JP4283633B2 - Double-effect absorption chiller / heater with exhaust heat recovery unit - Google Patents
Double-effect absorption chiller / heater with exhaust heat recovery unit Download PDFInfo
- Publication number
- JP4283633B2 JP4283633B2 JP2003358941A JP2003358941A JP4283633B2 JP 4283633 B2 JP4283633 B2 JP 4283633B2 JP 2003358941 A JP2003358941 A JP 2003358941A JP 2003358941 A JP2003358941 A JP 2003358941A JP 4283633 B2 JP4283633 B2 JP 4283633B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- exhaust heat
- heat recovery
- absorption liquid
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010521 absorption reaction Methods 0.000 title claims description 213
- 238000011084 recovery Methods 0.000 title claims description 106
- 239000007788 liquid Substances 0.000 claims description 180
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 144
- 239000003507 refrigerant Substances 0.000 claims description 89
- 238000010438 heat treatment Methods 0.000 claims description 76
- 238000002485 combustion reaction Methods 0.000 claims description 47
- 230000002745 absorbent Effects 0.000 claims description 34
- 239000002250 absorbent Substances 0.000 claims description 34
- 239000006096 absorbing agent Substances 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 26
- 239000002918 waste heat Substances 0.000 claims description 23
- 230000002829 reductive effect Effects 0.000 claims description 21
- 239000000446 fuel Substances 0.000 claims description 17
- 239000002351 wastewater Substances 0.000 claims description 15
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 230000002411 adverse Effects 0.000 claims description 7
- 230000036961 partial effect Effects 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 238000003303 reheating Methods 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- 238000004378 air conditioning Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 29
- 230000000694 effects Effects 0.000 description 18
- 230000007423 decrease Effects 0.000 description 13
- 230000003247 decreasing effect Effects 0.000 description 8
- 230000009977 dual effect Effects 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
本発明は、排熱回収器を有する二重効用形吸収式冷温水機、詳しくは、吸収器、低温再生器、高温再生器、蒸発器、凝縮器、溶液(吸収液)熱交換器などを有する二重効用形吸収式冷温水機に、外部からの排熱を回収する排熱回収器を設け、高級な加熱用燃焼エネルギー(都市ガス、LPG、灯油、重油など)の使用量を減らして、外部から供給される排熱を有効に利用し、効率をより高めるようにした外部排熱を回収する回収器組み込み方式の、排熱回収器を有する二重効用形吸収式冷温水機に関するものである。 The present invention relates to a double-effect absorption chiller / heater having an exhaust heat recovery device, specifically an absorber, a low-temperature regenerator, a high-temperature regenerator, an evaporator, a condenser, a solution (absorbing liquid) heat exchanger, and the like. The double-effect absorption chiller / heater has a waste heat recovery device that recovers waste heat from outside, reducing the amount of high-grade heating combustion energy (city gas, LPG, kerosene, heavy oil, etc.) used. , Concerning a double-effect absorption chiller / heater with a waste heat recovery device that incorporates a recovery device that recovers external waste heat that effectively uses exhaust heat supplied from the outside to improve efficiency It is.
従来から、二重効用形吸収式冷温水機として、図5に例示したようなものが知られている(図5は一例として、冷水を得る場合を示している)。この吸収式冷温水機は、吸収液(例えば、臭化リチウム水溶液)が吸収器aから低温再生器cを経て高温再生器eに流されるというリバースサイクルを構成している。この吸収式冷温水機における吸収サイクルを説明すると、まず、吸収器aで多量の冷媒蒸気を吸収して濃度が薄められた吸収液(稀吸収液)が吸収器aから低温熱交換器bに送給され、この低温熱交換器bにより加熱された後に低温再生器cに送給される。前記稀吸収液は、この低温再生器cにおいて低温再生され、吸収している冷媒の一部を放出し濃度がその分高くなって中間濃度の吸収液(中間吸収液)となる。次に、この中間吸収液は、低温再生器cから高温熱交換器dに送給され、この高温熱交換器dにより加熱された後に高温再生器eに送給される。 2. Description of the Related Art Conventionally, a double-effect absorption chiller / heater as illustrated in FIG. 5 is known (FIG. 5 shows an example in which cold water is obtained). This absorption chiller / heater constitutes a reverse cycle in which an absorbing liquid (for example, an aqueous solution of lithium bromide) flows from the absorber a to the high temperature regenerator e through the low temperature regenerator c. The absorption cycle in this absorption chiller / heater will be described. First, an absorption liquid (a rare absorption liquid) whose concentration has been reduced by absorbing a large amount of refrigerant vapor in the absorber a is transferred from the absorber a to the low-temperature heat exchanger b. After being fed and heated by the low-temperature heat exchanger b, it is fed to the low-temperature regenerator c. The rare absorbent is regenerated at a low temperature in the low temperature regenerator c, and a part of the absorbed refrigerant is released, and the concentration is increased by that amount to become an intermediate concentration absorbent (intermediate absorbent). Next, the intermediate absorbent is fed from the low temperature regenerator c to the high temperature heat exchanger d, heated by the high temperature heat exchanger d, and then fed to the high temperature regenerator e.
前記中間吸収液は、この高温再生器eにおいて高温再生され、吸収している冷媒(例えば、水蒸気)の一部を放出し濃度がさらに高くなって高濃度の吸収液(濃吸収液)となる。そして、この濃吸収液が前記高温熱交換器dの加熱側に前記中間吸収液を加熱する加熱源として戻され、さらに、低温熱交換器bの加熱側に前記稀吸収液を加熱する加熱源として戻された後、前記吸収器aに帰還する。この帰還した濃吸収液は吸収器aにおいて伝熱管上に散布され、冷却水により冷却されながら再び冷媒蒸気を吸収して前記稀吸収液となる。 The intermediate absorption liquid is regenerated at a high temperature in the high temperature regenerator e, and a part of the absorbed refrigerant (for example, water vapor) is released to further increase the concentration to become a high concentration absorption liquid (concentrated absorption liquid). . The concentrated absorbent is returned to the heating side of the high temperature heat exchanger d as a heating source for heating the intermediate absorbent, and further the heating source for heating the rare absorbent on the heating side of the low temperature heat exchanger b. Is returned to the absorber a. The returned concentrated absorbing liquid is sprayed on the heat transfer tube in the absorber a and absorbs the refrigerant vapor again while being cooled by the cooling water to become the rare absorbing liquid.
このような二重効用形吸収式冷温水機においては、前記高温再生器eには蒸気ボイラfから高温の蒸気(スチーム)が加熱源として供給されるようになっており、この蒸気により中間吸収液が加熱されて吸収していた冷媒が放出され、この放出された冷媒蒸気は、低温再生器cにこの低温再生器cでの加熱源として利用された後、凝縮器gに戻されて凝縮する。凝縮器gからの冷媒液(例えば、水)は蒸発器hに入り、この凝縮した冷媒液が冷媒ポンプにより蒸発器hの伝熱管(水が流通している)に散布され蒸発潜熱により冷却されて冷水が得られる。
また、低温再生器cからの吸収液配管iと、高温熱交換器dと低温熱交換器bとの間の加熱側の吸収液配管jとを接続するバイパス管kが設けられ、低温再生器cを出て高温再生器eへ供給される中間濃縮吸収液の一部を、吸収器aへ戻る濃吸収液配管にバイパスさせるように構成されている。
なお、蒸気ボイラfを設ける代りに、高温再生器eに燃焼装置を設け、この燃焼装置からの高温燃焼排ガスにより高温再生器内の吸収液を加熱して加熱・濃縮するように構成された二重効用形吸収式冷温水機もよく知られている。
In such a double-effect absorption chiller / heater, high-temperature steam (steam) is supplied to the high-temperature regenerator e from a steam boiler f as a heating source, and intermediate absorption is performed by this steam. The absorbed refrigerant is released by heating the liquid, and the released refrigerant vapor is used by the low temperature regenerator c as a heating source in the low temperature regenerator c, and then returned to the condenser g for condensation. To do. The refrigerant liquid (for example, water) from the condenser g enters the evaporator h, and the condensed refrigerant liquid is sprayed on the heat transfer pipe (water is circulating) of the evaporator h by a refrigerant pump and cooled by latent heat of evaporation. Cold water is obtained.
In addition, a bypass pipe k is provided to connect the absorption liquid pipe i from the low temperature regenerator c and the heating side absorption liquid pipe j between the high temperature heat exchanger d and the low temperature heat exchanger b. A part of the intermediate concentrated absorbent that exits c and is supplied to the high-temperature regenerator e is bypassed to the concentrated absorbent pipe that returns to the absorber a.
Instead of providing the steam boiler f, a high temperature regenerator e is provided with a combustion device, and the absorption liquid in the high temperature regenerator is heated and concentrated by heating the high temperature combustion exhaust gas from the combustion device. Heavy-effect absorption cold / hot water machines are also well known.
従来、二重効用形吸収式冷温水機、外部排熱を利用する吸収式冷温水機などは既に知られているが、外部排熱を熱回収した後の排熱温水温度の低下により、その他の機器(排温水の戻り側)に与える影響を考慮した吸収式冷温水機、装置は開発されていない。 Conventionally, double-effect absorption chiller water heaters, absorption chiller water heaters that use external waste heat, etc. are already known, but due to a decrease in exhaust heat hot water temperature after heat recovery of external waste heat, other An absorption chiller / heater that takes into account the impact on the equipment (return side of the waste water) has not been developed.
冷房負荷が低く高級な加熱用燃焼エネルギーの使用量制御をしている場合には、吸収式冷温水機の運転サイクル中の温度レベルが低くなる。この時、外部排熱を供給し吸収式運転サイクルの熱源として利用すると、運転サイクルの温度が低いので、外部排熱の熱回収量が増え熱の有効利用の観点からは好ましい効果が得られる。この時、排熱温水(排温水)の出口温度は運転サイクルの温度低下に対応して低下し、熱回収量は増加する。
しかし、熱回収量が増えることは熱の有効利用の観点から好ましいことであるが、戻りの排熱温水温度が低下することは、他の機器に悪影響を与える場合がある。特に、外部の熱源システム機器がガスエンジンであり、このガスエンジンのジャケット冷却水の熱を排熱源として利用している場合には、ガスエンジンの効率を低下させる原因になる。
When the use amount of the combustion energy for heating is low and the cooling load is low, the temperature level during the operation cycle of the absorption chiller / heater becomes low. At this time, if external exhaust heat is supplied and used as a heat source for an absorption operation cycle, the temperature of the operation cycle is low, so that the heat recovery amount of the external exhaust heat is increased, and a favorable effect is obtained from the viewpoint of effective use of heat. At this time, the outlet temperature of the exhaust heat hot water (exhaust hot water) decreases corresponding to the temperature decrease of the operation cycle, and the heat recovery amount increases.
However, an increase in the amount of heat recovery is preferable from the viewpoint of effective use of heat, but a decrease in the temperature of the return exhaust heat hot water may adversely affect other devices. In particular, when the external heat source system device is a gas engine and the heat of the jacket cooling water of the gas engine is used as an exhaust heat source, the efficiency of the gas engine is reduced.
その一方、冷房負荷が極端に低下して排熱を回収する必要がなくなった場合には、排熱回収熱交換器をバイパスさせて温水をガスエンジンのジャケット側に戻すため、戻りの温水温度が高くなり、ガスエンジンの冷却が十分行われなくなり、効率の低下やオーバーヒートなどの問題が生じる。
そのため、ガスエンジンと組み合わせる排熱利用のシステム・装置では、排熱を回収する熱回収熱交換器の入口側の温度と流量を制御する制御装置と同時に、ガスエンジンに戻す戻りの温水温度についても何らかの制御を行って、排熱回収量の調節・制御をする制御装置が必要になり、排熱温水温度を排熱回収熱交換器の出入口で制御する複雑な制御装置が必要になる。
吸収式冷温水機における冷房負荷及び、ガスエンジンなどの外部の熱源システム機器の発電負荷と、冷温水機への排熱温水温度、冷温水機における燃料削減率への影響について、大まかにまとめると、表1のようになる。
On the other hand, when the cooling load is extremely reduced and it is no longer necessary to recover the exhaust heat, the exhaust water recovery heat exchanger is bypassed to return the hot water to the jacket side of the gas engine. The gas engine is not sufficiently cooled, and problems such as a reduction in efficiency and overheating occur.
For this reason, in exhaust heat utilization systems and devices combined with gas engines, the temperature of the hot water returned to the gas engine is also controlled at the same time as the control device for controlling the temperature and flow rate on the inlet side of the heat recovery heat exchanger that recovers exhaust heat. A control device that adjusts and controls the exhaust heat recovery amount by performing some control is required, and a complicated control device that controls the exhaust heat hot water temperature at the entrance and exit of the exhaust heat recovery heat exchanger is required.
The air conditioning load in the absorption chiller / heater, the power generation load of external heat source system equipment such as a gas engine, the exhaust heat / hot water temperature in the chiller / heater, and the fuel reduction rate in the chiller / heater can be summarized roughly. As shown in Table 1.
この表1に示されるように、冷房負荷と発電負荷のバランスが変わると運転条件が変わり、特に吸収式冷温水機側の内部を循環する吸収液の温度条件が変わる。そのため、一部の温度条件だけを監視する制御では、効率の良い熱回収と吸収式冷温水機の省エネルギー運転を行い難いことが分かる。 As shown in Table 1, when the balance between the cooling load and the power generation load is changed, the operating conditions are changed, and in particular, the temperature condition of the absorbing liquid circulating inside the absorption chiller / heater side is changed. Therefore, it can be seen that it is difficult to perform efficient heat recovery and energy-saving operation of the absorption chiller / heater by controlling only a part of the temperature conditions.
従来、二重効用形吸収式冷温水機としては、冷水出口温度又は冷水入口温度を検知して、加熱量を制御する制御であって、排熱温水が排熱回収器へ入る際の入口温度を制御して吸収式冷温水機の熱回収量を制御する制御方式が発明されている(例えば、特許文献1、特許文献2参照)。しかし、吸収式冷温水機の負荷制御及び排熱回収制御に加えて、戻りの温度を検知して排熱を発生する設備側(例えば、ガスエンジン)への影響を考慮した制御回路(方式)は提案されていない。
Conventionally, as a double-effect absorption chiller / heater, the control is performed by detecting the chilled water outlet temperature or the chilled water inlet temperature to control the heating amount, and the inlet temperature when the exhaust hot water enters the exhaust heat recovery device. A control system has been invented for controlling the heat recovery amount of the absorption chiller / heater by controlling the temperature (for example, see
また、二重効用形吸収式冷温水機として、吸収器、低温再生器、高温再生器、凝縮器、蒸発器、前記吸収器へ戻される吸収液が熱源として導入され吸収器から導出された吸収液を予熱する低温熱交換器、高温再生器から導出された吸収液が熱源として導入され高温再生器に向かう吸収液を予熱する高温熱交換器、系外より導入された外部生成温水と吸収器から低温熱交換器を経て導出された吸収液の全部又は一部とを熱交換させる温水熱交換器が備えられた吸収式冷温水機において、吸収器から導出された吸収液を低温熱交換器を経て温水熱交換器に向かわせる管路に、低温熱交換器を迂回するバイパス管路が設けられ、低温熱交換器を介して吸収液を吸収器へ戻す管路に、蒸発器へ向かうイクステンション管路が接続された構成のものが知られている(例えば、特許文献3参照)。
解決しようとする問題点は、外部排熱を熱回収した後の排熱温水温度の低下により、排温水戻り側の外部熱源機器(例えば、コージェネレーションシステムではガスエンジンなど)に与える影響が大きく、この外部熱源機器の効率が低下する点である。本発明の目的は従来の二重効用形吸収式冷温水機よりもさらに高効率で、かつ省エネルギーを図ることができる二重効用形吸収式冷温水機、詳しくは、排熱回収器を設け、高温再生器でのガス量を削減する二重効用機において、排熱を最大限利用することができ、かつ、外部熱源機器への影響を小さくすることができる、制御システムを備えた排熱回収器を有する二重効用形吸収式冷温水機を得ることにある。 The problem to be solved is that it has a large effect on the external heat source equipment (for example, gas engine in the cogeneration system) due to the decrease in the exhaust heat hot water temperature after recovering the external exhaust heat. The efficiency of the external heat source device is reduced. The object of the present invention is a double-effect absorption chiller / heater that is more efficient than conventional double-effect absorption chiller / heaters, and that can save energy. Exhaust heat recovery with a control system that can maximize the use of exhaust heat and reduce the impact on external heat source equipment in a dual effect machine that reduces the amount of gas in a high-temperature regenerator It is to obtain a double-effect absorption chiller / heater having a vessel.
外部排熱を利用して熱回収する吸収式冷温水機の制御では、通常は、吸収式冷温水機の冷温水出口温度を検出して外部から供給される排熱量の制御と、冷温水機自身が持つ燃焼機器の燃焼量の制御が行われる。すなわち、冷房負荷が高い時は排熱を全量回収し、燃焼量を増減して冷温水出口温度が一定になるように制御し、冷暖房負荷が減り排熱だけで運転が可能になると、燃焼機器への燃料供給を遮断して排熱だけを熱源として冷暖房運転を行う。
吸収式冷温水機単体で見ると、通常の冷暖房負荷の増減に対応する制御で何ら問題がない。しかし、排熱を発生し、この排熱を吸収式冷温水機に供給する設備側の負荷、すなわち、発電機とセットで運転しているガスエンジンなど排熱源の負荷の影響も、同時に検討しないと最適な制御とは言えず、運転も不安定なものになりやすい。
しかしながら、これらの点を考慮し、さらに効率を上げて省エネルギー化を進めた二重効用形吸収式冷温水機及びその制御装置は提案されていない。
In the control of an absorption chiller / heater that recovers heat using external waste heat, normally, the control of the amount of exhaust heat supplied from the outside by detecting the chilled / hot water outlet temperature of the absorption chiller / heater, and the chiller / heater Control of the amount of combustion of the own combustion equipment. In other words, when the cooling load is high, all exhaust heat is recovered, and the amount of combustion is increased and decreased to control the chilled water outlet temperature to be constant. Shut off the fuel supply to the plant and perform air conditioning operation using only the exhaust heat as the heat source.
From the standpoint of the absorption chiller / heater unit, there is no problem with the control corresponding to the increase / decrease of the normal cooling / heating load. However, the load on the facility side that generates waste heat and supplies this waste heat to the absorption chiller / heater, that is, the impact of the waste heat source such as a gas engine that is operating in combination with the generator, is not considered at the same time. However, it cannot be said to be optimal control, and driving tends to be unstable.
However, in consideration of these points, a double-effect absorption chiller / heater and a control device therefor have not been proposed which further improve efficiency and save energy.
本発明は外部排熱回収器を組み込んだ二重効用形吸収式冷温水機において、外部排熱を有効に回収し、かつ、戻りの排熱温水の温度低下によるその他の熱源機器(コージェネレーションシステムの例ではガスエンジンなど)への影響を減らすように考慮したもので、従来から知られている熱回収方法に加えて、排熱回収時の制御性と回収効率を高め、さらに、排温水の戻り側の機器(排温水を発生する熱源機器でもあるガスエンジンなどの機器)の効率を高めるよう配慮した排熱回収器を設け、排熱供給側に熱源機への影響を考慮して、かつ二重効用機の効率を高めるように、排熱回収量のピークカット制御、冷媒温度制御を行うようにしたことを最も主要な特徴としている。 The present invention is a dual-effect absorption chiller / heater incorporating an external exhaust heat recovery device, which effectively recovers external exhaust heat, and other heat source equipment (cogeneration system) due to a decrease in the temperature of returned exhaust heat hot water. In this example, in order to reduce the impact on gas engines, etc., in addition to the conventionally known heat recovery methods, control and recovery efficiency during exhaust heat recovery are improved, Install a waste heat recovery device that takes into account the efficiency of the return side equipment (equipment such as a gas engine that is also a heat source device that generates waste hot water), and consider the effect on the heat source equipment on the waste heat supply side, and The most important feature is that peak cut control of the exhaust heat recovery amount and refrigerant temperature control are performed so as to increase the efficiency of the double effect machine.
本発明の排熱回収器を有する二重効用形吸収式冷温水機は、吸収器、低温再生器、高温再生器、蒸発器、凝縮器、吸収液熱交換器、吸収液ポンプ、冷媒ポンプなどの機器を配管接続して吸収液流路、冷媒流路及び冷媒蒸気流路を形成し、吸収器の吸収液を低温再生器へ導き、ついで低温再生器の吸収液を高温再生器へ導くようにしたリバースフロー式の二重効用形吸収式冷温水機において、外部からの排熱を回収し加熱源として利用し、吸収液を加熱し吸収液に吸収されている冷媒を加熱蒸発させて吸収液の濃度を上げるための排熱回収器を、低温再生器の手前に設け、低温再生器で吸収液を加熱し吸収液の濃度を上げる加熱熱量の割合を、外部から回収する排熱量を制御して減少させることにより、低温再生器の熱交換量を低減させて、高温再生器で発生させ吸収液を加熱・濃縮し低温再生器の加熱源となる冷媒蒸気の発生量を減らしても冷暖房負荷変化に応じた排熱回収運転ができるようにして、高温再生器での加熱に使用する高級な加熱用燃料の消費量を減らし、省エネルギーを図るようにしたことを特徴としている。 The double-effect absorption chiller / heater having the exhaust heat recovery device of the present invention includes an absorber, a low-temperature regenerator, a high-temperature regenerator, an evaporator, a condenser, an absorption liquid heat exchanger, an absorption liquid pump, a refrigerant pump, etc. The pipes are connected to form an absorption liquid flow path, a refrigerant flow path, and a refrigerant vapor flow path so that the absorption liquid of the absorber is guided to the low temperature regenerator, and then the absorption liquid of the low temperature regenerator is guided to the high temperature regenerator. In reverse flow type dual-effect absorption chiller / heater, the exhaust heat from the outside is recovered and used as a heating source, and the absorption liquid is heated and evaporated to absorb the refrigerant absorbed in the absorption liquid. An exhaust heat recovery unit is installed in front of the low-temperature regenerator to increase the concentration of the liquid, and the amount of heating heat that raises the concentration of the absorption liquid by heating the absorption liquid with the low-temperature regenerator is controlled by the amount of exhaust heat recovered from the outside. Reducing the amount of heat exchange in the low-temperature regenerator. Even if the amount of refrigerant vapor generated as a heating source of the low-temperature regenerator is reduced by heating and concentrating the absorption liquid generated by the regenerator, the exhaust heat recovery operation can be performed according to changes in the heating and cooling load, and the high-temperature regenerator It is characterized by reducing the consumption of high-grade heating fuel used for heating and saving energy.
この二重効用形吸収式冷温水機において、低温再生器で吸収液を加熱し吸収液の濃度を上げる加熱熱量の割合を、外部から回収する排熱量を制御して、冷暖房負荷が100〜0%の範囲で変動する場合に、15〜100%減らすように構成されている。
また、排熱回収器を設けない場合の二重効用形吸収式冷温水機に比べ、排熱回収器を設けることにより高温再生器での加熱に使用する高級な加熱用燃料の消費量を定格負荷運転時で15〜30%減らし、低負荷(部分負荷)運転時には15〜100%減らして、省エネルギーを図るようにしている。また、外部排熱を回収して排熱回収器の熱源とするための排温水制御弁、排温水管路及び排温水制御器が設けられている。
In this double-effect absorption chiller / heater, the ratio of heating heat that heats the absorbent with a low-temperature regenerator and raises the concentration of the absorbent is controlled by controlling the amount of exhaust heat recovered from the outside, and the heating / cooling load is 100-0. %, It is configured to reduce by 15 to 100%.
In addition, compared to the double-effect absorption chiller / heater without a waste heat recovery device, the consumption of high-grade heating fuel used for heating in a high-temperature regenerator is rated by providing a waste heat recovery device. Energy saving is achieved by reducing 15-30% during load operation and 15-100% during low load (partial load) operation. In addition, an exhaust hot water control valve, an exhaust hot water pipe, and an exhaust hot water controller for recovering external exhaust heat and using it as a heat source for the exhaust heat recovery device are provided.
また、排熱回収器入口の排温水温度が排熱回収器内で加熱させる吸収液温度より所定の温度(例えばプラス3℃)高い時に、排温水制御弁を制御して排温水が排熱回収器に流入し、吸収液を加熱するように構成されている。
さらに、排温水の温度が、外部排熱を発生する熱源となっている熱源システム機器(例えばガスエンジン)の運転条件及び効率に悪影響を与えない温度(例えば60℃以上)になるように、戻りの排温水温度を三方弁開度上限ピークカット制御を用いて制御し、排温水が排熱回収器に所定量流入し、吸収液を加熱するように構成されている。また、排熱回収器入口に排熱温水の流量制御を行う三方弁を設け、この三方弁の上限ピークカット制御は比例制御式とされている。
In addition, when the temperature of the exhaust water at the inlet of the exhaust heat recovery device is higher than the temperature of the absorption liquid heated in the exhaust heat recovery device by a predetermined temperature (for example, plus 3 ° C), the exhaust heat water is recovered by controlling the exhaust water control valve. It is configured to flow into the vessel and heat the absorption liquid.
Further, the temperature of the exhaust water is returned so that it does not adversely affect the operating conditions and efficiency of the heat source system equipment (for example, a gas engine) that is a heat source for generating external exhaust heat (for example, 60 ° C. or more). The exhaust warm water temperature is controlled using the three-way valve opening upper limit peak cut control, and the exhaust warm water flows into the exhaust heat recovery device by a predetermined amount to heat the absorption liquid. Further, a three-way valve for controlling the flow rate of the exhaust heat hot water is provided at the exhaust heat recovery device inlet, and the upper limit peak cut control of the three-way valve is a proportional control type.
また、排熱回収器へ入る排温水流量制御を行い、排温水のピークカット制御を行った場合で、冷暖房負荷の要求に対し加熱量が不足した場合には、燃焼量を増やし制御するように構成されている。また、負荷制御演算により、負荷に比べて加熱量が少ない場合は、燃焼制御量を増やして排温水量の不足分を補正する制御を行うように構成されている。また、外部排熱による加熱がない場合には、起動時に燃焼制御運転から運転に入るように、運転モードの切替を行えるように選択仕様を設けた構成となっている。
吸収器の吸収液ポンプ出口と蒸発器とを、流量調節弁を有する吸収液分配管を介して接続し、蒸発器の冷水出口管又は冷水入口管に設けた温度センサーとこの流量調節弁とを制御装置(制御盤)を介して、冷水温度センサーで検出された温度により蒸発器に注入させる吸収液量を制御可能とし、さらに、蒸発器冷媒溜りに溜まった冷媒と流入した吸収液を、蒸発器に設けたオーバーフロー用堰又はオーバーフロー管から吸収器液溜りに流下させるか、又は戻すように構成されている。
In addition, when the flow rate control of the exhaust heat water entering the exhaust heat recovery unit is performed and the peak cut control of the exhaust heat water is performed, and the heating amount is insufficient for the demand of the air conditioning load, the combustion amount is increased and controlled. It is configured. Further, when the amount of heating is smaller than the load by the load control calculation, control is performed to increase the combustion control amount and correct the shortage of the exhaust hot water amount. Further, when there is no heating due to external exhaust heat, a selection specification is provided so that the operation mode can be switched so that the operation is started from the combustion control operation at the time of startup.
The absorption pump outlet of the absorber and the evaporator are connected via an absorption liquid distribution pipe having a flow control valve, and the temperature sensor provided in the cold water outlet pipe or the cold water inlet pipe of the evaporator and the flow control valve are connected. Via the control device (control panel), the amount of absorbed liquid injected into the evaporator can be controlled by the temperature detected by the cold water temperature sensor, and the refrigerant accumulated in the evaporator refrigerant pool and the absorbed liquid flowing in are evaporated. An overflow weir or overflow pipe provided in the vessel is configured to flow down or return to the absorber liquid reservoir.
さらに、蒸発器で散布する冷媒温度、又は蒸発器冷媒溜りの冷媒温度及び冷水出口温度を監視し、吸収液注入前の冷媒温度と吸収液注入後の冷媒温度又は冷水出口温度のどちらか一方又は両方の温度差を比較し、温度差(Δt℃)が設定値以上にならないように注入量を吸収液流量調節弁で制御するように構成されている。
また、排熱回収器に排温水を流し、排熱を回収する燃焼熱量削減運転中で、かつ、高温再生器の燃焼装置で追い焚き燃焼運転をする必要がない部分負荷運転時は、排熱回収量をできるだけ多くするように、吸収液ポンプの運転は定格運転にして吸収液循環量を増やすように制御し、負荷が増えて追い焚き燃焼運転が必要になった場合には負荷に応じて効率良く運転する吸収液循環量となるように、吸収液ポンプの吐出量を制御するように構成されている。
また、排熱回収器に排温水を流し、排熱を回収する燃焼熱量削減運転中で、かつ、高温再生器の燃焼装置で追い焚き燃焼運転をする部分負荷運転時、負荷変動などにより高温再生器内の溶液液面が変動して空缶運転や液面低による安全停止を起さないように、吸収液ポンプの吐出量を制御して高温再生器への吸収液循環量を確保し、連続して安定した運転が出きるように構成されている。
Furthermore, the refrigerant temperature sprayed by the evaporator, the refrigerant temperature in the evaporator refrigerant pool and the cold water outlet temperature are monitored, and either the refrigerant temperature before the absorption liquid injection and the refrigerant temperature after the absorption liquid injection or the cold water outlet temperature or Both the temperature differences are compared, and the injection amount is controlled by the absorption liquid flow rate control valve so that the temperature difference (Δt ° C.) does not exceed the set value.
In addition, when exhaust heat is supplied to the exhaust heat recovery unit and exhaust heat is recovered, the exhaust heat is exhausted during partial load operation that does not require reheating combustion operation with the combustion device of the high temperature regenerator. In order to increase the recovery amount as much as possible, the operation of the absorption pump is controlled at the rated operation to increase the circulation rate of the absorption liquid, and if the load increases and the reheating combustion operation becomes necessary, the operation depends on the load. The discharge amount of the absorption liquid pump is controlled so that the absorption liquid circulation amount operates efficiently.
Also, during the partial load operation in which the exhaust heat is passed through the exhaust heat recovery device and the exhaust heat is recovered to reduce the heat of combustion and the combustion device of the high temperature regenerator is used for the partial load operation, the high temperature regeneration is performed due to load fluctuations, etc. In order to prevent the liquid level in the chamber from fluctuating and causing a safety stop due to empty can operation or low liquid level, the discharge rate of the absorption pump is controlled to ensure the amount of absorption liquid circulating to the high temperature regenerator, It is configured so that stable operation can be continuously performed.
排熱回収器が、チューブ内を加熱流体である排温水が流れ、チューブ外を稀吸収液が流れるプール沸騰方式のシェル・アンド・チューブ型熱交換器であるように構成されている。
この場合、プール沸騰方式のシェル・アンド・チューブ型熱交換器の稀吸収液流出口が、シェル・アンド・チューブ型熱交換器を構成している伝熱管群の最上段近傍に設けられ、前記伝熱管群の最上段とその下の段の伝熱管の配置が、吸収液に添加されている表面活性剤の前記稀吸収液流出口からの流出を阻害しないようになっている。
また、排熱回収器の最上段とその下の段の伝熱管の配置が、碁盤目配列とされている。さらに、排熱回収器から低温再生器への冷媒蒸気ラインに、蒸発器の加熱側に接続する分岐ラインを設けるとともに、該分岐ラインに冷房用と暖房用とに切り替える冷暖切替手段を設け、該冷暖切替手段を暖房用に切り替えて前記排熱回収器からの冷媒蒸気を蒸発器に導いて、蒸発器内の伝熱管内を流れる温水を加熱するように構成されている。
The exhaust heat recovery unit is configured to be a pool boiling type shell-and-tube heat exchanger in which exhaust hot water that is a heating fluid flows inside the tube and a rare absorbing liquid flows outside the tube.
In this case, the rare absorption liquid outlet of the pool boiling type shell-and-tube heat exchanger is provided near the uppermost stage of the heat transfer tube group constituting the shell-and-tube heat exchanger, The arrangement of the heat transfer tubes at the uppermost stage and the lower stage of the heat transfer pipe group does not hinder the outflow of the surfactant added to the absorbent from the rare absorbent outlet.
In addition, the arrangement of the heat transfer tubes in the uppermost stage and the lower stage of the exhaust heat recovery unit is a grid arrangement. Further, the refrigerant vapor line from the exhaust heat recovery unit to the low-temperature regenerator is provided with a branch line connected to the heating side of the evaporator, and provided with cooling / heating switching means for switching between cooling and heating for the branch line, The cooling / heating switching means is switched to heating, and the refrigerant vapor from the exhaust heat recovery device is guided to the evaporator to heat the hot water flowing in the heat transfer pipe in the evaporator.
上記のように、外部から供給される排熱を有効に回収して省エネルギー化を図る二重効用形吸収式冷温水機において、この外部排熱を有効に回収し、かつ、排熱を発生する設備側への影響を無くす理想的な運転を可能とするために、吸収式冷温水機の冷水出口(入口)温度を検知して加熱量を制御する従来の負荷制御に加え、外部排熱をできるかぎり回収し、かつ、排熱を発生する設備側への影響を無くすように、排熱の戻り温度を外部負荷の変化により冷温水機を循環する吸収液温度の変化(高低)に応じて変化させながら制御するピークカット制御を行い、排熱回収量をより多く回収する効果と排熱回収制御装置の制御動作のハンチングを防止して安定した運転ができるように制御する排熱回収量制御回路と、冷水出口(入口)温度の下がり過ぎを防止するために、吸収液を蒸発器(冷媒溜り)へ注入させるよう接続する吸収液配管と、その配管途中に装備する吸収液制御弁を設ける。
この時、図2に示すように、蒸発器で散布する冷媒の温度又は冷水出口温度を監視し、吸収液注入前の冷媒温度と吸収液注入後の冷媒温度又は冷水出口温度どちらか一方又は両方の温度差を比較し、温度差(Δt℃)が設定値以上にならないように混入量を吸収液制御弁で制御する。注入する吸収液は、低温吸収液ポンプの吐出口から分岐した配管により導く。
As described above, in the dual-effect absorption chiller / heater that effectively recovers exhaust heat supplied from the outside to save energy, the external exhaust heat is effectively recovered and exhaust heat is generated. In addition to the conventional load control that detects the chilled water outlet (inlet) temperature of the absorption chiller / heater to control the heating amount in order to eliminate the influence on the equipment side, external exhaust heat is reduced. In order to recover as much as possible and eliminate the influence on the equipment that generates exhaust heat, the return temperature of the exhaust heat depends on the change (high or low) of the absorption liquid temperature circulating through the chiller / heater by changing the external load Exhaust heat recovery amount control that performs peak cut control that is controlled while changing, and controls so that the effect of recovering more exhaust heat recovery amount and hunting of the control operation of the exhaust heat recovery control device can be prevented to enable stable operation Under the circuit and cold water outlet (inlet) temperature Ri only to prevent, providing the absorption liquid pipe connected so as to inject the absorbing liquid to the evaporator (coolant reservoir), the absorption liquid control valve equipped in the middle thereof piping.
At this time, as shown in FIG. 2, the temperature of the refrigerant sprayed by the evaporator or the cold water outlet temperature is monitored, and the refrigerant temperature before the absorption liquid injection, the refrigerant temperature after the absorption liquid injection or the cold water outlet temperature, or both And the mixing amount is controlled by the absorbing liquid control valve so that the temperature difference (Δt ° C.) does not exceed the set value. The absorption liquid to be injected is guided by a pipe branched from the discharge port of the low temperature absorption liquid pump.
本発明はつぎのような効果を奏する。
(1) 二重効用形吸収式冷温水機において、排熱回収器における排熱回収量のピークカット制御及び冷媒温度制御を行うことにより、排熱回収量を増やし効率を上げることができる。
(2) 吸収器からの吸収液の一部を冷媒溜りの冷媒に混入させること、及び冷媒と吸収液を吸収器の吸収液溜りにこぼす(戻す)ことにより、冷水出口(入口)温度の下がり過ぎと安全装置の作動を防止し、かつ、排温水を流し続けることにより排温水の戻り温度が安定してガスエンジンなどの外部の熱源機器側への悪影響を軽減することができる。
(3) 排温水と熱交換する吸収液は排温水の熱により吸収液温度が下がり過ぎることがなく、運転を継続中に負荷が増加した時の立ち上がりが早く、燃料を燃焼させる追い焚きも低減させることができるので、排熱を有効に利用して省エネルギー効果を上げることができる。
The present invention has the following effects.
(1) In the dual effect absorption chiller / heater, by performing peak cut control and refrigerant temperature control of the exhaust heat recovery amount in the exhaust heat recovery device, the exhaust heat recovery amount can be increased and the efficiency can be increased.
(2) Decreasing the temperature of the chilled water outlet (inlet) by mixing a part of the absorption liquid from the absorber into the refrigerant in the refrigerant pool and spilling (returning) the refrigerant and the absorption liquid into the absorption liquid reservoir of the absorber. If the temperature is too high, the operation of the safety device can be prevented, and the return temperature of the exhaust water can be stabilized by continuously flowing the exhaust water, thereby reducing the adverse effect on the external heat source equipment such as the gas engine.
(3) Absorption liquid that exchanges heat with waste water does not drop too much due to the heat of waste water, rises quickly when the load increases during operation, and reduces the amount of fuel that burns up. Therefore, it is possible to increase the energy saving effect by effectively using the exhaust heat.
排熱回収器を備えた二重効用形吸収式冷温水機において、排熱を最大限利用し、効率を高めるという目的を、排熱回収量のピークカット制御、冷媒温度制御を行なう構成とすることにより実現した。 In a dual-effect absorption chiller / heater equipped with an exhaust heat recovery unit, it is configured to perform peak cut control of exhaust heat recovery amount and refrigerant temperature control for the purpose of maximizing exhaust heat and increasing efficiency. It was realized.
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
図1は、本発明の実施の第1形態による吸収式冷温水機を示している。本実施形態は、吸収器10、低温吸収液ポンプ12、低温熱交換器14、低温再生器16、高温吸収液ポンプ18、高温熱交換器20、高温再生器22、凝縮器24、蒸発器26、冷媒ポンプ28及びこれらの機器を接続する吸収液配管、冷媒配管等を構成要素とするリバースサイクル式の二重効用形吸収式冷凍機において、吸収液の流路の低温再生器16の上流側に、後述の排熱再生器30を設けたものである。なお、図1において、実線に付した矢印は吸収液、冷媒液又は水の流れ方向を示し、破線に付した矢印は冷媒蒸気、又は冷媒蒸気と凝縮冷媒(冷媒ドレン)との混合物の流れ方向を示す。
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
FIG. 1 shows an absorption chiller / heater according to a first embodiment of the present invention. In this embodiment, the
32はバイパス管で、低温再生器16からの吸収液の一部を高温熱交換器20からの戻り濃吸収液配管にバイパスさせるためのものである。34は冷温水ポンプ、36は冷却水ポンプ、38は第一冷暖切替弁である。さらに、低温吸収液ポンプ12の出口管は分岐し、一方の分岐吸収液管40は、蒸発器26の冷媒液溜り42に接続されている。この分岐吸収液管40には吸収液流量調節弁44が設けられ、この弁44は運転制御・安全制御用運転を行うための吸収式冷温水機運転・制御盤46に接続されている。
32 is a bypass pipe for bypassing a part of the absorbent from the
低温吸収液ポンプ12からの他方の分岐吸収液管48は低温熱交換器14に接続され、吸収液はこの低温熱交換器14で加熱された後、前述の排熱回収器30に導入される。この排熱回収器30には、ガスエンジン、ガスタービン、焼却炉などの外部の熱源機器の排熱により発生させられた排温水が熱源として供給されるように構成されている。
そして、排温水入口管50及び排温水出口管52には、それぞれ温水温度センサー54、56が設けられ、これらのセンサー54、56と運転・制御盤46とが接続されている。また、排水温度入口管50又は/及び排水温度出口管52に、例えば、三方制御弁である排温水流量制御弁58が設けられ、この制御弁58と運転・制御盤46とが接続されている。さらに、排熱回収器30の入口の吸収液管60には吸収液温度センサー62が設けられ、この温度センサー62と運転・制御盤46とが接続されている。64は第二冷暖切替弁、66は蒸発器26の冷媒液溜り42に設けられたオーバーフロー用堰である。なお、堰の代りにオーバーフロー管を用いることも可能である。
The other branched
The exhaust hot
つぎに、上記のように構成された吸収式冷温水機において、吸収液の循環サイクルについて順に説明する。まず、吸収器10で多量の冷媒蒸気を吸収して濃度が薄められた稀吸収液の一部が、吸収器10から低温熱交換器14に送給され、この低温熱交換器14により加熱された後に、排熱回収器30に導入される。吸収液の残部は蒸発器26の冷媒液溜り42に送給される。排熱回収器30に供給された稀吸収は、排温水により加熱されて再生され、吸収している冷媒の一部を放出し濃度がその分高くなって、吸収液管68を介して低温再生器16へ送られる。排熱回収器30からの冷媒蒸気は吸収液を含み、冷媒蒸気管70、72を介して低温再生器16及び蒸発器26へ送られる。蒸発器への冷媒蒸気管72には前記の第二冷暖切替弁64が設けられている。
Next, in the absorption chiller / heater configured as described above, the absorption liquid circulation cycle will be described in order. First, a part of the rare absorbent whose concentration is reduced by absorbing a large amount of refrigerant vapor in the
低温再生器16において低温再生された中間濃縮吸収液の大部分は、低温再生器16から高温吸収液ポンプ18によって高温熱交換器20に送給され、この高温熱交換器20により加熱された後に高温再生器22に送給される。この中間濃縮吸収液は、この高温再生器22において再生され、吸収している冷媒の一部を放出し濃度がさらに高くなって高濃度の濃吸収液となる。
低温再生器16からの中間濃縮吸収液の残部は、吸収器10へ戻る濃吸収液配管にバイパス管32を経てバイパス供給される。このように、低温再生器16からの吸収液の一部又は全部は、高温吸収液ポンプ18により高温熱交換器20へ送給され、ここで、高温再生器22からの濃吸収液と間接的に熱交換して加熱された後、高温再生器22に供給される。
Most of the intermediate concentrated absorbent regenerated at low temperature in the
The remainder of the intermediate concentrated absorbent from the low-
高温再生器22において、ガス燃料などの燃料の燃焼熱により加熱濃縮された濃吸収液は、高温熱交換器20の加熱側に導入されて低温再生器16からの吸収液を加熱した後、低温熱交換器14の加熱側に導入される。低温再生器16からの吸収液の残部(零の場合もあり得る)は、バイパス管32を経て高温熱交換器20からの加熱側の吸収液配管の吸収液に合流する。
高温再生器22からの冷媒蒸気は冷媒蒸気管74を経て低温再生器16の伝熱管群に導入され、ここで吸収液を加熱濃縮させた後、冷媒ドレンは凝縮器24に導入される。
In the
The refrigerant vapor from the high-
低温再生器16からの冷媒蒸気は冷媒蒸気管76を経て凝縮器24へ導入され、低温再生器16からの冷媒ドレンは凝縮器24に導入される。なお、低温再生器16からの冷媒ドレンの一部が、第一冷暖切替弁38を開けることにより、蒸発器26へ供給されるように構成されている。
The refrigerant vapor from the
また、冷温水取出管に冷温水温度センサー78が設けられ、低温再生器16からの蒸気ドレン管に蒸気ドレン温度センサー(図示略)が設けられ、高温再生器22からの吸収液抜出導管80に吸収液温度センサー(図示略)が設けられ、冷媒蒸気管74に蒸気温度センサー(図示略)、圧力計(圧力センサー(図示略))が設けられている。蒸気ドレン温度センサー、蒸気温度センサー、蒸気圧力センサーは同時に設けるのではなく、どれか1つを選択して設ければよい。また、2つ以上設けてもよい。また、冷媒ポンプ28を有する冷媒ラインには冷媒温度センサー82が設けられ、冷温水の入口ラインには冷温水温度センサー84が設けられ、高温再生器22の排ガスラインには排ガス温度センサー86が設けられている。88は燃焼装置、90は燃料流量調節弁である。
Further, a cold / hot
また、前述のように、運転・制御盤46が設けられ、この運転・制御盤46と、吸収液流量調節弁44、温水温度センサー54、56、排温水流量制御弁58、吸収液温度センサー62、冷温水温度センサー78、84、冷媒温度センサー82、蒸気ドレン温度センサー、高温再生器の燃焼装置18又は燃料流量調節弁90、排ガス温度センサー86、吸収液抜出導管80の吸収液温度センサー、低温吸収液ポンプ12、高温吸収液ポンプ18、冷媒蒸気管74の蒸気温度センサー、圧力計(圧力センサー)とが連動接続されて、これら各部の温度、圧力、流量等が制御できるように構成されている。なお、蒸気ドレン温度センサー、蒸気温度センサー、蒸気圧力センサーは同時に設けるのではなく、どれか1つを選択して設ける。また、2つ以上設けてもよい。
Further, as described above, the operation /
このように構成された本発明の吸収冷温水機において、蒸発器26からの冷温水取出管に設けられた冷温水温度センサ78から負荷側の温度変化を検出し、その温度変化を運転・制御盤46からの制御信号を燃焼装置88又は燃料流量調節弁90に導入することにより高温再生器22に供給される燃料を増減し、燃焼装置88の燃焼量を増減して高温再生器22の効率的な運転を行う。
同時に各吸収液ポンプ12、18を運転して、水の含有割合の異なる吸収液を安定的に供給・循環して連続運転を行う。すなわち、低温再生器16から高温吸収液ポンプ18に流入する液の一部を分岐させてバイパス管32によりバイパスさせ、水・吸収液の供給・循環量を調整して、高温吸収液ポンプ18に掛かる動力負荷を調整して、省エネルギーと安定した連続運転を行う。
In the absorption chiller / heater of the present invention configured as described above, a temperature change on the load side is detected from a chilled / hot
At the same time, each of the absorption liquid pumps 12 and 18 is operated to stably supply and circulate absorption liquids having different water content ratios to perform continuous operation. That is, a part of the liquid flowing from the low-
また、負荷(冷温水)の温度を冷温水温度センサー78で検知し、運転・制御盤46を介して燃焼装置88の燃焼量(加熱量)を増減すると同時に、高温再生器22内部の蒸気圧が上昇し温度が上昇して、蒸気で加熱される高温再生器出口部の蒸気ドレン温度センサーで検出する温度が上昇した場合には、安全のため、運転・制御盤46を介して高温吸収液ポンプ18の回転数を上げて、液循環量を増加させてその結果蒸気圧を下げ、蒸気ドレン温度センサーで検出するドレン温度が低下すれば、運転・制御盤46を介して高温吸収液ポンプ18の回転数を下げて循環液量を減らして蒸気圧を上げ、連続運転に適した温度範囲と圧力範囲で安定した運転が継続できるようにする。高温吸収液ポンプ18と同時に低温吸収液ポンプ12を回転数制御すると、さらに対応速度を速める効果がある。なお、高温吸収液ポンプ18は、回転数を変えずに一定速度で運転しても、バイパス管32で流量が調整されるので、回転数を制御しなくても、問題は生じない。
Further, the temperature of the load (cold / hot water) is detected by the cold / hot
また、負荷(冷温水)の温度変化によって燃焼装置88の燃焼量(加熱量)を増減するのと同時に、高温再生器22内部の蒸気圧が上昇し温度が上昇して、高温再生器出口部の蒸気配管で検出される、蒸気圧又は温度センサーで検出する温度が上昇した場合には、安全のため高温吸収液ポンプの回転数を上げて、液循環量を増加させて、その結果蒸気圧を下げ、蒸気圧力又は温度が低下すれば、高温吸収液ポンプ18の回転数を下げて液循環量を減らして蒸気圧を上げ、連続運転に適した温度範囲と圧力範囲で安定した運転が継続できるようにする。高温吸収液ポンプ18の回転数を上げ下げするのと同時に、低温吸収液ポンプ12の回転数を上げ下げすると、応答速度が速まり制御性がよくなるという効果がある。
Moreover, simultaneously with increasing / decreasing the combustion amount (heating amount) of the
また、運転中に、高温再生器22への水・吸収液を供給する供給装置、例えば高温吸収液ポンプ18が故障して、供給量が減少した場合には、高温再生器22内部に保有する水・吸収液量が減少して連続運転に支障が生じるので、警報を発すると同時に燃焼を遮断して、安全停止動作に入るように制御する。
Further, when the supply device for supplying water / absorption liquid to the high-
また、運転中に、高温再生器22への水・吸収液供給量が減少した場合や、高温再生器22内部に保有する水・吸収液量が減少して各部の温度が安全運転の設定値を越えた場合には、高温再生器22又は高温再生器22の吸収液出口部に設けた吸収液温度センサーにより運転・制御盤46を介して警報を発すると同時に燃焼を遮断して、安全停止動作に入るように制御する。なお、図1に示すような、燃焼排ガスで吸収液を間接加熱する型式の高温再生器22の代りに貫流ボイラなどのボイラ型の高温再生器とすることも可能である。
Further, when the amount of water / absorbing liquid supplied to the
つぎに、制御フローについて、さらに詳しく説明する。まず、冷水出口(入口)温度Tc1検出→負荷制御演算→排温水入口温度Th1と排熱回収器入口吸収液温度Tw1の温度検出、排熱回収器出口温水温度Th2を検出する。
判定条件(1):Th1−Tw1>設定値のとき。
排温水の三方制御弁58の排熱回収器側への流量制御開度を全開とし、全量を排熱回収器30へ流す。制御弁58の開度100%を確認した後、冷水出口(入口)温度Tc1に応じて通常の燃焼制御を行う。ついで、負荷制御演算を行い、燃焼操作出力制御及び排温水の三方制御弁58の操作出力制御を行う。
Next, the control flow will be described in more detail. First, cold water outlet (inlet) temperature Tc1 detection → load control calculation → temperature detection of exhaust heat water inlet temperature Th1 and exhaust heat recovery device inlet absorption liquid temperature Tw1 and exhaust heat recovery device outlet hot water temperature Th2 are detected.
Determination condition (1): When Th1−Tw1> set value.
The flow control opening to the exhaust heat recovery device side of the three-
図3及び図4において、外部負荷の変化により冷温水機を循環する吸収液温度が変化し、排熱回収器30の入口の吸収液温度Tw1が変化して、排熱回収器30の出口温水温度Th2が変化した場合は、出口温度に応じて三方制御弁58の開度を制御して排熱回収器30へ流す排温水量とバイパスさせる排温水量とを変える。図4における92は伝熱管群である。そして、つぎの(a)、(b)、(c)の制御を行う。上記のように、出口温水温度Th2は固定値ではなく、可変値である。すなわち、図3において一例として示す、60℃から83℃の温度幅と温度は、例えば、65℃から80℃のように変えることがある。弁開度0%の時の60℃と、弁開度100%の時の83℃については、客先の要求により温度幅と出口温度の設定を変える可能性がある。
(a) 排温水出口温度により、排温水の三方制御弁58の上限ピークカット制御を行う。
(b) ピークカット値は排温水出口温度による比例制御とする。
(c) 排温水のピークカットによる熱量不足分は、燃焼量を増加・制御する。なお、負荷制御演算により、負荷に比べて加熱量が少ない場合は、燃焼制御量を増やして排温水量の不足分を補正する。
3 and 4, the absorption liquid temperature circulating through the chiller / heater changes due to a change in the external load, the absorption liquid temperature Tw1 at the inlet of the exhaust
(A) The upper-limit peak cut control of the three-
(B) The peak cut value is proportionally controlled by the exhaust water outlet temperature.
(C) The amount of heat shortage due to the peak cut of the waste water is increased and controlled. When the amount of heating is smaller than the load by the load control calculation, the combustion control amount is increased to correct the shortage of the exhaust hot water amount.
また、負荷に比べて加熱量が多い場合は、燃焼制御量を減らして冷温水機冷水出口(入口)温度Tc1が設定温度で安定するよう制御する。燃焼熱量をゼロにしても負荷より加熱量(排熱回収量)が多く、冷水出口(入口)温度Tc1が低下し設定温度に安定しない時は、吸収液を蒸発器26に流入させる吸収液流量調節弁44を開けて、吸収液を蒸発器26の冷媒溜り42に流入させ、蒸発器の冷媒溜り42に溜まった冷媒と流入した吸収液を、蒸発器に設けたオーバーフロー用堰66から吸収器10の吸収液溜り94にこぼす(戻す)。
吸収液流量調節弁44は、例えば5秒間開けた後全閉にして冷水温度Tc1を確認して再度弁44を開けるかどうかの判断をする、時間経過と冷水温度Tc1の変化を確認する機能を制御装置に組み込み、吸収液を必要以上に冷媒溜りに流入させない制御を含むため、冷水温度が上昇し過ぎることも防止している。そのため、外部熱源機器側の悪影響を軽減するとともに、冷房負荷側への悪影響も軽減することになりエネルギーロスを防止している。
Further, when the heating amount is larger than the load, the amount of combustion control is reduced and control is performed so that the chilled water cooler outlet (inlet) temperature Tc1 is stabilized at the set temperature. If the amount of heat (exhaust heat recovery amount) is larger than the load even if the combustion heat amount is zero, and the chilled water outlet (inlet) temperature Tc1 decreases and is not stable at the set temperature, the absorption liquid flow rate that causes the absorbent to flow into the evaporator The
For example, the absorption liquid flow
吸収液を冷媒溜り42の冷媒に混入させること、および冷媒と吸収液を吸収液溜り94にこぼす(戻す)ことにより、冷水出口(入口)温度の下がり過ぎと安全装置の作動を防止し、かつ、排温水を流し続けることにより排温水の戻り温度が安定してガスエンジン側への悪影響を軽減する。また、排温水と熱交換する吸収液は、排温水の熱により吸収液温度が下がり過ぎることがないので、運転を継続中に負荷が増加した時の立ち上がりが早く、燃料を燃焼させる追い焚きも低減させることができるので、排熱を有効に利用して省エネルギー効果を上げることができる。
Mixing the absorption liquid into the refrigerant in the
判定条件(2):Th1−Tw1<設定値のとき、又はTh1−Tw1=設定値のとき。 排温水の三方制御弁58の排熱回収器30側への流量制御回路を全閉とし、全量を排熱回収器30をバイパスさせる。この時、冷房負荷があって加熱源への燃焼操作出力信号がある場合は、通常の燃料燃焼制御を行う。
その他の条件としては、起動時、排温水制御可能の場合、燃焼開始前に排温水制御弁58を全開とした後、燃焼制御動作が可能となる制御動作とする。停止時には、排温水の三方制御弁58は全閉とし、排熱回収器30へ排温水を送ることはせず、全量バイパスさせる。
Judgment condition (2): When Th1-Tw1 <setting value, or when Th1-Tw1 = setting value. The flow control circuit to the exhaust
Other conditions include a control operation that enables the combustion control operation after the exhaust hot
発電機の負荷が大きく排熱量が多い場合で、冷房負荷が少ない場合には、冷温水機で回収する熱量が減るので、ガスエンジン側に戻る排温水の温度が上昇する。また、冷温水機で冷却する冷水温度が下がり過ぎる恐れもある。この場合、前述の吸収液を冷媒に注入させる制御で冷水温度の下がり過ぎを防止することは可能であるが、排温水温度を完全にコントロールすることはできない。このため、従来のシステムでも採用されていたように、排熱を大気へ放出する冷却装置が別に必要となることは当然のことである。
本発明の冷温水機を設けることにより、冷温水機停止中に外部の熱源機器、例えば、ガスエンジンを単独で運転し排温水が発生する場合にも対処できるようになり、設備の重要性から考えて、本発明の構成は当然装備しなくてはならない装置といえる。
なお、図1では、二重効用形吸収式冷温水機の場合について説明したが、単効用形(一重効用形)吸収式冷温水機にも、本発明を勿論適用することができる。
When the generator load is large and the amount of exhaust heat is large, and the cooling load is small, the amount of heat collected by the chiller / heater decreases, so the temperature of the exhaust water returning to the gas engine rises. Moreover, the cold water temperature cooled by the cold / hot water machine may be too low. In this case, it is possible to prevent the cold water temperature from being excessively lowered by controlling the above-described absorption liquid to be injected into the refrigerant, but it is not possible to completely control the exhaust hot water temperature. For this reason, it is a matter of course that a separate cooling device for releasing the exhaust heat to the atmosphere is required, as used in the conventional system.
By providing the cold / hot water machine of the present invention, it becomes possible to cope with the case where external heat source equipment, for example, a gas engine is operated alone and exhausted hot water is generated while the cold / hot water machine is stopped. In view of this, it can be said that the configuration of the present invention is a device that must be equipped.
In addition, although FIG. 1 demonstrated the case of the double effect type absorption chiller-heater, of course, this invention is applicable also to a single effect type (single effect type) absorption chiller / heater.
10 吸収器
12 低温吸収液ポンプ
14 低温熱交換器
16 低温再生器
18 高温吸収液ポンプ
20 高温熱交換器
22 高温再生器
24 凝縮器
26 蒸発器
28 冷媒ポンプ
30 排熱回収器
32 バイパス管
34 冷温水ポンプ
36 冷却水ポンプ
38 第一冷暖切替弁
40 分岐吸収液管
42 冷媒液溜り
44 吸収液流量調節弁
46 吸収式冷温水機運転・制御盤
48 分岐吸収液管
50 排温水入口管
52 排温水出口管 54、56 温水温度センサー
58 排温水流量制御弁(三方制御弁)
60 吸収液管
62 吸収液温度センサー
64 第二冷暖切替弁
66 オーバーフロー用堰
68 吸収液管
70、72、74、76 冷媒蒸気管
78、84 冷温水温度センサー
80 吸収液抜出導管
82 冷媒温度センサー
86 排ガス温度センサー
88 燃焼装置
90 燃料流量調節弁
92 伝熱管群
94 吸収液溜り
DESCRIPTION OF
60 Absorbing
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003358941A JP4283633B2 (en) | 2003-10-20 | 2003-10-20 | Double-effect absorption chiller / heater with exhaust heat recovery unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003358941A JP4283633B2 (en) | 2003-10-20 | 2003-10-20 | Double-effect absorption chiller / heater with exhaust heat recovery unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005121332A JP2005121332A (en) | 2005-05-12 |
JP4283633B2 true JP4283633B2 (en) | 2009-06-24 |
Family
ID=34615319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003358941A Expired - Lifetime JP4283633B2 (en) | 2003-10-20 | 2003-10-20 | Double-effect absorption chiller / heater with exhaust heat recovery unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4283633B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105605823A (en) * | 2016-02-26 | 2016-05-25 | 中国人民解放军总后勤部建筑工程研究所 | Double-effect waste heat complementary combustion type lithium bromide absorption refrigerator |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100386579C (en) * | 2006-04-30 | 2008-05-07 | 西安交通大学 | Regenerative pump-free three-element solution absorption type refrigeration and air-conditioner system |
JP5754935B2 (en) * | 2010-12-24 | 2015-07-29 | 荏原冷熱システム株式会社 | Compression refrigerator |
JP6264636B2 (en) * | 2013-08-30 | 2018-01-24 | パナソニックIpマネジメント株式会社 | Absorption refrigerator |
JP7502942B2 (en) | 2020-09-07 | 2024-06-19 | 矢崎エナジーシステム株式会社 | Control device for heat exchange medium of waste heat utilization absorption type refrigeration machine, and waste heat utilization absorption type refrigeration system |
-
2003
- 2003-10-20 JP JP2003358941A patent/JP4283633B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105605823A (en) * | 2016-02-26 | 2016-05-25 | 中国人民解放军总后勤部建筑工程研究所 | Double-effect waste heat complementary combustion type lithium bromide absorption refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP2005121332A (en) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4676284B2 (en) | Waste heat recovery equipment for steam turbine plant | |
JP5832102B2 (en) | Boiler plant and operation method thereof | |
JP2008106983A (en) | Absorption type heat pump | |
JP4885467B2 (en) | Absorption heat pump | |
JP4287705B2 (en) | Single double effect absorption refrigerator and operation control method thereof | |
JP4283633B2 (en) | Double-effect absorption chiller / heater with exhaust heat recovery unit | |
JP5457163B2 (en) | Control method and apparatus for absorption chiller / heater using exhaust gas of distributed power generation system | |
JP4643979B2 (en) | Triple-effect absorption chiller / heater control method and triple-effect absorption chiller / heater with exhaust heat regenerator. | |
JP4602734B2 (en) | Two-stage temperature rising type absorption heat pump | |
JP3245116B2 (en) | Waste heat absorption chiller / heater with load fluctuation control function | |
KR100512827B1 (en) | Absorption type refrigerator | |
JP3920619B2 (en) | Absorption chiller / heater and control method thereof | |
JP4090262B2 (en) | Absorption refrigerator | |
JP2009287805A (en) | Absorption refrigerator | |
JP4308076B2 (en) | Absorption refrigerator | |
JP4283616B2 (en) | Triple effect absorption chiller / heater with exhaust heat recovery unit | |
JP4091852B2 (en) | Triple effect absorption chiller / heater with waste heat regenerator | |
JP2004245443A (en) | Absorption chiller and heater | |
JP3585890B2 (en) | Heating operation control method of triple effect absorption chiller / heater | |
JP4007541B2 (en) | Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine | |
JP4107582B2 (en) | Single double effect absorption refrigerator and operation control method thereof | |
JP3547695B2 (en) | Absorption type cold / hot water apparatus and its control method | |
JP4174614B2 (en) | Absorption refrigerator | |
JP2005300069A (en) | Absorption refrigerating machine | |
JP3434279B2 (en) | Absorption refrigerator and how to start it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060718 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081215 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090319 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4283633 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140327 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |