JP2003329329A - Triple effect absorption type refrigerating machine - Google Patents

Triple effect absorption type refrigerating machine

Info

Publication number
JP2003329329A
JP2003329329A JP2002133711A JP2002133711A JP2003329329A JP 2003329329 A JP2003329329 A JP 2003329329A JP 2002133711 A JP2002133711 A JP 2002133711A JP 2002133711 A JP2002133711 A JP 2002133711A JP 2003329329 A JP2003329329 A JP 2003329329A
Authority
JP
Japan
Prior art keywords
temperature regenerator
solution
high temperature
refrigerant
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002133711A
Other languages
Japanese (ja)
Other versions
JP4157723B2 (en
Inventor
Tatsuro Fujii
達郎 藤居
Akira Nishiguchi
章 西口
Hitoshi Matsushima
松島  均
Nobuyuki Takeda
伸之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industries Co Ltd filed Critical Hitachi Ltd
Priority to JP2002133711A priority Critical patent/JP4157723B2/en
Publication of JP2003329329A publication Critical patent/JP2003329329A/en
Application granted granted Critical
Publication of JP4157723B2 publication Critical patent/JP4157723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a downsized triple effect absorption type refrigerating machine wherein reliability is secured and partial load efficiency is improved. <P>SOLUTION: This triple effect absorption type refrigerating machine is provided with: a high-temperature regenerator 1; a middle-temperature regenerator 2; a low-temperature regenerator 3; a condenser 4; an absorber 6; an evaporator 5; a plurality of heat exchangers 8, 9 and 10; solution pipes 26, 31 and 35 for connecting them; and solution pumps 7 and 35 or a refrigerant pump 55 for circulating a solution or a refrigerant in a cycle. A housing 15 for forming a solution level is installed at the exit part of the high-temperature regenerator. A float valve 16 for adjusting a solution amount fed to the high-temperature regenerator depending on the solution level of the solution surface is mounted in the housing 15. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調装置等の熱源
装置として使用される三重効用吸収式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a triple effect absorption refrigerator used as a heat source device for an air conditioner or the like.

【0002】[0002]

【従来の技術】三重効用吸収式冷凍機に関する従来技術
としては、例えば特開2000−171123号公報に
記載のものが挙げられる。本従来技術では、高温再生
器、中温再生器及び低温再生器、凝縮器、吸収器、熱交
換器類、溶液ポンプ及び冷媒ポンプなどを主要構成機器
とし、これら機器を溶液配管、冷媒配管などで接続する
構成になっている。高温再生器には圧力センサーが設け
られ、また高温再生器出口部に液面センサーが設けられ
ている。圧力センサーの出力をもとに、吸収器から高温
再生器に溶液を送る溶液ポンプの基本回転速度が設定さ
れている。そして、液面センサーが検出する液位によっ
て溶液ポンプの回転速度を修正する回転速度制御装置を
備え、この回転速度制御装置によって前記設定された溶
液ポンプの回転速度が修正されるようになっている。
2. Description of the Related Art As a conventional technique relating to a triple-effect absorption refrigerating machine, for example, one described in JP-A-2000-171123 can be mentioned. In this conventional technology, the high temperature regenerator, the medium temperature regenerator and the low temperature regenerator, the condenser, the absorber, the heat exchangers, the solution pump, the refrigerant pump, etc. are the main constituent devices, and these devices are the solution piping, the refrigerant piping, etc. It is configured to connect. A pressure sensor is provided in the high temperature regenerator, and a liquid level sensor is provided at the outlet of the high temperature regenerator. Based on the output of the pressure sensor, the basic rotation speed of the solution pump that sends the solution from the absorber to the high temperature regenerator is set. A rotation speed control device for correcting the rotation speed of the solution pump according to the liquid level detected by the liquid level sensor is provided, and the rotation speed control device corrects the set rotation speed of the solution pump. .

【0003】また、前記液面センサーは高位及び低位の
液面スイッチとして作用し、前記回転速度制御装置が設
定した回転速度を、液面スイッチが液面高位を検知した
ときは下方修正し、液面低位を検知したときは上方修正
するように構成されていた。さらに中温再生器には、そ
の出口部に液面スイッチが設けられると共に、希溶液流
入配管または濃溶液流出配管に溶液弁が設けられ、液面
スイッチが液面高位を検知したときは中温再生器へ送ら
れる希溶流量を減少させるか、または、中温再生器から
流出する濃溶液流出量を増大させるように前記溶液弁を
制御する制御機構を有していた(従来技術1)。
Further, the liquid level sensor acts as a high level liquid switch and a low level liquid level switch, and the rotation speed set by the rotation speed control device is corrected downward when the liquid level switch detects a high liquid level, It was configured to correct upward when it detected a low surface. Furthermore, the medium temperature regenerator is equipped with a liquid level switch at its outlet and a solution valve in the dilute solution inflow pipe or the concentrated solution outflow pipe, so that the medium temperature regenerator is detected when the liquid level switch detects the liquid level high level. It has a control mechanism for controlling the solution valve so as to reduce the flow rate of the dilute solution sent to the medium temperature increase device or increase the outflow amount of the concentrated solution flowing out from the medium temperature regenerator (prior art 1).

【0004】また、他の従来技術としては、特開平10
−9706号公報に記載の吸収式冷凍機が挙げられる。
本従来技術では、二重効用吸収式冷凍機において、高温
再生器の出口部に、出口部の液位によって高温再生器及
び低温再生器へ送られる溶液流量を調整するためのフロ
ートバルブが設けられている。さらに溶液ポンプの制御
装置が設けられ、溶液ポンプの起動時にソフトスタート
させるように制御が行われていた(従来技術2)。
Further, as another conventional technique, Japanese Patent Application Laid-Open No. 10-29200 is available.
An absorption refrigerator described in Japanese Patent Publication No. 9706 is cited.
In the conventional technology, in the double-effect absorption refrigerator, a float valve for adjusting the flow rate of the solution sent to the high temperature regenerator and the low temperature regenerator is provided at the outlet of the high temperature regenerator according to the liquid level of the outlet. ing. Further, a control device for the solution pump is provided, and control is performed so that the solution pump is soft-started (prior art 2).

【0005】[0005]

【発明が解決しようとする課題】従来の三重効用吸収式
冷凍機は、上記特開2000−171123号公報に記
載されるように、高温再生器の圧力センサーの出力を基
に、吸収器から高温再生器へ溶液を送る溶液ポンプの基
本回転速度が設定されており、さらに、設定された回転
速度を高温再生器の出口部に設けられた液面センサーに
よって修正するように制御されている。このため、制御
ルールが複雑になる。また、高温再生器へ入熱を開始し
た直後や、停止した直後などに起こる急激な状態変化に
伴う液位の急変動に追従することは容易でない。さら
に、高温再生器が貫流式(器内で溶液の対流が起こら
ず、いわゆるつきぬけて流れる方式)または満液式であ
った場合には、高温再生器におけるボイド率の変動に伴
って出口液面が変動する。この変動によって溶液ポンプ
の基本回転速度が修正されるため、この修正の前後で定
格運転状態における溶液循環量が変化し、所定性能のサ
イクルが再現し難くなる場合がある。
A conventional triple-effect absorption refrigerating machine has a high temperature from the absorber based on the output of the pressure sensor of the high temperature regenerator, as described in JP-A-2000-171123. The basic rotation speed of the solution pump for feeding the solution to the regenerator is set, and further, the set rotation speed is controlled to be corrected by a liquid level sensor provided at the outlet of the high temperature regenerator. Therefore, the control rule becomes complicated. In addition, it is not easy to follow a sudden change in the liquid level due to a rapid change in the state immediately after the heat input to the high temperature regenerator is started or immediately after the heat is stopped. Furthermore, if the high-temperature regenerator is a through-flow type (so-called convection in which no convection of the solution occurs in the vessel, or a so-called flowing method) or a full-fill type, the outlet liquid level changes as the void ratio changes in the high temperature regenerator. Fluctuates. Since the basic rotation speed of the solution pump is corrected by this variation, the solution circulation amount in the rated operating state changes before and after this correction, and it may be difficult to reproduce a cycle with a predetermined performance.

【0006】また上記従来技術では、高温再生器の出口
液面の変化によって溶液ポンプの基本回転速度が修正さ
れるため、これに伴って低温再生器に供給される溶液流
量も変化する構成となっていた。従って、高温再生器の
出口液面が上昇して溶液ポンプの基本回転速度が下方修
正されると、低温再生器に供給される溶液の流量も同時
に減少し、低温再生器を加熱する冷媒蒸気の圧力すなわ
ち中温再生器の圧力が上昇することになる。これに伴
い、高温再生器の圧力も上昇するので、高温再生器から
吸収器への溶液流出量が増加する。このとき高温再生器
では、溶液ポンプの基本回転速度を下方修正したことに
よる流入量の減少と、高温再生器圧力が上昇したことに
よる流出量の増加とによって保有溶液量が急激に減少
し、液面が急激に低下する。そこで溶液ポンプの基本回
転速度を上方修正すると、上記の動作と全く逆の現象が
生じ、これらの繰り返しによってサイクルが不安定にな
る。
Further, in the above-mentioned prior art, since the basic rotation speed of the solution pump is corrected by the change of the outlet liquid level of the high temperature regenerator, the flow rate of the solution supplied to the low temperature regenerator is also changed accordingly. Was there. Therefore, when the outlet liquid level of the high temperature regenerator rises and the basic rotation speed of the solution pump is corrected downward, the flow rate of the solution supplied to the low temperature regenerator also decreases, and the refrigerant vapor that heats the low temperature regenerator is reduced. The pressure, that is, the pressure of the medium temperature regenerator will increase. Along with this, the pressure of the high temperature regenerator also rises, so that the solution outflow amount from the high temperature regenerator to the absorber increases. At this time, in the high temperature regenerator, the inflow rate decreased by lowering the basic rotation speed of the solution pump and the outflow rate increased by the increase in the high temperature regenerator pressure. The surface drops sharply. Therefore, if the basic rotation speed of the solution pump is corrected upward, a phenomenon completely opposite to the above-described operation occurs, and the cycle becomes unstable by repeating these operations.

【0007】また、上記従来技術の不具合を防止するた
めには、サイクル内の圧力変化や各再生器におけるボイ
ド率等の動的特性を考慮した制御ルールを採用する必要
がある。このため、制御ルールが複雑となり、機種ごと
に異なる制御パラメータを設定する必要が生じてくる。
また吸収式冷凍機では、筐体が密閉容器であることから
溶液及び冷媒ポンプにキャンドポンプが用いられてお
り、この種のポンプでは、一般に軸受の潤滑及び冷却を
行うために動作流体がポンプ内を自己循環している。こ
のため、溶液ポンプの回転速度及び電源周波数に下限値
が設定され、常時この下限値以上になるようにポンプは
運転されている。
Further, in order to prevent the above-mentioned problems of the prior art, it is necessary to adopt a control rule considering dynamic characteristics such as pressure change in the cycle and void ratio in each regenerator. Therefore, the control rule becomes complicated, and it becomes necessary to set different control parameters for each model.
In addition, absorption type refrigerators use canned pumps for solution and refrigerant pumps because the casing is a closed container.In this type of pump, the working fluid is generally used to lubricate and cool the bearings. Is self-circulating. Therefore, a lower limit is set for the rotation speed and the power supply frequency of the solution pump, and the pump is always operated so as to be equal to or higher than the lower limit.

【0008】さらに上記従来技術では、冷凍機の起動直
後または冷房負荷が小さい場合、あるいは冷却水温度が
低い場合等のように高温再生器圧力が低い条件において
は、高温再生器から吸収器へ送られる溶液量が減少する
と、溶液ポンプを上記下限値で運転した場合でも高温再
生器へ供給される溶液が過剰となる。さらに上記従来技
術においては、高温再生器本体の上部において冷媒蒸気
と濃縮された溶液との分離が行なわれ、高温再生器出口
に液面検出タンクを別途設ける構造としているので、気
液分離性能維持のために高温再生器本体の小型化が難し
い。
Further, in the above-mentioned prior art, when the high temperature regenerator pressure is low, such as immediately after the start of the refrigerator, when the cooling load is small, or when the cooling water temperature is low, the high temperature regenerator sends it to the absorber. When the amount of the solution to be supplied decreases, the solution supplied to the high temperature regenerator becomes excessive even when the solution pump is operated at the above lower limit value. Further, in the above-mentioned prior art, since the refrigerant vapor and the concentrated solution are separated in the upper part of the high temperature regenerator body, and the liquid level detection tank is separately provided at the outlet of the high temperature regenerator, the gas-liquid separation performance is maintained. Therefore, it is difficult to downsize the high temperature regenerator body.

【0009】次に、上記特開平10−9706号公報に
記載の吸収式冷凍機では、二重効用吸収冷凍サイクルを
採用しているので成績係数が低い。また、溶液ポンプの
全ヘッドとしては、二重効用吸収冷凍サイクルに用いる
9〜15m程度を想定しており、三重効用で用いる全ヘ
ッドが30m程度、あるいはそれ以上の溶液ポンプは考
慮されていなかった。このため、起動時を除く通常運転
中は溶液ポンプは一定速度で運転されていた。従って、
本従来技術を三重効用サイクルに適用すると、フロート
バルブの前後における圧力差が二重効用に比べて大きく
なって軸受の磨耗が激しくなり、これに伴って軸漏れが
増大して冷房効率の低下し、また異物の混入、挟み込み
による軸受の固渋トラブルなどの不具合を誘発する恐れ
があった。
Next, in the absorption chiller described in JP-A-10-9706, since the double-effect absorption refrigeration cycle is adopted, the coefficient of performance is low. Further, it is assumed that the total head of the solution pump is about 9 to 15 m used for the double effect absorption refrigeration cycle, and the total head used for the triple effect is about 30 m, or a solution pump having a length of more than 30 m is not considered. . For this reason, the solution pump was operating at a constant speed during normal operation except at startup. Therefore,
When this conventional technology is applied to a triple effect cycle, the pressure difference before and after the float valve becomes larger than that in the double effect cycle, resulting in severe wear of the bearing, which results in increased shaft leakage and reduced cooling efficiency. In addition, there is a risk of causing troubles such as the trouble of the bearing being astringent due to inclusion of foreign matter or pinching.

【0010】本発明の目的は、サイクルの安定性が確保
された三重効用吸収式冷凍機を提供することにある。ま
た本発明の目的は、部分負荷効率が向上した三重効用吸
収式冷凍機をすることにある。さらに本発明の目的は、
小型化が図られる三重効用吸収式冷凍機をすることにあ
る。さらに本発明の目的は、高温再生器への供給量のみ
を調整する場合は、冷房能力、吸収器内の溶液量などが
安定し、不安定現象に関連した不具合を防止できる三重
効用吸収式冷凍機を提供することにある。
An object of the present invention is to provide a triple-effect absorption refrigerating machine in which cycle stability is ensured. Another object of the present invention is to provide a triple-effect absorption refrigerator with improved partial load efficiency. Further, the object of the present invention is to
It is to create a triple-effect absorption refrigerator that can be downsized. Further object of the present invention, when adjusting only the supply amount to the high temperature regenerator, cooling capacity, the amount of solution in the absorber is stable, triple effect absorption refrigeration that can prevent problems related to instability phenomenon. To provide a machine.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る三重効用吸収式冷凍機は、高温再生器、
中温再生器及び低温再生器、凝縮器、吸収器、蒸発器、
複数の熱交換器、これら機器を結ぶ溶液配管及び冷媒配
管、溶液及び冷媒をサイクル内に循環させる溶液ポンプ
または冷媒ポンプを備える三重効用吸収式冷凍機におい
て、前記高温再生器出口部に液面を形成する筐体が設け
られ、該筐体内に、液面の液位によって前記高温再生器
へ送る溶液量を調節するフロートバルブが設けられてい
るものである。
In order to achieve the above object, a triple effect absorption refrigerator according to the present invention comprises a high temperature regenerator,
Medium temperature regenerator and low temperature regenerator, condenser, absorber, evaporator,
In a triple-effect absorption refrigerating machine having a plurality of heat exchangers, a solution pipe and a refrigerant pipe connecting these devices, a solution pump or a refrigerant pump for circulating a solution and a refrigerant in a cycle, a liquid level is provided at the high temperature regenerator outlet. A housing to be formed is provided, and a float valve for adjusting the amount of the solution sent to the high temperature regenerator is provided in the housing by the liquid level of the liquid surface.

【0012】これにより、溶液ポンプの回転速度及び溶
液弁の制御ルールが不要となり、制御ルールに関連した
不具合を防止できるので、三重効用吸収式冷凍機の信頼
性の向上とコストの低減が図られる。また、液位の変動
に対する追従性が向上するので、液位の過度の上昇や下
降に伴う不具合を防止できることによっても、信頼性が
さらに向上する。さらに、圧力や液位などのサイクル内
の状態と各再生器に送られる溶液量の関係が常に一定で
あるから、性能などのサイクル状態量の再現性が良いの
で、性能が安定することによっても、信頼性が向上す
る。
As a result, the rotational speed of the solution pump and the control rule for the solution valve are unnecessary, and problems related to the control rule can be prevented, so that the reliability and cost of the triple effect absorption refrigerator can be improved. . Further, since the followability with respect to the fluctuation of the liquid level is improved, it is possible to prevent the trouble caused by the excessive rise and fall of the liquid level, and the reliability is further improved. Furthermore, since the relationship between the state in the cycle such as pressure and liquid level and the amount of solution sent to each regenerator is always constant, the reproducibility of cycle state quantity such as performance is good, so it is also possible to stabilize the performance. , Reliability is improved.

【0013】さらに、中温再生器及び低温再生器へ送ら
れる溶液量が、高温再生器の圧力や液位などから直接影
響を受けることがないので、高温再生器出口部の液位が
急激に変化しても、中温再生器及び低温再生器へ送られ
る溶液量とこれらの容器内の圧力とは比較的安定する。
従って、吸収器へ送られる溶液量や冷房能力、暖房運転
時の暖房能力などが安定することによっても、信頼性が
向上する。
Further, since the amount of the solution sent to the medium temperature regenerator and the low temperature regenerator is not directly influenced by the pressure and the liquid level of the high temperature regenerator, the liquid level at the outlet of the high temperature regenerator changes rapidly. Even so, the amount of solution sent to the medium temperature regenerator and the low temperature regenerator and the pressure in these vessels are relatively stable.
Therefore, the reliability is also improved by stabilizing the amount of solution sent to the absorber, the cooling capacity, the heating capacity during the heating operation, and the like.

【0014】さらに、高温再生器へ送られる溶液量をフ
ロートバルブで調整した場合、高温再生器圧力が低い条
件においても、溶液ポンプを駆動する駆動電源周波数に
関係なく高温再生器へ送られる溶液量が過剰とならず、
電源周波数の調節が不要となる。また、部分負荷効率の
向上や消費電力低減のために電源周波数を調節する場合
においても、常時一定値以上の周波数で運転することが
可能となり、ポンプ内の自己循環液量による軸受の潤滑
及び冷却を行うことができる。従って、三重効用吸収式
冷凍機の運転範囲を高温再生器圧力が低い条件まで拡大
することができることによっても、溶液ポンプの信頼性
が向上し、冷凍機全体の信頼性の向上が図れる。
Further, when the amount of the solution sent to the high temperature regenerator is adjusted by the float valve, the amount of the solution sent to the high temperature regenerator is irrespective of the driving power frequency for driving the solution pump even under the condition that the temperature of the high temperature regenerator is low. Is not excessive,
There is no need to adjust the power frequency. In addition, even when adjusting the power supply frequency to improve partial load efficiency and reduce power consumption, it is possible to always operate at a frequency above a certain value, and lubrication and cooling of the bearing due to the amount of self-circulating liquid in the pump. It can be performed. Therefore, the reliability of the solution pump can be improved and the reliability of the entire refrigerator can be improved by expanding the operating range of the triple-effect absorption refrigerator to the condition where the high temperature regenerator pressure is low.

【0015】また上記目的を達成するために本発明に係
る三重効用吸収式冷凍機の他の発明は、高温再生器、中
温再生器及び低温再生器、凝縮器、吸収器、蒸発器、複
数の熱交換器、これら機器を結ぶ溶液配管及び冷媒配
管、溶液及び冷媒をサイクル内に循環させる溶液ポンプ
または冷媒ポンプを備え、前記吸収器から前記高温再生
器、中温再生器及び低温再生器に並列に溶液が送られる
ように前記溶液配管が接続した三重効用吸収式冷凍機に
おいて、前記高温再生器出口部に液面を形成する筐体が
設けられ、該筐体内には、液面を検出し、該検出された
液位に基づいて前記高温再生器へ送られる溶液量を調整
するフロートバルブが設けられ、前記中温再生器及び低
温再生器へ溶液を送る溶液配管が、前記フロートバルブ
と前記高温再生器との間の溶液配管に接続されている。
In order to achieve the above object, another invention of the triple effect absorption refrigerator according to the present invention is a high temperature regenerator, a medium temperature regenerator and a low temperature regenerator, a condenser, an absorber, an evaporator and a plurality of regenerators. A heat exchanger, a solution pipe and a refrigerant pipe connecting these devices, a solution pump or a refrigerant pump for circulating a solution and a refrigerant in a cycle, and from the absorber in parallel with the high temperature regenerator, the medium temperature regenerator and the low temperature regenerator. In the triple-effect absorption refrigerator in which the solution pipe is connected so that a solution is sent, a housing that forms a liquid surface at the outlet of the high temperature regenerator is provided, and the liquid surface is detected in the housing. A float valve for adjusting the amount of solution sent to the high temperature regenerator based on the detected liquid level is provided, and a solution pipe for sending the solution to the medium temperature regenerator and the low temperature regenerator has the float valve and the high temperature regeneration. With vessels It is connected to a solution pipe between.

【0016】これにより、溶液ポンプの回転速度及び溶
液弁の制御ルールが不要となり、液位変動に対する追従
性が向上し、サイクル状態量の再現性も良く、溶液ポン
プの自己循環液量も確保できるので、性能安定性、信頼
性向上及び運転範囲の拡大が図れる。また、中温再生器
及び低温再生器へ送られる溶液量が高温再生器と連動し
て調整されるので、部分負荷効率も良好となる。
As a result, the rotational speed of the solution pump and the control rule of the solution valve are not required, the followability to the liquid level fluctuation is improved, the reproducibility of the cycle state quantity is good, and the self-circulating liquid quantity of the solution pump can be secured. Therefore, performance stability, reliability improvement, and expansion of the operating range can be achieved. Further, since the amount of the solution sent to the medium temperature regenerator and the low temperature regenerator is adjusted in association with the high temperature regenerator, the partial load efficiency becomes good.

【0017】また上記目的を達成するために本発明に係
る三重効用吸収式冷凍機のさらに他の発明は、高温再生
器、中温再生器及び低温再生器、凝縮器、吸収器、蒸発
器、低温熱交換器及び中温熱交換器を含む複数の熱交換
器、これら機器を結ぶ溶液配管及び冷媒配管、溶液及び
冷媒をサイクル内に循環させる溶液ポンプまたは冷媒ポ
ンプを備え、前記溶液配管は、希溶液が吸収器から低温
熱交換器に送られた後で分岐され、分岐後の一部希溶液
は低温再生器に送られ、残りの希溶液が中温熱交換器を
経て高温再生器及び中温再生器に送られるように接続さ
れた三重効用吸収式冷凍機において、前記低温熱交換器
と高温再生器との間に、前記吸収器から高温再生器及び
中温再生器に送られる溶液量を調整する流量調整手段が
設けられている。
In order to achieve the above object, still another invention of the triple effect absorption refrigerator according to the present invention is a high temperature regenerator, a medium temperature regenerator and a low temperature regenerator, a condenser, an absorber, an evaporator, a low temperature regenerator. A plurality of heat exchangers including a heat exchanger and an intermediate temperature heat exchanger, a solution pipe and a refrigerant pipe connecting these devices, a solution pump or a refrigerant pump for circulating a solution and a refrigerant in a cycle, and the solution pipe is a dilute solution. Is sent from the absorber to the low temperature heat exchanger and then branched, part of the diluted solution after branching is sent to the low temperature regenerator, and the remaining dilute solution passes through the medium temperature heat exchanger to the high temperature regenerator and medium temperature regenerator. In a triple-effect absorption refrigerator connected so as to be sent to, between the low temperature heat exchanger and the high temperature regenerator, a flow rate for adjusting the amount of solution sent from the absorber to the high temperature regenerator and the medium temperature regenerator. Adjustment means are provided.

【0018】また上記目的を達成するために本発明に係
る三重効用吸収式冷凍機のさらに他の発明は、高温再生
器、中温再生器及び低温再生器、凝縮器、吸収器、蒸発
器、複数の熱交換器、これら機器を結ぶ溶液配管及び冷
媒配管、溶液及び冷媒をサイクル内に循環させる溶液ポ
ンプまたは冷媒ポンプ、前記高温再生器の出口部に気液
分離器を備えた三重効用吸収式冷凍機において、前記気
液分離器の内部に液面検出手段が設けられ、該液面検出
手段には、検出された液位によって前記高温再生器に送
られる溶液量を調整する流量調整手段が設けられてい
る。
In order to achieve the above object, still another invention of a triple effect absorption refrigerator according to the present invention is a high temperature regenerator, a medium temperature regenerator and a low temperature regenerator, a condenser, an absorber, an evaporator, and a plurality of regenerators. Heat exchanger, a solution pipe and a refrigerant pipe connecting these devices, a solution pump or a refrigerant pump for circulating a solution and a refrigerant in a cycle, and a triple effect absorption refrigeration equipped with a gas-liquid separator at the outlet of the high temperature regenerator. In the machine, liquid level detection means is provided inside the gas-liquid separator, and the liquid level detection means is provided with flow rate adjustment means for adjusting the amount of solution sent to the high temperature regenerator according to the detected liquid level. Has been.

【0019】これにより、液面検出専用のタンクを設け
る必要がなくなり、高温再生器本体及び三重効用吸収式
冷凍機の小型化が図られる。詳しくは、前記吸収器から
高温再生器、中温再生器もしくは低温再生器に溶液を送
る前記溶液ポンプには、前記高温再生器の圧力もしくは
温度によって前記溶液ポンプを駆動する駆動電源の周波
数を制御する制御装置が設けられている。これにより、
フロートバルブの前後における圧力差を低減できるの
で、軸受磨耗及びこれに関連した不具合を防止でき、三
重効用吸収式冷凍機の信頼性向上が図られる。また、消
費電力が低減されると共に、ポンプ起動時の溶液熱交換
器の衝撃圧力が低減されて、繰り返し応力の発生に起因
する強度寿命を延長することも可能となる。
As a result, it is not necessary to provide a tank dedicated to the liquid level detection, and the high temperature regenerator body and the triple effect absorption refrigerator are downsized. Specifically, the solution pump that sends the solution from the absorber to the high-temperature regenerator, the medium-temperature regenerator, or the low-temperature regenerator controls the frequency of the drive power source that drives the solution pump according to the pressure or temperature of the high-temperature regenerator. A controller is provided. This allows
Since the pressure difference before and after the float valve can be reduced, it is possible to prevent bearing wear and problems associated therewith, and improve the reliability of the triple effect absorption refrigerator. Further, the power consumption is reduced and the impact pressure of the solution heat exchanger at the time of starting the pump is reduced, so that the strength life due to the repeated stress generation can be extended.

【0020】さらに、以上すべての解決手段において、
吸収冷凍サイクルは三重効用サイクルを採用しているの
で、成績係数が高く、吸収式冷凍機の省エネルギー化が
図られる。
Further, in all the above-mentioned solution means,
Since the absorption refrigeration cycle uses a triple effect cycle, it has a high coefficient of performance and saves energy in the absorption refrigerator.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、本発明の一実施形態に係
る三重効用吸収式冷凍機のサイクル系統図で、中温再生
器、低温再生器などへ高温再生器と並行に希溶液を流
す、いわゆるパラレルフロー方式のものである。三重効
用吸収式冷凍機は、高温再生器1、気液分離器15、中
温再生器2、低温再生器3、凝縮器4、蒸発器5、冷媒
ポンプ55、吸収器6、希溶液ポンプ7、低温熱交換器
8、濃溶液ポンプ85、中温熱交換器9、高温熱交換器
10、及びこれら機器を結ぶ溶液配管及び冷媒配管など
から構成されている。本実施形態においては、冷凍機の
冷媒には水、吸収剤には臭化リチウム水溶液が用いられ
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cycle system diagram of a triple-effect absorption refrigerator according to an embodiment of the present invention, which is a so-called parallel flow system in which a dilute solution is flown in parallel to a high temperature regenerator to a medium temperature regenerator, a low temperature regenerator, etc. Is. The triple effect absorption refrigerator includes a high temperature regenerator 1, a gas-liquid separator 15, a medium temperature regenerator 2, a low temperature regenerator 3, a condenser 4, an evaporator 5, a refrigerant pump 55, an absorber 6, a dilute solution pump 7, It comprises a low temperature heat exchanger 8, a concentrated solution pump 85, a medium temperature heat exchanger 9, a high temperature heat exchanger 10, and a solution pipe and a refrigerant pipe connecting these devices. In this embodiment, water is used as the refrigerant of the refrigerator and an aqueous lithium bromide solution is used as the absorbent.

【0022】次に、該冷凍機の運転中の動作について説
明する。冷房に供される冷水は、蒸発器5で冷媒の蒸発
熱によって冷却されて配管5aから冷房負荷系に送られ
る。この時発生した冷媒蒸気は、吸収器6の溶液によっ
て吸収される。この吸収によって蒸発器内の圧力と蒸発
温度とが低圧、低温に維持される。吸収器6では、高温
再生器1、中温再生器2、低温再生器3の各再生器で加
熱濃縮された溶液すなわち濃溶液が散布される。散布さ
れた濃溶液は、吸収器6の配管6aを流れる冷却水によ
って冷却されると共に冷媒蒸気を吸収し、濃度のより薄
い溶液すなわち希溶液となって吸収器6の下部に滞留す
る。この希溶液は、希溶液ポンプ7によって低温熱交換
器8に送られ、吸収器6に流入する濃溶液と熱交換して
温度上昇した後、2系統に分岐して一方は低温再生器3
に、他方は中温熱交換器9に送られる。
Next, the operation of the refrigerator during operation will be described. The cold water used for cooling is cooled by the heat of vaporization of the refrigerant in the evaporator 5 and sent to the cooling load system from the pipe 5a. The refrigerant vapor generated at this time is absorbed by the solution in the absorber 6. Due to this absorption, the pressure inside the evaporator and the evaporation temperature are maintained at low pressure and low temperature. In the absorber 6, the solution that has been heated and concentrated in each of the high temperature regenerator 1, the medium temperature regenerator 2, and the low temperature regenerator 3, that is, a concentrated solution is sprayed. The sprayed concentrated solution is cooled by the cooling water flowing through the pipe 6a of the absorber 6 and absorbs the refrigerant vapor, and becomes a solution having a lower concentration, that is, a dilute solution and stays in the lower portion of the absorber 6. This dilute solution is sent to the low temperature heat exchanger 8 by the dilute solution pump 7, exchanges heat with the concentrated solution flowing into the absorber 6 to raise the temperature, and then branches into two systems, one of which is the low temperature regenerator 3
The other is sent to the medium temperature heat exchanger 9.

【0023】低温再生器3に送られた希溶液は、中温再
生器2で発生した冷媒蒸気の凝縮熱、中温再生器2の加
熱に用いられて凝縮した冷媒の顕熱によって加熱濃縮さ
れてより濃度の濃い溶液すなわち濃溶液となる。この濃
溶液は、配管35を通って高温再生器1及び中温再生器
2からの濃溶液と合流し、濃溶液ポンプ85によって、
低温熱交換器8を経由して吸収器6へ送られる。また低
温再生器3で発生した冷媒蒸気は、凝縮器4の配管6a
を流れる冷却水により冷却されて凝縮し、中温再生器2
の加熱に用いられて凝縮した冷媒及び低温再生器3の加
熱に用いられて凝縮した冷媒と共に蒸発器5へ送られ
る。
The dilute solution sent to the low-temperature regenerator 3 is heated and concentrated by the heat of condensation of the refrigerant vapor generated in the medium-temperature regenerator 2 and the sensible heat of the refrigerant used for heating the medium-temperature regenerator 2 and concentrated. A concentrated solution, that is, a concentrated solution is obtained. This concentrated solution merges with the concentrated solution from the high temperature regenerator 1 and the medium temperature regenerator 2 through the pipe 35, and by the concentrated solution pump 85,
It is sent to the absorber 6 via the low temperature heat exchanger 8. Further, the refrigerant vapor generated in the low temperature regenerator 3 is the pipe 6 a of the condenser 4.
It is cooled by the cooling water flowing through it and condenses, and the intermediate temperature regenerator 2
Is sent to the evaporator 5 together with the condensed refrigerant used for heating and the condensed refrigerant used for heating the low temperature regenerator 3.

【0024】一方、中温熱交換器9に送られた希溶液
は、高温再生器1、中温再生器2からの濃溶液と熱交換
してさらに温度上昇した後、再び2系統に分岐して一方
は中温再生器2に、他方は高温熱交換器10を経由して
高温再生器1に送られる。
On the other hand, the dilute solution sent to the medium temperature heat exchanger 9 exchanges heat with the concentrated solution from the high temperature regenerator 1 and the medium temperature regenerator 2 to further raise the temperature, and then branches into two systems again. Is sent to the medium temperature regenerator 2 and the other is sent to the high temperature regenerator 1 via the high temperature heat exchanger 10.

【0025】中温再生器2に送られた希溶液は、高温再
生器3で発生した冷媒蒸気の凝縮熱で加熱濃縮されて濃
溶液となり、フロートボックス24にオーバーフローす
る。フロートボックス24内にはフロートバルブ25が
設置されており、このフロートバルブ25は、フロート
ボックス24内の濃溶液の液位によって中温再生器2に
送られる希溶液量を調整する流量調整手段となってい
る。フロートボックス24内の濃溶液は、濃溶液配管2
6を通って高温再生器1からの濃溶液と合流して中温熱
交換器9の高温側配管に送られ、中温熱交換器9の出口
側から、低温再生器3からの濃溶液と合流するために送
られる。
The dilute solution sent to the medium temperature regenerator 2 is heated and concentrated by the heat of condensation of the refrigerant vapor generated in the high temperature regenerator 3 to become a concentrated solution, and overflows into the float box 24. A float valve 25 is installed in the float box 24, and the float valve 25 serves as a flow rate adjusting means for adjusting the amount of the dilute solution sent to the intermediate temperature regenerator 2 according to the liquid level of the concentrated solution in the float box 24. ing. The concentrated solution in the float box 24 is the concentrated solution pipe 2
6 to join the concentrated solution from the high temperature regenerator 1 to be sent to the high temperature side pipe of the medium temperature heat exchanger 9, and join the concentrated solution from the low temperature regenerator 3 from the outlet side of the intermediate temperature heat exchanger 9. Sent for.

【0026】中温再生器2の加熱に用いられて管内で凝
縮した冷媒は、低温再生器3に送られ、低温再生器3内
の溶液を顕熱によって加熱した後に凝縮器4に送られ
る。また中温再生器2で発生した冷媒蒸気は低温再生器
3に送られ、ここで低温再生器3に流入した希溶液を加
熱濃縮する。
The refrigerant used for heating the medium temperature regenerator 2 and condensed in the pipe is sent to the low temperature regenerator 3, and the solution in the low temperature regenerator 3 is heated by sensible heat and then sent to the condenser 4. Further, the refrigerant vapor generated in the medium temperature regenerator 2 is sent to the low temperature regenerator 3 where the dilute solution flowing into the low temperature regenerator 3 is heated and concentrated.

【0027】一方、高温再生器1側に送られた溶液は、
高温熱交換器10において高温再生器1から流出する濃
溶液と熱交換した後、気液分離器15内に設置されてい
るフロートバルブ16により流量調整をされた後、入口
ヘッダ11側から高温再生器1に流入する。高温再生器
1は貫流式となっており、この高温再生器1は、燃料を
燃焼するバーナ12、このバーナ12の周囲に同心円状
に配置されて溶液を加熱濃縮する伝熱管群などから構成
されている。
On the other hand, the solution sent to the high temperature regenerator 1 side is
After exchanging heat with the concentrated solution flowing out from the high temperature regenerator 1 in the high temperature heat exchanger 10, the flow rate is adjusted by the float valve 16 installed in the gas-liquid separator 15, and then the high temperature regeneration is performed from the inlet header 11 side. Flows into vessel 1. The high temperature regenerator 1 is a flow-through type, and the high temperature regenerator 1 is composed of a burner 12 for burning fuel, a heat transfer tube group arranged concentrically around the burner 12 for heating and concentrating a solution, and the like. ing.

【0028】高温再生器1に流入した希溶液は、バーナ
12からの放射熱及び燃焼ガスからの熱伝達によって加
熱濃縮されて濃溶液となった後、発生した冷媒蒸気と共
に、筐体で構成る気液分離器15に送られる。気液分離
器15は高温再生器1の出口部(下流)に設置され、そ
の内部は、冷媒蒸気を分離した溶液すなわち濃溶液が滞
留する底部と空間を形成する上部とから構成されてい
る。気液分離器15内部にはフロートバルブ16が設置
されており、フロートバルブ16は、前述のように底部
の濃溶液の液面高さ(液位)によって高温再生器1へ送
られる希溶液量を調節している。
The dilute solution that has flowed into the high temperature regenerator 1 is heated and concentrated by the radiation heat from the burner 12 and the heat transfer from the combustion gas to become a concentrated solution. It is sent to the gas-liquid separator 15. The gas-liquid separator 15 is installed at the outlet (downstream) of the high temperature regenerator 1, and the inside thereof is composed of a bottom portion where a solution obtained by separating the refrigerant vapor, that is, a concentrated solution, and an upper portion which forms a space. A float valve 16 is installed inside the gas-liquid separator 15, and the float valve 16 is the amount of the dilute solution sent to the high temperature regenerator 1 depending on the liquid level height (liquid level) of the concentrated solution at the bottom as described above. Is being adjusted.

【0029】気液分離器15で冷媒蒸気から分離された
濃溶液は高温熱交換器10に送られ、高温再生器1に流
入する希溶液と熱交換して温度低下した後、中温再生器
2で加熱濃縮されて生成された濃溶液と合流し、さらに
中温熱交換器9に送られる。気液分離器15で濃溶液か
ら分離された冷媒蒸気は、中温再生器2に送られて中温
再生器2の希溶液を加熱濃縮して管内で凝縮した後、さ
らに低温再生器3を経由して凝縮器4に送られる。凝縮
器4に流入し管内で凝縮した冷媒は、さらに低温再生器
3及び凝縮器4で凝縮した冷媒と共に蒸発器5に送られ
る。
The concentrated solution separated from the refrigerant vapor in the gas-liquid separator 15 is sent to the high temperature heat exchanger 10 and exchanges heat with the dilute solution flowing into the high temperature regenerator 1 to lower the temperature, and then the medium temperature regenerator 2 The solution is combined with the concentrated solution produced by being heated and concentrated in (1), and then sent to the intermediate temperature heat exchanger (9). The refrigerant vapor separated from the concentrated solution in the gas-liquid separator 15 is sent to the medium temperature regenerator 2 to heat and concentrate the dilute solution in the medium temperature regenerator 2 and condense in the pipe, and then further passes through the low temperature regenerator 3. Is sent to the condenser 4. The refrigerant flowing into the condenser 4 and condensed in the pipe is further sent to the evaporator 5 together with the refrigerant condensed in the low temperature regenerator 3 and the condenser 4.

【0030】以上説明したように本実施形態によれば、
高温再生器1の出口部(下流)に、筐体で構成される気
液分離器15を備え、この気液分離器15の底部に滞留
する溶液の液位によって高温再生器1への溶液量を調節
するフロートバルブ16を設けたので、希溶液ポンプ7
を駆動する駆動電源の周波数や制御弁などの制御ルール
が不要となり、複雑な制御ルールに関連した不具合が防
止される。
As described above, according to this embodiment,
At the outlet (downstream) of the high temperature regenerator 1, a gas-liquid separator 15 composed of a housing is provided, and the amount of the solution to the high temperature regenerator 1 depends on the liquid level of the solution that remains at the bottom of the gas-liquid separator 15. Since the float valve 16 for adjusting the
The control rule for the frequency of the drive power source for driving the motor, the control valve, etc. is unnecessary, and problems related to complicated control rules are prevented.

【0031】また、気液分離器15内の液位変動に対す
るフロートバルブ16の動作追従性は極めて良好であ
り、液位の過大な変動による気液分離不良を防止でき
る。さらに、液位と弁開度との関係、すなわち流量調整
に関するパラメータは常に一定であるから、性能や容器
内圧力などの状態量の再現性は良好である。
Further, the operation followability of the float valve 16 with respect to the fluctuation of the liquid level in the gas-liquid separator 15 is very good, and the gas-liquid separation failure due to the excessive fluctuation of the liquid level can be prevented. Further, since the relationship between the liquid level and the valve opening, that is, the parameter relating to the flow rate adjustment is always constant, the reproducibility of the state quantity such as the performance and the pressure in the container is good.

【0032】さらに、高温再生器1へ送られる溶液量を
調節するフロートバルブ16の動作は、希溶液ポンプ7
を駆動する駆動電源の周波数制御等によって溶液循環量
全体を制御する場合と比較して、中温再生器2及び低温
再生器3へ流入する溶液の流量にはほとんど影響を与え
ないので、冷凍サイクルの動作が安定し、性能などのハ
ンチングや、吸収器6または各再生器への溶液の偏在に
伴う不具合が防止される。
Further, the operation of the float valve 16 for adjusting the amount of the solution sent to the high temperature regenerator 1 is performed by the diluted solution pump 7
As compared with the case where the entire solution circulation amount is controlled by controlling the frequency of the driving power source that drives the cooling power source, the flow rate of the solution flowing into the medium temperature regenerator 2 and the low temperature regenerator 3 is hardly affected, and thus the refrigeration cycle The operation is stable, and hunting of performance and the like and troubles due to uneven distribution of the solution in the absorber 6 or each regenerator are prevented.

【0033】さらに、高温再生器1の出口部の液位検出
手段であるフロートバルブ16を気液分離器15の内部
に設置したので、液面検出専用のタンク等を設ける必要
がなく、高温再生器1及び吸収式冷凍機全体の小型化が
可能となった。
Further, since the float valve 16 which is the liquid level detecting means at the outlet of the high temperature regenerator 1 is installed inside the gas-liquid separator 15, it is not necessary to provide a tank or the like dedicated to the liquid level detection, and the high temperature regeneration is performed. It is possible to reduce the size of the container 1 and the absorption refrigerator as a whole.

【0034】なお、本実施の形態において中温再生器1
の出口部に設けられたフロートバルブ25は、中温再生
器2に送られる希溶液量のみを調節するように配管接続
されているが、これは前記特開平10−9706号公報
に記載の高温再生器に設けられたフロートバルブのよう
に、中温再生器2及び低温再生器3の2つの再生器に送
られる希溶液流量を調節するようにしても良い。この場
合は、配管接続が複雑になる代わりに、低温再生器3に
送られる希溶液量を部分負荷運転時などに減少させるこ
とができるので、部分負荷効率が向上する。
Incidentally, in the present embodiment, the medium temperature regenerator 1
The float valve 25 provided at the outlet of the is connected by piping so as to adjust only the amount of the dilute solution sent to the intermediate temperature regenerator 2. This is the high temperature regeneration described in Japanese Patent Laid-Open No. 10-9706. The flow rate of the dilute solution sent to the two regenerators, the medium temperature regenerator 2 and the low temperature regenerator 3, may be adjusted like a float valve provided in the reactor. In this case, the amount of the dilute solution sent to the low temperature regenerator 3 can be reduced at the time of partial load operation and the like, instead of making the pipe connection complicated, so that the partial load efficiency is improved.

【0035】次に、本発明の他の実施の形態について、
図2を用いて説明する。図2に示す三重効用吸収冷凍機
の基本構成要素は、図1の実施の形態と同様である。図
1の実施の形態と異なる点は、フロートバルブ16と高
温再生器1の入口ヘッダ11との間の溶液配管に、低温
再生器3へ溶液を送る溶液配管3及び中温再生器2へ溶
液を送る溶液配管21が分岐して接続されていることで
ある。
Next, another embodiment of the present invention will be described.
This will be described with reference to FIG. The basic constituent elements of the triple effect absorption refrigerator shown in FIG. 2 are the same as those of the embodiment shown in FIG. 1 is different from the embodiment of FIG. 1 in that the solution pipe between the float valve 16 and the inlet header 11 of the high temperature regenerator 1 sends the solution to the low temperature regenerator 3 and the solution to the medium temperature regenerator 2. That is, the solution pipe 21 for sending is branched and connected.

【0036】本実施の形態では、吸収器6から希溶液ポ
ンプ7及び低温熱交換器8を経由した希溶液は、直接高
温再生器1の出口部の気液分離器15内に設けられたフ
ロートバルブ16に送られ、気液分離器15内の濃溶液
の液位に基づいて流量調整される。その後希溶液は2系
統に分岐されて、一方は溶液配管31を通って低温再生
器3に送られ、他方は中温熱交換器9に送られる構成に
なっている。
In the present embodiment, the dilute solution from the absorber 6 via the dilute solution pump 7 and the low temperature heat exchanger 8 is floated directly in the gas-liquid separator 15 at the outlet of the high temperature regenerator 1. It is sent to the valve 16 and the flow rate is adjusted based on the liquid level of the concentrated solution in the gas-liquid separator 15. After that, the dilute solution is branched into two systems, one of which is sent to the low temperature regenerator 3 through the solution pipe 31 and the other of which is sent to the intermediate temperature heat exchanger 9.

【0037】希溶液は、中温熱交換器9で高温再生器1
から戻ってくる高温の濃溶液と熱交換して温度上昇した
後に再び2系統に分岐され、一方は溶液配管21を通っ
て中温再生器2に送られ、他方は高温熱交換器10を経
由して高温再生器1の入口ヘッダ11に送られる。中温
再生器2に送られる希溶液の流量は、気液分離器15に
設けられたフロートバルブ16によって調整されている
ので、中温再生器2の出口部にはフロートバルブは不要
である。
The dilute solution is heated in the medium temperature heat exchanger 9 to the high temperature regenerator 1.
After exchanging heat with the high-temperature concentrated solution returning from the temperature rises, the temperature is raised, and then the system is branched into two systems, one is sent to the medium temperature regenerator 2 through the solution pipe 21, and the other is passed through the high temperature heat exchanger 10. And sent to the inlet header 11 of the high temperature regenerator 1. Since the flow rate of the dilute solution sent to the medium temperature regenerator 2 is adjusted by the float valve 16 provided in the gas-liquid separator 15, the float valve is not required at the outlet of the medium temperature regenerator 2.

【0038】本実施の形態によれば、高温再生器1の出
口部に設けられた単一のフロートバルブ16によって高
温再生器1、中温再生器2及び低温再生器3に送られる
希溶液量が調整されている。このため、サイクルの状態
と中温再生器2の出口液面の安定性が低下する。しかし
その代わりに、低温再生器3に送られる希溶液量を部分
負荷運転時などで減少させることができ、部分負荷効率
が向上する。また中温再生器2においてフロートバルブ
が不要となるため、中温再生器2の小型化が可能とな
る。
According to this embodiment, the amount of the dilute solution sent to the high temperature regenerator 1, the intermediate temperature regenerator 2 and the low temperature regenerator 3 by the single float valve 16 provided at the outlet of the high temperature regenerator 1. Has been adjusted. For this reason, the stability of the cycle state and the liquid surface at the outlet of the intermediate temperature regenerator 2 is lowered. However, instead, the amount of the dilute solution sent to the low temperature regenerator 3 can be reduced during the partial load operation or the like, and the partial load efficiency is improved. Further, since the float valve is not required in the medium temperature regenerator 2, the medium temperature regenerator 2 can be downsized.

【0039】次に、本発明のさらに他の実施の形態につ
いて、図3を用いて説明する。図3に示す三重効用吸収
冷凍機の基本構成要素は図1の実施の形態と同様であ
る。すなわち本実施の形態で、希溶液が吸収器6から希
溶液ポンプ7、低温熱交換器8を経由して2系統に分岐
され、一方が低温再生器3へ、他方が中温熱交換器9に
送られる構成は図1の実施形態と同様である。しかし、
中温熱交換器9で高温再生器1から戻ってくる高温の濃
溶液と温度上昇した希溶液は、図1の実施形態とは異な
り、直接高温再生器1のフロートバルブ16に送られて
気液分離器15内の濃溶液の液位に基づいて流量調整さ
れる。その後希溶液は2系統に分岐されて、一方は中温
再生器2へ、他方は高温熱交換器10を経由して高温再
生器1の入口ヘッダ11に送られることである。
Next, still another embodiment of the present invention will be described with reference to FIG. The basic components of the triple effect absorption refrigerator shown in FIG. 3 are the same as those of the embodiment shown in FIG. That is, in the present embodiment, the dilute solution is branched from the absorber 6 into two systems via the dilute solution pump 7 and the low temperature heat exchanger 8, one to the low temperature regenerator 3 and the other to the medium temperature heat exchanger 9. The configuration sent is similar to the embodiment of FIG. But,
Unlike the embodiment shown in FIG. 1, the hot concentrated solution and the diluted solution whose temperature has risen, which are returned from the high temperature regenerator 1 in the medium temperature heat exchanger 9, are directly sent to the float valve 16 of the high temperature regenerator 1 to be vapor-liquid. The flow rate is adjusted based on the liquid level of the concentrated solution in the separator 15. After that, the dilute solution is branched into two systems, one is sent to the medium temperature regenerator 2 and the other is sent to the inlet header 11 of the high temperature regenerator 1 via the high temperature heat exchanger 10.

【0040】本実施の形態によれば、低温再生器3へ送
られる希溶液量がほぼ一定となるので、部分負荷効率の
面で図2の実施形態と比較して劣る代わりに、低温再生
器3及び凝縮器4内の冷媒蒸気圧力が安定する。このた
め蒸発器5、吸収器6を含むサイクルの低圧側全体の動
作が安定する。したがって、冷房能力のハンチングや吸
収器内の溶液量の変動に伴う不具合、この不具合への対
策による装置の大型化などを回避することができる。
According to the present embodiment, since the amount of the dilute solution sent to the low temperature regenerator 3 is substantially constant, the low temperature regenerator is inferior to the embodiment of FIG. 2 in terms of partial load efficiency. Refrigerant vapor pressure in 3 and condenser 4 stabilizes. Therefore, the operation of the entire low pressure side of the cycle including the evaporator 5 and the absorber 6 is stabilized. Therefore, it is possible to avoid problems such as hunting of the cooling capacity and fluctuations in the amount of solution in the absorber, and enlargement of the device due to measures against this problem.

【0041】本発明のさらに他の実施の形態について、
図4を用いて説明する。図4に示す三重効用吸収冷凍機
の基本構成要素は図1の実施の形態と同様である。本実
施形態が図1の実施形態と異なる点は、図1の実施の形
態にインバータ73等によって制御される制御装置72
を設置したことである。ただし、図2及び図3の実施の
形態においても、同様にインバータ73等によって制御
される制御装置72が設置できる。
With respect to still another embodiment of the present invention,
This will be described with reference to FIG. The basic components of the triple effect absorption refrigerator shown in FIG. 4 are the same as those of the embodiment shown in FIG. The present embodiment differs from the embodiment of FIG. 1 in that the control device 72 controlled by the inverter 73 and the like in the embodiment of FIG.
Is installed. However, also in the embodiments of FIGS. 2 and 3, the control device 72 similarly controlled by the inverter 73 and the like can be installed.

【0042】本実施の形態においては、図4に示すよう
に高温再生器1の圧力が圧力センサー71で計測され、
この計測された信号に基づいて希溶液ポンプ7及び濃溶
液ポンプ85を駆動する駆動電源の周波数を制御するも
のである。本実施の形態によれば、駆動電源周波数が必
要最低限の値に近づけられるることによる消費電力の低
減、また低温再生器3へ送られる溶液量が減少すること
によって、部分負荷効率の向上が可能となる。
In the present embodiment, the pressure of the high temperature regenerator 1 is measured by the pressure sensor 71 as shown in FIG.
The frequency of the drive power source for driving the dilute solution pump 7 and the concentrated solution pump 85 is controlled based on the measured signal. According to the present embodiment, the driving power supply frequency is brought closer to the minimum required value to reduce the power consumption and the amount of the solution sent to the low temperature regenerator 3 is reduced, thereby improving the partial load efficiency. It will be possible.

【0043】さらに、高温再生器1及び中温再生器2へ
送られる希溶液量を調節するフロートバルブ16、25
によって、希溶液ポンプ7は常時一定値以上の回転数で
運転される。希溶液ポンプ7が常時一定値以上の回転数
で回転することによって、希溶液ポンプ7の自己循環液
量が確保され、したがって、ポンプ軸受の信頼性が確保
され、フロートバルブを用いない場合に比べて運転範囲
が拡大される。
Further, float valves 16 and 25 for adjusting the amount of dilute solution sent to the high temperature regenerator 1 and the medium temperature regenerator 2.
As a result, the dilute solution pump 7 is always operated at a rotation speed above a certain value. By constantly rotating the dilute solution pump 7 at a rotation speed equal to or higher than a certain value, the amount of the self-circulating liquid of the dilute solution pump 7 is secured, and therefore the reliability of the pump bearing is secured, and compared with the case where the float valve is not used. The operating range is expanded.

【0044】さらに、駆動電源の周波数が必要最低限の
値に近づけられることにより、フロートバルブ16及び
フロートバルブ25の前後における圧力差が小さくな
り、これらフロートバルブ16、25の軸受磨耗や軸受
磨耗に伴う軸漏れの増大、冷房効率の低下、異物の混
入、挟み込みによるトラブルが防止される。なお、イン
バータ制御用の入力信号としては、高温再生器圧力の他
に、高温再生器温度、中温再生器の圧力または温度、あ
るいはこれらを組み合せた信号を利用しても同様の効果
が得られる。
Further, since the frequency of the drive power source is brought close to the minimum required value, the pressure difference between the front and rear of the float valve 16 and the float valve 25 becomes small, and the bearing wear and bearing wear of the float valves 16 and 25 are reduced. It is possible to prevent troubles due to an increase in shaft leakage, a decrease in cooling efficiency, inclusion of foreign matter, and pinching. As the input signal for controlling the inverter, the same effect can be obtained by using the temperature of the high temperature regenerator, the pressure or temperature of the medium temperature regenerator, or a signal combining these in addition to the high temperature regenerator pressure.

【0045】[0045]

【発明の効果】以上説明したように本発明の三重効用吸
収式冷凍機によれば、気液分離器内の濃溶液の液位変動
に対して希溶液の流量調整の応答が改善され、過大な液
位変動に起因する不具合が防止される、サイクルの安定
性が確保される。
As described above, according to the triple effect absorption refrigerating machine of the present invention, the response of adjusting the flow rate of the dilute solution is improved with respect to the fluctuation of the liquid level of the concentrated solution in the gas-liquid separator, resulting in an excessive value. The stability of the cycle is ensured, which prevents problems caused by various liquid level fluctuations.

【0046】また本発明の三重効用吸収式冷凍機によれ
ば、中温再生器、低温再生器へ送られる溶液流量が高温
再生器と連動して調整されるので部分負荷効率が向上す
る。
Further, according to the triple effect absorption refrigerator of the present invention, the flow rate of the solution sent to the medium temperature regenerator and the low temperature regenerator is adjusted in conjunction with the high temperature regenerator, so that the partial load efficiency is improved.

【0047】さらに本発明の三重効用吸収式冷凍機によ
れば、高温再生器出口部に液面検出タンクを別途設ける
必要がないので、小型化が図られる。
Further, according to the triple-effect absorption refrigerator of the present invention, it is not necessary to separately provide a liquid level detection tank at the outlet of the high temperature regenerator, so that the size can be reduced.

【0048】さらに本発明の三重効用吸収式冷凍機によ
れば、高温再生器へ送られる溶液量のみを調整する場合
は、冷房能力、吸収器内の溶液量などが安定し、不安定
現象に関連した不具合を防止できる。
Further, according to the triple-effect absorption refrigerator of the present invention, when only the amount of the solution sent to the high temperature regenerator is adjusted, the cooling capacity, the amount of the solution in the absorber, etc. are stable, resulting in an unstable phenomenon. It is possible to prevent related problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る三重効用吸収式冷
凍機の系統図である。
FIG. 1 is a system diagram of a triple effect absorption refrigerator according to an embodiment of the present invention.

【図2】本発明の他の実施の形態に係る三重効用吸収式
冷凍機の系統図である。
FIG. 2 is a system diagram of a triple-effect absorption refrigerator according to another embodiment of the present invention.

【図3】本発明のさらに他の実施の形態に係る三重効用
吸収式冷凍機の系統図である。
FIG. 3 is a system diagram of a triple-effect absorption refrigerator according to still another embodiment of the present invention.

【図4】本発明のさらに他の実施の形態に係る三重効用
吸収式冷凍機の系統図である。
FIG. 4 is a system diagram of a triple-effect absorption refrigerator according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…高温再生器、2…中温再生器、3…低温再生器、4
…凝縮器、5…蒸発器、6…吸収器、7…希溶液ポン
プ、8…低温熱交換器、9…中温熱交換器、10…高温
熱交換器、11…高温再生器入口ヘッダ、15…気液分
離器、16、25…フロートバルブ、21…中温再生器
への溶液配管、24…フロートボックス、26、35…
濃溶液配管、31…低温再生器への溶液配管、55…冷
媒ポンプ、71…圧力センサ、72…制御装置、73…
インバータ、85…濃溶液ポンプ。
1 ... High temperature regenerator, 2 ... Medium temperature regenerator, 3 ... Low temperature regenerator, 4
... condenser, 5 ... evaporator, 6 ... absorber, 7 ... dilute solution pump, 8 ... low temperature heat exchanger, 9 ... medium temperature heat exchanger, 10 ... high temperature heat exchanger, 11 ... high temperature regenerator inlet header, 15 ... Gas-liquid separator, 16, 25 ... Float valve, 21 ... Solution piping to medium temperature regenerator, 24 ... Float box, 26, 35 ...
Concentrated solution pipe, 31 ... Solution pipe to low temperature regenerator, 55 ... Refrigerant pump, 71 ... Pressure sensor, 72 ... Control device, 73 ...
Inverter, 85 ... Concentrated solution pump.

フロントページの続き (72)発明者 西口 章 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 松島 均 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 武田 伸之 東京都足立区中川四丁目13番17号 株式会 社日立インダストリイズ内 Fターム(参考) 3L093 BB16 BB22 BB29 BB36 BB37 BB48 CC00 DD08 EE25 GG01 GG02 GG04 HH02 HH15 JJ02 JJ06 KK03 Continued front page    (72) Inventor Akira Nishiguchi             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Hitoshi Matsushima             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Nobuyuki Takeda             4-13 Nakagawa Adachi-ku, Tokyo Stock Exchange             Inside Hitachi Industries F term (reference) 3L093 BB16 BB22 BB29 BB36 BB37                       BB48 CC00 DD08 EE25 GG01                       GG02 GG04 HH02 HH15 JJ02                       JJ06 KK03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高温再生器、中温再生器及び低温再生器、
凝縮器、吸収器、蒸発器、複数の熱交換器、これら機器
を結ぶ溶液配管及び冷媒配管、溶液及び冷媒をサイクル
内に循環させる溶液ポンプまたは冷媒ポンプを備える三
重効用吸収式冷凍機において、 前記高温再生器出口部に液面を形成する筐体が設けら
れ、 該筐体内に、液面の液位によって前記高温再生器へ送ら
れる溶液量を調節するフロートバルブが設けられている
ことを特徴とする三重効用吸収式冷凍機。
1. A high temperature regenerator, a medium temperature regenerator and a low temperature regenerator,
A condenser, an absorber, an evaporator, a plurality of heat exchangers, a solution pipe and a refrigerant pipe connecting these devices, a triple-effect absorption refrigerator having a solution pump or a refrigerant pump for circulating a solution and a refrigerant in a cycle, A housing for forming a liquid level is provided at the outlet of the high temperature regenerator, and a float valve for adjusting the amount of the solution sent to the high temperature regenerator according to the liquid level of the liquid level is provided in the housing. A triple effect absorption refrigerator.
【請求項2】高温再生器、中温再生器及び低温再生器、
凝縮器、吸収器、蒸発器、複数の熱交換器、これら機器
を結ぶ溶液配管及び冷媒配管、溶液及び冷媒をサイクル
内に循環させる溶液ポンプまたは冷媒ポンプを備え、前
記吸収器から前記高温再生器、中温再生器及び低温再生
器に並列に溶液が送られるように前記溶液配管が接続し
た三重効用吸収式冷凍機において、 前記高温再生器出口部に液面を形成する筐体が設けら
れ、 該筐体内には、液面を検出し、該検出された液位に基づ
いて前記高温再生器へ送る溶液量を調整するフロートバ
ルブが設けられ、 前記中温再生器及び低温再生器へ溶液を送る溶液配管
が、前記フロートバルブと前記高温再生器との間の溶液
配管に接続されていることを特徴とする三重効用吸収式
冷凍機。
2. A high temperature regenerator, a medium temperature regenerator and a low temperature regenerator,
A condenser, an absorber, an evaporator, a plurality of heat exchangers, a solution pipe and a refrigerant pipe connecting these devices, a solution pump or a refrigerant pump for circulating a solution and a refrigerant in a cycle, and the absorber to the high temperature regenerator. A triple effect absorption refrigerator in which the solution pipe is connected so that the solution is sent in parallel to the medium-temperature regenerator and the low-temperature regenerator, wherein a housing for forming a liquid surface is provided at the outlet of the high-temperature regenerator, A float valve that detects the liquid level and adjusts the amount of solution sent to the high temperature regenerator based on the detected liquid level is provided in the housing, and the solution that sends the solution to the medium temperature regenerator and the low temperature regenerator is provided. A triple effect absorption refrigerator, wherein a pipe is connected to a solution pipe between the float valve and the high temperature regenerator.
【請求項3】高温再生器、中温再生器及び低温再生器、
凝縮器、吸収器、蒸発器、低温熱交換器及び中温熱交換
器を含む複数の熱交換器、これら機器を結ぶ溶液配管及
び冷媒配管、溶液及び冷媒をサイクル内に循環させる溶
液ポンプまたは冷媒ポンプを備え、前記溶液配管は、希
溶液が吸収器から低温熱交換器に送られた後で分岐さ
れ、分岐後の一部希溶液は低温再生器に送られ、残りの
希溶液が中温熱交換器を経て高温再生器及び中温再生器
に送られるように接続された三重効用吸収式冷凍機にお
いて、 前記低温熱交換器と高温再生器との間に、前記吸収器か
ら高温再生器及び中温再生器に送られる溶液量を調整す
る流量調整手段が設けられていることを特徴とする三重
効用吸収式冷凍機。
3. A high temperature regenerator, a medium temperature regenerator and a low temperature regenerator,
A plurality of heat exchangers including a condenser, an absorber, an evaporator, a low temperature heat exchanger and a medium temperature heat exchanger, a solution pipe and a refrigerant pipe connecting these devices, a solution pump or a refrigerant pump for circulating a solution and a refrigerant in a cycle. The solution pipe is branched after the dilute solution is sent from the absorber to the low temperature heat exchanger, a part of the dilute solution after the branch is sent to the low temperature regenerator, and the remaining dilute solution is subjected to medium temperature heat exchange. A triple-effect absorption refrigerating machine connected so as to be sent to a high-temperature regenerator and a medium-temperature regenerator via a reactor, between the low-temperature heat exchanger and the high-temperature regenerator, the high-temperature regenerator and the medium-temperature regeneration from the absorber A triple-effect absorption refrigerating machine, which is provided with flow rate adjusting means for adjusting the amount of solution sent to the container.
【請求項4】高温再生器、中温再生器及び低温再生器、
凝縮器、吸収器、蒸発器、複数の熱交換器、これら機器
を結ぶ溶液配管及び冷媒配管、溶液及び冷媒をサイクル
内に循環させる溶液ポンプまたは冷媒ポンプ、前記高温
再生器の出口部に気液分離器を備えた三重効用吸収式冷
凍機において、 前記気液分離器の内部に液面検出手段が設けられ、 該液面検出手段には、検出された液位によって前記高温
再生器に送られる溶液量を調整する流量調整手段が設け
られていること特徴とする三重効用吸収式冷凍機。
4. A high temperature regenerator, a medium temperature regenerator and a low temperature regenerator,
A condenser, an absorber, an evaporator, a plurality of heat exchangers, a solution pipe and a refrigerant pipe that connect these devices, a solution pump or a refrigerant pump that circulates a solution and a refrigerant in a cycle, and a gas-liquid at the outlet of the high temperature regenerator. In a triple-effect absorption refrigerator having a separator, a liquid level detecting means is provided inside the gas-liquid separator, and the liquid level detecting means sends the liquid level to the high temperature regenerator according to the detected liquid level. A triple-effect absorption refrigerator, which is provided with a flow rate adjusting means for adjusting the amount of solution.
【請求項5】前記吸収器から高温再生器、中温再生器も
しくは低温再生器に溶液を送る前記溶液ポンプには、前
記高温再生器の圧力もしくは温度によって前記溶液ポン
プを駆動する駆動電源の周波数を制御する制御装置が設
けられていることを特徴とする請求項1から4のいずれ
かに記載の三重効用吸収式冷凍機。
5. The solution pump that feeds the solution from the absorber to the high temperature regenerator, the medium temperature regenerator or the low temperature regenerator is supplied with a frequency of a driving power source that drives the solution pump according to the pressure or temperature of the high temperature regenerator. The triple effect absorption refrigerating machine according to claim 1, further comprising a control device for controlling.
JP2002133711A 2002-05-09 2002-05-09 Triple effect absorption refrigerator Expired - Lifetime JP4157723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133711A JP4157723B2 (en) 2002-05-09 2002-05-09 Triple effect absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133711A JP4157723B2 (en) 2002-05-09 2002-05-09 Triple effect absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2003329329A true JP2003329329A (en) 2003-11-19
JP4157723B2 JP4157723B2 (en) 2008-10-01

Family

ID=29696591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133711A Expired - Lifetime JP4157723B2 (en) 2002-05-09 2002-05-09 Triple effect absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4157723B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106983A (en) * 2006-10-25 2008-05-08 Hitachi Appliances Inc Absorption type heat pump

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690303B1 (en) * 2016-05-13 2016-12-27 삼중테크 주식회사 Triple effect absorption chiller
KR101702952B1 (en) * 2016-05-13 2017-02-09 삼중테크 주식회사 Triple effect absorption chiller
US10018383B2 (en) 2016-05-13 2018-07-10 Samjung Tech Co., Ltd. Triple effect absorption chiller
KR101710072B1 (en) * 2016-12-26 2017-02-27 삼중테크 주식회사 Triple effect absorption chiller using heat source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106983A (en) * 2006-10-25 2008-05-08 Hitachi Appliances Inc Absorption type heat pump

Also Published As

Publication number Publication date
JP4157723B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
JP2003329329A (en) Triple effect absorption type refrigerating machine
JP6486159B2 (en) Absorption refrigerator and control method thereof
JP2005003312A (en) Triple effect absorption refrigerating plant
JP2000171123A (en) Triple-effect absorption refrigerating machine
JP4321318B2 (en) Triple effect absorption refrigerator
JP3554858B2 (en) Absorption refrigerator
JP3732893B2 (en) Control method of absorption chiller / heater
JP2007263411A (en) Absorption refrigerator
JP3252212B2 (en) Absorption chiller controller
JP2007232271A (en) Triple effect absorption refrigerating machine
JP2006112686A (en) Two stage temperature rising type absorption heat pump
JP3883313B2 (en) Multi-effect absorption refrigerator
JP2003130486A (en) Absorption chilled or hot-water machine and method of controlling the machine
JPH0586543B2 (en)
JP2005300069A (en) Absorption refrigerating machine
JPH0868572A (en) Dual-effect absorption refrigerator
JP3147767B2 (en) Absorption heat pump
JP3434279B2 (en) Absorption refrigerator and how to start it
JP2005164161A (en) Absorption refrigerator and solution level control method for its regenerator
JP2004125314A (en) Triple effect absorption refrigerator and its operating method
KR20020051402A (en) Flow control method of the LiBr solution for the parallel flow type absorption chiller-heater
JPH0198865A (en) Absorption refrigerator
JPH0356861Y2 (en)
JPS62169974A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4157723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term