JP2009216335A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2009216335A
JP2009216335A JP2008062182A JP2008062182A JP2009216335A JP 2009216335 A JP2009216335 A JP 2009216335A JP 2008062182 A JP2008062182 A JP 2008062182A JP 2008062182 A JP2008062182 A JP 2008062182A JP 2009216335 A JP2009216335 A JP 2009216335A
Authority
JP
Japan
Prior art keywords
water
hot water
heat
storage tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008062182A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Takayuki Takatani
隆幸 高谷
Shinji Watanabe
伸二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008062182A priority Critical patent/JP2009216335A/en
Publication of JP2009216335A publication Critical patent/JP2009216335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater having high operation efficiency. <P>SOLUTION: This heat pump water heater is composed of a heat pump 1 constituted by annularly connecting a compressor 2, a radiator 3, a pressure reducing means 4 and an air heat exchanger 5, a hot water storage circuit 18 for storing high temperature hot water in a hot water storage tank 8 by circulating water via the radiator 3 from a bottom part of the hot water storage tank 8 by a blow out pump 7, an expanded water discharge pipe 34 for discharging expanded water from the hot water storage tank 8, a hot water supply mixing valve 23 for forming hot water of the proper temperature by mixing low temperature water from a water supply source (unillustrated) with high temperature water from the hot water storage tank 8, a water supply bypass pipe 22 for introducing the low temperature water such as city water to the hot water supply mixing valve 23 and a heat storage unit 10 for exchanging heat between the expanded water passing through the expanded water discharge pipe 34 and the low temperature water passing through the water supply bypass pipe 22, to raise the water temperature of the low temperature water passing through the water supply bypass pipe 22 by heat energy of the expanded water, so that a high temperature hot water quantity from the hot water storage tank 8 can be reduced, and energy efficiency is improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加熱した湯水を貯湯タンクに蓄えて給湯を行うヒートポンプ給湯機に関するものである。   The present invention relates to a heat pump water heater that stores hot water in a hot water storage tank to supply hot water.

従来のこの種のヒートポンプ給湯機として、図2に示されるようなものがあった(例えば、特許文献1参照)。図2は、前記特許文献1に記載された従来のヒートポンプ給湯機の回路図である。   A conventional heat pump water heater of this type is as shown in FIG. 2 (see, for example, Patent Document 1). FIG. 2 is a circuit diagram of a conventional heat pump water heater described in Patent Document 1. In FIG.

図2において、従来のヒートポンプ給湯機は、低温の湯水と高温の湯水とが層を成した状態で貯えられている貯湯タンク8と、その湯水を加熱する加熱源であるヒートポンプ1を備え、ヒートポンプ1によって貯湯タンク8の水を加熱して沸き上げて貯湯し給湯に利用するようになっている。   In FIG. 2, the conventional heat pump water heater includes a hot water storage tank 8 in which low temperature hot water and high temperature hot water are stored in a layered state, and a heat pump 1 as a heating source for heating the hot water. 1, the water in the hot water storage tank 8 is heated and boiled up to be stored and used for hot water supply.

最初に、加熱源であるヒートポンプ1の構成について説明する。ヒートポンプ1は、冷媒を圧縮する圧縮機2と、冷媒を冷却する放熱器3と、冷媒を減圧する減圧手段4と、冷媒を蒸発気化する空気熱交換器5で構成され、圧縮機2の吐出側より放熱器3を介して減圧手段4に接続し、さらに圧縮機2の吸入側に接続している。   Initially, the structure of the heat pump 1 which is a heating source is demonstrated. The heat pump 1 includes a compressor 2 that compresses the refrigerant, a radiator 3 that cools the refrigerant, a decompression unit 4 that depressurizes the refrigerant, and an air heat exchanger 5 that evaporates and evaporates the refrigerant. It is connected to the decompression means 4 via the radiator 3 from the side, and further connected to the suction side of the compressor 2.

このヒートポンプ1においては、圧縮機2によって圧縮された冷媒は、高温高圧状態の冷媒として放熱器3に入り、ここで放熱して冷却する。その後、減圧手段4において減圧されて低温低圧の湿り蒸気となり、空気熱交換器5で空気と熱交換して蒸発気化し、圧縮機2へ戻される。この時、送風機6は空気熱交換器5の熱交換効率を高めるために強制的に大気を空気熱交換器5に循環させる。   In this heat pump 1, the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure refrigerant, and radiates and cools it here. Thereafter, the pressure is reduced in the pressure reducing means 4 to form low-temperature and low-pressure wet steam, and the air heat exchanger 5 exchanges heat with air to evaporate and return to the compressor 2. At this time, the blower 6 forcibly circulates the air to the air heat exchanger 5 in order to increase the heat exchange efficiency of the air heat exchanger 5.

一方、湯の沸き上げに関する貯湯回路18は、沸上げ管9が、貯湯タンク8の下部から放熱器3に接続され、さらに放熱器3から貯湯タンク8の上部へ接続している。   On the other hand, in the hot water storage circuit 18 for boiling water, the boiling pipe 9 is connected from the lower part of the hot water storage tank 8 to the radiator 3 and further connected from the radiator 3 to the upper part of the hot water storage tank 8.

沸上げ管9が接続されている、貯湯タンク8の上部は、湯水が貯湯タンク8の高温層側であればよく、また、貯湯タンク8の下部は、湯水が貯湯タンク8の低温層側であればよい。   The upper part of the hot water storage tank 8 to which the boiling pipe 9 is connected may suffice if the hot water is on the high temperature layer side of the hot water storage tank 8, and the lower part of the hot water storage tank 8 is on the low temperature layer side of the hot water storage tank 8. I just need it.

貯湯タンク8から放熱器3に湯水を送り貯湯タンク8に戻すために、沸上げ管9の途中には、出力を任意に変化させることができる沸上げポンプ7を設けている。   In order to send hot water from the hot water storage tank 8 to the radiator 3 and return it to the hot water storage tank 8, a boiling pump 7 capable of arbitrarily changing the output is provided in the middle of the boiling pipe 9.

そして、貯湯タンク8内の圧力を保つため、膨張水を排出する圧力逃がし弁29を備えており、排出された膨張水は、膨張水排出管34を通って、膨張水散水管36から外部に排出される。   In order to maintain the pressure in the hot water storage tank 8, a pressure relief valve 29 that discharges the expansion water is provided. The discharged expansion water passes through the expansion water discharge pipe 34 to the outside from the expansion water sprinkling pipe 36. Discharged.

また、ヒートポンプ1において、加熱する前の低湯水の温度を検知する入水温度センサー15を、沸上げ管9の放熱器3の入口側近傍に、加熱した高湯水の温度を検知する出湯温度センサー16を、沸上げ管9における放熱器3の出口近傍にそれぞれ設けている。   In addition, in the heat pump 1, an incoming water temperature sensor 15 that detects the temperature of the low hot water before heating is provided in the vicinity of the inlet side of the radiator 3 of the boiling pipe 9 and a hot water temperature sensor 16 that detects the temperature of the heated hot water. Are provided in the vicinity of the outlet of the radiator 3 in the boiling tube 9.

そして、貯湯タンク8の温度分布と蓄熱量を把握するため、貯湯タンク8の外側壁面の垂直方向に、複数の貯湯温度センサー17a〜17dを備えている。   And in order to grasp | ascertain the temperature distribution and heat storage amount of the hot water storage tank 8, the several hot water storage temperature sensors 17a-17d are provided in the orthogonal | vertical direction of the outer wall surface of the hot water storage tank 8. FIG.

給湯に関する構成としては、貯湯タンク8の底部に給水源から給水を行う給水管19が
接続され、給水源からは、減圧弁20にて適度な圧力に減圧されて給水管19に給水される。
As a configuration related to hot water supply, a water supply pipe 19 for supplying water from a water supply source is connected to the bottom of the hot water storage tank 8, and the water supply source is decompressed to an appropriate pressure by a pressure reducing valve 20 and supplied to the water supply pipe 19.

貯湯タンク8の上部には、貯湯された高温水を出湯し給湯に利用するための給湯管21が接続され、その途中には、給水管19からの給水バイパス管22が接続されている。また、給湯管21からの高温水と、給水バイパス管22からの低温水を任意の比率で混合可能な給湯用混合弁23が設けられている。   A hot water supply pipe 21 is connected to the upper part of the hot water storage tank 8 to discharge the hot water stored in the hot water and use it for hot water supply, and a water supply bypass pipe 22 from the water supply pipe 19 is connected in the middle thereof. Further, a hot water mixing valve 23 capable of mixing high temperature water from the hot water supply pipe 21 and low temperature water from the water supply bypass pipe 22 at an arbitrary ratio is provided.

給湯用混合弁23の下流側には、混合された給湯温度を検知するために給湯温度センサー25が設けられ、その先に給湯端末24が接続されている。   A hot water supply temperature sensor 25 is provided on the downstream side of the hot water supply mixing valve 23 in order to detect the mixed hot water supply temperature, and a hot water supply terminal 24 is connected to the tip thereof.

風呂への注湯に関する構成としては、給湯管21の途中から分岐して、浴槽13へ注湯する注湯管28が設けられており、給湯管21と同様に、給湯管21からの高温水と給水バイパス管22からの低温の湯水を混合して注湯できるように風呂用混合弁26が設けられ、その下流には、注湯温度センサー35が設けられている。   As a configuration relating to the pouring of water into the bath, a hot water pouring pipe 28 branched from the middle of the hot water feeding pipe 21 and poured into the bathtub 13 is provided. A bath mixing valve 26 is provided so that low temperature hot water from the water supply bypass pipe 22 can be mixed and poured, and a pouring temperature sensor 35 is provided downstream thereof.

また、注湯管28は、注湯電磁弁27を備え、それを任意に開閉させて自動で浴槽13に注湯する。   Moreover, the pouring pipe 28 includes a pouring electromagnetic valve 27, which is arbitrarily opened and closed to automatically pour water into the bathtub 13.

浴槽13内の湯水を加熱、保温する風呂加熱運転の回路構成に関しては、利用側回路31においては、浴槽13内の湯水を、利用側ポンプ12により風呂熱交換器14に循環させる。   Regarding the circuit configuration of the bath heating operation for heating and keeping hot water in the bathtub 13, in the use side circuit 31, the hot water in the bathtub 13 is circulated to the bath heat exchanger 14 by the use side pump 12.

また、浴槽内13の湯の温度を検知するために風呂湯温センサー32を設けている。そして、熱源側回路30では、貯湯タンク8の湯水を熱源側ポンプ11により、風呂熱交換器14に循環して貯湯タンク8に環流する。   In addition, a bath water temperature sensor 32 is provided to detect the temperature of the hot water in the bathtub 13. In the heat source side circuit 30, the hot water in the hot water storage tank 8 is circulated to the bath heat exchanger 14 by the heat source side pump 11 and circulated to the hot water storage tank 8.

また、風呂熱交換器14より、利用側ポンプ12で循環し環流された湯水の温度を検知するための環流温度センサー33が取り付けられている。   Further, a circulating temperature sensor 33 for detecting the temperature of the hot water circulated and circulated by the use side pump 12 from the bath heat exchanger 14 is attached.

以上のように構成された、従来のヒートポンプ給湯機の動作は、以下の通りである。   The operation of the conventional heat pump water heater configured as described above is as follows.

図2に示すように、貯湯運転では、ヒートポンプ1を加熱源として沸き上げポンプ7で、貯湯タンク8下部の低温水層の水を放熱器3に循環して加熱し、貯湯タンク8の上部送り湯として貯めており、密度差により沸かされた高温の湯と低温水層の水が混じり合うことは殆どなく貯湯タンク8に貯められる。そして、貯湯タンク8に貯まった湯は、利用端末24や浴槽13への給湯に使用される。   As shown in FIG. 2, in the hot water storage operation, the heat pump 1 is used as a heating source and the boiling pump 7 circulates and heats the water in the low-temperature water layer at the lower part of the hot water storage tank 8 to the radiator 3. It is stored as hot water, and the hot water boiled due to the density difference and the water in the low temperature water layer are hardly mixed and stored in the hot water storage tank 8. The hot water stored in the hot water storage tank 8 is used for hot water supply to the use terminal 24 and the bathtub 13.

また、貯湯運転では、貯湯タンク8に密度の小さな湯が貯まってゆくことになり、即ち、水が膨張するので貯湯タンク8の内圧が上昇する。内圧が上昇を続けると、貯湯タンク8の耐圧を越え、最悪の場合破壊するため、貯湯タンク8内が所定の圧力になると圧力逃がし弁29を開き、貯湯タンク8内の湯を膨張水として膨張水排出管34より排出することで、貯等タンク8の内圧を所定の圧力以下に保っている。   In the hot water storage operation, hot water with a low density is stored in the hot water storage tank 8, that is, the water expands, so that the internal pressure of the hot water storage tank 8 increases. If the internal pressure continues to rise, the pressure resistance of the hot water storage tank 8 will be exceeded, and in the worst case, it will be destroyed. Therefore, when the internal pressure of the hot water storage tank 8 reaches a predetermined pressure, the pressure relief valve 29 is opened and By discharging from the water discharge pipe 34, the internal pressure of the storage tank 8 is kept below a predetermined pressure.

しかし、高温の膨張水を排出することは、ヒートポンプ給湯機のエネルギー効率を低下させる原因の一つであることから、従来のヒートポンプ給湯機では、膨張水の有効活用の方法として、圧力逃がし弁29より排出した膨張水を、膨張水排出管34を通して空気熱交換器5の上部へと導き、膨張水散水管36より空気熱交換器5に散水して、空気熱交換器5内の冷媒と熱交換して熱を吸収利用する、あるいは、除霜の熱源として利用している。
特開2005−009723号公報
However, since discharging high-temperature expansion water is one of the causes of reducing the energy efficiency of the heat pump water heater, in the conventional heat pump water heater, the pressure relief valve 29 is used as a method of effectively using the expansion water. The expanded water discharged is guided to the upper portion of the air heat exchanger 5 through the expanded water discharge pipe 34 and sprayed to the air heat exchanger 5 through the expanded water sprinkling pipe 36, and the refrigerant and heat in the air heat exchanger 5 are sprayed. It is exchanged to absorb heat or to be used as a heat source for defrosting.
JP 2005-009723 A

しかしながら、上記従来のヒートポンプ給湯機の構成では、膨張水を空気熱交換器5に散水したとき、散水した湯水は、熱を奪われて、低温の水となるが散水された一部の水は、空気熱交換器5の表面に付着したまま残ることになる。例えば、環境温度が除霜条件以下、すなわち空気熱交換器5と熱交換される空気の温度が2℃程度以下であれば、空気熱交換器5を流れる冷媒は、0℃以下となるため、空気熱交換器5の表面に散水された湯水が、そのまま氷結し、空気熱交換器5の熱交換性能が著しく低下するという課題があった。   However, in the configuration of the conventional heat pump water heater, when the expanded water is sprinkled into the air heat exchanger 5, the sprinkled hot water is deprived of heat and becomes low-temperature water, but part of the sprinkled water is The air heat exchanger 5 remains attached to the surface. For example, if the ambient temperature is equal to or lower than the defrost condition, that is, the temperature of the air exchanged with the air heat exchanger 5 is approximately 2 ° C. or less, the refrigerant flowing through the air heat exchanger 5 is 0 ° C. or less. There was a problem that the hot water sprayed on the surface of the air heat exchanger 5 was frozen as it was, and the heat exchange performance of the air heat exchanger 5 was significantly reduced.

本発明は、上記従来の課題を解決し、空気熱交換器5を利用することなく、膨張水の持つ熱エネルギーの有効活用を行い、運転効率の高いヒートポンプ給湯機を提供することを目的としている。   An object of the present invention is to solve the above-mentioned conventional problems and to provide a heat pump water heater with high operating efficiency by effectively using thermal energy of expansion water without using the air heat exchanger 5. .

上記従来の課題を解決するために、本発明のヒートポンプ給湯機は、圧縮機、放熱器、減圧手段、空気熱交換器を環状に接続して構成されたヒートポンプと、沸き上げポンプにより貯湯タンクの底部より水を前記放熱器を通して循環させて高温の湯水を前記貯湯タンクに溜める貯湯回路と、前記貯湯タンクからの膨張水を排出する膨張水排出管と、前記貯湯タンクからの高温水と給水源からの低温水を混合して適温の湯とするための給湯用混合弁と、前記給湯用混合弁に市水などの低温水を導く給水バイパス管と、前記膨張水排出管を通る膨張水と前記給水バイパス管を通る低温水とが熱交換できるように配置された蓄熱材を内包する蓄熱ユニットより構成されているもので、膨張水の熱エネルギーを蓄熱ユニット内の蓄熱材と熱交換してそれに蓄え、給湯など湯を利用する時には、給水バイパス管を通る低温水と前記蓄熱材と熱交換して水温を上昇させることができる。給湯用混合弁では、貯湯タンクからの高温の湯と、給湯バイパス管からの低温水を混合して適温の調整しているため、給湯バイパス管からの低温水の温度が上昇すれば適温とするための貯湯タンクからの高温の湯量が低減でき、エネルギー効率が向上する。   In order to solve the above-described conventional problems, the heat pump water heater of the present invention includes a heat pump configured by annularly connecting a compressor, a radiator, a decompression unit, and an air heat exchanger, and a boiling pump. A hot water storage circuit that circulates water from the bottom through the radiator to store hot hot water in the hot water storage tank, an expansion water discharge pipe that discharges expansion water from the hot water storage tank, and hot water and water supply source from the hot water storage tank A hot water supply mixing valve for mixing low temperature water from the hot water supply water into an appropriate temperature hot water, a water supply bypass pipe for introducing low temperature water such as city water to the hot water supply mixing valve, and expansion water passing through the expansion water discharge pipe It is composed of a heat storage unit containing a heat storage material arranged so that heat can be exchanged with the low-temperature water passing through the water supply bypass pipe, and heat energy of the expansion water is exchanged with the heat storage material in the heat storage unit. So The accumulated, when using the hot water, such as hot water, the by heat storage material and heat exchange with the cold water through the water supply bypass pipe can be raised temperature. The hot water mixing valve mixes the hot water from the hot water storage tank and the low temperature water from the hot water bypass pipe to adjust the appropriate temperature, so the temperature will be adjusted appropriately if the temperature of the low temperature water from the hot water bypass pipe rises. Therefore, the amount of hot water from the hot water storage tank can be reduced, and energy efficiency is improved.

本発明のヒートポンプ給湯機は、膨張水の熱エネルギーを蓄熱ユニット内の蓄熱材と熱交換してその蓄熱材に蓄え、給湯など湯を利用する時に、給水バイパス管を通る低温水と蓄熱ユニット内の蓄熱材と熱交換して水温を上昇させることができるので、運転効率を高めることが出来る。   The heat pump water heater of the present invention exchanges heat energy of expansion water with the heat storage material in the heat storage unit and stores the heat energy in the heat storage material, and when using hot water such as hot water, the low temperature water passing through the water supply bypass pipe and the heat storage unit Since the water temperature can be raised by exchanging heat with the heat storage material, the operation efficiency can be increased.

第1の発明は、圧縮機、放熱器、減圧手段、空気熱交換器を環状に接続して構成されたヒートポンプと、沸き上げポンプにより貯湯タンクの底部より水を前記放熱器を通して循環させて高温の湯水を前記貯湯タンクに溜める貯湯回路と、前記貯湯タンクからの膨張水を排出する膨張水排出管と、前記貯湯タンクからの高温水と給水源からの低温水を混合して適温の湯とするための給湯用混合弁と、前記給湯用混合弁に市水などの低温水を導く給水バイパス管と、前記膨張水排出管を通る膨張水と前記給水バイパス管を通る低温水とが熱交換できるように配置された蓄熱材を内包する蓄熱ユニットより構成されているもので、膨張水の熱エネルギーを蓄熱ユニット内の蓄熱材と熱交換してそれに蓄え、給湯など湯を利用する時には、給水バイパス管を通る低温水と前記蓄熱材と熱交換して水温を上昇させることができる。給湯用混合弁では、貯湯タンクからの高温の湯と、給湯バイパス管からの低温水を混合して適温の調整しているため、給湯バイパス管からの低温水の温度が上昇すれば適温とするための貯湯タンクからの高温の湯量が低減でき、エネルギー効率が向
上する。
In the first invention, a heat pump configured by connecting a compressor, a radiator, a decompression means, and an air heat exchanger in an annular shape, and a boiling pump circulates water from the bottom of the hot water storage tank through the radiator to increase the temperature. A hot water storage circuit for storing hot water in the hot water storage tank, an expansion water discharge pipe for discharging expansion water from the hot water storage tank, hot water from the hot water storage tank and low temperature water from a water supply source, Heat exchange between the hot water supply mixing valve, the hot water supply bypass pipe for introducing low-temperature water such as city water to the hot water supply mixing valve, the expansion water passing through the expansion water discharge pipe, and the low temperature water passing through the water supply bypass pipe It is composed of a heat storage unit that encloses a heat storage material that is arranged so that the thermal energy of the expansion water can be exchanged with the heat storage material in the heat storage unit and stored in it, and when using hot water such as hot water, Vipa It can raise the water temperature by heat exchange with the cold water the heat storage material through the tube. The hot water mixing valve mixes the hot water from the hot water storage tank and the low temperature water from the hot water bypass pipe to adjust the appropriate temperature, so the temperature will be adjusted appropriately if the temperature of the low temperature water from the hot water bypass pipe rises. Therefore, the amount of hot water from the hot water storage tank can be reduced, and energy efficiency is improved.

第2の発明は、特に、第1の発明の蓄熱材を潜熱蓄熱材としたもので、蓄熱材の潜熱を利用することができるため、蓄熱材での単位体積当たりの蓄熱量を増加できコンパクト化できる。   In the second invention, in particular, the heat storage material of the first invention is a latent heat storage material, and since the latent heat of the heat storage material can be used, the amount of heat storage per unit volume in the heat storage material can be increased and is compact. Can be

第3の発明は、特に、第1又は第2の発明のヒートポンプ回路に臨界圧力以上に昇圧された冷媒を用いたもので、放熱器を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、放熱器で熱を奪われて温度低下しても凝縮することがない。したがって放熱器全域で冷媒と水とに温度差を形成しやすくなり熱交換効率を高くすることができる。   The third aspect of the invention uses a refrigerant whose pressure is raised to a critical pressure or higher in the heat pump circuit of the first or second invention, and the refrigerant flowing through the radiator is pressurized to a critical pressure or higher by a compressor. Therefore, it does not condense even if the heat is taken away by the radiator and the temperature drops. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire radiator, and the heat exchange efficiency can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯機の回路図である。尚、上記従来のヒートポンプ給湯機と同一部分については、同一符号を付してその説明を省略する。
(Embodiment 1)
FIG. 1 is a circuit diagram of a heat pump water heater in the first embodiment of the present invention. In addition, about the same part as the said conventional heat pump water heater, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図1において、本実施の形態におけるヒートポンプ給湯機は、膨張水排出管34の途中と、給水バイパス管22の途中に、蓄熱ユニット10を接続し、貯湯タンク8から排出された膨張水を、蓄熱ユニット10に導いた後、外部に排出すると共に、膨張水排出管34を通る高温の膨張水と、給水バイパス管22を通る低温水との間で熱交換させるようにしたもので、他の構成は、従来のヒートポンプ給湯機と同一なので、同一部分には同一符号を付して、その説明を省略する。   In FIG. 1, the heat pump water heater in the present embodiment connects the heat storage unit 10 in the middle of the expansion water discharge pipe 34 and in the middle of the water supply bypass pipe 22, and stores the expansion water discharged from the hot water storage tank 8. After being led to the unit 10, the heat is discharged between the high-temperature expanded water passing through the expanded water discharge pipe 34 and the low-temperature water passing through the water supply bypass pipe 22, and the other configuration. Since this is the same as a conventional heat pump water heater, the same parts are denoted by the same reference numerals and the description thereof is omitted.

蓄熱ユニット10は、蓄熱材として潜熱蓄熱材を使用しており、この蓄熱材と流体の熱交換器(図示せず)を内包している。   The heat storage unit 10 uses a latent heat storage material as a heat storage material, and includes a heat exchanger (not shown) of the heat storage material and a fluid.

尚、本実施の形態におけるヒートポンプ1には、冷媒として炭酸ガスを用いており、圧縮機2によって圧縮された冷媒は、高温高圧の超臨界状態の冷媒として放熱器3に入り、ここで放熱して冷却するようになっている。   The heat pump 1 in the present embodiment uses carbon dioxide as a refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure supercritical refrigerant and radiates heat here. To cool.

以上のように構成された本実施の形態における給湯機の動作、作用について説明する。   The operation and action of the water heater in the present embodiment configured as described above will be described.

貯湯タンク8に湯を貯める貯湯運転では、ヒートポンプ1は、圧縮機2によって圧縮された冷媒は、高温高圧の超臨界状態の冷媒として放熱器3に入り、ここで放熱して冷却する。その後、減圧手段4において減圧されて低温低圧の湿り蒸気となり、空気熱交換器5において空気と熱交換して蒸発気化し圧縮機2へ戻される。この時、送風機6が空気熱交換器5の熱交換効率を高めるために強制的に大気を空気熱交換器5に循環させる。   In the hot water storage operation in which hot water is stored in the hot water storage tank 8, the heat pump 1 causes the refrigerant compressed by the compressor 2 to enter the radiator 3 as a high-temperature and high-pressure refrigerant in a supercritical state, where it radiates and cools. Thereafter, the pressure is reduced in the pressure reducing means 4 to become low-temperature and low-pressure wet steam, and the air heat exchanger 5 exchanges heat with air to evaporate and return to the compressor 2. At this time, the blower 6 forcibly circulates the air to the air heat exchanger 5 in order to increase the heat exchange efficiency of the air heat exchanger 5.

またこの時、貯湯タンク8の下部にある低温層の湯水は沸上げポンプ7により放熱器3に送られ放熱器3の熱を吸熱して加熱される。   At this time, the low temperature hot water in the lower part of the hot water storage tank 8 is sent to the radiator 3 by the boiling pump 7 and is heated by absorbing the heat of the radiator 3.

即ち、貯湯タンク8の下部にある低温層の湯水を、ヒートポンプ1により加熱し、貯湯タンク8に戻す貯湯運転においては、沸上げポンプ7を駆動し、貯湯タンク8からの低温水を加熱し、加熱された湯は、沸き上げ管9を通って貯湯タンク8の上部に送られる。   That is, in the hot water storage operation in which the hot water in the low temperature layer under the hot water storage tank 8 is heated by the heat pump 1 and returned to the hot water storage tank 8, the boiling pump 7 is driven to heat the low temperature water from the hot water storage tank 8, The heated hot water is sent to the upper part of the hot water storage tank 8 through the boiling pipe 9.

そして、出湯温度センサー16によりヒートポンプ6で加熱された水の温度を検知し、沸上げポンプ7の出力を変えることで、ヒートポンプ6からの出湯温度を制御して目標の
温度となるように加熱を行う。
Then, the temperature of the water heated by the heat pump 6 is detected by the tapping temperature sensor 16 and the output of the boiling pump 7 is changed to control the tapping temperature from the heat pump 6 so that the heating becomes the target temperature. Do.

このようにして、貯湯タンク8に、高温の湯を貯めてゆき、貯湯温度検知手段17a、17b、17c、17d及び入水温度センサー15で検知した温度によって、貯湯タンク8内の蓄熱量を検知して、所定の蓄熱量となった時、ヒートポンプ1を停止する。   In this way, hot water is stored in the hot water storage tank 8, and the amount of heat stored in the hot water storage tank 8 is detected based on the temperatures detected by the hot water storage temperature detection means 17 a, 17 b, 17 c, 17 d and the incoming water temperature sensor 15. When the predetermined amount of heat storage is reached, the heat pump 1 is stopped.

さらに、貯湯運転中は、貯湯タンク8に密度の小さな湯が貯まってゆくことになり、即ち、水が膨張するので貯湯タンク8の内圧が上昇する。貯湯タンク8の内圧が上昇を続けると、最悪は、貯湯タンク8の耐圧を越えて、破壊するため、貯湯タンク8内が所定の圧力になると、圧力逃がし弁29を開き、貯湯タンク8内の湯を膨張水として膨張水排出管34より排出することで、貯等タンク8の内圧を所定の圧力以下に保っている。   Furthermore, during the hot water storage operation, hot water with a low density is stored in the hot water storage tank 8, that is, the water expands, so that the internal pressure of the hot water storage tank 8 increases. If the internal pressure of the hot water storage tank 8 continues to rise, the worst case is that it exceeds the pressure resistance of the hot water storage tank 8 and breaks. Therefore, when the internal pressure of the hot water storage tank 8 reaches a predetermined pressure, the pressure relief valve 29 is opened. By discharging hot water as expansion water from the expansion water discharge pipe 34, the internal pressure of the storage tank 8 is kept below a predetermined pressure.

排出された膨張水は、膨張水排出管34を通って、蓄熱ユニット10に導かれる。蓄熱ユニット10では、内の潜熱蓄熱材と膨張水が熱交換して、膨張水の熱エネルギーを潜熱蓄熱材が吸熱した後、膨張水は外部に排出される。   The discharged expanded water is guided to the heat storage unit 10 through the expanded water discharge pipe 34. In the heat storage unit 10, the latent heat storage material and the expanded water exchange heat and the latent heat storage material absorbs the thermal energy of the expanded water, and then the expanded water is discharged to the outside.

給湯端末24への給湯運転では、給湯端末24が給湯のために開けられると、貯湯タンク8内の湯水が給湯管21から出湯されるとともに、給水管19から貯湯タンク8に給水される。   In the hot water supply operation to the hot water supply terminal 24, when the hot water supply terminal 24 is opened for hot water supply, hot water in the hot water storage tank 8 is discharged from the hot water supply pipe 21 and supplied from the water supply pipe 19 to the hot water storage tank 8.

また、給水管19から給水を分岐した給水バイパス管22からの低温水と貯湯タンク8からの高湯水との混合比を給湯用混合弁23で変えて、混合することで、給湯温度を変化させて給湯端末24に給湯する。   Moreover, the hot water temperature is changed by changing the mixing ratio of the low temperature water from the water supply bypass pipe 22 branched from the water supply pipe 19 and the high hot water from the hot water storage tank 8 with the hot water mixing valve 23 and mixing them. Then, hot water is supplied to the hot water supply terminal 24.

この時、給水バイパス管22の途中には、蓄熱ユニット10が設置されており、潜熱蓄熱材と給水バイパス管22を通る低温水とが熱交換する。潜熱蓄熱材には貯湯運転時に熱エネルギーが蓄えられており、低温水が熱エネルギーを吸収することで、給水バイパス管22を通る低温水の温度が上昇する。温度の上昇した給湯バイパス管22を通る水が給湯用混合弁23に送られる。   At this time, the heat storage unit 10 is installed in the middle of the water supply bypass pipe 22, and the latent heat storage material and the low-temperature water passing through the water supply bypass pipe 22 exchange heat. Thermal energy is stored in the latent heat storage material during hot water storage operation, and the temperature of the low-temperature water passing through the feed water bypass pipe 22 rises as the low-temperature water absorbs the heat energy. Water passing through the hot water supply bypass pipe 22 whose temperature has risen is sent to the hot water supply mixing valve 23.

また、この時の混合比は、給湯温度センサー25で検知される給湯温度に応じて制御され、リモコン(図示せず)により、利用者が選択した給湯温度となるように保たれる。貯湯タンク8内の高温水と低温水を混ぜて温度を低下させることによって所定温度の給湯を行うので、低温水側の温度が上昇することによって、高温水側の流量を低減することができる。   The mixing ratio at this time is controlled according to the hot water temperature detected by the hot water temperature sensor 25, and is kept at the hot water temperature selected by the user by a remote controller (not shown). Since hot water is supplied at a predetermined temperature by mixing the high-temperature water and low-temperature water in the hot water storage tank 8 and lowering the temperature, the flow rate on the high-temperature water side can be reduced by increasing the temperature on the low-temperature water side.

風呂への注湯運転では、注湯運転を開始すると、注湯電磁弁27が開成され、給水バイパス管22により給水を分岐し、貯湯タンク8からの高温水と給水源からの低温水を風呂用混合弁26において混合比を変えて混合することで、注湯温度を変化させて浴槽13に注湯する。   In the pouring operation to the bath, when the pouring operation is started, the pouring solenoid valve 27 is opened, the water supply is branched by the water supply bypass pipe 22, and hot water from the hot water storage tank 8 and low temperature water from the water supply source are bathed. In the mixing valve 26, the mixing ratio is changed and mixed, whereby the pouring temperature is changed and the bath 13 is poured.

この時の混合比は、注湯温度センサー35で検知される注湯温度に応じて制御され、リモコン(図示せず)により利用者が選択した注湯温度となるように保たれる。   The mixing ratio at this time is controlled according to the pouring temperature detected by the pouring temperature sensor 35, and is kept at the pouring temperature selected by the user by a remote controller (not shown).

即ち、貯湯タンク8内の高温水と水を混ぜて温度を低下させることによって浴槽13に注湯を行うことになる。   That is, hot water is poured into the bathtub 13 by mixing the hot water and water in the hot water storage tank 8 to lower the temperature.

この時も給湯運転同様に、給水バイパス管22の途中には、蓄熱ユニット10が設置されており、潜熱蓄熱材と給水バイパス管22を通る低温水とが熱交換する。潜熱蓄熱材には、貯湯運転時に熱エネルギーが蓄えられており、低温水が熱エネルギーを吸収すること
で低温水の温度が上昇する。温度の上昇した給湯バイパス管22を通る水が給湯用混合弁23に送られる。
At this time, similarly to the hot water supply operation, the heat storage unit 10 is installed in the middle of the water supply bypass pipe 22, and the latent heat storage material and the low-temperature water passing through the water supply bypass pipe 22 exchange heat. Thermal energy is stored in the latent heat storage material during hot water storage operation, and the temperature of the low-temperature water rises as the low-temperature water absorbs the heat energy. Water passing through the hot water supply bypass pipe 22 whose temperature has risen is sent to the hot water supply mixing valve 23.

貯湯タンク8内の高温水と低温水を混ぜて温度を低下させることによって所定温度の給湯を行うので、低温水側の温度が上昇することによって、高温水側の流量を低減することができる。   Since hot water is supplied at a predetermined temperature by mixing the high-temperature water and low-temperature water in the hot water storage tank 8 and lowering the temperature, the flow rate on the high-temperature water side can be reduced by increasing the temperature on the low-temperature water side.

浴槽13内の湯を加熱する風呂加熱運転では、貯湯タンク8内の湯水の熱を浴槽13内の湯水に放熱することで行っている。   In the bath heating operation for heating the hot water in the bathtub 13, the heat of the hot water in the hot water storage tank 8 is radiated to the hot water in the bathtub 13.

利用側回路31においては、流路切換手段(図示せず)は、浴槽13内の湯水を利用側ポンプ12により風呂熱交換器14に循環させる。一方、熱源側回路30では貯湯タンク8の湯水を熱源側ポンプ11により風呂熱交換器14に循環して貯湯タンク8に環流している。   In the use side circuit 31, the flow path switching means (not shown) circulates hot water in the bathtub 13 to the bath heat exchanger 14 by the use side pump 12. On the other hand, in the heat source side circuit 30, the hot water in the hot water storage tank 8 is circulated to the bath heat exchanger 14 by the heat source side pump 11 and circulated to the hot water storage tank 8.

そして、風呂熱交換器14では、高温の熱源側回路30の湯と、温度の低い利用側回路31の湯が熱交換を行って、利用側回路31の湯を加熱する。この一連の動作は、風呂湯温センサー32によって所定の風呂湯温に達したと判断されるまで持続される。   In the bath heat exchanger 14, the hot water in the high-temperature heat source side circuit 30 and the hot water in the usage-side circuit 31 having a low temperature exchange heat to heat the hot water in the usage-side circuit 31. This series of operations is continued until the bath temperature sensor 32 determines that the predetermined bath temperature has been reached.

この様に、貯湯タンク8の膨張水を排出する膨張水排出管34と、貯湯タンク8からの高温の湯と低温水を混合して適温の湯とするための給湯用混合弁23と、給湯用混合弁23に、市水などの低温の水を導く給水バイパス管22を有し、膨張水排出管34を通る高温の湯と前記給水バイパス管22を通る低温の水とが熱交換できるように配置された蓄熱材を内包する蓄熱ユニット10を設置することにより、膨張水の熱エネルギーを蓄熱ユニット10内の蓄熱材と熱交換して蓄え、給湯など湯を利用する時には、給水バイパス管22を通る低温水と蓄熱ユニット10内の蓄熱材と熱交換して水温を上昇させることができ、貯湯タンク8内の高温水の使用湯量を低減できるので、エネルギー効率が向上する。   As described above, the expansion water discharge pipe 34 for discharging the expansion water of the hot water storage tank 8, the hot water mixing valve 23 for mixing the high temperature hot water and the low temperature water from the hot water storage tank 8 into an appropriate temperature hot water, the hot water supply The mixing valve 23 has a water supply bypass pipe 22 that guides low-temperature water such as city water so that hot water passing through the expansion water discharge pipe 34 and low-temperature water passing through the water supply bypass pipe 22 can exchange heat. By installing the heat storage unit 10 that encloses the heat storage material disposed in the heat storage material, the thermal energy of the expansion water is stored by exchanging heat with the heat storage material in the heat storage unit 10, and when hot water such as hot water is used, the water supply bypass pipe 22 is used. It is possible to increase the water temperature by exchanging heat between the low-temperature water passing through and the heat storage material in the heat storage unit 10, and the amount of hot water used in the hot water storage tank 8 can be reduced, so that energy efficiency is improved.

以上のように、本発明にかかるヒートポンプ給湯機は、膨張水の熱エネルギーを蓄熱ユニット内の蓄熱材と熱交換して蓄え、給湯など湯を利用する時には給水バイパス管を通る低温水と蓄熱ユニット内の蓄熱材と熱交換して水温を上昇させることができ、貯湯タンク内の高温水の使用湯量を低減できるので、エネルギー効率の高いヒートポンプ給湯機として有用である。   As described above, the heat pump water heater according to the present invention stores the thermal energy of the expansion water by exchanging heat with the heat storage material in the heat storage unit, and when using hot water such as hot water, the low-temperature water and the heat storage unit that pass through the water supply bypass pipe Since the water temperature can be raised by exchanging heat with the internal heat storage material and the amount of hot water used in the hot water storage tank can be reduced, it is useful as a heat pump water heater with high energy efficiency.

本発明の実施の形態1におけるヒートポンプ給湯機の回路図Circuit diagram of heat pump water heater in Embodiment 1 of the present invention 従来のヒートポンプ給湯機の回路図Circuit diagram of conventional heat pump water heater

符号の説明Explanation of symbols

1 ヒートポンプ
2 圧縮機
3 放熱器
4 減圧手段
5 空気熱交換器
7 沸上げポンプ
8 貯湯タンク
10 蓄熱ユニット
18 貯湯回路
22 給水バイパス管
23 給湯用混合弁
34 膨張水排出管
DESCRIPTION OF SYMBOLS 1 Heat pump 2 Compressor 3 Radiator 4 Pressure reducing means 5 Air heat exchanger 7 Boiling pump 8 Hot water storage tank 10 Heat storage unit 18 Hot water storage circuit 22 Water supply bypass pipe 23 Hot water mixing valve 34 Expansion water discharge pipe

Claims (3)

圧縮機、放熱器、減圧手段、空気熱交換器を環状に接続して構成されたヒートポンプと、沸き上げポンプにより貯湯タンクの底部より水を前記放熱器を通して循環させて高温の湯水を前記貯湯タンクに溜める貯湯回路と、前記貯湯タンクからの膨張水を排出する膨張水排出管と、前記貯湯タンクからの高温水と給水源からの低温水を混合して適温の湯とするための給湯用混合弁と、前記給湯用混合弁に市水などの低温水を導く給水バイパス管と、前記膨張水排出管を通る膨張水と前記給水バイパス管を通る低温水とが熱交換できるように配置された蓄熱材を内包する蓄熱ユニットより構成されていることを特徴とするヒートポンプ給湯機。 A heat pump configured by annularly connecting a compressor, a radiator, a pressure reducing unit, and an air heat exchanger, and a boiling pump circulates water from the bottom of the hot water storage tank through the heat radiator to supply hot hot water to the hot water storage tank. A hot water storage circuit for storing water, an expansion water discharge pipe for discharging expansion water from the hot water storage tank, and hot water mixing for mixing hot water from the hot water storage tank and low temperature water from a water supply source to obtain appropriate hot water A valve, a feed water bypass pipe for introducing low temperature water such as city water to the hot water supply mixing valve, and an expansion water passing through the expansion water discharge pipe and a low temperature water passing through the feed water bypass pipe are arranged so as to be able to exchange heat. A heat pump water heater comprising a heat storage unit including a heat storage material. 蓄熱材を潜熱蓄熱材としたことを特徴とする請求項1に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1, wherein the heat storage material is a latent heat storage material. ヒートポンプ回路に臨界圧力以上に昇圧された冷媒を用いたことを特徴とする請求項1又は2に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 1 or 2, wherein a refrigerant whose pressure is raised to a critical pressure or more is used in the heat pump circuit.
JP2008062182A 2008-03-12 2008-03-12 Heat pump water heater Pending JP2009216335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062182A JP2009216335A (en) 2008-03-12 2008-03-12 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062182A JP2009216335A (en) 2008-03-12 2008-03-12 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2009216335A true JP2009216335A (en) 2009-09-24

Family

ID=41188380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062182A Pending JP2009216335A (en) 2008-03-12 2008-03-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2009216335A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591678A (en) * 2013-12-03 2014-02-19 陈科 Water storage type electric heater with inner container convenient to clean
KR101497457B1 (en) * 2013-12-23 2015-03-04 주식회사 경동나비엔 Boiler module of individual household for regional and central heating not to equip burning part
CN108286804A (en) * 2018-02-05 2018-07-17 天津科创复兴科技咨询有限公司 A kind of water bath heating device of energy regenerating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591678A (en) * 2013-12-03 2014-02-19 陈科 Water storage type electric heater with inner container convenient to clean
KR101497457B1 (en) * 2013-12-23 2015-03-04 주식회사 경동나비엔 Boiler module of individual household for regional and central heating not to equip burning part
CN108286804A (en) * 2018-02-05 2018-07-17 天津科创复兴科技咨询有限公司 A kind of water bath heating device of energy regenerating

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
JP2005134070A (en) Heat pump water heater
JP3931912B2 (en) Water heater
JP2009250462A (en) Heat pump water heater
JP2006275445A (en) Hot-water supply machine
JP2007113897A (en) Heat pump type water heater
JP2009216335A (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP2006329566A (en) Water heater
JP2010071603A (en) Heat pump water heater
JP5378310B2 (en) Heating system
JP2017198383A (en) Heat pump type water heater
JP2009085565A (en) Heat pump water heater
JP5115283B2 (en) Heat pump type water heater
JP2008261557A (en) Heat pump water heater
JP2007113896A (en) Heat pump type water heater
JP2006250367A (en) Heat pump water heater
JP2009276033A (en) Hot water supply apparatus
JP2008039288A (en) Heat pump type water heater
JP2006132888A (en) Heat pump hot water supply apparatus
JP2007192540A (en) Heat pump system
JP2007333229A (en) Heat pump type hot water supplying machine
JP2008196768A (en) Hot water storage type water heater
JP2007192439A (en) Heat pump water heater