JP5324826B2 - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP5324826B2
JP5324826B2 JP2008144745A JP2008144745A JP5324826B2 JP 5324826 B2 JP5324826 B2 JP 5324826B2 JP 2008144745 A JP2008144745 A JP 2008144745A JP 2008144745 A JP2008144745 A JP 2008144745A JP 5324826 B2 JP5324826 B2 JP 5324826B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat pump
circuit
defrosting operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008144745A
Other languages
Japanese (ja)
Other versions
JP2009293811A (en
Inventor
治彦 坂巻
賢二 奥澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2008144745A priority Critical patent/JP5324826B2/en
Publication of JP2009293811A publication Critical patent/JP2009293811A/en
Application granted granted Critical
Publication of JP5324826B2 publication Critical patent/JP5324826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、例えばヒートポンプ回路によって給湯用水を加熱する給湯装置に関するものである。   The present invention relates to a hot water supply apparatus that heats hot water supply water by, for example, a heat pump circuit.

従来、この種のヒートポンプ式給湯装置としては、圧縮機から吐出した冷媒を水熱交換器(ガスクーラ)に流通した後、開度調整可能な膨張弁を介して蒸発器に流通し、圧縮機に吸入するヒートポンプ回路と、給湯用水をポンプによって水熱交換器に流通することによりヒートポンプ回路の冷媒によって給湯用水を加熱する給湯回路と、ヒートポンプ回路で加熱された給湯回路の給湯用水を貯溜する貯湯タンクとを備え、貯湯タンクの湯を浴槽や台所に供給するようにしたものが知られている(例えば、特許文献1参照。)。   Conventionally, as this type of heat pump type hot water supply device, after the refrigerant discharged from the compressor is circulated to the water heat exchanger (gas cooler), it is circulated to the evaporator via an expansion valve whose opening degree can be adjusted. A heat pump circuit for sucking in, a hot water supply circuit for heating the hot water supply water by the refrigerant of the heat pump circuit by circulating hot water supply water to the water heat exchanger by a pump, and a hot water storage tank for storing hot water for the hot water supply circuit heated by the heat pump circuit The hot water of a hot water storage tank is supplied to a bathtub or a kitchen (for example, refer patent document 1).

また、この給湯装置において、蒸発器の除霜を行う場合には、膨張弁の開度を大きくして蒸発器に流入する冷媒の温度を通常運転よりも高くすることにより、除霜運転を行うようにしている。
特開2007−40555号公報
Further, in this hot water supply apparatus, when performing defrosting of the evaporator, the defrosting operation is performed by increasing the opening of the expansion valve and raising the temperature of the refrigerant flowing into the evaporator more than the normal operation. I am doing so.
JP 2007-40555 A

ところで、前記給湯装置の除霜運転を開始した直後は、水熱交換器自体が高温であり、給湯回路の給湯用水を加熱可能な余熱が残存しているが、前記給湯装置では、除霜運転を開始すると給湯回路のポンプが停止するため、水熱交換器の余熱を給湯用水の加熱に利用することができず、その分だけ熱エネルギーの損失を生ずるという問題点があった。   By the way, immediately after starting the defrosting operation of the hot water supply device, the water heat exchanger itself is at a high temperature, and there remains residual heat that can heat the hot water for the hot water supply circuit. When the operation is started, the pump of the hot water supply circuit is stopped, so that the remaining heat of the water heat exchanger cannot be used for heating the hot water supply water, and there is a problem that heat energy is lost correspondingly.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、除霜運転を開始した際に水熱交換器に残存する余熱を有効に利用することのできるヒートポンプ式給湯装置を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a heat pump type hot water supply device that can effectively use the residual heat remaining in the water heat exchanger when defrosting operation is started. Is to provide.

本発明は前記目的を達成するために、圧縮機から吐出した冷媒を水熱交換器に流通した後、開度調整可能な膨張弁を介して蒸発器に流通し、圧縮機に吸入するヒートポンプ回路と、給湯用水をポンプによって水熱交換器に流通することによりヒートポンプ回路の冷媒によって給湯用水を加熱する給湯回路と、ヒートポンプ回路で加熱された給湯回路の給湯用水を貯溜する貯湯タンクとを備え、蒸発器の除霜を行う場合には、膨張弁の開度を大きくすることにより、蒸発器に流通する冷媒の温度を高くする除霜運転を行うようにしたヒートポンプ式給湯装置において、前記除霜運転が開始されると、給湯回路のポンプを除霜運転開始時の流量のまま除霜運転終了まで継続して運転する制御手段を備えている。   In order to achieve the above object, the present invention provides a heat pump circuit that circulates refrigerant discharged from a compressor to a hydrothermal exchanger, and then circulates it to an evaporator via an expansion valve whose opening is adjustable, and sucks it into the compressor. And a hot water supply circuit that heats the hot water supply water by the refrigerant of the heat pump circuit by circulating the hot water supply water to the water heat exchanger by a pump, and a hot water storage tank that stores the hot water supply water of the hot water supply circuit heated by the heat pump circuit, In the case of performing defrosting of the evaporator, in the heat pump hot water supply apparatus in which defrosting operation is performed to increase the temperature of the refrigerant flowing through the evaporator by increasing the opening of the expansion valve, the defrosting When the operation is started, there is provided control means for continuously operating the pump of the hot water supply circuit until the defrosting operation is completed with the flow rate at the start of the defrosting operation.

これにより、除霜運転が開始されても給湯回路のポンプの運転が継続されることから、除霜運転を開始した直後に水熱交換器に残存する余熱によって給湯回路の給湯用水を加熱することができる。その際、例えば除霜運転開始時のポンプの流量が蒸発器の着霜による能力低下により小流量に低下するように制御されている場合であっても、その流量のままポンプの運転が継続されるため、水熱交換器の余熱が回収された後、熱交換器に急激に低温の給湯用水が流入することがない。 Thus, since the operation of the pump of the hot water supply circuit is continued even when the defrosting operation is started, the hot water supply water of the hot water supply circuit is heated by the residual heat remaining in the water heat exchanger immediately after the start of the defrosting operation. Can do. At that time, for example, even if the flow rate of the pump at the start defrosting operation is controlled so as to decrease the low flow rate by the capacity reduction due to the frost of the evaporator, the operation of the left pump of the flow rate is continued Therefore, after the residual heat of the water heat exchanger is recovered, the low temperature hot water supply water does not flow into the water heat exchanger suddenly.

また、本発明は前記目的を達成するために、圧縮機から吐出した冷媒を水熱交換器に流通した後、開度調整可能な膨張弁を介して蒸発器に流通し、圧縮機に吸入するヒートポンプ回路と、給湯用水をポンプによって水熱交換器に流通することによりヒートポンプ回路の冷媒によって給湯用水を加熱する給湯回路と、ヒートポンプ回路で加熱された給湯回路の給湯用水を貯溜する貯湯タンクとを備え、蒸発器の除霜を行う場合には、膨張弁の開度を大きくすることにより、蒸発器に流通する冷媒の温度を高くする除霜運転を行うようにしたヒートポンプ式給湯装置において、前記除霜運転が開始されると、給湯回路のポンプの流量を所定流量まで徐々に低下させた後、その流量のまま除霜運転終了まで継続して運転する制御手段を備えている。   In order to achieve the above object, the present invention distributes the refrigerant discharged from the compressor to the water heat exchanger, then distributes it to the evaporator via an expansion valve whose opening degree can be adjusted, and sucks it into the compressor. A heat pump circuit, a hot water supply circuit that heats hot water supply water by a refrigerant of the heat pump circuit by circulating hot water supply water to a water heat exchanger by a pump, and a hot water storage tank that stores hot water supply water of the hot water supply circuit heated by the heat pump circuit In the heat pump hot water supply apparatus that performs the defrosting operation to increase the temperature of the refrigerant flowing through the evaporator by increasing the opening degree of the expansion valve when performing defrosting of the evaporator, When the defrosting operation is started, the flow rate of the pump of the hot water supply circuit is gradually decreased to a predetermined flow rate, and thereafter, the control means is continuously operated until the defrosting operation is finished with the flow rate.

これにより、除霜運転が開始されても給湯回路のポンプの運転が継続されることから、除霜運転を開始した直後に水熱交換器に残存する余熱によって給湯回路の給湯用水を加熱することができる。その際、除霜運転開始時にポンプの流量が蒸発器の着霜による能力低下により小流量に低下するように制御されていない場合でも、除霜運転開始時のポンプの流量が所定流量まで低下することから、水熱交換器の余熱が回収された後、熱交換器に急激に低温の給湯用水が流入することがない。また、ポンプの流量が徐々に低下することから、直ちに所定流量まで低下させる場合に比べ、除霜運転の開始直後に水熱交換器の余熱を回収するための流量が十分に確保される。 Thus, since the operation of the pump of the hot water supply circuit is continued even when the defrosting operation is started, the hot water supply water of the hot water supply circuit is heated by the residual heat remaining in the water heat exchanger immediately after the start of the defrosting operation. Can do. At that time, even when the flow rate of the pump is not controlled so as to decrease to a small flow rate due to capacity reduction due to frosting of the evaporator at the start of the defrosting operation, the pump flow rate at the start of the defrosting operation is reduced to a predetermined flow rate Therefore, after the residual heat of the water heat exchanger is recovered, the low temperature hot water supply water does not flow into the water heat exchanger suddenly. Moreover, since the flow rate of the pump gradually decreases, a flow rate for recovering the residual heat of the water heat exchanger immediately after the start of the defrosting operation is sufficiently ensured as compared with a case where the flow rate is immediately decreased to a predetermined flow rate.

本発明によれば、除霜運転を開始した直後に水熱交換器に残存する余熱によって給湯回路の給湯用水を加熱することができるので、熱エネルギーを有効に利用することができ、COPの向上に極めて有利である。この場合、水熱交換器の余熱が回収された後、水熱交換器に急激に低温の給湯用水が流入することがないので、水熱交換器を流通する給湯用水によって除霜用の冷媒の温度を低下させることがなく、除霜効率の低下を防止することができる。   According to the present invention, since the hot water for the hot water supply circuit can be heated by the residual heat remaining in the water heat exchanger immediately after the start of the defrosting operation, the heat energy can be used effectively and the COP can be improved. Is very advantageous. In this case, after the residual heat of the water heat exchanger is recovered, the low temperature hot water supply water does not flow into the water heat exchanger suddenly, so that the defrosting refrigerant is removed by the hot water supply water flowing through the water heat exchanger. A decrease in defrosting efficiency can be prevented without lowering the temperature.

図1乃至図3は本発明の第1の実施形態を示すもので、図1は給湯装置の概略構成図、図2は制御系を示すブロック図、図3は制御部の動作を示すタイムチャートである。   1 to 3 show a first embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a hot water supply apparatus, FIG. 2 is a block diagram showing a control system, and FIG. 3 is a time chart showing the operation of a control unit. It is.

同図に示す給湯装置は、冷媒を流通するヒートポンプ回路10と、給湯用水を流通する第1給湯回路20と、給湯用水を流通する第2給湯回路30と、浴槽用水を流通する浴槽用回路40と、ヒートポンプ回路10の冷媒と第1給湯回路20の給湯用水とを熱交換する第1水熱交換器50と、第2給湯回路30の給湯用水と浴槽用回路40の浴槽用水とを熱交換する第2水熱交換器60とを備えている。   The hot water supply apparatus shown in the figure includes a heat pump circuit 10 that circulates refrigerant, a first hot water supply circuit 20 that circulates hot water, a second hot water circuit 30 that circulates hot water, and a bathtub circuit 40 that circulates bathtub water. Heat exchange between the first water heat exchanger 50 that exchanges heat between the refrigerant of the heat pump circuit 10 and the hot water supply water of the first hot water supply circuit 20, the hot water supply water of the second hot water supply circuit 30, and the bathtub water of the bathtub circuit 40. And a second water heat exchanger 60.

ヒートポンプ回路10は、圧縮機11、膨張弁12、蒸発器13及び第1水熱交換器50を接続してなり、図中実線矢印で示すように圧縮機11、第1水熱交換器50、膨張弁12、蒸発器13、圧縮機11の順に冷媒を流通させるようになっている。尚、このヒートポンプ回路10で使用される冷媒は、例えば二酸化炭素等の自然系冷媒である。膨張弁12は、例えば周知の電子膨張弁からなり、開度を任意の調整可能になっている。蒸発器13は送風機13aを有し、送風機13aによって外気と熱交換するようになっている。また、蒸発器13には蒸発器13の温度を検出する温度センサ14が設けられ、蒸発器13の近傍には外気温度を検出する外気温センサ15が設けられている。   The heat pump circuit 10 is formed by connecting a compressor 11, an expansion valve 12, an evaporator 13 and a first water heat exchanger 50. As shown by solid line arrows in the figure, the compressor 11, the first water heat exchanger 50, The refrigerant is circulated in the order of the expansion valve 12, the evaporator 13, and the compressor 11. The refrigerant used in the heat pump circuit 10 is a natural refrigerant such as carbon dioxide. The expansion valve 12 is composed of, for example, a well-known electronic expansion valve, and the opening degree can be arbitrarily adjusted. The evaporator 13 has a blower 13a, and heat exchange with the outside air is performed by the blower 13a. The evaporator 13 is provided with a temperature sensor 14 for detecting the temperature of the evaporator 13, and an outside air temperature sensor 15 for detecting the outside air temperature is provided in the vicinity of the evaporator 13.

第1給湯回路20は、貯湯タンク21、第1ポンプ22及び第1水熱交換器50を接続してなり、図中白抜き矢印で示すように貯湯タンク21、第1ポンプ22、第1水熱交換器50、貯湯タンク21の順に給湯用水を流通させるようになっている。貯湯タンク21には、給水管23及び第2給湯回路30が接続され、給水管23から供給された給湯用水は貯湯タンク21を介して第1給湯回路20を流通するようになっている。貯湯タンク21と浴槽Aとは、第2ポンプ24が設けられた流路25を介して接続され、図中一点鎖線矢印で示すように第2ポンプ24によって貯湯タンク21内の給湯用水が浴槽Aに供給されるようになっている。また、第1給湯回路20には、貯湯タンク21の流入側と流出側とを連通するバイパス流路26が設けられ、貯湯タンク21の流入側とバイパス流路26との間には流路切換手段としての三方弁27が設けられている。更に、第1水熱交換器50の流出側と三方弁27との間には、給湯用水の温度を検出する湯温センサ28が設けられている。   The first hot water supply circuit 20 is formed by connecting a hot water storage tank 21, a first pump 22 and a first water heat exchanger 50, and as shown by white arrows in the figure, the hot water storage tank 21, the first pump 22, and the first water. The hot water supply water is circulated in the order of the heat exchanger 50 and the hot water storage tank 21. A water supply pipe 23 and a second hot water supply circuit 30 are connected to the hot water storage tank 21, and hot water supplied from the water supply pipe 23 flows through the first hot water supply circuit 20 via the hot water storage tank 21. The hot water storage tank 21 and the bathtub A are connected via a flow path 25 provided with a second pump 24, and the hot water in the hot water storage tank 21 is supplied to the bathtub A by the second pump 24 as shown by a dashed line arrow in the figure. To be supplied. The first hot water supply circuit 20 is provided with a bypass flow path 26 that communicates the inflow side and the outflow side of the hot water storage tank 21, and the flow path is switched between the inflow side of the hot water storage tank 21 and the bypass flow path 26. As a means, a three-way valve 27 is provided. Further, a hot water temperature sensor 28 for detecting the temperature of the hot water supply water is provided between the outflow side of the first water heat exchanger 50 and the three-way valve 27.

第2給湯回路30は、貯湯タンク21、第3ポンプ31及び第2水熱交換器60を接続してなり、図中破線矢印で示すように貯湯タンク21、第2水熱交換器60、第3ポンプ31、貯湯タンク21の順に給湯用水を流通させるようになっている。   The second hot water supply circuit 30 is formed by connecting the hot water storage tank 21, the third pump 31, and the second water heat exchanger 60. As shown by the broken line arrows in the figure, the hot water storage tank 21, the second water heat exchanger 60, The hot water supply water is circulated in the order of the three pumps 31 and the hot water storage tank 21.

浴槽用回路40は、浴槽A、第4ポンプ43及び第2水熱交換器60を接続してなり、図中黒塗り矢印で示すように浴槽A、第4ポンプ43、第2水熱交換器60、浴槽Aの順に浴槽用水を流通させるようになっている。   The circuit 40 for bathtubs connects the bathtub A, the 4th pump 43, and the 2nd water heat exchanger 60, and as shown by the black arrow in the figure, the bathtub A, the 4th pump 43, the 2nd water heat exchanger. The water for bathtubs is circulated in the order of 60 and bathtub A.

第1水熱交換器50は、ヒートポンプ回路10及び第1給湯回路20に接続され、ヒートポンプ回路10を流通する冷媒と第1給湯回路20を流通する給湯用水とを熱交換させるようになっている。第1水熱交換器50は、図示していないが、環状に巻かれたチューブ状の管路内にヒートポンプ回路10の高温側回路10aを配置してなる周知の構造からなり、高温側回路10aの冷媒との熱交換によって第1給湯回路20の給湯用水を加熱するようになっている。   The first water heat exchanger 50 is connected to the heat pump circuit 10 and the first hot water supply circuit 20 to exchange heat between the refrigerant flowing through the heat pump circuit 10 and the hot water supply water flowing through the first hot water supply circuit 20. . Although not shown, the first water heat exchanger 50 has a well-known structure in which the high temperature side circuit 10a of the heat pump circuit 10 is arranged in a tubular pipe wound in an annular shape, and the high temperature side circuit 10a. The hot water for the first hot water supply circuit 20 is heated by heat exchange with the refrigerant.

第2水熱交換器60は、第2給湯回路30及び浴槽用回路40に接続され、第2給湯回路30の給湯用水と浴槽用回路40の浴槽用水とを熱交換させるようになっている。   The second water heat exchanger 60 is connected to the second hot water supply circuit 30 and the bathtub circuit 40 so as to exchange heat between the hot water supply water of the second hot water supply circuit 30 and the bathtub water of the bathtub circuit 40.

前記給湯装置は、ヒートポンプ回路10及び第1水熱交換器50が配置された加熱ユニット70と、貯湯タンク21、第1ポンプ22、第2ポンプ24、第2給湯回路30、第4ポンプ43及び第2水熱交換器60が配置されたタンクユニット80とを備え、加熱ユニット70とタンクユニット80とは第1給湯回路20を介して接続されている。   The hot water supply apparatus includes a heating unit 70 in which the heat pump circuit 10 and the first water heat exchanger 50 are arranged, a hot water storage tank 21, a first pump 22, a second pump 24, a second hot water supply circuit 30, a fourth pump 43, and The tank unit 80 in which the 2nd water heat exchanger 60 is arrange | positioned is provided, and the heating unit 70 and the tank unit 80 are connected via the 1st hot water supply circuit 20. FIG.

また、前記給湯装置は、マイクロコンピュータからなる制御部90を備え、制御部90には、圧縮機11、膨張弁12、第1ポンプ22、送風機13a、温度センサ14、外気温センサ15、三方弁27及び湯温センサ28が接続されている。この制御部90では、温度センサ14によって検出される蒸発器13の温度と、外気温センサ15によって検出される外気温度に基づいて蒸発器13が着霜しているか否かを判定し、着霜していると判定した場合は、沸き上げ運転(通常運転)を除霜運転に切り換えるようになっている。   Moreover, the said hot water supply apparatus is provided with the control part 90 which consists of microcomputers, and the control part 90 has the compressor 11, the expansion valve 12, the 1st pump 22, the air blower 13a, the temperature sensor 14, the external temperature sensor 15, and a three-way valve. 27 and a hot water temperature sensor 28 are connected. The control unit 90 determines whether or not the evaporator 13 is frosted based on the temperature of the evaporator 13 detected by the temperature sensor 14 and the outside air temperature detected by the outside air temperature sensor 15. When it is determined that the heating operation is performed, the heating operation (normal operation) is switched to the defrosting operation.

以上のように構成された給湯装置の沸き上げ運転においては、図3のタイムチャートに示すように、圧縮機11が任意の周波数Fで運転されるように制御され、膨張弁12が任意の開度Bになるように制御される。また、蒸発器13の送風機13aが作動し、第1給湯回路20の第1ポンプ22が任意の流量Qで運転されるように制御される。   In the boiling operation of the hot water supply apparatus configured as described above, the compressor 11 is controlled to operate at an arbitrary frequency F as shown in the time chart of FIG. It is controlled so as to be degree B. Further, the blower 13a of the evaporator 13 is operated, and the first pump 22 of the first hot water supply circuit 20 is controlled to operate at an arbitrary flow rate Q.

ここで、制御部90によって除霜運転が開始されると、制御部90は、所定時間T1 (例えば30秒)が経過した後、圧縮機11を除霜運転用の所定周波数F1 で運転するとともに、膨張弁12を沸き上げ運転時よりも大きい所定の除霜運転用開度B1 に切り換え、除霜運転が開始してから所定時間T2 (例えば60秒)が経過すると、送風機13aを停止する。また、除霜運転が開始されると、第1ポンプ22の運転を除霜運転開始時の流量Qのまま継続する。これにより、第1水熱交換器50に残存する余熱によって第1給湯回路20の給湯用水が加熱され、貯湯タンク21に供給される。その際、除霜運転開始時の第1ポンプ22の流量Qは、蒸発器13の着霜による能力低下により小流量に低下するように制御されているため、その流量Qのまま第1ポンプ22の運転を継続することにより、第1水熱交換器50の余熱が回収された後、第1水熱交換器50に急激に低温の給湯用水が流入することがない。次に、余熱がなくなり湯温センサ28の検出温度が設定温度(沸き上げ温度)以下になると、三方弁27によって第1給湯回路20の流路がバイパス流路26側に切り換えられ、第1給湯回路20の給湯用水が貯湯タンク21に流入せずにバイパス流路26を流通して第1給湯回路20を循環する。この後、除霜運転が終了すると、第1ポンプ22を沸き上げ運転時の制御により任意の流量Qで運転するとともに、送風機13aを作動する。次に、除霜運転が終了してから所定時間T3 (例えば30秒)が経過すると、膨張弁12を沸き上げ運転時の制御により任意の開度Bに切り換え、除霜運転が終了してから所定時間T4 (例えば60秒)が経過すると、圧縮機11を沸き上げ運転時の制御により任意の周波数Fで運転する。   When the defrosting operation is started by the control unit 90, the control unit 90 operates the compressor 11 at the predetermined frequency F1 for the defrosting operation after a predetermined time T1 (for example, 30 seconds) has elapsed. When the expansion valve 12 is switched to a predetermined defrosting operation opening B1 larger than that during the boiling operation and a predetermined time T2 (for example, 60 seconds) has elapsed since the start of the defrosting operation, the blower 13a is stopped. When the defrosting operation is started, the operation of the first pump 22 is continued with the flow rate Q at the start of the defrosting operation. Thereby, the hot water for the first hot water supply circuit 20 is heated by the residual heat remaining in the first water heat exchanger 50 and supplied to the hot water storage tank 21. At that time, the flow rate Q of the first pump 22 at the start of the defrosting operation is controlled so as to decrease to a small flow rate due to a decrease in capacity due to frosting of the evaporator 13. By continuing the operation, after the remaining heat of the first water heat exchanger 50 is recovered, the low temperature hot water supply water does not flow into the first water heat exchanger 50 abruptly. Next, when there is no remaining heat and the temperature detected by the hot water temperature sensor 28 is equal to or lower than the set temperature (boiling temperature), the flow path of the first hot water supply circuit 20 is switched to the bypass flow path 26 side by the three-way valve 27. The hot water for the hot water in the circuit 20 does not flow into the hot water storage tank 21 but circulates in the first hot water supply circuit 20 through the bypass passage 26. Thereafter, when the defrosting operation is completed, the first pump 22 is operated at an arbitrary flow rate Q by the control during the boiling operation, and the blower 13a is operated. Next, when a predetermined time T3 (for example, 30 seconds) elapses after the defrosting operation is completed, the expansion valve 12 is switched to an arbitrary opening degree B by the control during the boiling operation, and after the defrosting operation is completed. When a predetermined time T4 (for example, 60 seconds) elapses, the compressor 11 is operated at an arbitrary frequency F by the control during the boiling operation.

このように、本実施形態によれば、除霜運転が開始されると、第1給湯回路20の第1ポンプ22を除霜運転開始時の流量Qのまま除霜運転終了まで継続して運転するようにしたので、除霜運転を開始した直後に第1水熱交換器50に残存する余熱によって第1給湯回路20の給湯用水を加熱することができ、熱エネルギーを有効に利用することができる。この場合、除霜運転開始時に小流量に低下した流量Qのまま第1ポンプ22の運転を継続することにより、第1水熱交換器50の余熱が回収された後、第1水熱交換器50に急激に低温の給湯用水が流入することがないので、第1水熱交換器50を流通する給湯用水によって除霜用の冷媒の温度を低下させることがなく、除霜効率の低下を防止することができる。   Thus, according to the present embodiment, when the defrosting operation is started, the first pump 22 of the first hot water supply circuit 20 is continuously operated until the defrosting operation is completed with the flow rate Q at the start of the defrosting operation. Therefore, immediately after starting the defrosting operation, the hot water for the first hot water supply circuit 20 can be heated by the residual heat remaining in the first water heat exchanger 50, and the thermal energy can be used effectively. it can. In this case, after the remaining heat of the first water heat exchanger 50 is recovered by continuing the operation of the first pump 22 with the flow rate Q decreased to a small flow rate at the start of the defrosting operation, the first water heat exchanger is recovered. 50 does not suddenly flow into the hot water supply water, so that the temperature of the defrosting refrigerant is not lowered by the hot water supply water flowing through the first water heat exchanger 50 and the defrosting efficiency is prevented from being lowered. can do.

また、貯湯タンク21の流入側流路に設けた湯温センサ28の検出温度が所定の設定温度(沸き上げ温度)以下になると、三方弁27によって第1給湯回路20の流路をバイパス流路26側に切り換えることにより、第1給湯回路20の給湯用水を貯湯タンク21に流入させずに第1給湯回路20を循環させるようにしたので、第1水熱交換器50の余熱がなくなった後に第1ポンプ22の運転が継続されていても、貯湯タンク21に設定温度以下の給湯用水が流入することがなく、貯湯タンク21内の給湯用水の温度低下を防止することができる。   Further, when the temperature detected by the hot water temperature sensor 28 provided in the inflow side flow path of the hot water storage tank 21 falls below a predetermined set temperature (boiling temperature), the flow path of the first hot water supply circuit 20 is bypassed by the three-way valve 27. Since the first hot water supply circuit 20 is circulated without switching the hot water supply water of the first hot water supply circuit 20 into the hot water storage tank 21 by switching to the 26 side, after the remaining heat of the first water heat exchanger 50 is lost Even if the operation of the first pump 22 is continued, hot water supply water having a temperature lower than the set temperature does not flow into the hot water storage tank 21, and the temperature decrease of the hot water supply water in the hot water storage tank 21 can be prevented.

図4は本発明の第2の実施形態を示すタイムチャートであり、前記実施形態とは制御部90の動作の一部が異なる。   FIG. 4 is a time chart showing a second embodiment of the present invention, and a part of the operation of the control unit 90 is different from the above embodiment.

即ち、本実施形態では、制御部90によって除霜運転が開始されると、前記実施形態と同様、制御部90は、所定時間T1 (例えば30秒)が経過した後、圧縮機11を除霜運転用の所定周波数F1 で運転するとともに、膨張弁12を沸き上げ運転時よりも大きい除霜運転用の所定の開度B1 に切り換え、除霜運転が開始してから所定時間T2 (例えば60秒)が経過すると、送風機13aを停止する。また、除霜運転が開始されると、第1ポンプ22の流量を所定流量Q1 まで徐々に低下させた後、その流量Q1 のまま除霜運転終了まで継続して運転する。これにより、第1水熱交換器50に残存する余熱によって第1給湯回路20の給湯用水が加熱され、貯湯タンク21に供給される。その際、第1ポンプ22の流量は所定流量Q1 まで低下するため、第1水熱交換器50の余熱が回収された後、第1水熱交換器50に急激に低温の給湯用水が流入することがない。次に、余熱がなくなり湯温センサ28の検出温度が設定温度(沸き上げ温度)以下になると、三方弁27によって第1給湯回路20の流路がバイパス流路26側に切り換えられ、第1給湯回路20の給湯用水が貯湯タンク21に流入せずにバイパス流路26を流通して第1給湯回路20を循環する。この後、除霜運転が終了すると、第1ポンプ22を沸き上げ運転時の制御により任意の流量Qで運転するとともに、送風機13aを作動する。次に、除霜運転が終了してから所定時間T3 (例えば30秒)が経過すると、膨張弁12を沸き上げ運転時の制御により任意の開度Bに切り換え、除霜運転が終了してから所定時間T4 (例えば60秒)が経過すると、圧縮機11を沸き上げ運転時の制御により任意の周波数Fで運転する。   That is, in the present embodiment, when the defrosting operation is started by the control unit 90, the control unit 90 defrosts the compressor 11 after a predetermined time T1 (for example, 30 seconds) has elapsed, as in the previous embodiment. While operating at a predetermined frequency F1 for operation, the expansion valve 12 is switched to a predetermined opening B1 for defrosting operation that is larger than that during boiling operation, and for a predetermined time T2 (for example, 60 seconds) after the defrosting operation is started. ), The blower 13a is stopped. When the defrosting operation is started, the flow rate of the first pump 22 is gradually decreased to the predetermined flow rate Q1, and then the operation is continued until the defrosting operation is completed with the flow rate Q1. Thereby, the hot water for the first hot water supply circuit 20 is heated by the residual heat remaining in the first water heat exchanger 50 and supplied to the hot water storage tank 21. At this time, since the flow rate of the first pump 22 is reduced to the predetermined flow rate Q1, after the residual heat of the first water heat exchanger 50 is recovered, the low-temperature hot water supply water suddenly flows into the first water heat exchanger 50. There is nothing. Next, when there is no remaining heat and the temperature detected by the hot water temperature sensor 28 is equal to or lower than the set temperature (boiling temperature), the flow path of the first hot water supply circuit 20 is switched to the bypass flow path 26 side by the three-way valve 27. The hot water for the hot water in the circuit 20 does not flow into the hot water storage tank 21 but circulates in the first hot water supply circuit 20 through the bypass passage 26. Thereafter, when the defrosting operation is completed, the first pump 22 is operated at an arbitrary flow rate Q by the control during the boiling operation, and the blower 13a is operated. Next, when a predetermined time T3 (for example, 30 seconds) elapses after the defrosting operation is completed, the expansion valve 12 is switched to an arbitrary opening degree B by the control during the boiling operation, and after the defrosting operation is completed. When a predetermined time T4 (for example, 60 seconds) elapses, the compressor 11 is operated at an arbitrary frequency F by the control during the boiling operation.

本実施形態によれば、除霜運転が開始されると、第1給湯回路20の第1ポンプ22の流量を所定流量Q1 まで徐々に低下させた後、その流量Q1 のまま除霜運転終了まで継続して運転するようにしたので、前記実施形態と同様、除霜運転を開始した直後に第1水熱交換器50に残存する余熱によって第1給湯回路20の給湯用水を加熱することができ、熱エネルギーを有効に利用することができる。この場合、除霜運転開始時に第1ポンプ22の流量Qが小流量まで低下していない場合でも、第1ポンプ22の流量を所定流量Q1 まで低下させることにより、第1水熱交換器50の余熱が回収された後、第1水熱交換器50に急激に低温の給湯用水が流入することがないので、前記実施形態と同様、第1水熱交換器50を流通する給湯用水によって除霜用の冷媒の温度を低下させることがなく、除霜効率の低下を防止することができる。また、第1ポンプ22の流量を徐々に低下させるようにしているので、直ちに流量Q1 まで低下させる場合に比べ、除霜運転の開始直後に第1水熱交換器50の余熱を回収するための流量を十分に確保することができ、余熱による給湯用水の加熱を効率良く行うことができる。   According to the present embodiment, when the defrosting operation is started, the flow rate of the first pump 22 of the first hot water supply circuit 20 is gradually decreased to the predetermined flow rate Q1, and then the flow rate Q1 remains until the defrosting operation is completed. Since the operation is continued, the hot water supply water of the first hot water supply circuit 20 can be heated by the residual heat remaining in the first water heat exchanger 50 immediately after the start of the defrosting operation, as in the above embodiment. , Heat energy can be used effectively. In this case, even when the flow rate Q of the first pump 22 is not reduced to a small flow rate at the start of the defrosting operation, the flow rate of the first pump 22 is reduced to the predetermined flow rate Q1, so that the first water heat exchanger 50 Since the low temperature hot water supply water does not suddenly flow into the first water heat exchanger 50 after the residual heat is recovered, the defrosting is performed by the hot water supply water flowing through the first water heat exchanger 50 as in the above embodiment. It is possible to prevent the defrosting efficiency from being lowered without lowering the temperature of the refrigerant for use. Further, since the flow rate of the first pump 22 is gradually reduced, compared with the case where the flow rate is immediately reduced to the flow rate Q1, the residual heat of the first water heat exchanger 50 is recovered immediately after the start of the defrosting operation. A sufficient flow rate can be ensured, and the hot water supply water can be efficiently heated by residual heat.

本発明の第1の実施形態を示す給湯装置の概略構成図Schematic block diagram of a hot water supply apparatus showing a first embodiment of the present invention 制御系を示すブロック図Block diagram showing the control system 制御部の動作を示すタイムチャートTime chart showing the operation of the controller 本発明の第2の実施形態に係る制御部の動作を示すタイムチャートThe time chart which shows operation | movement of the control part which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10…ヒートポンプ回路、11…圧縮機、12…膨張弁、13…蒸発器、20…第1給湯回路、22…第1ポンプ、26…バイパス流路、27…三方弁、50…第1水熱交換器、90…制御部。   DESCRIPTION OF SYMBOLS 10 ... Heat pump circuit, 11 ... Compressor, 12 ... Expansion valve, 13 ... Evaporator, 20 ... First hot water supply circuit, 22 ... First pump, 26 ... Bypass flow path, 27 ... Three-way valve, 50 ... First water heat Exchanger, 90 ... control unit.

Claims (3)

圧縮機から吐出した冷媒を水熱交換器に流通した後、開度調整可能な膨張弁を介して蒸発器に流通し、圧縮機に吸入するヒートポンプ回路と、給湯用水をポンプによって水熱交換器に流通することによりヒートポンプ回路の冷媒によって給湯用水を加熱する給湯回路と、ヒートポンプ回路で加熱された給湯回路の給湯用水を貯溜する貯湯タンクとを備え、蒸発器の除霜を行う場合には、膨張弁の開度を大きくすることにより、蒸発器に流通する冷媒の温度を高くする除霜運転を行うようにしたヒートポンプ式給湯装置において、
前記除霜運転が開始されると、給湯回路のポンプを除霜運転開始時の流量のまま除霜運転終了まで継続して運転する制御手段を備えた
ことを特徴とするヒートポンプ式給湯装置。
After the refrigerant discharged from the compressor is circulated to the water heat exchanger, it is circulated to the evaporator through an expansion valve whose opening degree can be adjusted, and the heat pump circuit for sucking into the compressor and the hot water supply water are pumped by the water heat exchanger. A hot water supply circuit that heats the hot water supply water by the refrigerant of the heat pump circuit and a hot water storage tank that stores the hot water supply water of the hot water supply circuit heated by the heat pump circuit, and when defrosting the evaporator, In the heat pump type hot water supply apparatus that performs the defrosting operation to increase the temperature of the refrigerant flowing through the evaporator by increasing the opening of the expansion valve,
When the defrosting operation is started, the heat pump type hot water supply device is provided with control means for continuously operating the pump of the hot water supply circuit until the defrosting operation is ended with the flow rate at the start of the defrosting operation.
圧縮機から吐出した冷媒を水熱交換器に流通した後、開度調整可能な膨張弁を介して蒸発器に流通し、圧縮機に吸入するヒートポンプ回路と、給湯用水をポンプによって水熱交換器に流通することによりヒートポンプ回路の冷媒によって給湯用水を加熱する給湯回路と、ヒートポンプ回路で加熱された給湯回路の給湯用水を貯溜する貯湯タンクとを備え、蒸発器の除霜を行う場合には、膨張弁の開度を大きくすることにより、蒸発器に流通する冷媒の温度を高くする除霜運転を行うようにしたヒートポンプ式給湯装置において、
前記除霜運転が開始されると、給湯回路のポンプの流量を所定流量まで徐々に低下させた後、その流量のまま除霜運転終了まで継続して運転する制御手段を備えた
ことを特徴とするヒートポンプ式給湯装置。
After the refrigerant discharged from the compressor is circulated to the water heat exchanger, it is circulated to the evaporator through an expansion valve whose opening degree can be adjusted, and the heat pump circuit for sucking into the compressor and the hot water supply water are pumped by the water heat exchanger. A hot water supply circuit that heats the hot water supply water by the refrigerant of the heat pump circuit and a hot water storage tank that stores the hot water supply water of the hot water supply circuit heated by the heat pump circuit, and when defrosting the evaporator, In the heat pump type hot water supply apparatus that performs the defrosting operation to increase the temperature of the refrigerant flowing through the evaporator by increasing the opening of the expansion valve,
When the defrosting operation is started, the flow rate of the pump of the hot water supply circuit is gradually reduced to a predetermined flow rate, and then the control means is provided for continuously operating until the defrosting operation is completed with the flow rate. Heat pump type hot water supply device.
前記給湯回路における貯湯タンクの流入側流路と流出側流路とを連通するバイパス流路と、
貯湯タンクの流入側の給湯用水の温度が所定の設定温度以下になると、給湯回路の流路をバイパス流路に切り換える流路切換手段とを備えた
ことを特徴とする請求項1または2記載のヒートポンプ式給湯装置。
A bypass passage communicating the inflow side passage and the outflow side passage of the hot water storage tank in the hot water supply circuit;
The flow path switching means for switching the flow path of the hot water supply circuit to the bypass flow path when the temperature of the hot water supply water on the inflow side of the hot water storage tank becomes equal to or lower than a predetermined set temperature is provided. Heat pump water heater.
JP2008144745A 2008-06-02 2008-06-02 Heat pump type water heater Expired - Fee Related JP5324826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008144745A JP5324826B2 (en) 2008-06-02 2008-06-02 Heat pump type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008144745A JP5324826B2 (en) 2008-06-02 2008-06-02 Heat pump type water heater

Publications (2)

Publication Number Publication Date
JP2009293811A JP2009293811A (en) 2009-12-17
JP5324826B2 true JP5324826B2 (en) 2013-10-23

Family

ID=41542143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008144745A Expired - Fee Related JP5324826B2 (en) 2008-06-02 2008-06-02 Heat pump type water heater

Country Status (1)

Country Link
JP (1) JP5324826B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111063A1 (en) * 2011-02-14 2012-08-23 三菱電機株式会社 Refrigeration cycle device and refrigeration cycle control method
JP5948709B2 (en) * 2012-11-28 2016-07-06 日立アプライアンス株式会社 Heat pump water heater
JP2014202367A (en) * 2013-04-01 2014-10-27 株式会社デンソー Refrigeration cycle device
JP5958411B2 (en) * 2013-04-22 2016-08-02 株式会社デンソー HEAT PUMP SYSTEM AND ITS CONTROL DEVICE
JP6493370B2 (en) * 2016-01-25 2019-04-03 株式会社デンソー Heat pump system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272812A (en) * 1992-03-26 1993-10-22 Matsushita Electric Ind Co Ltd Heat pump type hot water feeder
JP2002048398A (en) * 2000-07-31 2002-02-15 Daikin Ind Ltd Heat pump hot water supply apparatus
JP3932913B2 (en) * 2002-01-29 2007-06-20 ダイキン工業株式会社 Heat pump water heater
JP3783711B2 (en) * 2003-11-19 2006-06-07 松下電器産業株式会社 Heat pump water heater
JP3900174B2 (en) * 2004-09-08 2007-04-04 松下電器産業株式会社 Water heater
JP2007139415A (en) * 2007-02-09 2007-06-07 Denso Corp Heat pump water heater

Also Published As

Publication number Publication date
JP2009293811A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4774909B2 (en) Heat pump water heater
JP2008121923A (en) Heat pump water heater
JP6977332B2 (en) Hot water storage and hot water supply device
JP5324826B2 (en) Heat pump type water heater
JP2007155171A (en) Hot water storage type water heater
JP2008057910A (en) Heat pump hot water supply device
JP2009281665A (en) Storage water heater and storage water heater heating device
JP4920316B2 (en) Heat pump water heater
JP2009236424A (en) Heat pump hot water supply system
JP5655695B2 (en) Hot water storage water heater
JP5821002B2 (en) Hot water system
JP2009097826A (en) Heat pump hot water supply device
JP2006250367A (en) Heat pump water heater
JP5097054B2 (en) Heat pump water heater
JP4412419B2 (en) Hot water storage type heating water heater
JP2009264714A (en) Heat pump hot water system
JP2007198637A (en) Heat pump type water heater
JP2007155296A (en) Heat pump type water heater
JP2010025493A (en) Heat pump type hot water supply device
JP2010025494A (en) Heat pump type hot water supply device
JP2010216751A (en) Heat pump type water heater
JP3904007B2 (en) Heat pump water heater
JP2011141069A (en) Bath device
JP3970221B2 (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5324826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees