JP2006275445A - Hot-water supply machine - Google Patents

Hot-water supply machine Download PDF

Info

Publication number
JP2006275445A
JP2006275445A JP2005097395A JP2005097395A JP2006275445A JP 2006275445 A JP2006275445 A JP 2006275445A JP 2005097395 A JP2005097395 A JP 2005097395A JP 2005097395 A JP2005097395 A JP 2005097395A JP 2006275445 A JP2006275445 A JP 2006275445A
Authority
JP
Japan
Prior art keywords
hot water
storage tank
pump
water storage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097395A
Other languages
Japanese (ja)
Inventor
Kazuhiko Marumoto
一彦 丸本
Takeji Watanabe
竹司 渡辺
Masahiro Ohama
昌宏 尾浜
Seiichi Yasuki
誠一 安木
Takayuki Takatani
隆幸 高谷
Tatsumura Mo
立群 毛
Tetsuei Kuramoto
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005097395A priority Critical patent/JP2006275445A/en
Publication of JP2006275445A publication Critical patent/JP2006275445A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0092Devices for preventing or removing corrosion, slime or scale
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/01Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using means for separating solid materials from heat-exchange fluids, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0086Partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-water supply machine capable of preventing generated scale from being absorbed into a pump and improving service life of the pump to achieve high reliability. <P>SOLUTION: This hot-water supply machine is constituted by absorbing water from a suction pipe of the pump 7 installed in the vicinity of a bottom part of a hot-water storage tank 8 by the pump 7, circulating water in the hot-water storage tank 8 into a heating source to heat it, and storing hot water having high temperature into the hot-water storage tank 8. A porous plate 27 is provided in an upper part than the suction pipe 10 of the pump 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、貯湯タンクを有した給湯機に関する。   The present invention relates to a water heater having a hot water storage tank.

図5は従来の技術による給湯機である。図を見ながら説明する。ポンプ7は貯湯タンク8内の水を吸込管10より吸い込んで、第1加熱手段30により加熱し、沸き戻し管13により貯湯タンク8頭頂部に湯を戻す。   FIG. 5 shows a conventional water heater. This will be described with reference to the figure. The pump 7 sucks the water in the hot water storage tank 8 from the suction pipe 10, heats it by the first heating means 30, and returns the hot water to the top of the hot water storage tank 8 by the boil-back pipe 13.

減圧弁20は市水を適度な圧力にして給水管19を通して貯湯タンク8に供給する。   The pressure reducing valve 20 supplies the city water to an appropriate pressure through the water supply pipe 19 to the hot water storage tank 8.

制御手段26は第1加熱手段30で加熱された湯水の温度を出湯温度センサー16で検知し検知した温度に従って、ポンプ7の流量を調整する。   The control means 26 detects the temperature of the hot water heated by the first heating means 30 by the tapping temperature sensor 16 and adjusts the flow rate of the pump 7 according to the detected temperature.

従来の発明では、沸き上げを現在時刻と残湯量の状況に応じて第1の加熱手段30または第2の加熱手段31を運転し、即ち、第1の加熱手段30は昼間電力で加熱し、第2の加熱手段31は夜間電力で加熱する様に、加熱手段に応じて電力制度を切り換えるようにした。   In the conventional invention, the first heating unit 30 or the second heating unit 31 is operated according to the current time and the amount of remaining hot water, that is, the first heating unit 30 is heated with daytime power. The second heating means 31 is switched according to the heating means so that it is heated by night electricity.

これにより、第1加熱手段30で行う循環による沸き上げ頻度を大幅に少なくすることができ、配管内にスケールがたまる度合いが低くなって配管の寿命を向上させることができる(特許文献1参照)。
特開2000−130852号公報
Thereby, the boiling frequency by the circulation performed in the 1st heating means 30 can be reduced significantly, the degree that a scale accumulates in piping, and the lifetime of piping can be improved (refer patent document 1). .
JP 2000-130852 A

しかしながら、上記の構成では、第1加熱手段30あるいは第2加熱手段31で水を加熱したとき発生するスケールは、第1の加熱手段30を循環することになる。スケールがポンプ7に吸い込まれた時、ポンプ7内部で詰まりを起こし、ポンプ7による循環ができなくなると言う問題点がある。   However, in the above configuration, the scale generated when water is heated by the first heating means 30 or the second heating means 31 circulates through the first heating means 30. When the scale is sucked into the pump 7, there is a problem that clogging occurs inside the pump 7 and circulation by the pump 7 becomes impossible.

本発明の目的は、発生したスケールのポンプ7への吸い込みを低減し、ポンプ7の寿命を向上させることによって、信頼性の高い給湯機を提供することにある。   An object of the present invention is to provide a highly reliable water heater by reducing the suction of the generated scale into the pump 7 and improving the life of the pump 7.

この目的を達成するために本発明の給湯機は、 ポンプにより貯湯タンクの底部近傍に設置した前記ポンプの吸込管より水を吸入し、前記貯湯タンク内の水を加熱源に循環させることによって加熱し、高温の湯を前記貯湯タンク内に貯湯するようにした給湯機において、前記貯湯タンク内に多孔板を設置した。   In order to achieve this object, the water heater of the present invention is heated by sucking water from a pump suction pipe installed near the bottom of a hot water storage tank by a pump and circulating the water in the hot water storage tank to a heating source. And in the hot water supply apparatus which stored hot water in the said hot water storage tank, the perforated plate was installed in the said hot water storage tank.

これによって、加熱源で発生したスケールは多孔板上に堆積するため、吸込管まで到達しないので、スケールはポンプに吸い込まれるこなく、スケールによるポンプの詰まりを回避できる。   As a result, the scale generated by the heating source accumulates on the perforated plate and does not reach the suction pipe. Therefore, the scale is not sucked into the pump, and the clogging of the pump by the scale can be avoided.

本発明の給湯機は、発生したスケールのポンプへの吸い込みをなくし、ポンプの寿命を向上させることによって、信頼性の高い給湯機を提供できる。   The water heater of the present invention can provide a highly reliable water heater by eliminating the suction of the generated scale into the pump and improving the life of the pump.

第1の発明は、ポンプにより貯湯タンクの底部近傍に設置した前記ポンプの吸込管より水を吸入し、前記貯湯タンク内の水を加熱源に循環させることによって加熱し、高温の湯を前記貯湯タンク内に貯湯するようにした給湯機において、前記貯湯タンク内に多孔板を設置した。   According to a first aspect of the present invention, water is sucked from a suction pipe of the pump installed near the bottom of the hot water storage tank by a pump, and the hot water is heated by circulating the water in the hot water storage tank to a heating source. In a water heater that stores hot water in a tank, a perforated plate was installed in the hot water storage tank.

これによって、加熱源で発生したスケールは多孔板上に堆積するため、吸込管まで到達しないので、スケールはポンプに吸い込まれるこなく、スケールによるポンプの詰まりを回避できるのでポンプ7の寿命を向上させることによって、信頼性の高い給湯機を提供できる。   As a result, the scale generated by the heating source accumulates on the perforated plate and does not reach the suction pipe. Therefore, the scale is not sucked into the pump, and the pump can be prevented from being clogged by the scale, thereby improving the life of the pump 7. Thus, a highly reliable hot water heater can be provided.

第2の発明は、特に第1の発明で、多孔板をポンプの吸込管より上部に位置し、貯湯タンク内に水平に設置した。   The second invention is the first invention, in particular, in which the perforated plate is positioned above the suction pipe of the pump and installed horizontally in the hot water storage tank.

これにより、加熱源で発生したスケールは多孔板上に堆積するため、吸込管まで到達しないので、スケールはポンプに吸い込まれるこなく、スケールによるポンプの詰まりを回避できるのでポンプ7の寿命を向上させることによって、信頼性の高い給湯機を提供できる。   As a result, the scale generated by the heating source accumulates on the perforated plate, and therefore does not reach the suction pipe. Therefore, the scale is not sucked into the pump, and the pump can be prevented from being clogged by the scale, thereby improving the life of the pump 7. Thus, a highly reliable hot water heater can be provided.

第3の発明は、特に第1、2の発明で、多孔板に開けた穴は吸込管の径より小さくした。   The third invention is the first and second inventions in particular, and the hole formed in the perforated plate is made smaller than the diameter of the suction pipe.

これにより、加熱源で発生したスケールは多孔板上に堆積し、吸込管まで到達しないので、スケールはポンプに吸い込まれるこなく、スケールによるポンプの詰まりを回避できる。さらにスケールが多孔板に開けた穴を通り抜けても、吸込管の径より細かなスケールとなるためポンプ内で詰まることはない、
よって、ポンプ7の寿命を向上させることによって、信頼性の高い給湯機を提供できる。
Thereby, the scale generated by the heating source accumulates on the perforated plate and does not reach the suction pipe. Therefore, the scale is not sucked into the pump, and the clogging of the pump by the scale can be avoided. In addition, even if the scale passes through a hole in the perforated plate, the scale becomes finer than the diameter of the suction pipe, so it will not clog in the pump.
Therefore, a reliable hot water heater can be provided by improving the life of the pump 7.

第4の発明は、特に第1〜3の発明で、吸込管を貯湯タンク側面より略水平に挿入した。   The fourth invention is the first to third inventions in particular, and the suction pipe is inserted substantially horizontally from the hot water tank side surface.

これによって、スケールが多孔板に開けた穴を通り抜けて、貯湯タンク底部まで沈降していたスケールのポンプへの吸い込みを低減できるので、ポンプの寿命を向上させることによって、信頼性の高い給湯機を提供できる。   This reduces the suction of the scale through the hole in the perforated plate and sinks to the bottom of the hot water storage tank into the pump, thus improving the life of the pump and improving the reliability of the hot water heater. Can be provided.

第5の発明は、特に第4の発明において、吸込管の貯湯タンク底面側に吸込穴を開けた。   In the fifth aspect of the invention, in particular, in the fourth aspect of the invention, a suction hole is formed on the bottom surface side of the hot water storage tank of the suction pipe.

これによって、スケールが多孔板に開けた穴を通り抜けて、貯湯タンク底部まで沈降していたスケールのポンプへの吸い込みを低減できるので、ポンプの寿命を向上させることによって、信頼性の高い給湯機を提供できる。   This reduces the suction of the scale through the hole in the perforated plate and sinks to the bottom of the hot water storage tank into the pump, thus improving the life of the pump and improving the reliability of the hot water heater. Can be provided.

第6の発明は、特に第4、5の発明において、吸込穴を複数開けた。   In the sixth invention, in particular, in the fourth and fifth inventions, a plurality of suction holes are formed.

これによって、ポンプの圧力損失を低減できると共に、スケールが多孔板に開けた穴を通り抜けて、貯湯タンク底部まで沈降していたスケールのポンプへの吸い込みを低減できるので、ポンプの寿命を向上させることによって、信頼性の高い給湯機を提供できる。   As a result, the pressure loss of the pump can be reduced, and the suction of the scale that has settled down to the bottom of the hot water storage tank through the hole in the perforated plate can be reduced, thus improving the pump life. Can provide a highly reliable water heater.

第7の発明は、特に第4〜6の発明において、吸込穴を吸込管の管径より小さくした。   In the seventh invention, in particular, in the fourth to sixth inventions, the suction hole is made smaller than the diameter of the suction pipe.

これによって、スケールの吸い込みをより確実に防止できるので、ポンプの寿命を向上させることによって、信頼性の高い給湯機を提供できる。   As a result, the suction of the scale can be prevented more reliably, and a highly reliable water heater can be provided by improving the life of the pump.

第8の発明は、特に第1〜7の発明において加熱源として圧縮機を含むヒートポンプとしたので、大気熱を吸収して湯の沸き上げができ、より効率が向上する。   Since the eighth invention is a heat pump including a compressor as a heating source in the first to seventh inventions in particular, it can absorb atmospheric heat and boil hot water, thereby improving efficiency.

第9の発明は、特に第8の発明において、ヒートポンプに臨界圧力以上に昇圧された冷媒を用いた。   In the ninth aspect of the invention, in particular, in the eighth aspect of the invention, a refrigerant whose pressure has been increased to a critical pressure or higher is used for the heat pump.

これにより、前記臨界圧力以上に昇圧された冷媒により水を加熱することにより、冷媒が、圧縮機で臨界圧力以上に加圧されているので、水を加熱することによって熱を奪われて温度低下しても凝縮することがない。したがって、水を冷媒で加熱する熱交換器全域で冷媒側の流路と水側の流路とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。   As a result, the water is heated by the refrigerant whose pressure has been increased to the critical pressure or higher, so that the refrigerant is pressurized to the critical pressure or higher by the compressor. Even if it does not condense. Therefore, it becomes easy to form a temperature difference between the flow path on the refrigerant side and the flow path on the water side over the entire heat exchanger that heats the water with the refrigerant, so that hot water can be obtained and the heat exchange efficiency can be increased.

(実施の形態1)
以下、実施の形態による給湯機について図面を用いて説明する。図1は本発明の実施の形態おけるヒートポンプ給湯機の回路図である。
(Embodiment 1)
Hereinafter, a water heater according to an embodiment will be described with reference to the drawings. FIG. 1 is a circuit diagram of a heat pump water heater in an embodiment of the present invention.

図1は本発明の実施の形態における貯湯式ヒートポンプ給湯装置の構成図である。   FIG. 1 is a configuration diagram of a hot water storage type heat pump hot water supply apparatus according to an embodiment of the present invention.

装置の概要は、低温の湯水と高温の湯水とが層を成した状態で貯えられている貯湯タンク8と、その湯水を加熱する加熱源1であるヒートポンプ6を備え、ヒートポンプ6によって貯湯タンク8の水を加熱して沸き上げて貯湯しておき、給湯に利用する。   The outline of the apparatus includes a hot water storage tank 8 in which low-temperature hot water and high-temperature hot water are stored in a layered state, and a heat pump 6 that is a heating source 1 for heating the hot water. The water is heated and boiled and stored in hot water for use in hot water supply.

先ず、加熱源1であるヒートポンプ6の構成について説明する。   First, the configuration of the heat pump 6 that is the heating source 1 will be described.

ヒートポンプ6は、冷媒を圧縮する圧縮機2、冷媒を冷却する放熱器3、冷媒を減圧する減圧手段4、冷媒を蒸発気化する吸熱器5で構成されている。   The heat pump 6 includes a compressor 2 that compresses the refrigerant, a radiator 3 that cools the refrigerant, a decompression unit 4 that decompresses the refrigerant, and a heat absorber 5 that evaporates and evaporates the refrigerant.

このヒートポンプ6は、圧縮機2の吐出側より放熱器3を介して減圧手段4に接続し、さらに圧縮機2の吸入側に接続している。   The heat pump 6 is connected from the discharge side of the compressor 2 to the decompression means 4 via the radiator 3 and further connected to the suction side of the compressor 2.

このヒートポンプ6においては、冷媒として炭酸ガスが用いられており、圧縮機2によって圧縮された冷媒は、高温高圧の超臨界状態の冷媒として放熱器3に入り、ここで放熱して冷却する。その後、減圧手段4において減圧されて低温低圧の湿り蒸気となり、吸熱器5において空気と熱交換して蒸発気化し圧縮機2へ戻される。   In this heat pump 6, carbon dioxide is used as a refrigerant, and the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure supercritical refrigerant and radiates and cools it here. Thereafter, the pressure is reduced in the pressure reducing means 4 to become low-temperature and low-pressure wet steam, and heat is exchanged with air in the heat absorber 5 to be evaporated and returned to the compressor 2.

一方、沸き上げに関する構成は、貯湯タンク8の下部から沸上往き管12でヒートポンプ6と接続し、ヒートポンプ6から貯湯タンク8上部へ沸上戻し管13で接続している。そして、この沸上戻し管13の途中から貯湯タンク8の下部へとバイパス管14によりバイパスしている。なお、沸上往き管12が接続されている貯湯タンク8の下部とは、貯湯タンク8の低温層の湯水が取得できる位置であればよい。   On the other hand, the structure related to boiling is connected from the lower part of the hot water storage tank 8 to the heat pump 6 through the boiling forward pipe 12 and from the heat pump 6 to the upper part of the hot water storage tank 8 through the boiling up return pipe 13. Then, a bypass pipe 14 bypasses from the middle of the boiling return pipe 13 to the lower part of the hot water storage tank 8. In addition, the lower part of the hot water storage tank 8 to which the boiling forward pipe 12 is connected may be a position where the hot water of the low temperature layer of the hot water storage tank 8 can be acquired.

バイパス管14の分岐部には三方弁9を設けて、ヒートポンプ6から貯湯タンク8への戻りを沸上戻し管13によって貯湯タンク8上部に戻すか、バイパス管14によって貯湯タンク8の下部に戻すかを任意に選択できる構成となっている。なお、沸上戻し管13が接続されている貯湯タンク上部とは、湯水が貯湯タンク8の高温層側へ戻る程度の位置であればよく、また、貯湯タンク8の下部とは、湯水が貯湯タンクの低温層側へ戻る程度の位置であればよい。   A three-way valve 9 is provided at the branch portion of the bypass pipe 14, and the return from the heat pump 6 to the hot water storage tank 8 is returned to the upper part of the hot water storage tank 8 by the boiling return pipe 13 or is returned to the lower part of the hot water storage tank 8 by the bypass pipe 14. It is the structure which can be selected arbitrarily. The upper part of the hot water storage tank to which the boiling return pipe 13 is connected may be a position where hot water returns to the high temperature layer side of the hot water storage tank 8, and the lower part of the hot water storage tank 8 means that hot water is stored in the hot water tank. Any position that returns to the low temperature layer side of the tank may be used.

貯湯タンク8からヒートポンプ6に湯水を送り貯湯タンク8に戻すために、沸上往き管12の途中に出力を任意に変化させることができるポンプ7を設けている。ポンプ7は貯湯タンク8の底部近傍に略水平に挿入される。   In order to send hot water from the hot water storage tank 8 to the heat pump 6 and return it to the hot water storage tank 8, a pump 7 capable of arbitrarily changing the output is provided in the middle of the boiling forward pipe 12. The pump 7 is inserted substantially horizontally near the bottom of the hot water storage tank 8.

また、図2に吸込管10を貯湯タンク8の底部より見た図を示す様に、複数の吸込穴11を開けた吸込管口10より貯湯タンク8底部近傍の低温水を吸い込む。尚、吸込穴11は吸込管10の管径より小さくしている。   2 shows a view of the suction pipe 10 viewed from the bottom of the hot water storage tank 8, low temperature water near the bottom of the hot water storage tank 8 is sucked from the suction pipe port 10 having a plurality of suction holes 11 formed therein. The suction hole 11 is smaller than the diameter of the suction pipe 10.

そして、貯湯タンク8内には多孔板27が略水平に、ポンプ7の吸込管10より上部設置されており、さらに多孔板27に開けた穴28は吸込管10の径より小さい。   In the hot water storage tank 8, a porous plate 27 is installed substantially horizontally above the suction pipe 10 of the pump 7, and a hole 28 opened in the porous plate 27 is smaller than the diameter of the suction pipe 10.

図3に多孔板27を示す。この例では穴28は丸にしているが形状について制限はない。   A perforated plate 27 is shown in FIG. In this example, the hole 28 is round, but the shape is not limited.

また、ヒートポンプ6において加熱する前の低湯水の温度を検知する入水温度センサー15を沸上往き管12のヒートポンプ6入口側近傍に、加熱した高湯水の温度を検知する出湯温度センサー16を沸上戻し管13におけるヒートポンプ6出口近傍に設けている。また貯湯タンク8の温度分布を把握するため、外側壁面に垂直方向等間隔に5点の貯湯温度センサー17を備えている。   Further, an incoming water temperature sensor 15 for detecting the temperature of the low hot water before being heated in the heat pump 6 is raised in the vicinity of the inlet side of the heat pump 6 of the boiling pipe 12 and a hot water temperature sensor 16 for detecting the temperature of the heated hot water is raised. The return pipe 13 is provided near the outlet of the heat pump 6. Further, in order to grasp the temperature distribution of the hot water storage tank 8, five hot water storage temperature sensors 17 are provided on the outer wall surface at equal intervals in the vertical direction.

出湯温度センサー16と貯湯温度センサー17は制御手段26に接続されており、制御手段26は、出湯温度センサー16と貯湯温度センサー17の検知温度を把握することができる。また、制御手段26は、出湯温度センサー16と貯湯温度センサー17の検知結果に基づいて、三方弁9の切り換えの制御を行う。   The hot water temperature sensor 16 and the hot water storage temperature sensor 17 are connected to the control means 26, and the control means 26 can grasp the detected temperatures of the hot water temperature sensor 16 and the hot water temperature sensor 17. The control means 26 controls the switching of the three-way valve 9 based on the detection results of the hot water temperature sensor 16 and the hot water temperature sensor 17.

給湯に関する構成としては、貯湯タンクの底部に給水源から給水を行う給水管19が接続され、給水温度を検知するため給水温度センサー18を備えている。   As a configuration relating to hot water supply, a water supply pipe 19 for supplying water from a water supply source is connected to the bottom of the hot water storage tank, and a water supply temperature sensor 18 is provided to detect the water supply temperature.

貯湯タンク8上部には貯湯された高湯水を出湯し給湯に利用するための給湯管21が接続され、その途中には給水管21からの給水バイパス管22が接続されている。また、給湯管21からの高湯水と給水バイパス管22からの低湯水を任意の比率で混合可能な混合弁23が設けられている。   A hot water supply pipe 21 is connected to the upper part of the hot water storage tank 8 to discharge the hot water stored in the hot water and use it for hot water supply. A water supply bypass pipe 22 from the water supply pipe 21 is connected to the hot water supply pipe 21. Moreover, the mixing valve 23 which can mix the high hot water from the hot water supply pipe 21 and the low hot water from the water supply bypass pipe 22 in arbitrary ratios is provided.

混合弁23の下流側には、混合された給湯温度を検知するために給湯温度センサー25が設けられ、その先に給湯端末24が接続されている。   On the downstream side of the mixing valve 23, a hot water supply temperature sensor 25 is provided to detect the mixed hot water supply temperature, and a hot water supply terminal 24 is connected to the end thereof.

また、貯湯タンク8の高湯水を用いた給湯に関して、給湯端末24が給湯のために開けられると、貯湯タンク8内の湯水が給湯管21から出湯されるとともに、給水管19から貯湯タンク8に給水される。給湯温度に関して、給水バイパス管22により給水を分岐し、貯湯タンク8からの高湯水と給水からの低湯水を混合弁23において混合比を変えて混合することで、給湯温度を変化させて給湯端末24に給湯する。この時の混合比は給湯温度センサー25で検知される給湯温度に応じて制御され、所定の給湯温度に保たれる。貯湯タンク8内の高湯水と水を混ぜて温度を低下させることによって給湯を行うので、これによって貯湯タンク内の高湯水温度を給湯温度である40℃から50℃程度よりも大幅に高く、65℃から90℃程度として、貯湯槽21の蓄熱密度を大きくすることが可能になる。   Further, regarding hot water supply using hot water in the hot water storage tank 8, when the hot water supply terminal 24 is opened for hot water supply, hot water in the hot water storage tank 8 is discharged from the hot water supply pipe 21 and from the water supply pipe 19 to the hot water storage tank 8. Water is supplied. With respect to the hot water supply temperature, the water supply is branched by the water supply bypass pipe 22, and high hot water from the hot water storage tank 8 and low hot water from the water supply are mixed at the mixing valve 23 by changing the mixing ratio, thereby changing the hot water supply temperature. Hot water is supplied to 24. The mixing ratio at this time is controlled in accordance with the hot water temperature detected by the hot water temperature sensor 25 and is kept at a predetermined hot water temperature. Since hot water is supplied by mixing the hot water and water in the hot water storage tank 8 and lowering the temperature, the hot water temperature in the hot water storage tank is significantly higher than the hot water temperature of 40 ° C. to about 50 ° C. The heat storage density of the hot water tank 21 can be increased by setting the temperature to about 90 ° C.

以上のように構成された貯湯式ヒートポンプ給湯装置において、以下にその動作、作用について説明する。   In the hot water storage type heat pump hot water supply apparatus configured as described above, its operation and action will be described below.

以下、図1に基づいて説明する。   Hereinafter, a description will be given based on FIG.

ヒートポンプ6では、圧縮機2によって圧縮された冷媒は、高温高圧の超臨界状態の冷媒として放熱器3に入り、ここで放熱して冷却する。その後、減圧手段4において減圧されて低温低圧の湿り蒸気となり、吸熱器5において空気と熱交換して蒸発気化し圧縮機2へ戻される。この時、貯湯タンク8の下部にある低温層の湯水は放熱器3の熱を吸熱して加熱される。   In the heat pump 6, the refrigerant compressed by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure refrigerant in a supercritical state, where it dissipates heat and cools it. Thereafter, the pressure is reduced in the pressure reducing means 4 to become low-temperature and low-pressure wet steam, and heat is exchanged with air in the heat absorber 5 to be evaporated and returned to the compressor 2. At this time, the hot water in the low temperature layer under the hot water storage tank 8 is heated by absorbing the heat of the radiator 3.

一方、貯湯タンクの下部にある低温層の湯水をヒートポンプ6により加熱し、貯湯タンク8に戻す貯湯運転においては、ヒートポンプ6の停止時に、三方弁9をバイパス管14側に切り換えておく。そして、ヒートポンプ6を立ち上げ、ポンプ7を駆動し、貯湯タンク8からの低湯水を加熱する。   On the other hand, in the hot water storage operation in which the low temperature hot water in the lower part of the hot water storage tank is heated by the heat pump 6 and returned to the hot water storage tank 8, the three-way valve 9 is switched to the bypass pipe 14 side when the heat pump 6 is stopped. And the heat pump 6 is started, the pump 7 is driven, and the low hot water from the hot water storage tank 8 is heated.

出湯温度センサー16によりヒートポンプ6で加熱された水の温度を検知し、ポンプ7の出力を変えることで、ヒートポンプ6からの出湯温度を制御して目標の温度となるように加熱を行う。   The temperature of the water heated by the heat pump 6 is detected by the tapping temperature sensor 16 and the output of the pump 7 is changed to control the tapping temperature from the heat pump 6 so as to achieve the target temperature.

出湯温度センサー16により検知される出湯温度と、貯湯タンク8の外側面の給水温度センサー18及び放熱器3に流入部に設置された入水温度センサー15により把握される検知温度は、制御手段26に出力される。そして、制御手段26は、出湯温度と貯湯タンク下部の湯水の温度に基づいて三方弁16の沸上戻し管24側への切り換えタイミングを決定し制御する。   The detected hot water temperature detected by the hot water temperature sensor 16 and the detected temperature detected by the incoming water temperature sensor 15 installed at the inlet of the radiator 3 and the feed water temperature sensor 18 on the outer surface of the hot water storage tank 8 are sent to the control means 26. Is output. And the control means 26 determines and controls the switching timing to the boiling return pipe | tube 24 side of the three-way valve 16 based on the hot water temperature and the temperature of the hot water of the hot water storage tank lower part.

なお、給水温度センサー18は、図1のように貯湯槽1下部に取り付けられているが、貯湯槽1内部に形成される高温と低温の層のうち、低温層の湯水の温度を測れる程度の位置であればよい。   Although the water supply temperature sensor 18 is attached to the lower part of the hot water tank 1 as shown in FIG. 1, the temperature of the hot water in the low temperature layer of the high temperature and low temperature layers formed in the hot water tank 1 can be measured. Any position is acceptable.

出湯温度センサー16で検知した温度が所定温度よりも高く、しかも給水温度センサー18により検知された温度が所定の温度より低い場合には、制御手段26は三方弁9を沸上戻し管13側に切り換え、その検知温度が所定の温度より高い場合には三方弁9をバイパス管14側に切り換える。   When the temperature detected by the tapping temperature sensor 16 is higher than the predetermined temperature and the temperature detected by the feed water temperature sensor 18 is lower than the predetermined temperature, the control means 26 moves the three-way valve 9 to the boiling return pipe 13 side. When the detected temperature is higher than the predetermined temperature, the three-way valve 9 is switched to the bypass pipe 14 side.

また、出湯温度センサー16で検知した温度が所定温度よりも低い場合は、給湯温度センサー18により貯湯タンク8下部の低湯層の湯水温度を検知し、その検知温度が予め設定された所定温度よりも低ければ、制御手段26は三方弁9をバイパス管14側とし、その検知温度が予め設定された所定温度よりも高ければ、三方弁9を沸上戻し管13側に切り換える。   When the temperature detected by the hot water temperature sensor 16 is lower than the predetermined temperature, the hot water temperature sensor 18 detects the hot water temperature of the low hot water layer below the hot water storage tank 8, and the detected temperature is higher than a predetermined temperature. If it is lower, the control means 26 sets the three-way valve 9 to the bypass pipe 14 side, and switches the three-way valve 9 to the boiling return pipe 13 side if the detected temperature is higher than a predetermined temperature set in advance.

制御手段26の処理手順は、図4に示すフロー図で表される。なお、図4中において出湯温度センサー16の検知温度をX、給水温度センサー18の検知温度をYとする。   The processing procedure of the control means 26 is represented by the flowchart shown in FIG. In FIG. 4, the detected temperature of the hot water temperature sensor 16 is X, and the detected temperature of the feed water temperature sensor 18 is Y.

まず、出湯温度センサー16と給水温度センサー18の出力を受ける(ステップS201)。   First, the outputs of the hot water temperature sensor 16 and the feed water temperature sensor 18 are received (step S201).

次に、出湯温度センサー16の検知温度が予め設定された第1の所定温度と比較する(ステップS202)。   Next, the temperature detected by the tapping temperature sensor 16 is compared with a preset first predetermined temperature (step S202).

その結果、第1の所定温度の方が出湯温度センサー16の検知温度よりも高ければ、給湯温度センサー18の検知温度と予め設定された第2の所定温度とを比較する(ステップS203)。   As a result, if the first predetermined temperature is higher than the detected temperature of the hot water temperature sensor 16, the detected temperature of the hot water supply temperature sensor 18 is compared with a preset second predetermined temperature (step S203).

次に、給湯温度センサー18の検知温度の方が第2の所定温度よりも高ければ、三方弁9を沸上戻し管13側に切り換える(ステップS204)。   Next, if the temperature detected by the hot water supply temperature sensor 18 is higher than the second predetermined temperature, the three-way valve 9 is switched to the boiling return pipe 13 side (step S204).

また、第2の所定温度の方が給湯温度センサー18の検知温度よりも高ければ、三方弁9をバイパス管14側に切り換える(ステップS205)。   If the second predetermined temperature is higher than the detected temperature of the hot water supply temperature sensor 18, the three-way valve 9 is switched to the bypass pipe 14 side (step S205).

またさらにステップ202の結果、出湯温度センサー16の検知温度の方が第1の所定温度よりも高ければ、給湯温度センサー18の検知温度と予め設定された第3の所定温度とを比較する(ステップS206)。   If the detected temperature of the tapping temperature sensor 16 is higher than the first predetermined temperature as a result of step 202, the detected temperature of the hot water supply temperature sensor 18 is compared with a preset third predetermined temperature (step). S206).

次に、第3の所定温度の方が給湯温度センサー18の検知温度よりも高ければ、三方弁9をバイパス管14側に切り換える(ステップS207)。   Next, if the third predetermined temperature is higher than the temperature detected by the hot water supply temperature sensor 18, the three-way valve 9 is switched to the bypass pipe 14 side (step S207).

また、給湯温度センサー18の検知温度の方が第3の所定温度よりも高ければ、三方弁9を沸上戻し管13側に切り換える(ステップS208)。   If the temperature detected by the hot water supply temperature sensor 18 is higher than the third predetermined temperature, the three-way valve 9 is switched to the boiling return pipe 13 side (step S208).

この様に、貯湯タンク8への湯をためる貯湯運転時に、放熱器3により出湯温度センサーで検知した湯温が80℃程度以上に水が加熱されると、放熱器3の加熱部に水に融解していた不純物質がスケールとして析出し、それが剥離して沸上戻し管13を通って貯湯タンク8内に送られる。この時、貯湯タンク内を沈降してしてしてくるスケールは多孔板27上に堆積し吸込管からポンプに吸入されることはない。   In this way, during the hot water storage operation in which hot water is stored in the hot water storage tank 8, if the hot water temperature detected by the radiator 3 with the tapping temperature sensor is heated to about 80 ° C. or higher, the heating part of the radiator 3 is charged with water. The melted impurities are deposited as scale, peeled off, and sent through the boiling return pipe 13 into the hot water storage tank 8. At this time, the scale settling in the hot water storage tank is deposited on the porous plate 27 and is not sucked into the pump from the suction pipe.

また、スケールが多孔板に開けた穴を通り抜けて、貯湯タンク底部まで沈降していた場合においても、スケールのポンプへの吸い込みを低減でき、さらに、ポンプの圧力損失を低減できるので、ンプの寿命を向上させることができる。   In addition, even if the scale passes through the hole in the perforated plate and settles to the bottom of the hot water storage tank, the suction of the scale into the pump can be reduced, and further, the pump pressure loss can be reduced, so the life of the pump Can be improved.

以上のように、本発明にかかる給湯装置は、発生したスケールのポンプ7への吸い込みをなくし、ポンプ7の寿命を向上させることによって、信頼性の高い給湯機として有用である。   As described above, the hot water supply apparatus according to the present invention is useful as a highly reliable hot water heater by eliminating the suction of the generated scale into the pump 7 and improving the life of the pump 7.

本発明の実施の形態における給湯機の回路図Circuit diagram of a water heater in an embodiment of the present invention 本発明の実施の形態における吸込管の図Drawing of the suction pipe in the embodiment of the present invention 本発明の実施の形態における多孔板の図Diagram of a perforated plate in an embodiment of the present invention 本発明の実施の形態における制御フロー図Control flow diagram in the embodiment of the present invention 従来の給湯機の回路図Circuit diagram of a conventional water heater

符号の説明Explanation of symbols

1 加熱源
2 圧縮機
6 ヒートポンプ
7 ポンプ
8 貯湯タンク
10 吸込管
11 吸込穴
27 多孔板
28 穴
1 Heating Source 2 Compressor 6 Heat Pump 7 Pump 8 Hot Water Storage Tank 10 Suction Pipe 11 Suction Hole 27 Perforated Plate 28 Hole

Claims (9)

ポンプにより貯湯タンクの底部近傍に設置した前記ポンプの吸込管より水を吸入し、前記貯湯タンク内の水を加熱源に循環させることによって加熱し、高温の湯を前記貯湯タンク内に貯湯するようにした給湯機において、前記貯湯タンク内に多孔板を設置した給湯機。 The pump draws water from the suction pipe of the pump installed near the bottom of the hot water storage tank, heats the hot water storage tank by circulating it through a heating source, and stores hot hot water in the hot water storage tank. A hot water heater according to claim 1, wherein a perforated plate is installed in the hot water storage tank. 多孔板は前記ポンプの吸込管より上部に位置し、貯湯タンク内に略水平に設置された請求項1記載の給湯機。 The hot water heater according to claim 1, wherein the perforated plate is located above the suction pipe of the pump and is installed substantially horizontally in the hot water storage tank. 多孔板に開けた穴は吸込管の径より小さい請求項1または2記載の給湯機。 The water heater according to claim 1 or 2, wherein the hole formed in the perforated plate is smaller than the diameter of the suction pipe. 吸込管を貯湯タンク側面より略水平に挿入した請求項1〜3いずれか1項に記載の給湯機。 The hot water supply device according to any one of claims 1 to 3, wherein the suction pipe is inserted substantially horizontally from a side surface of the hot water storage tank. 吸込管の貯湯タンク底面側に吸込穴を開けた請求項1〜4いずれか1項に記載の給湯機。 The water heater according to any one of claims 1 to 4, wherein a suction hole is formed on a bottom surface side of the hot water storage tank of the suction pipe. 吸込穴を複数開けた請求項5記載の給湯機。 The water heater according to claim 5, wherein a plurality of suction holes are formed. 吸込穴は前記吸込管の管径より小さくした請求項6記載の給湯機。 The water heater according to claim 6, wherein the suction hole is smaller than the diameter of the suction pipe. 加熱源は圧縮機を含むヒートポンプである請求項1〜7いずれか1項に記載の給湯機。 The hot water supply device according to any one of claims 1 to 7, wherein the heating source is a heat pump including a compressor. ヒートポンプに臨界圧力以上に昇圧された冷媒を用いたことを特徴とする請求項8に記載のヒートポンプ給湯機。 The heat pump water heater according to claim 8, wherein a refrigerant whose pressure is raised to a critical pressure or higher is used for the heat pump.
JP2005097395A 2005-03-30 2005-03-30 Hot-water supply machine Pending JP2006275445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097395A JP2006275445A (en) 2005-03-30 2005-03-30 Hot-water supply machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097395A JP2006275445A (en) 2005-03-30 2005-03-30 Hot-water supply machine

Publications (1)

Publication Number Publication Date
JP2006275445A true JP2006275445A (en) 2006-10-12

Family

ID=37210389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097395A Pending JP2006275445A (en) 2005-03-30 2005-03-30 Hot-water supply machine

Country Status (1)

Country Link
JP (1) JP2006275445A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645016A (en) * 2012-04-06 2012-08-22 陈天继 Water-storage-type water heater capable of improving hot water outlet efficiency
JP2012207846A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Water heater
JP2014018739A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Water treatment apparatus and hot water supply apparatus
WO2020193983A1 (en) * 2019-03-27 2020-10-01 Mixergy Limited A water heating system
WO2021090806A1 (en) 2019-11-05 2021-05-14 ダイキン工業株式会社 Hot water supply device
WO2023135777A1 (en) * 2022-01-17 2023-07-20 三菱電機株式会社 Tank and water heater
KR102569431B1 (en) * 2022-10-31 2023-08-21 최성철 Floor cooling and heating system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207846A (en) * 2011-03-29 2012-10-25 Mitsubishi Electric Corp Water heater
CN102645016A (en) * 2012-04-06 2012-08-22 陈天继 Water-storage-type water heater capable of improving hot water outlet efficiency
WO2013159415A1 (en) * 2012-04-06 2013-10-31 Chan Tiankai Water storage type water heater capable of improving hot water output rate
CN102645016B (en) * 2012-04-06 2015-05-20 陈天继 Water-storage-type water heater capable of improving hot water outlet efficiency
JP2014018739A (en) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp Water treatment apparatus and hot water supply apparatus
WO2020193983A1 (en) * 2019-03-27 2020-10-01 Mixergy Limited A water heating system
GB2582596B (en) * 2019-03-27 2022-02-23 Mixergy Ltd A water heating system
WO2021090806A1 (en) 2019-11-05 2021-05-14 ダイキン工業株式会社 Hot water supply device
JP2021076259A (en) * 2019-11-05 2021-05-20 ダイキン工業株式会社 Hot water supply device
US11674695B2 (en) 2019-11-05 2023-06-13 Daikin Industries, Ltd. Hot water supply apparatus
WO2023135777A1 (en) * 2022-01-17 2023-07-20 三菱電機株式会社 Tank and water heater
KR102569431B1 (en) * 2022-10-31 2023-08-21 최성철 Floor cooling and heating system

Similar Documents

Publication Publication Date Title
JP2006275445A (en) Hot-water supply machine
JP5071155B2 (en) Heat pump type hot water supply apparatus and control method thereof
JP3931912B2 (en) Water heater
JP2005098546A (en) Heat pump type water heater
JP5324826B2 (en) Heat pump type water heater
JP2009250462A (en) Heat pump water heater
JP2010071603A (en) Heat pump water heater
JP2006329566A (en) Water heater
JP3979420B2 (en) Water heater
JP2010230205A (en) Hot water supply system
JP2009216335A (en) Heat pump water heater
JP2007113897A (en) Heat pump type water heater
JP2009085565A (en) Heat pump water heater
JP2008261557A (en) Heat pump water heater
JP2008039289A (en) Heat pump type water heater
JP2008039288A (en) Heat pump type water heater
JP2005134077A (en) Hot water storage type water heater
JP2007192439A (en) Heat pump water heater
JP2005133973A (en) Heat pump water heater
JP2007113896A (en) Heat pump type water heater
JP2008196768A (en) Hot water storage type water heater
JP2009085476A (en) Heat pump water heater
JP2005164087A (en) Heat pump water heater
JP5321013B2 (en) Heat pump equipment
JP2009186057A (en) Heat pump water heater