電機株式会社 water heater

Also Published As

Publication number Publication date
JP4449779B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US8991202B2 (en) Air-conditioning hot-water supply complex system
JP4059616B2 (en) Heat pump water heater
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
US20100282434A1 (en) Air conditioning and hot water supply complex system
US20050061011A1 (en) Refrigerating cycle device
JP2009243793A (en) Heat pump type hot water supply outdoor unit
JP3915770B2 (en) Heat pump water heater
JP3659197B2 (en) Heat pump water heater
JP5481838B2 (en) Heat pump cycle equipment
JP2013127332A (en) Hydronic heating device
JP2007303806A (en) Refrigerating cycle device and its operation method
JP2006118820A (en) Heat pump type water heater
JP2009264717A (en) Heat pump hot water system
JP2006220357A (en) Heat pump water heater
JP2009264715A (en) Heat pump hot water system
WO2015118580A1 (en) Heat pump hot water supply device
JP2011257098A (en) Heat pump cycle device
JP2009264718A (en) Heat pump hot water system
JP2008082601A (en) Heat pump hot water supply device
JP4449779B2 (en) Heat pump water heater
JP2012013350A (en) Hot-water heater
JP2005308344A (en) Heat pump water heater
JP3700474B2 (en) Heat pump water heater
JP2006017377A (en) Heat pump water heater
JP2008224067A (en) Heat pump hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees