JP2008106983A - Absorption type heat pump - Google Patents

Absorption type heat pump Download PDF

Info

Publication number
JP2008106983A
JP2008106983A JP2006289416A JP2006289416A JP2008106983A JP 2008106983 A JP2008106983 A JP 2008106983A JP 2006289416 A JP2006289416 A JP 2006289416A JP 2006289416 A JP2006289416 A JP 2006289416A JP 2008106983 A JP2008106983 A JP 2008106983A
Authority
JP
Japan
Prior art keywords
solution
absorber
regenerator
pump
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006289416A
Other languages
Japanese (ja)
Other versions
JP5204965B2 (en
Inventor
Hironobu Kawamura
浩伸 川村
Akira Nishiguchi
章 西口
Tatsuro Fujii
達郎 藤居
Shuichiro Uchida
修一郎 内田
Yoshitaka Sakano
義孝 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006289416A priority Critical patent/JP5204965B2/en
Publication of JP2008106983A publication Critical patent/JP2008106983A/en
Application granted granted Critical
Publication of JP5204965B2 publication Critical patent/JP5204965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorption type heat pump shortening a build-up time from the start to steady operation by securing the amount of solution flowing into an absorber 11 and a regenerator 1 from the start when there is no pressure difference between the absorber 11 and the regenerator 1. <P>SOLUTION: A second solution circulating pump 23 is disposed to receive the inflow of a dilute solution obtained after a dilute solution from the absorber 11 exchanges heat with a concentrated solution from the regenerator 1 in a solution heat exchanger 22, and the rotating speed of the second solution circulating pump 23 is controlled by the pressure difference between the absorber 11 and the regenerator 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱源温度より高温の媒体を取出す吸収式ヒートポンプに係り、特に、溶液の循環構成に関する。   The present invention relates to an absorption heat pump that takes out a medium having a temperature higher than a heat source temperature, and more particularly to a solution circulation configuration.

一般に、蒸発器と再生器に熱源媒体を供給し、吸収器より熱源温度以上の温度の被加熱源媒体を取出すこの種の吸収式ヒートポンプは、定常運転時には蒸発器と吸収器の圧力が高く再生器と凝縮器の圧力が低くなることから、吸収器と再生器との圧力差で吸収器から再生器へ溶液を循環させている。しかし、起動時には吸収器と再生器との圧力差がないため、吸収器から再生器へ溶液を循環させるための手段が必要となる。例えば特許文献1では、吸収器を再生器より高い位置に設置することで位置ヘッドにより吸収器から再生器へ溶液を循環させている。また、特許文献2では、特許文献1と同様に吸収器を再生器より高い位置に配置するとともに、起動時に吸収器からの溶液が溶液熱交換器をバイパスして再生器に循環できるようにし、再生器から吸収器へ溶液を循環するための溶液循環ポンプから吐出された溶液の一部を、バイパス管を通って再生器に再循環させるようにしている。   In general, this type of absorption heat pump supplies heat source medium to the evaporator and regenerator, and takes out the heated source medium at a temperature higher than the heat source temperature from the absorber, so that the pressure of the evaporator and absorber is high during steady operation. Since the pressure in the condenser and the condenser is low, the solution is circulated from the absorber to the regenerator by the pressure difference between the absorber and the regenerator. However, since there is no pressure difference between the absorber and the regenerator at start-up, a means for circulating the solution from the absorber to the regenerator is required. For example, in Patent Document 1, the solution is circulated from the absorber to the regenerator by the position head by installing the absorber at a position higher than the regenerator. Moreover, in patent document 2, while arrange | positioning an absorber to a position higher than a regenerator like patent document 1, it enables the solution from an absorber to circulate to a regenerator by bypassing a solution heat exchanger at the time of starting, A part of the solution discharged from the solution circulation pump for circulating the solution from the regenerator to the absorber is recirculated to the regenerator through the bypass pipe.

特許文献1の場合、起動時は吸収器と再生器との位置ヘッドのみによる溶液循環となるので溶液循環量が少なく、再生器での溶液の濃縮に時間がかかるため、凝縮器から蒸発器へ冷媒を導き蒸発器で散布できるまで時間がかかってしまう。また、吸収器の溶液を位置ヘッドで溶液が再生器まで循環できる高さ位置にする必要があるので、背が高く、機器配置に自由度が少ない吸収式ヒートポンプとなってしまう。また、この種の吸収式ヒートポンプは、吸収器では一般に散布密度を高くした方の性能が向上する。また、定常運転時の溶液循環量は、吸収器と再生器との圧力差で、吸収器から再生器に流入した溶液量と同等の溶液量が再生器から吸収器に流入するように制御されるので、吸収器での散布密度に限界がある。つまり、特許文献1の構成では、吸収器の性能が十分に発揮できる散布密度にできない可能性がある。   In the case of Patent Document 1, since the solution is circulated only by the position head of the absorber and the regenerator at the start-up, the amount of solution circulation is small, and it takes time to concentrate the solution in the regenerator. It takes time until the refrigerant is introduced and sprayed by the evaporator. Moreover, since it is necessary to make the solution of an absorber into the height position which can circulate a solution to a regenerator with a position head, it will become an absorption type heat pump with a high height and few freedom in apparatus arrangement | positioning. Also, this type of absorption heat pump generally improves the performance of the absorber when the spraying density is increased. In addition, the amount of solution circulated during steady operation is controlled so that the amount of solution equivalent to the amount of solution flowing from the absorber to the regenerator flows from the regenerator to the absorber due to the pressure difference between the absorber and the regenerator. Therefore, there is a limit to the spray density in the absorber. That is, with the configuration of Patent Document 1, it may not be possible to achieve a spray density that can sufficiently exhibit the performance of the absorber.

特許文献2の場合、起動時は再生器から吸収器へ循環する溶液の一部を再生器へ再循環させているので、吸収器での散布量が減少する。つまり、蒸発器で冷媒の散布が開始されるまでの間は、吸収器から取出す被加熱源媒体は吸収器に散布される溶液に昇温されることになるが、吸収器の散布量が減少しているため吸収器から取出す被加熱源媒体の昇温が十分に行われない。また、蒸発器や吸収器で検出する温度が設定値になるまでは、再生器からの溶液の全量が溶液熱交換器を通って吸収器に散布されないとともに、吸収器からの溶液の全量が溶液熱交換器を通って再生器に導かれないので、溶液熱交換器での熱回収が不十分となり、吸収器から取出す被加熱源媒体の加熱源となる溶液の昇温に時間を要することになる。また、特許文献1と同様に吸収器を再生器より高い位置に配置する構成としているので、背が高くなってしまう。   In the case of Patent Document 2, since a part of the solution circulating from the regenerator to the absorber is recirculated to the regenerator at the time of startup, the amount of spraying in the absorber is reduced. That is, until the refrigerant starts to be sprayed in the evaporator, the heated medium to be taken out from the absorber is heated to the solution sprayed in the absorber, but the sprayed amount of the absorber is reduced. Therefore, the heating source medium taken out from the absorber is not sufficiently heated. Also, until the temperature detected by the evaporator or absorber reaches the set value, the total amount of solution from the regenerator is not sprayed to the absorber through the solution heat exchanger, and the total amount of solution from the absorber is Since it is not led to the regenerator through the heat exchanger, heat recovery in the solution heat exchanger becomes insufficient, and it takes time to raise the temperature of the solution serving as a heating source of the heated source medium taken out from the absorber. Become. Moreover, since it is set as the structure which arrange | positions an absorber in the position higher than a regenerator like patent document 1, it will become tall.

また、この種の吸収式ヒートポンプと異なり、蒸発器から冷温水を取出す特許文献3の吸収冷温水機では、吸収器から高温再生器へ溶液を循環するための溶液循環ポンプを、吸収器の出口部である吸収器と低温熱交換器との間に設けている。具体的には吸収器の出口部と同等の温度の溶液が、溶液循環ポンプに流入する構成となっている。特許文献3の吸収冷温水機の場合、冷房運転では蒸発器から約7〜10℃の冷水を取出し、暖房運転では蒸発器から約50〜60℃の温水を取出すように運転される。このとき、吸収器の出口部での溶液温度は、冷房運転で約40〜45℃、暖房運転で約80〜90℃となる。つまり、特許文献3の構成では、吸収器出口部にある溶液循環ポンプへ流入する溶液温度が最も高くなるのは、暖房運転のときで約80〜90℃になる。一方、本発明で対象とするこの種の吸収式ヒートポンプでは、例えば、吸収器から130℃程度の被加熱源媒体を取出す場合には、吸収器出口部での溶液温度が約125℃程度となり、特許文献3の吸収式冷温水機での暖房運転時の吸収器出口部の溶液温度に対してかなりの高温となる。   Further, unlike this type of absorption heat pump, the absorption chiller / heater of Patent Document 3 that takes out chilled / hot water from the evaporator has a solution circulation pump for circulating the solution from the absorber to the high-temperature regenerator at the outlet of the absorber. Between the absorber and the low-temperature heat exchanger. Specifically, the solution having the same temperature as the outlet of the absorber is configured to flow into the solution circulation pump. In the case of the absorption chiller / heater of Patent Document 3, the cooling operation is performed so that cold water of about 7 to 10 ° C. is taken out from the evaporator, and in the heating operation, hot water of about 50 to 60 ° C. is taken out of the evaporator. At this time, the solution temperature at the outlet of the absorber is about 40 to 45 ° C. in the cooling operation and about 80 to 90 ° C. in the heating operation. That is, in the configuration of Patent Document 3, the temperature of the solution flowing into the solution circulation pump at the absorber outlet is highest at about 80 to 90 ° C. during the heating operation. On the other hand, in this type of absorption heat pump that is the subject of the present invention, for example, when a heated source medium of about 130 ° C. is taken out from the absorber, the solution temperature at the absorber outlet is about 125 ° C., The temperature is considerably higher than the solution temperature at the absorber outlet during heating operation in the absorption chiller / heater of Patent Document 3.

特開昭58−69372号公報(第4頁、第2図)JP 58-69372 A (page 4, FIG. 2) 特開昭60−200062号公報(第5頁、図)Japanese Patent Laid-Open No. 60-200062 (page 5, figure) 特開平10−170091号公報(第6頁、図1)JP-A-10-170091 (page 6, FIG. 1)

上記従来技術では、起動から定常運転時での吸収器と再生器との圧力差になるまでの間において、吸収器から再生器への溶液循環量と再生器から吸収器への溶液循環量が、定常運転時よりも少ない状態で運転されるので、溶液熱交換器で回収できる熱量が少なくなり、吸収器へ散布する溶液の昇温に時間がかかってしまう。これにより、起動から定常運転までの立ち上りも時間がかかってしまう。また、吸収器と再生器を上下に配置する必要があるので、背が高く機器配置に自由度が少ない。   In the above prior art, the amount of solution circulation from the absorber to the regenerator and the amount of solution circulation from the regenerator to the absorber are between the start-up and the pressure difference between the absorber and the regenerator during steady operation. Since the operation is performed in a state smaller than that in the steady operation, the amount of heat that can be recovered by the solution heat exchanger is reduced, and it takes time to raise the temperature of the solution sprayed to the absorber. As a result, it takes time to start up from startup to steady operation. Moreover, since it is necessary to arrange | position an absorber and a regenerator up and down, it is tall and has little freedom in apparatus arrangement.

また、この種の吸収式ヒートポンプにおける性能向上の方法として、吸収器の散布密度の増加が挙げられる。その手段としては、溶液循環量の増加、吸収器における溶液の再循環、あるいは吸収器の長手方向の管群断面を縦長構成にする方法がある。特許文献1および特許文献2の構成によれば、吸収器と再生器との圧力差、および吸収器と再生器との高低差のみで流れる吸収器から再生器への溶液循環量によって再生器から吸収器への溶液循環量が決まる。このうち、吸収器と再生器との圧力差はヒートポンプサイクルの動作条件から決まるため、溶液循環量を増加させようとすると、特許文献1や特許文献2では吸収器の位置を高くする必要が生じて機器全体が大型化してしまう。溶液の再循環については新たに再循環用のポンプおよび配管を追加する必要が生じて装置が複雑化する。さらに、吸収器の管群を縦長とする方法も機器の大型化を招く。従ってこれらの構成では、現実的な機器寸法のもとで散布密度を増加させて吸収器の性能向上を図ることは難しい。   Further, as a method for improving the performance of this type of absorption heat pump, an increase in the spraying density of the absorber can be mentioned. As means for this, there are methods of increasing the amount of solution circulation, recirculating the solution in the absorber, or making the longitudinal section of the tube group cross section of the absorber. According to the configurations of Patent Document 1 and Patent Document 2, from the regenerator, the pressure difference between the absorber and the regenerator and the amount of solution circulation from the absorber to the regenerator that flows only by the height difference between the absorber and the regenerator. The amount of solution circulation to the absorber is determined. Among these, since the pressure difference between the absorber and the regenerator is determined by the operating conditions of the heat pump cycle, it is necessary to increase the position of the absorber in Patent Document 1 and Patent Document 2 when attempting to increase the solution circulation amount. As a result, the entire device becomes larger. Regarding the recirculation of the solution, it becomes necessary to newly add a pump and piping for recirculation, and the apparatus becomes complicated. Furthermore, the method of making the absorber tube group vertically long also leads to an increase in the size of the device. Therefore, with these configurations, it is difficult to improve the performance of the absorber by increasing the spray density under realistic equipment dimensions.

また、この種の吸収式ヒートポンプでは、吸収器出口での溶液温度が約125℃程度なることから、例えば、特許文献3の吸収冷温水機に搭載されている実績のある溶液循環ポンプでは許容温度を超えるため、対応できない。もし、溶液循環ポンプを125℃程度の高温となる溶液に対応しようとするとモータの絶縁階級やシール材等の仕様を見直す必要があり、コスト増加の要因になるとともに高温であることから耐久性に問題が残る。   Further, in this type of absorption heat pump, the solution temperature at the absorber outlet is about 125 ° C., so that, for example, in a solution circulation pump that has been installed in the absorption chiller / heater of Patent Document 3, the allowable temperature Because it exceeds, it cannot be supported. If the solution circulation pump tries to cope with a solution having a high temperature of about 125 ° C., it is necessary to review the specifications of the motor insulation class and seal material, etc., which increases the cost and increases the durability. The problem remains.

なお、この種の吸収式ヒートポンプでは、高温・高圧の被加熱源媒体を取出して工業的に用いられることが多く、被加熱源媒体の温度や圧力の過度の上昇に対する安全性の確保が必要であるが、上記従来技術でこの点に配慮したものは見当たらない。   This type of absorption heat pump is often used industrially by taking out a high-temperature / high-pressure heated source medium, and it is necessary to ensure safety against an excessive increase in the temperature and pressure of the heated source medium. However, there are no above-mentioned prior arts that take this into account.

本発明は上記問題を解決するために成されるもので、本発明の目的は、起動時から吸収器と再生器との圧力差に依存することなく、吸収器から再生器への溶液循環量を確保して、吸収器に散布する溶液温度の昇温を素早く行うことで、起動から定常運転までの立ち上りを早くすると共に、機器配置の自由度が確保できる吸収式ヒートポンプを提供することである。   The present invention is made to solve the above problems, and the object of the present invention is to recycle the solution from the absorber to the regenerator without depending on the pressure difference between the absorber and the regenerator from the start. And providing an absorption heat pump that can quickly increase the temperature of the solution sprayed on the absorber to quickly start up from start-up to steady operation and secure the degree of freedom of equipment placement. .

さらには、溶液循環ポンプへ流入する溶液温度を、特許文献3の暖房運転時での吸収器出口の溶液温度並みにすることができる吸収式ヒートポンプを提供することである。   Furthermore, it is providing the absorption heat pump which can make the solution temperature which flows in into a solution circulation pump the same as the solution temperature of the absorber exit at the time of the heating operation of patent document 3. FIG.

さらには、吸収器から取出す被加熱源媒体が過度に温度や圧力が上昇することがないように、十分な安全性を確保できる吸収式ヒートポンプを提供することである。   It is another object of the present invention to provide an absorption heat pump that can ensure sufficient safety so that the temperature or pressure of the heated source medium taken out from the absorber does not increase excessively.

上記の目的を達成するために本発明においては、再生器,凝縮器,蒸発器,吸収器,溶液熱交換器,冷媒散布ポンプ、冷媒循環ポンプ、再生器から吸収器へ溶液を循環させるための第一溶液循環ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、再生器と蒸発器には熱源媒体を投入し、凝縮器には冷却水を通水して、吸収器から熱源温度以上の被加熱源媒体を取出す吸収式ヒートポンプにおいて、第二溶液循環ポンプを、前記吸収器から濃度の薄い希溶液が溶液熱交換器で再生器から吸収器へ循環する濃度の濃い濃溶液と熱交換した後の希溶液が流入するように配置した構成としている。   In order to achieve the above object, in the present invention, a regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant spray pump, a refrigerant circulation pump, and a solution for circulating a solution from the regenerator to the absorber. A solution / refrigerant circulation circuit is configured by connecting the first solution circulation pump with a solution pipe and a refrigerant pipe, and a heat source medium is introduced into the regenerator and the evaporator, and cooling water is passed through the condenser for absorption. In the absorption heat pump that takes out the heated source medium above the heat source temperature from the regenerator, the second solution circulation pump is connected to the second solution circulation pump. The dilute solution after heat exchange with the concentrated solution is arranged to flow in.

また、再生器と凝縮器の一方に設けた器内の圧力を検出するための第一圧力センサと、吸収器と蒸発器の一方に設けた器内を検出するための第二圧力センサとの圧力差により、第二溶液循環ポンプの回転数を制御することができる制御装置を設けた構成とし、制御装置は圧力差が大きくなると第二溶液循環ポンプの回転数を下げ、圧力差が小さくなると第二溶液循環ポンプの回転数を上げるように制御している。   Also, a first pressure sensor for detecting the pressure in the vessel provided in one of the regenerator and the condenser, and a second pressure sensor for detecting the inside of the vessel provided in one of the absorber and the evaporator. A control device is provided that can control the rotation speed of the second solution circulation pump according to the pressure difference. When the pressure difference increases, the control device decreases the rotation speed of the second solution circulation pump, and when the pressure difference decreases. Control is performed to increase the rotation speed of the second solution circulation pump.

また、制御装置は第一圧力センサと、第二圧力センサとの圧力差が大きくなると第一溶液循環ポンプの回転数を上げ、圧力差が小さくなると前記第一溶液循環ポンプの回転数を下げるように制御している。   Further, the control device increases the rotation speed of the first solution circulation pump when the pressure difference between the first pressure sensor and the second pressure sensor increases, and decreases the rotation speed of the first solution circulation pump when the pressure difference decreases. Is controlling.

本発明によれば、起動時に蒸発器で散布できる冷媒が作られる間も、第二溶液循環ポンプにより、吸収器と再生器との圧力差に依存することなく起動時から吸収器と再生器への溶液循環量を任意に設定することができるので、吸収器へ散布する溶液の昇温を十分に行うことができ、起動から定常運転までの立ち上りを早く行うことができる。   According to the present invention, while the refrigerant that can be sprayed by the evaporator at the time of start-up is produced, the second solution circulation pump allows the second solution circulation pump to start the absorber and the regenerator without depending on the pressure difference between the absorber and the regenerator. Therefore, the temperature of the solution sprayed to the absorber can be sufficiently increased, and the start-up to the steady operation can be performed quickly.

さらに、吸収器と再生器との圧力差に依存することなく吸収器から再生器へ溶液を循環できるので、吸収器と再生器を上下に配置することなく構成することができ、機器配置の自由度を増すことができる。   Furthermore, since the solution can be circulated from the absorber to the regenerator without depending on the pressure difference between the absorber and the regenerator, it can be configured without arranging the absorber and the regenerator up and down, and the equipment can be arranged freely. The degree can be increased.

さらに、第二溶液循環ポンプを溶液熱交換器で熱交換した後の溶液を循環するように配置したので、吸収式冷温水機と同じ仕様の溶液循環ポンプを使用することができ、仕様変更による耐久性の低下やコスト増加を無くすることができる。   In addition, the second solution circulation pump is arranged to circulate the solution after heat exchange with the solution heat exchanger, so the solution circulation pump with the same specifications as the absorption chiller / heater can be used, It is possible to eliminate a decrease in durability and an increase in cost.

さらに、第一溶液循環ポンプと第二溶液循環ポンプを吸収器と再生器との圧力差により、それぞれの回転数を適正に制御するようにしたので、特に圧力差が変動する起動時と停止時の消費電力を削減できる吸収式ヒートポンプを提供することができる。   In addition, since the first solution circulation pump and the second solution circulation pump are appropriately controlled by the pressure difference between the absorber and the regenerator, the rotation speed of each of them is particularly controlled. It is possible to provide an absorption heat pump that can reduce power consumption.

さらに、吸収器から取出す被加熱源媒体の温度が設定値を超えた場合には、蒸発器の冷媒散布ポンプの回転数を下げるようにしたので、蒸発器で発生する冷媒蒸気量を減少させて、吸収器における冷媒蒸気の吸収による吸熱量を減少させ、被加熱源媒体の温度を下げるように運転することができるので、異常な温度・圧力の上昇を防止することができ十分な安全性を確保できる吸収式ヒートポンプを提供できる。   Furthermore, when the temperature of the heated source medium taken out from the absorber exceeds the set value, the rotation speed of the refrigerant spray pump of the evaporator is decreased, so that the amount of refrigerant vapor generated in the evaporator is reduced. Because it can be operated to reduce the amount of heat absorbed by the absorption of refrigerant vapor in the absorber and lower the temperature of the heated source medium, it is possible to prevent abnormal temperature and pressure rises and to ensure sufficient safety. An absorption heat pump that can be secured can be provided.

先ず、本発明を実施するための最良の実施例1について説明する。   First, the best example 1 for carrying out the present invention will be described.

図1に本発明の実施の形態を示す。図1中の破線は後述する各要素と制御装置48を接続する信号線を示す。本実施例の装置においては、冷媒には水,溶液(吸収剤)には臭化リチウム水溶液が用いられている。   FIG. 1 shows an embodiment of the present invention. A broken line in FIG. 1 indicates a signal line that connects each element to be described later and the control device 48. In the apparatus of this embodiment, water is used as the refrigerant, and an aqueous lithium bromide solution is used as the solution (absorbent).

先ず本発明の吸収式ヒートポンプの構成と定常運転時の冷媒と溶液側の動作について説明する。再生器1では、吸収器11から配管25により第二溶液循環ポンプ23を介して濃度の薄い希溶液が散布装置3に導かれ、熱交換部2に散布される。散布された希溶液は、熱交換部2で熱源媒体により加熱濃縮されて、冷媒蒸気と濃度が濃い濃溶液となり、濃溶液は再生器1の下部に一旦溜められる。濃溶液から分離した冷媒蒸気は、濃溶液のミストアップを防止するためのバッフル10を介して凝縮器6に導かれる。凝縮器6に導かれた冷媒蒸気は、熱交換部7を流れる冷却水と熱交換して凝縮液化し、凝縮器6の下部に一旦溜められる。凝縮器6下部に溜められた冷媒は、冷媒循環ポンプ8により冷媒フロート弁9で流量調整され、配管26を通り蒸発器14に導かれる。このとき冷媒フロート弁9は液面が上昇すると開度が大きくなり、液面が低下すると開度が小さくなるように制御される。蒸発器14に導かれた冷媒は、冷媒散布ポンプ17で配管20を通り散布装置15に導かれ、散布装置15から熱交換部16に冷媒が散布される。散布された冷媒は、熱交換部16内を流れる熱源媒体と熱交換して蒸発し冷媒蒸気となり、ミストアップを防止するためのエリミネータ21を通り吸収器11に導かれる。蒸発器14で蒸発できなかった冷媒は再度冷媒散布ポンプ17で配管20を通り散布装置15に導かれる。   First, the structure of the absorption heat pump of the present invention and the operation of the refrigerant and solution side during steady operation will be described. In the regenerator 1, a dilute solution having a low concentration is introduced from the absorber 11 through the pipe 25 through the second solution circulation pump 23 to the spraying device 3 and sprayed to the heat exchange unit 2. The sprayed diluted solution is heated and concentrated by the heat source medium in the heat exchanging unit 2 to become a concentrated solution having a high concentration with the refrigerant vapor, and the concentrated solution is temporarily stored in the lower part of the regenerator 1. The refrigerant vapor separated from the concentrated solution is guided to the condenser 6 through the baffle 10 for preventing the concentrated solution from being misted. The refrigerant vapor guided to the condenser 6 exchanges heat with the cooling water flowing through the heat exchange unit 7 to be condensed and liquefied, and is temporarily stored in the lower part of the condenser 6. The refrigerant stored in the lower portion of the condenser 6 is adjusted in flow rate by the refrigerant float valve 9 by the refrigerant circulation pump 8, led to the evaporator 14 through the pipe 26. At this time, the refrigerant float valve 9 is controlled so that the opening degree increases when the liquid level rises, and the opening degree decreases when the liquid level drops. The refrigerant guided to the evaporator 14 is guided to the spraying device 15 through the pipe 20 by the coolant spraying pump 17, and the coolant is sprayed from the spraying device 15 to the heat exchange unit 16. The sprayed refrigerant exchanges heat with the heat source medium flowing in the heat exchanging section 16 to evaporate into refrigerant vapor, and is guided to the absorber 11 through the eliminator 21 for preventing mist up. The refrigerant that could not be evaporated by the evaporator 14 is again guided to the spraying device 15 through the pipe 20 by the coolant spraying pump 17.

一方、再生器1下部に溜められた濃溶液は、第一溶液循環ポンプ4により溶液フロート弁5で流量調整され、溶液熱交換器22を通り吸収器11の散布装置12に導かれる。このとき溶液フロート弁5は液面が上昇すると開度が大きくなり、液面が低下すると開度が小さくなるように制御される。散布装置12に導かれた濃溶液は、熱交換部13に散布される。散布された濃溶液は、エリミネータ21から流入する冷媒蒸気を吸収し、このとき発生する吸収熱で熱交換部13内を流れる被加熱源媒体を加熱する。冷媒蒸気を吸収して薄くなった希溶液は、配管25で溶液熱交換器22を通り、そこで再生器1で濃縮された濃溶液と熱交換して第二溶液循環ポンプ23により再生器1の散布装置3に導かれる。以上のように冷媒及び溶液が動作する。   On the other hand, the concentrated solution stored in the lower part of the regenerator 1 is adjusted in flow rate by the solution float valve 5 by the first solution circulation pump 4, passed through the solution heat exchanger 22, and guided to the spraying device 12 of the absorber 11. At this time, the solution float valve 5 is controlled so that the opening degree increases when the liquid level rises and decreases when the liquid level drops. The concentrated solution guided to the spraying device 12 is sprayed to the heat exchange unit 13. The sprayed concentrated solution absorbs the refrigerant vapor flowing from the eliminator 21 and heats the heated source medium flowing in the heat exchanging unit 13 with the absorbed heat generated at this time. The diluted solution that has absorbed and thinned the refrigerant vapor passes through the solution heat exchanger 22 through the pipe 25, where it exchanges heat with the concentrated solution concentrated in the regenerator 1, and the second solution circulation pump 23 causes the regenerator 1. Guided to the spraying device 3. As described above, the refrigerant and the solution operate.

また、再生器1には液面スイッチ(図示せず)が設置されている。この液面スイッチは制御装置48に接続してある。制御装置48は、第一溶液循環ポンプ4のキャビテーションを防止するため、液面スイッチが液面を感知しない場合は、第一溶液循環ポンプ4を運転しないように制御する。また、再生器1と同様に凝縮器6,吸収器11,蒸発器14にも液面スイッチ(図示せず)が設置され、それらは制御装置48に接続してある。そして、制御装置48はそれぞれが液面を感知しないと凝縮器6では冷媒循環ポンプ8を、吸収器11では第二溶液循環ポンプ23を、蒸発器14では冷媒散布ポンプ17を運転しないように制御する。   The regenerator 1 is provided with a liquid level switch (not shown). This liquid level switch is connected to the control device 48. In order to prevent cavitation of the first solution circulation pump 4, the control device 48 performs control so that the first solution circulation pump 4 is not operated when the liquid level switch does not sense the liquid level. Similarly to the regenerator 1, a liquid level switch (not shown) is installed in the condenser 6, the absorber 11, and the evaporator 14, and these are connected to the control device 48. The control devices 48 control the refrigerant 6 so that the refrigerant circulation pump 8 is not operated in the condenser 6, the second solution circulation pump 23 is used in the absorber 11, and the refrigerant spray pump 17 is not operated in the evaporator 14 unless each of them senses the liquid level. To do.

また本実施例では、吸収器11には、器内の圧力を検出するための第二圧力センサ
(P2)44が、再生器1には器内の圧力を検出するための第一圧力センサ(P1)45が設置してある。それぞれの圧力センサの出力は制御装置48に接続してある。制御装置48は、第一圧力センサ(P1)45と第二圧力センサ(P2)44との圧力差を演算し、演算結果に基づいて第一溶液循環ポンプ4と第二溶液循環ポンプ23の回転数を制御する。なお、第一圧力センサ45は再生器1に設けることに限定されずに同一容器内に設けてある凝縮器6に設けても良い。同じく第二圧力センサ44は吸収器11に設けることに限定されず、同一容器内に収納されている蒸発器14に設けても良い。
In this embodiment, the absorber 11 has a second pressure sensor (P2) 44 for detecting the pressure inside the container, and the regenerator 1 has a first pressure sensor (for detecting the pressure inside the container). P1) 45 is installed. The output of each pressure sensor is connected to the control device 48. The control device 48 calculates a pressure difference between the first pressure sensor (P1) 45 and the second pressure sensor (P2) 44, and rotates the first solution circulation pump 4 and the second solution circulation pump 23 based on the calculation result. Control the number. The first pressure sensor 45 is not limited to being provided in the regenerator 1 and may be provided in the condenser 6 provided in the same container. Similarly, the second pressure sensor 44 is not limited to being provided in the absorber 11 but may be provided in the evaporator 14 accommodated in the same container.

また、吸収器11には、吸収器11下部に溜められる溶液の液面を検出するための液面検出器27を設置してある。液面検出器27の信号線は制御装置48に接続されている。制御装置48は、液面検出器27が予め設定した液面高さより低下したことを検出すると、第一圧力センサ45と第二圧力センサ44との圧力差から決まる第二溶液循環ポンプ
23の回転数に対して、液面高さが設定値に回復されるまでは、第二溶液循環ポンプ23の回転数を徐々に下げて運転するように制御する。そして、液面高さが設定値を超えると、再び第一圧力センサ45と第二圧力センサ44との圧力差から決まる第二溶液循環ポンプ23の回転数で運転するように制御する。吸収器11の溶液出口部では、液面が低くなると溶液出口部で渦ができ冷媒蒸気を巻込み易くなるため、巻込んだ冷媒蒸気量分が吸収器11から取出す被加熱源媒体の加熱に寄与せず熱損失となってしまう。従って、吸収器11の液面検出器27は、吸収器11の溶液出口部において、蒸発器14からの冷媒蒸気の巻込みを防止するために、常に予め設定した液面高さ以上になるように制御するために設置するものである。
Further, the absorber 11 is provided with a liquid level detector 27 for detecting the liquid level of the solution stored in the lower part of the absorber 11. The signal line of the liquid level detector 27 is connected to the control device 48. When the control device 48 detects that the liquid level detector 27 has fallen below a preset liquid level, the rotation of the second solution circulation pump 23 determined from the pressure difference between the first pressure sensor 45 and the second pressure sensor 44. The number of revolutions of the second solution circulation pump 23 is controlled to gradually decrease until the liquid level is restored to the set value. When the liquid level exceeds the set value, control is performed so that the second solution circulation pump 23 is operated at the number of rotations determined again from the pressure difference between the first pressure sensor 45 and the second pressure sensor 44. At the solution outlet portion of the absorber 11, when the liquid level becomes low, a vortex is generated at the solution outlet portion, and it becomes easy to entrain the refrigerant vapor. Therefore, the entrained refrigerant vapor amount is used for heating the heated source medium taken out from the absorber 11. It does not contribute to heat loss. Accordingly, the liquid level detector 27 of the absorber 11 always has a liquid level height higher than a preset level in order to prevent the refrigerant vapor from being entrained from the evaporator 14 at the solution outlet of the absorber 11. It is installed to control.

次に、冷却水の動作について説明する。冷却塔(図示せず)と凝縮器6の熱交換部7との間を冷却水が循環するように配管43が接続されている。そして、熱交換部7へは冷却塔で温度調整された冷却水が供給される。   Next, the operation of the cooling water will be described. A pipe 43 is connected so that the cooling water circulates between the cooling tower (not shown) and the heat exchange section 7 of the condenser 6. Then, the cooling water whose temperature is adjusted by the cooling tower is supplied to the heat exchange unit 7.

次に、熱源媒体側と被加熱源媒体側の動作について説明する。熱源媒体は、吸収式ヒートポンプの駆動源として、工場等で発生する温水や蒸気等が配管37により供給される。配管37は、途中分岐しており、熱源媒体の一部は再生器1の熱交換部2に供給され、残りは蒸発器14の熱交換部16に供給される。供給された熱源媒体は、再生器1の熱交換部2では希溶液と熱交換し、蒸発器14の熱交換部16では冷媒と熱交換する。再生器1の熱交換部2を出た熱源媒体は流量調整弁40を通り、蒸発器14の熱交換部16を出て流量調整弁41を通った熱源媒体と合流し配管38で流出される。また、蒸発器14の熱交換部16から出た配管38には、三方弁39が設けてあり、この三方弁39により配管37から投入される熱源媒体がバイパスできるようになっている。三方弁39の信号線は制御装置48に接続している。   Next, operations on the heat source medium side and the heated source medium side will be described. As the heat source medium, hot water or steam generated in a factory or the like is supplied through a pipe 37 as a drive source of an absorption heat pump. The pipe 37 is branched in the middle, and a part of the heat source medium is supplied to the heat exchange unit 2 of the regenerator 1 and the rest is supplied to the heat exchange unit 16 of the evaporator 14. The supplied heat source medium exchanges heat with the dilute solution in the heat exchange unit 2 of the regenerator 1 and exchanges heat with the refrigerant in the heat exchange unit 16 of the evaporator 14. The heat source medium that has exited the heat exchange unit 2 of the regenerator 1 passes through the flow rate adjustment valve 40, exits the heat exchange unit 16 of the evaporator 14, joins the heat source medium that has passed through the flow rate adjustment valve 41, and flows out through the pipe 38. . Further, a three-way valve 39 is provided in the pipe 38 exiting from the heat exchanging section 16 of the evaporator 14, and the heat source medium introduced from the pipe 37 can be bypassed by the three-way valve 39. The signal line of the three-way valve 39 is connected to the control device 48.

一方、被加熱源媒体側は、気液分離手段であるフラッシュタンク30で蒸気と温水に分離される。ここで分離された蒸気は、減圧弁33で圧力調整され配管32で利用者側へ導かれる。一方、温水は、配管28で温水ポンプ31により吸収器11の熱交換部13に流入する。熱交換部13に流入した温水は、熱交換部13に散布される濃溶液が冷媒蒸気を吸収するときに発生する吸収熱で加熱され、配管29で再びフラッシュタンク30に流入する。フラッシュタンク30には、フラッシュタンク30内の圧力を検出するための第三圧力センサ(P3)47と、フラッシュタンク30の下部に溜まる温水の液面を検出するための液面検出器36が設置されている。第3の圧力センサP3と液面検出器36の信号線とは、制御装置48に接続されている。また、フラッシュタンク30と温水ポンプ31を接続する配管には、配管32で利用者側へ導かれた蒸気量分の温水を供給するための配管34が流量調整弁35を介して設置し、制御装置48に接続している。また、吸収器
11の熱交換部13とフラッシュタンク30とを接続する配管29には、熱交換部13で加熱された温水の温度を検出するための温度センサ(T)46が設置されている。この温度センサ46の信号線は、制御装置48に接続してある。
On the other hand, the heated source medium side is separated into steam and hot water by a flash tank 30 which is a gas-liquid separation means. The vapor | steam isolate | separated here is pressure-controlled with the pressure-reduction valve 33, and is guide | induced to the user side with the piping 32. FIG. On the other hand, the hot water flows into the heat exchange unit 13 of the absorber 11 by the hot water pump 31 through the pipe 28. The hot water that has flowed into the heat exchanging unit 13 is heated by the absorption heat generated when the concentrated solution sprayed on the heat exchanging unit 13 absorbs the refrigerant vapor, and flows again into the flash tank 30 through the pipe 29. The flash tank 30 is provided with a third pressure sensor (P3) 47 for detecting the pressure in the flash tank 30 and a liquid level detector 36 for detecting the level of warm water accumulated in the lower part of the flash tank 30. Has been. The third pressure sensor P3 and the signal line of the liquid level detector 36 are connected to the control device 48. In addition, a pipe 34 for connecting the flash tank 30 and the hot water pump 31 is provided with a pipe 34 for supplying hot water corresponding to the amount of steam guided to the user side through the pipe 32 via a flow rate adjusting valve 35 and is controlled. Connected to device 48. A temperature sensor (T) 46 for detecting the temperature of the hot water heated by the heat exchange unit 13 is installed in the pipe 29 connecting the heat exchange unit 13 and the flash tank 30 of the absorber 11. . The signal line of the temperature sensor 46 is connected to the control device 48.

ここで、第三圧力センサ47で検出されたフラッシュタンク30内の圧力が、予め設定された設定値を超えた場合には、制御装置48で三方弁39のバイパス側の開度を大きくする。これにより、配管37で供給される熱源媒体の一部を配管38にバイパスさせ、再生器1の熱交換部2と蒸発器14の熱交換部16に供給される熱源媒体の流量を減少させる。熱源媒体の流量を減少させることで、吸収器11の熱交換部13で被加熱源媒体への加熱量を減少させフラッシュタンク30内の圧力を下げるように制御する。逆に、第三圧力センサ47で検出されたフラッシュタンク30内の圧力が、予め設定された設定値より低下した場合には、制御装置48で三方弁39のバイパス側の開度を小さくする。これにより、配管37から配管38にバイパスする熱源媒体の量を減らす。熱源媒体の量を減らすことで、再生器1の熱交換部2と蒸発器14の熱交換部16に供給される熱源媒体の流量を増加させる。これにより、吸収器11の熱交換部13で被加熱源媒体への加熱量を増加させフラッシュタンク30内の圧力を上げるように制御する。   Here, when the pressure in the flash tank 30 detected by the third pressure sensor 47 exceeds a preset set value, the opening degree on the bypass side of the three-way valve 39 is increased by the control device 48. Thereby, a part of the heat source medium supplied by the pipe 37 is bypassed to the pipe 38, and the flow rate of the heat source medium supplied to the heat exchange unit 2 of the regenerator 1 and the heat exchange unit 16 of the evaporator 14 is reduced. By reducing the flow rate of the heat source medium, the heat exchanging unit 13 of the absorber 11 is controlled to reduce the amount of heating to the heated source medium and to reduce the pressure in the flash tank 30. Conversely, when the pressure in the flash tank 30 detected by the third pressure sensor 47 falls below a preset value, the controller 48 reduces the opening on the bypass side of the three-way valve 39. This reduces the amount of heat source medium that bypasses the pipe 37 to the pipe 38. By reducing the amount of the heat source medium, the flow rate of the heat source medium supplied to the heat exchange unit 2 of the regenerator 1 and the heat exchange unit 16 of the evaporator 14 is increased. Thus, the heat exchange unit 13 of the absorber 11 is controlled so as to increase the amount of heating to the heated source medium and increase the pressure in the flash tank 30.

また、温度センサ46で検出される吸収器11の熱交換部13で加熱された温水温度が、予め設定した第一の設定値を超えた温度となった場合に、制御装置48は温水ポンプ
31の回転数を上げて温水の循環量を増加させるように制御する。これにより、温度センサ46で検出される温度を下げることができる。温度センサ46で検出される温度が第一の設定値より低下した場合に、制御装置48は温水ポンプ31の回転数を下げて温水の循環量を減少させるように制御する。これにより、温度センサ46で検出される温度を上げることができる。
In addition, when the temperature of the hot water heated by the heat exchanging unit 13 of the absorber 11 detected by the temperature sensor 46 reaches a temperature exceeding the preset first set value, the control device 48 sets the hot water pump 31. It is controlled to increase the circulation rate of hot water by increasing the number of revolutions. Thereby, the temperature detected by the temperature sensor 46 can be lowered. When the temperature detected by the temperature sensor 46 is lower than the first set value, the control device 48 performs control so as to decrease the number of circulations of the hot water by decreasing the rotation speed of the hot water pump 31. Thereby, the temperature detected by the temperature sensor 46 can be raised.

次に、本発明に係る温度センサ46と制御装置48の関係について説明する。温度センサ46で検出される温度が予め設定される第二の設定値を超えた場合に、制御装置48は蒸発器14での冷媒発生量を抑えて吸収器11での吸熱量を減少させる。すなわち、制御装置48は温度センサ46で検出される温度が第二の設定値より低くなるまで冷媒散布ポンプ17の回転数を下げるように制御する。なお、温度センサ46で検出された温度に基づいて設定される温度は、温水ポンプ31の回転数を制御する第一の設定値より、冷媒散布ポンプ17の回転数を制御する第二の設定値の方を高く設定する。第一の設定値は、定常運転に配管32から取出したい蒸気温度が得られるように設定し、第二の設定値は異常な温度上昇を防止するために第一の設定値より高く設定する。このように、第三圧力センサ47の検出値で三方弁39を、温度センサ46の検出値で温水ポンプ31と冷媒散布ポンプ17の回転数を制御することで、利用者側の蒸気量や、熱源媒体の流入する温度や、冷却水の流入する温度が変化した場合でも、吸収式ヒートポンプを安定して運転することができる。   Next, the relationship between the temperature sensor 46 and the control device 48 according to the present invention will be described. When the temperature detected by the temperature sensor 46 exceeds a preset second set value, the control device 48 reduces the amount of refrigerant generated in the evaporator 14 and decreases the amount of heat absorbed in the absorber 11. That is, the control device 48 performs control so as to decrease the rotational speed of the refrigerant spray pump 17 until the temperature detected by the temperature sensor 46 becomes lower than the second set value. The temperature set based on the temperature detected by the temperature sensor 46 is a second set value for controlling the rotational speed of the refrigerant spray pump 17 from the first set value for controlling the rotational speed of the hot water pump 31. Set higher for. The first set value is set so that the steam temperature desired to be taken out from the pipe 32 during steady operation is obtained, and the second set value is set higher than the first set value in order to prevent an abnormal temperature rise. Thus, by controlling the number of rotations of the three-way valve 39 with the detection value of the third pressure sensor 47 and the temperature of the hot water pump 31 and the refrigerant spray pump 17 with the detection value of the temperature sensor 46, the amount of steam on the user side, Even when the temperature at which the heat source medium flows or the temperature at which the cooling water flows changes, the absorption heat pump can be stably operated.

また、液面検出器36で検出されるフラッシュタンク30内の液面高さは、配管32から利用者側へ導かれる蒸気量に関係なく略一定に保つように制御している。すなわち、制御装置48は、流量調整弁35の開度を制御することで、配管34に補給する温水量を調整する。   Further, the liquid level height in the flash tank 30 detected by the liquid level detector 36 is controlled so as to be kept substantially constant regardless of the amount of steam guided from the pipe 32 to the user side. That is, the control device 48 adjusts the amount of hot water to be supplied to the pipe 34 by controlling the opening degree of the flow rate adjustment valve 35.

定常運転時には、以上のように図1の本発明に係る吸収式ヒートポンプは動作し運転される。上記吸収式ヒートポンプの動作において、吸収器11から取出す被加熱媒体の温度は、吸収式ヒートポンプに供給できる熱源温度と冷却水の温度条件や、熱源媒体と冷却水の流量条件によって決まる。例えば、熱源媒体が90℃の温水で、冷却水が32℃であれば、温水と冷却水の流量条件にもよるが約130℃の蒸気を配管32から取出すことができる。   During steady operation, the absorption heat pump according to the present invention shown in FIG. 1 operates and operates as described above. In the operation of the absorption heat pump, the temperature of the heated medium taken out from the absorber 11 is determined by the heat source temperature and cooling water temperature conditions that can be supplied to the absorption heat pump, and the heat source medium and cooling water flow rate conditions. For example, if the heat source medium is 90 ° C. warm water and the cooling water is 32 ° C., steam of about 130 ° C. can be taken out from the pipe 32 depending on the flow conditions of the hot water and the cooling water.

次に、図1と図2により本発明に係る起動から定常運転までの動作及び効果について説明する。本発明の吸収式ヒートポンプでは、第二溶液循環ポンプ23を吸収器11から再生器1へ接続する配管25の溶液熱交換器22と再生器1との間に設置している。第二溶液循環ポンプ23は、制御装置48により、第一圧力センサ45で検出される再生器1内の圧力と、第二圧力センサ44で検出される吸収器11内の圧力との圧力差から、第二溶液循環ポンプ23の回転数が決められる。例えば、図2の実線で示すように制御される。   Next, the operation and effect from the start to the steady operation according to the present invention will be described with reference to FIGS. In the absorption heat pump of the present invention, the second solution circulation pump 23 is installed between the solution heat exchanger 22 and the regenerator 1 in the pipe 25 connecting the absorber 11 to the regenerator 1. The second solution circulation pump 23 is controlled by the control device 48 from the pressure difference between the pressure in the regenerator 1 detected by the first pressure sensor 45 and the pressure in the absorber 11 detected by the second pressure sensor 44. The rotational speed of the second solution circulation pump 23 is determined. For example, the control is performed as shown by the solid line in FIG.

図2に示すように、圧力差ΔPが無いときに第二溶液循環ポンプ23の回転数Sが最も高くなり、圧力差ΔPが大きくなるとともに第二溶液循環ポンプ23の回転数Sが下がるように制御される。また、第一溶液循環ポンプ4は、制御装置48により、第一圧力センサ45で検出される再生器1内の圧力と、第二圧力センサ44で検出される吸収器11内の圧力との圧力差から、第一溶液循環ポンプ4の回転数が決められる。例えば、図2の破線で示すように圧力差ΔPが無いときの第一溶液循環ポンプ4の回転数Sが最も低くなり、圧力差ΔPが大きくなると共に第一溶液循環ポンプ4の回転数Sが上がるように制御される。ここで、第一溶液循環ポンプ4の回転数Sは、吸収器11から再生器1への循環させた溶液量とほぼ同等の溶液量が、第一溶液循環ポンプで再生器1から吸収器11に循環されるように回転数Sが設定される。   As shown in FIG. 2, when there is no pressure difference ΔP, the rotational speed S of the second solution circulation pump 23 becomes the highest, and the rotational speed S of the second solution circulation pump 23 decreases as the pressure difference ΔP increases. Be controlled. Further, the first solution circulation pump 4 is controlled by the control device 48 between the pressure in the regenerator 1 detected by the first pressure sensor 45 and the pressure in the absorber 11 detected by the second pressure sensor 44. From the difference, the rotational speed of the first solution circulation pump 4 is determined. For example, as shown by the broken line in FIG. 2, the rotation speed S of the first solution circulation pump 4 when there is no pressure difference ΔP is the lowest, the pressure difference ΔP is increased, and the rotation speed S of the first solution circulation pump 4 is Controlled to go up. Here, the rotation speed S of the first solution circulation pump 4 is such that the amount of solution approximately equal to the amount of solution circulated from the absorber 11 to the regenerator 1 is the same as the amount of solution circulated from the regenerator 1 to the absorber 11 by the first solution circulation pump. The rotation speed S is set so as to be circulated in the range.

これにより、起動時には吸収器11と再生器1との圧力差ΔPが無くても、起動と同時に任意の溶液循環量を確保できる。つまり、起動と同時に再生器1と吸収器11で十分な量の溶液散布が可能となる。このため、起動から再生器1では熱源媒体と十分な量の希溶液との熱交換を行い、冷媒蒸気と濃溶液に分離することができる。また、凝縮器6で凝縮液化した冷媒を蒸発器14へ素早く導くことができるので、蒸発器14では起動からで冷媒が散布できるまでの時間を短縮することができる。すなわち、起動から定常運転までの立ち上りの短縮に寄与することができる。   Thereby, even if there is no pressure difference (DELTA) P of the absorber 11 and the regenerator 1 at the time of starting, it can ensure arbitrary solution circulation amount simultaneously with starting. That is, a sufficient amount of solution can be sprayed by the regenerator 1 and the absorber 11 simultaneously with the start-up. For this reason, from the start-up, the regenerator 1 can perform heat exchange between the heat source medium and a sufficient amount of dilute solution, and can be separated into refrigerant vapor and concentrated solution. In addition, since the refrigerant condensed and liquefied by the condenser 6 can be quickly guided to the evaporator 14, it is possible to shorten the time from the start-up until the refrigerant can be dispersed in the evaporator 14. That is, it is possible to contribute to shortening of the start-up from startup to steady operation.

また、起動から蒸発器14に冷媒が散布されるまでの間も、再生器1では希溶液の温度が熱源媒体と熱交換して濃縮し上昇する。温度上昇した濃溶液は、吸収器11に散布されるので熱交換部13内を流れる被加熱源媒体を加熱することができる。さらには、吸収器11と再生器1との圧力差ΔPが起動から定常運転での圧力差ΔPになるまで、常に、吸収器11から溶液熱交換器22を経由して再生器1へ循環する希溶液量と、ほぼ同等の濃溶液量が溶液熱交換器22を経由して再生器1から吸収器11に循環させることができるので、効率良く熱回収が行うことができる。つまり、吸収器11で冷媒蒸気を吸収して高温になった希溶液を、溶液熱交換器22を介して吸収器11に散布する濃溶液の加熱に利用することができる。これにより、吸収器11に散布する濃溶液の昇温を素早く行うことができ、起動から定常運転までの立ち上りの短縮に寄与することができる。   In addition, the temperature of the dilute solution in the regenerator 1 is increased by exchanging heat with the heat source medium during the period from the start until the refrigerant is sprayed on the evaporator 14. Since the concentrated solution whose temperature has risen is sprayed on the absorber 11, the heated source medium flowing in the heat exchanging section 13 can be heated. Further, the pressure difference ΔP between the absorber 11 and the regenerator 1 is always circulated from the absorber 11 to the regenerator 1 via the solution heat exchanger 22 until the pressure difference ΔP in the steady operation from the start-up. Since a concentrated solution amount substantially equal to the diluted solution amount can be circulated from the regenerator 1 to the absorber 11 via the solution heat exchanger 22, heat recovery can be performed efficiently. That is, the diluted solution that has become a high temperature by absorbing the refrigerant vapor by the absorber 11 can be used for heating the concentrated solution that is sprayed to the absorber 11 via the solution heat exchanger 22. Thereby, the temperature rise of the concentrated solution spread | diffused to the absorber 11 can be performed rapidly, and it can contribute to the shortening of the start-up from starting to a steady operation.

さらに、第二溶液循環ポンプ23を設置したことにより、吸収器11と再生器1との圧力差ΔPが無い起動時から溶液を循環できるので、吸収器11を再生器1より高い位置にする必要が無くなる。従って、本発明の吸収式ヒートポンプを設計する際には、機器配置の自由度が増すので吸収式ヒートポンプの小形化に寄与できるようになる。   Furthermore, since the second solution circulation pump 23 is installed, the solution can be circulated from the start-up when there is no pressure difference ΔP between the absorber 11 and the regenerator 1, so the absorber 11 needs to be positioned higher than the regenerator 1. Disappears. Therefore, when designing the absorption heat pump according to the present invention, the degree of freedom of equipment arrangement increases, which can contribute to downsizing of the absorption heat pump.

さらに、第一溶液循環ポンプ4と第二溶液循環ポンプ23を吸収器11と再生器1との圧力差ΔPから、制御装置48でそれぞれの回転数Sを図2に示すように適正に制御するようにしたので、特に圧力差が変動する起動時と停止時の消費電力を削減に寄与することができる。   Further, the first solution circulation pump 4 and the second solution circulation pump 23 are appropriately controlled by the control device 48 as shown in FIG. 2 from the pressure difference ΔP between the absorber 11 and the regenerator 1. Since it did in this way, it can contribute to reduction in the power consumption at the time of starting especially at the time of a pressure difference fluctuate | varied.

また、第二溶液循環ポンプ23は、溶液熱交換器22と再生器1との間に設置する構成としたので、吸収器11で冷媒蒸気を吸収して高温となった希溶液が、溶液熱交換器22で再生器1から吸収器11へ循環する低温の濃溶液と熱交換した後の希溶液を、第二溶液循環ポンプ23に流入させることができる。ここで、例えば、熱源媒体を90℃の排温水とし、冷却水を32℃とし、温水と冷却水の流量条件を調整して約130℃の蒸気を配管32から取出す場合には、吸収器11出口での溶液温度が約125℃となり、再生器1では溶液が90℃の排温水で加熱されるので、排温水流量にもよるが再生器1出口での濃溶液の温度が約83℃程度となる。このとき、溶液熱交換器22では入口温度が125℃の希溶液と83℃の濃溶液が熱交換することになる。ここで、溶液熱交換器22の吸収器
11から再生器1へ循環する側の温度効率を0.85 とすると、溶液熱交換器22の出口温度は89.3℃ となり、この温度で第二溶液循環ポンプ23に流入させることができる。つまり、一般的な蒸発器から冷温水を取出す吸収式冷温水機(図示せず)の、溶液循環ポンプへの流入温度が最も高くなる暖房運転時の約70〜90℃に対して、本発明に係る構成では、第二溶液循環ポンプ23への溶液の流入温度を一般的な吸収式冷温水機で使用される温度条件範囲とすることができる。これにより、本発明の吸収式ヒートポンプでは、第二溶液循環ポンプ23に一般的な吸収式冷温水機の溶液循環ポンプを使用することができる。もし、本発明の吸収式ヒートポンプで第二溶液循環ポンプ23を、一般的な吸収式冷温水機と同様に吸収器11と溶液熱交換器22との間に設置した場合には、第二溶液循環ポンプ23への溶液の流入温度が125℃となり、一般的な吸収式冷温水機で使用し、実績があり耐久性が確認されている溶液循環ポンプを使用することができないため、モータの絶縁階級やシール材の仕様変更が必要となりコストの増加になってしまう。
Further, since the second solution circulation pump 23 is installed between the solution heat exchanger 22 and the regenerator 1, the diluted solution that has absorbed the refrigerant vapor at the absorber 11 and has reached a high temperature becomes a solution heat. The dilute solution after heat exchange with the low temperature concentrated solution circulated from the regenerator 1 to the absorber 11 by the exchanger 22 can be caused to flow into the second solution circulation pump 23. Here, for example, when the heat source medium is 90 ° C. exhausted hot water, the cooling water is 32 ° C., and the flow rate conditions of the hot water and the cooling water are adjusted to take out steam at about 130 ° C. from the pipe 32, the absorber 11. Since the solution temperature at the outlet is about 125 ° C., and the regenerator 1 is heated with the waste water at 90 ° C., the temperature of the concentrated solution at the outlet of the regenerator 1 is about 83 ° C. depending on the flow rate of the waste water. It becomes. At this time, in the solution heat exchanger 22, a dilute solution having an inlet temperature of 125 ° C and a concentrated solution having a temperature of 83 ° C exchange heat. Here, if the temperature efficiency on the side circulating from the absorber 11 to the regenerator 1 of the solution heat exchanger 22 is 0.85, the outlet temperature of the solution heat exchanger 22 is 89.3 ° C., and at this temperature, the second temperature The solution can be introduced into the solution circulation pump 23. That is, the present invention is compared with about 70 to 90 ° C. in the heating operation in which the inflow temperature to the solution circulation pump of an absorption chiller / heater (not shown) that takes chilled / hot water from a general evaporator is highest. In the structure which concerns on this, the inflow temperature of the solution to the 2nd solution circulation pump 23 can be made into the temperature condition range used with a general absorption-type cold water heater. Thereby, in the absorption heat pump of this invention, the solution circulation pump of a general absorption-type cold / hot water machine can be used for the 2nd solution circulation pump 23. FIG. If the second solution circulation pump 23 is installed between the absorber 11 and the solution heat exchanger 22 in the same manner as in a general absorption chiller / heater in the absorption heat pump of the present invention, the second solution Since the solution inflow temperature to the circulation pump 23 is 125 ° C., it is impossible to use a solution circulation pump that has been used in a general absorption chiller / heater and has been proven to be durable. It is necessary to change the specifications of the class and the seal material, resulting in an increase in cost.

なお、本発明の図1に示す吸収式ヒートポンプでは、第一溶液循環ポンプ4の吐出側に溶液フロート弁5を設けた構成としたが、溶液フロート弁5が無くてもサイクルは成り立つ。しかし、図1に示すように第一溶液循環ポンプ4の吐出側に溶液フロート弁5を設置すると、再生器1内の液面高さを直に検出し、液面高さが一定になるように液面高さに合わせて溶液フロート弁5開度が調整されるので、溶液フロート弁5を設置した方が再生器1内の液面高さをより確実に一定にできるので、これに合わせて吸収器11内の液面高さも一定にすることができる。   In the absorption heat pump shown in FIG. 1 of the present invention, the solution float valve 5 is provided on the discharge side of the first solution circulation pump 4, but the cycle can be established without the solution float valve 5. However, when the solution float valve 5 is installed on the discharge side of the first solution circulation pump 4 as shown in FIG. 1, the liquid level in the regenerator 1 is directly detected so that the liquid level becomes constant. Since the opening of the solution float valve 5 is adjusted according to the liquid level, the liquid level in the regenerator 1 can be more reliably made constant if the solution float valve 5 is installed. Thus, the liquid level in the absorber 11 can also be made constant.

また、図2では第一溶液循環ポンプ4と第二溶液循環ポンプ23が、吸収器11と再生器1との圧力差ΔPに対して、回転数Sがそれぞれ段階的に変化するようにしている。但し、圧力差ΔPが変化しても吸収器11と再生器1へ散布する溶液量が十分確保できれば、これに限定されるものではない。例えば、第一溶液循環ポンプ4と第二溶液循環ポンプ23の回転数Sは、圧力差ΔPに対して連続的に変化するように制御しても良く、段階的な変化と連続的な変化とを組み合わせて制御しても良い。   In FIG. 2, the first solution circulation pump 4 and the second solution circulation pump 23 are configured so that the rotation speed S changes stepwise with respect to the pressure difference ΔP between the absorber 11 and the regenerator 1. . However, the present invention is not limited to this as long as a sufficient amount of solution to be spread on the absorber 11 and the regenerator 1 can be secured even if the pressure difference ΔP changes. For example, the rotation speed S of the first solution circulation pump 4 and the second solution circulation pump 23 may be controlled so as to continuously change with respect to the pressure difference ΔP. You may control combining.

本発明の実施の形態に係る吸収式ヒートポンプのサイクルフロを示す図である。It is a figure which shows the cycle flow of the absorption heat pump which concerns on embodiment of this invention. 図1の第一溶液循環ポンプ4と第二溶液循環ポンプ23の制御方法示す図である。It is a figure which shows the control method of the 1st solution circulation pump 4 and the 2nd solution circulation pump 23 of FIG.

符号の説明Explanation of symbols

1 再生器
2,7,13,16 熱交換部
3,12,15 散布装置
4 第一溶液循環ポンプ
5 溶液フロート弁
6 凝縮器
8 冷媒循環ポンプ
9 冷媒フロート弁
10 バッフル
11 吸収器
14 蒸発器
17 冷媒散布ポンプ
18,20,24,25,26,28,29,32,34,37,38,43 配管
19 冷媒ブロー弁
21 エリミネータ
22 溶液熱交換器
23 第二溶液循環ポンプ
27,36 液面検出器
30 フラッシュタンク
31 温水ポンプ
33 減圧弁
35,40,41 流量調整弁
39 三方弁
48 制御装置
DESCRIPTION OF SYMBOLS 1 Regenerator 2,7,13,16 Heat exchange part 3,12,15 Spreading device 4 1st solution circulation pump 5 Solution float valve 6 Condenser 8 Refrigerant circulation pump 9 Refrigerant float valve 10 Baffle 11 Absorber 14 Evaporator 17 Refrigerant spray pump 18, 20, 24, 25, 26, 28, 29, 32, 34, 37, 38, 43 Pipe 19 Refrigerant blow valve 21 Eliminator 22 Solution heat exchanger 23 Second solution circulation pump 27, 36 Liquid level detection 30 Flash tank 31 Hot water pump 33 Pressure reducing valve 35, 40, 41 Flow rate adjusting valve 39 Three-way valve 48 Control device

Claims (6)

再生器,凝縮器,蒸発器,吸収器,溶液熱交換器,冷媒散布ポンプ,冷媒循環ポンプ、再生器から吸収器へ溶液を循環させるための第一溶液循環ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、再生器と蒸発器には熱源媒体を投入し、凝縮器には冷却水を通水して、吸収器から熱源温度以上の被加熱源媒体を取出す吸収式ヒートポンプにおいて、
吸収器から再生器へ濃度の薄い希溶液を循環させるための第二溶液循環ポンプを設け、この第二溶液循環ポンプは、溶液熱交換器と再生器との間に配置したことを特徴とする吸収式ヒートポンプ。
Regenerator, condenser, evaporator, absorber, solution heat exchanger, refrigerant spray pump, refrigerant circulation pump, and first solution circulation pump for circulating the solution from the regenerator to the absorber are connected by solution piping and refrigerant piping. Then, the solution / refrigerant circulation circuit is configured, the heat source medium is put into the regenerator and the evaporator, the cooling water is passed through the condenser, and the heat source medium above the heat source temperature is taken out from the absorber. In the type heat pump,
A second solution circulation pump for circulating a dilute dilute solution from the absorber to the regenerator is provided, and the second solution circulation pump is disposed between the solution heat exchanger and the regenerator. Absorption heat pump.
前記再生器と前記凝縮器の一方に設けた器内の圧力を検出するための第一圧力センサと、前記吸収器と前記蒸発器の一方に設けた器内の圧力を検出するための第二圧力センサとの圧力差により、前記第二溶液循環ポンプの回転数を制御する制御装置を設け、前記制御装置は圧力差が大きくなると前記第二溶液循環ポンプの回転数を下げ、圧力差が小さくなると前記第二溶液循環ポンプの回転数を上げるように制御することを特徴とする請求項1に記載の吸収式ヒートポンプ。   A first pressure sensor for detecting the pressure in the vessel provided in one of the regenerator and the condenser, and a second for detecting the pressure in the vessel provided in one of the absorber and the evaporator A control device is provided for controlling the rotation speed of the second solution circulation pump according to the pressure difference with the pressure sensor, and the control device decreases the rotation speed of the second solution circulation pump when the pressure difference increases, thereby reducing the pressure difference. The absorption heat pump according to claim 1, wherein the absorption heat pump is controlled to increase the rotational speed of the second solution circulation pump. 前記再生器と前記凝縮器の一方に設けた器内の圧力を検出するための第一圧力センサと、前記吸収器と前記蒸発器の一方に設けた器内の圧力を検出するための第二圧力センサとの圧力差により、前記第一溶液循環ポンプの回転数を制御する制御装置を設け、前記制御装置は圧力差が大きくなると前記第一溶液循環ポンプの回転数を下げ、圧力差が小さくなると前記第一溶液循環ポンプの回転数を上げるように制御したことを特徴とする請求項1〜2に記載の吸収式ヒートポンプ。   A first pressure sensor for detecting the pressure in the vessel provided in one of the regenerator and the condenser, and a second for detecting the pressure in the vessel provided in one of the absorber and the evaporator A control device is provided for controlling the rotation speed of the first solution circulation pump according to the pressure difference with the pressure sensor. When the pressure difference increases, the control device decreases the rotation speed of the first solution circulation pump and reduces the pressure difference. The absorption heat pump according to claim 1 or 2, wherein the first solution circulation pump is controlled to increase the rotational speed. 再生器,凝縮器,蒸発器,吸収器,溶液熱交換器,冷媒散布ポンプ,冷媒循環ポンプを備え、前記再生器から前記吸収器へ溶液を循環させるための前記第一溶液循環ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、前記再生器と前記蒸発器には熱源媒体を投入し、前傾凝縮器には冷却水を通水して、前記吸収器から熱源温度以上の被加熱源媒体を取出す吸収式ヒートポンプにおいて、
前記吸収器から取出す被加熱源媒体の温度を検出する温度センサを設け、温度センサにより検出される温度が予め設定される設定値を超えた場合には、前記蒸発器へ冷媒を散布する前記冷媒散布ポンプの回転数を下げるように制御する制御装置を設けたことを特徴とする吸収式ヒートポンプ。
A regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant spray pump, and a refrigerant circulation pump, and the first solution circulation pump for circulating the solution from the regenerator to the absorber is a solution pipe And a refrigerant pipe connected to form a solution / refrigerant circulation circuit, a heat source medium is introduced into the regenerator and the evaporator, cooling water is passed through the forward inclined condenser, and a heat source is supplied from the absorber. In the absorption heat pump that takes out the heated source medium above the temperature,
The refrigerant for providing a temperature sensor for detecting the temperature of the heated source medium taken out from the absorber, and for dispersing the refrigerant to the evaporator when the temperature detected by the temperature sensor exceeds a preset value An absorption heat pump, characterized in that a control device is provided for controlling the rotation speed of the spray pump to decrease.
再生器,凝縮器,蒸発器,吸収器,溶液熱交換器,冷媒散布ポンプ,冷媒循環ポンプを備え、前記再生器から前記吸収器へ溶液を循環させるための前記第一溶液循環ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、前記再生器と前記蒸発器には熱源媒体を投入し、前傾凝縮器には冷却水を通水して、前記吸収器から熱源温度以上の被加熱源媒体を取出す吸収式ヒートポンプにおいて、
前記吸収器には、被加熱源媒体が循環するフラッシュタンクと温水ポンプが配管で接続され、フラッシュタンクにはフラッシュタンク内の圧力を検出するための第三圧力センサを設け、
前記再生器と前記蒸発器に熱源媒体を循環する配管の流出側に三方弁を設けるとともに三方弁の一方は流入側に配管で接続し、
第三圧力センサで検出される圧力が予め設定される設定値を超えた場合には、前記再生器と前記蒸発器へ投入する熱源媒体の流量を減少するように三方弁の開度を調整し、予め設定される設定値より低くなった場合には、前記再生器と前記蒸発器へ投入する熱源媒体の流量を増加するように三方弁の開度を調整する制御装置を設けたことを特徴とする吸収式ヒートポンプ。
A regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant spray pump, and a refrigerant circulation pump, and the first solution circulation pump for circulating the solution from the regenerator to the absorber is a solution pipe And a refrigerant pipe connected to form a solution / refrigerant circulation circuit, a heat source medium is introduced into the regenerator and the evaporator, cooling water is passed through the forward inclined condenser, and a heat source is supplied from the absorber. In the absorption heat pump that takes out the heated source medium above the temperature,
The absorber is connected with a flash tank through which the heated source medium circulates and a hot water pump, and the flash tank is provided with a third pressure sensor for detecting the pressure in the flash tank,
A three-way valve is provided on the outflow side of the pipe for circulating the heat source medium to the regenerator and the evaporator, and one of the three-way valves is connected to the inflow side by a pipe,
When the pressure detected by the third pressure sensor exceeds a preset value, the opening of the three-way valve is adjusted so as to reduce the flow rate of the heat source medium input to the regenerator and the evaporator. The control device is provided for adjusting the opening of the three-way valve so as to increase the flow rate of the heat source medium input to the regenerator and the evaporator when the set value is lower than a preset value. Absorption heat pump.
再生器,凝縮器,蒸発器,吸収器,溶液熱交換器,冷媒散布ポンプ,冷媒循環ポンプを備え、前記再生器から前記吸収器へ溶液を循環させるための前記第一溶液循環ポンプを溶液配管及び冷媒配管で接続して溶液・冷媒循環回路を構成し、前記再生器と前記蒸発器には熱源媒体を投入し、前傾凝縮器には冷却水を通水して、前記吸収器から熱源温度以上の被加熱源媒体を取出す吸収式ヒートポンプにおいて、
前記吸収器には、被加熱源媒体が循環させるための温水ポンプが配管で接続されるとともに、前記吸収器から取出す被加熱源媒体の温度を検出する温度センサを設け、温度センサにより検出される温度が予め設定される設定値を超えた場合には温水ポンプの回転数を下げ、設定値より低くなった場合には温水ポンプの回転数を上げるように制御する制御装置を設けたことを特徴とする吸収式ヒートポンプ。
A regenerator, a condenser, an evaporator, an absorber, a solution heat exchanger, a refrigerant spray pump, and a refrigerant circulation pump, and the first solution circulation pump for circulating the solution from the regenerator to the absorber is a solution pipe And a refrigerant pipe connected to form a solution / refrigerant circulation circuit, a heat source medium is introduced into the regenerator and the evaporator, cooling water is passed through the forward inclined condenser, and a heat source is supplied from the absorber. In the absorption heat pump that takes out the heated source medium above the temperature,
A hot water pump for circulating the heated source medium is connected to the absorber by piping, and a temperature sensor for detecting the temperature of the heated source medium taken out from the absorber is provided, and is detected by the temperature sensor. When the temperature exceeds a preset value, a control device is provided to control the rotation speed of the hot water pump to be decreased and when the temperature is lower than the set value, the control device is provided to increase the rotation speed of the hot water pump. Absorption heat pump.
JP2006289416A 2006-10-25 2006-10-25 Absorption heat pump Active JP5204965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289416A JP5204965B2 (en) 2006-10-25 2006-10-25 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289416A JP5204965B2 (en) 2006-10-25 2006-10-25 Absorption heat pump

Publications (2)

Publication Number Publication Date
JP2008106983A true JP2008106983A (en) 2008-05-08
JP5204965B2 JP5204965B2 (en) 2013-06-05

Family

ID=39440473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289416A Active JP5204965B2 (en) 2006-10-25 2006-10-25 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP5204965B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048519A (en) * 2008-08-25 2010-03-04 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
JP2010164248A (en) * 2009-01-16 2010-07-29 Ebara Corp Absorption heat pump
JP2010216779A (en) * 2009-03-19 2010-09-30 Hitachi Appliances Inc Second class absorption heat pump
JP2011018464A (en) * 2009-07-07 2011-01-27 Toyota Central R&D Labs Inc Electrode material, electrode, and element
JP2013044489A (en) * 2011-08-25 2013-03-04 Miura Co Ltd Steam generator
JP2013253748A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method of absorption heat pump
JP2014163523A (en) * 2013-02-21 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method thereof
JP2016114276A (en) * 2014-12-12 2016-06-23 荏原冷熱システム株式会社 Absorption heat pump
JP2016173196A (en) * 2015-03-17 2016-09-29 日立アプライアンス株式会社 Absorption type refrigerating machine
CN113188108A (en) * 2021-04-26 2021-07-30 松下制冷(大连)有限公司 Efficient heat pump and control use method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869372A (en) * 1981-10-19 1983-04-25 三洋電機株式会社 Absorption heat pump
JPS60175979A (en) * 1984-02-22 1985-09-10 株式会社日立製作所 Multiple effect absorption type refrigerator
JPS60200062A (en) * 1984-03-22 1985-10-09 三洋電機株式会社 Controller for absopption heat pump
JPS6162763A (en) * 1984-09-04 1986-03-31 三洋電機株式会社 Controller for absorption heat pump
JPS6179963A (en) * 1984-09-25 1986-04-23 三菱電機株式会社 Absorption type heat pump
JPS6438573A (en) * 1987-08-04 1989-02-08 Sanyo Electric Co Absorption heat pump device
JPH058353U (en) * 1991-07-12 1993-02-05 日立造船株式会社 Absorption heat pump device
JPH08313103A (en) * 1995-05-24 1996-11-29 Matsushita Electric Ind Co Ltd Absorbing type heat pump device
JPH10170091A (en) * 1996-12-13 1998-06-26 Hitachi Ltd Absorbing type water cooling or heating machine
JP2002181402A (en) * 2000-12-14 2002-06-26 Mitsubishi Heavy Ind Ltd Absorption refrigerator
JP2003130486A (en) * 2001-10-19 2003-05-08 Hitachi Ltd Absorption chilled or hot-water machine and method of controlling the machine
JP2003329329A (en) * 2002-05-09 2003-11-19 Hitachi Ltd Triple effect absorption type refrigerating machine
JP2006207882A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869372A (en) * 1981-10-19 1983-04-25 三洋電機株式会社 Absorption heat pump
JPS60175979A (en) * 1984-02-22 1985-09-10 株式会社日立製作所 Multiple effect absorption type refrigerator
JPS60200062A (en) * 1984-03-22 1985-10-09 三洋電機株式会社 Controller for absopption heat pump
JPS6162763A (en) * 1984-09-04 1986-03-31 三洋電機株式会社 Controller for absorption heat pump
JPS6179963A (en) * 1984-09-25 1986-04-23 三菱電機株式会社 Absorption type heat pump
JPS6438573A (en) * 1987-08-04 1989-02-08 Sanyo Electric Co Absorption heat pump device
JPH058353U (en) * 1991-07-12 1993-02-05 日立造船株式会社 Absorption heat pump device
JPH08313103A (en) * 1995-05-24 1996-11-29 Matsushita Electric Ind Co Ltd Absorbing type heat pump device
JPH10170091A (en) * 1996-12-13 1998-06-26 Hitachi Ltd Absorbing type water cooling or heating machine
JP2002181402A (en) * 2000-12-14 2002-06-26 Mitsubishi Heavy Ind Ltd Absorption refrigerator
JP2003130486A (en) * 2001-10-19 2003-05-08 Hitachi Ltd Absorption chilled or hot-water machine and method of controlling the machine
JP2003329329A (en) * 2002-05-09 2003-11-19 Hitachi Ltd Triple effect absorption type refrigerating machine
JP2006207882A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048519A (en) * 2008-08-25 2010-03-04 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump
JP2010164248A (en) * 2009-01-16 2010-07-29 Ebara Corp Absorption heat pump
JP2010216779A (en) * 2009-03-19 2010-09-30 Hitachi Appliances Inc Second class absorption heat pump
JP2011018464A (en) * 2009-07-07 2011-01-27 Toyota Central R&D Labs Inc Electrode material, electrode, and element
JP2013044489A (en) * 2011-08-25 2013-03-04 Miura Co Ltd Steam generator
JP2013253748A (en) * 2012-06-07 2013-12-19 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method of absorption heat pump
JP2014163523A (en) * 2013-02-21 2014-09-08 Ebara Refrigeration Equipment & Systems Co Ltd Absorption heat pump and operation method thereof
JP2016114276A (en) * 2014-12-12 2016-06-23 荏原冷熱システム株式会社 Absorption heat pump
JP2016173196A (en) * 2015-03-17 2016-09-29 日立アプライアンス株式会社 Absorption type refrigerating machine
CN113188108A (en) * 2021-04-26 2021-07-30 松下制冷(大连)有限公司 Efficient heat pump and control use method

Also Published As

Publication number Publication date
JP5204965B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5204965B2 (en) Absorption heat pump
CN104949378A (en) Absorption heat pump
US10794160B2 (en) Geothermal heat recovery device and geothermal heat recovery device operating method
JP2008039353A (en) Heat pump type water heater
JP4398360B2 (en) Cooling water temperature control method for absorption chiller / heater
JP2006207882A (en) Absorption heat pump
JP2009243706A (en) Absorption heat pump
JP5560515B2 (en) Steam production system and startup control method for steam production system
JP4643979B2 (en) Triple-effect absorption chiller / heater control method and triple-effect absorption chiller / heater with exhaust heat regenerator.
JP4602734B2 (en) Two-stage temperature rising type absorption heat pump
JP2009250456A (en) Heat pump type hot water supply device
JP2009058207A (en) Absorption water cooler/heater
JP2007155275A (en) Heat pump hot water feeder
JP4283633B2 (en) Double-effect absorption chiller / heater with exhaust heat recovery unit
JP2010133598A (en) Heat pump type water heater
JP2009085476A (en) Heat pump water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP4631365B2 (en) Heat pump heating device
JP3585890B2 (en) Heating operation control method of triple effect absorption chiller / heater
JP2005233444A (en) Heat pump hot-water supply device
JP4283616B2 (en) Triple effect absorption chiller / heater with exhaust heat recovery unit
JP2006308151A (en) Absorption water cooler/heater
JP3383898B2 (en) Absorption type cold heat generator
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP2006300470A (en) Hot water storage type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

R150 Certificate of patent or registration of utility model

Ref document number: 5204965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250