JP2003130486A - Absorption chilled or hot-water machine and method of controlling the machine - Google Patents

Absorption chilled or hot-water machine and method of controlling the machine

Info

Publication number
JP2003130486A
JP2003130486A JP2001321469A JP2001321469A JP2003130486A JP 2003130486 A JP2003130486 A JP 2003130486A JP 2001321469 A JP2001321469 A JP 2001321469A JP 2001321469 A JP2001321469 A JP 2001321469A JP 2003130486 A JP2003130486 A JP 2003130486A
Authority
JP
Japan
Prior art keywords
solution
refrigerant
tank
absorber
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001321469A
Other languages
Japanese (ja)
Other versions
JP3920619B2 (en
Inventor
Akira Nishiguchi
章 西口
Tatsuro Fujii
達郎 藤居
Satoshi Miyake
聡 三宅
Takahiro Sakuma
貴洋 佐久間
Kazunori Matsumae
和則 松前
Kenji Yamada
研治 山田
Yuji Ozawa
裕治 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Hitachi Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP2001321469A priority Critical patent/JP3920619B2/en
Publication of JP2003130486A publication Critical patent/JP2003130486A/en
Application granted granted Critical
Publication of JP3920619B2 publication Critical patent/JP3920619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized, low-cost absorption chilled or hot-water machine by reducing the capacity of a solution tank. SOLUTION: This absorption chilled or hot-water machine comprises an evaporator 10, an absorber 20, and regenerators 30 and 40. Solution fed from the regenerators 30 and 40 is sprayed in the absorber 20, refrigerant vapor evaporated by the evaporator 10 is absorbed by the solution, the solution absorbing the refrigerant vapor is temporarily held in the solution tank 23, and the level of the solution in the solution tank 23 is varied by variations in cooling water temperature and cooling water load. A bypass pipe 25 branched to the solution tank 23 is installed in a solution pipe 24 for feeding the solution from the regenerators 30 and 40 to the absorber 20, and a flow control means 26 for varying the flow of the solution according to the amount of the solution in the solution tank 23 in cooling operation is installed in the bypass pipe 25.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷温水機及び
その制御方法に関する。
TECHNICAL FIELD The present invention relates to an absorption chiller-heater and a control method thereof.

【0002】[0002]

【従来の技術】一般に従来の吸収冷温水機においては、
冷却水温度が32℃、冷水温度が7℃の冷房定格条件にお
いて、吸収溶液の濃度を再生器でおよそ60%以上に濃縮
し、この濃溶液を吸収器内の伝熱管に散布して蒸発器か
らの冷媒蒸気を吸収させることにより冷房運転を行って
いる。但し、冷却水温度が低い場合や冷房負荷が小さい
場合には吸収溶液の濃度は低くなる。たとえば、冷却水
温度20℃、冷房負荷が25%程度の場合には吸収能力が過
大となるため吸収溶液の濃度は50%程度に低下してサイ
クルがバランスする。この場合に吸収溶液が冷媒液で希
釈され、その結果サイクル内の溶液の体積が増加する。
この増加した溶液を保持するために溶液タンクを設ける
必要があった。
2. Description of the Related Art Generally, in a conventional absorption chiller / heater,
Under the cooling condition of cooling water temperature of 32 ° C and cooling water temperature of 7 ° C, the concentration of the absorbing solution is concentrated to about 60% or more by the regenerator, and this concentrated solution is sprayed on the heat transfer tubes in the absorber to evaporate. The cooling operation is performed by absorbing the refrigerant vapor from the. However, when the cooling water temperature is low or the cooling load is small, the concentration of the absorbing solution becomes low. For example, when the cooling water temperature is 20 ° C. and the cooling load is about 25%, the absorption capacity becomes excessive, so the concentration of the absorbing solution decreases to about 50% and the cycle balances. In this case, the absorbing solution is diluted with the refrigerant liquid, which results in an increase in the solution volume in the cycle.
A solution tank had to be provided to hold this increased solution.

【0003】また暖房運転時には、冷房運転時と同様の
経路で溶液が循環しており、吸収器内の伝熱管に溶液を
散布するためには、伝熱管として用いている銅チューブ
の耐熱温度以下に散布溶液温度を低下する必要があっ
た。すなわち、例えば60℃の温水を供給するためには
蒸発器、吸収器の器内圧力は20kPa程度となり、この条
件で吸収器の伝熱管に散布される溶液の温度を銅チュー
ブの耐熱温度である80〜90℃程度以下とするために
は、溶液濃度は冷房の低負荷、低冷却水温度条件での濃
度よりも低い45%程度とする必要がある。このため、
溶液の体積は冷房の低負荷、低冷却水温度条件よりも増
加するので、溶液タンクの容量はさらに大きなものが必
要となる。
Further, during heating operation, the solution circulates in the same route as during cooling operation, and in order to disperse the solution to the heat transfer tubes in the absorber, the temperature is not higher than the heat resistant temperature of the copper tube used as the heat transfer tube. It was necessary to lower the spray solution temperature. That is, for example, in order to supply hot water of 60 ° C., the internal pressure of the evaporator and the absorber is about 20 kPa, and the temperature of the solution sprayed on the heat transfer tube of the absorber under this condition is the heat resistant temperature of the copper tube. In order to set the temperature to about 80 to 90 ° C. or less, the solution concentration needs to be about 45%, which is lower than the concentration under the low cooling load and low cooling water temperature conditions. For this reason,
Since the volume of the solution increases compared with the low load of cooling and the low cooling water temperature condition, a larger capacity of the solution tank is required.

【0004】そこで、例えば特開平5−18627号公
報には、高温再生器からの溶液を吸収器内部の散布装置
へ供給する配管の途中に、フロート弁あるいは開閉弁を
介して吸収溶液タンクへ導くバイパス配管を設置した吸
収冷温水機が開示されている(第1の従来技術)。本従
来技術においては、暖房運転時に吸収溶液タンクの液位
が増加してフロート弁が開き、吸収器の散布装置へ送ら
れる全溶液量がバイパス配管を流れることにより、吸収
器内の伝熱管上に暖房運転時の高温の溶液が散布されな
いようにしており、溶液タンク容量が小さくても、耐熱
性の低い低コストの伝熱管の使用を可能にしている。
Therefore, for example, in Japanese Unexamined Patent Publication (Kokai) No. 5-18627, a solution is fed from a high-temperature regenerator to a spray device inside the absorber, and is introduced to an absorbing solution tank via a float valve or an opening / closing valve in the middle of the pipe. An absorption chiller-heater equipped with a bypass pipe is disclosed (first prior art). In this conventional technology, during heating operation, the liquid level in the absorbing solution tank increases, the float valve opens, and the total amount of solution sent to the spraying device of the absorber flows through the bypass pipe, so that the heat transfer tube inside the absorber is Moreover, the high temperature solution is prevented from being sprayed during the heating operation, and even if the solution tank capacity is small, it is possible to use a low-cost heat transfer tube with low heat resistance.

【0005】また、例えば特開平8−261592号公
報には、吸収器内の吸収液の液面を検知し、液面高さに
応じて吸収器への吸収液流量を制御する吸収冷温水機の
例が開示されている(第2の従来技術)。
Further, for example, in Japanese Unexamined Patent Publication No. 8-261592, an absorption chiller / heater for detecting the liquid level of the absorbing liquid in the absorber and controlling the flow rate of the absorbing liquid to the absorber according to the liquid level height. Is disclosed (second prior art).

【0006】[0006]

【発明が解決しようとする課題】上記第1の従来技術に
おいては、冷房運転中の低負荷、低冷却水温度条件に対
応できる溶液濃度に低下させるために容量の大きな溶液
タンクが必要となり、吸収冷温水機が大型化するととも
にコストも上昇する。また、溶液タンク容量に対応し
て、溶液を希釈するための冷媒を保持する冷媒タンク容
量も大きくなりコスト上昇につながる。さらに、暖房運
転中にサイクルを循環する高温の溶液が、吸収器の伝熱
管には散布されないものの、低温再生器の伝熱管に散布
され、この伝熱管が高温の溶液でアタックされて穴開き
等が生ずる、ということについては考慮されておらず、
これを防止するためには高価な伝熱管を使用せざるを得
ず、コストアップにつながる。
In the first prior art described above, a solution tank having a large capacity is required in order to reduce the solution concentration to a low load and a low cooling water temperature condition during cooling operation. As the chiller / heater becomes larger, the cost also rises. Further, the capacity of the refrigerant tank for holding the refrigerant for diluting the solution is increased corresponding to the capacity of the solution tank, which leads to an increase in cost. Furthermore, the high temperature solution that circulates in the cycle during the heating operation is not sprayed to the heat transfer tube of the absorber, but is sprayed to the heat transfer tube of the low temperature regenerator, and this heat transfer tube is attacked by the high temperature solution and punctured. Is not taken into account,
In order to prevent this, an expensive heat transfer tube must be used, which leads to an increase in cost.

【0007】また第2の従来技術においては、冷房運転
中の低負荷、低冷却水温度条件に対応できる溶液タンク
量の低減に配慮されておらず、吸収冷温水機が大型化す
る。また、吸収器内の液面高さに応じて吸収器への吸収
液流量、すなわちサイクル循環量を変化させているの
で、負荷や冷却水温度が定格とは異なる各運転条件にお
いて、最適なサイクル循環量に制御することができず、
吸収冷温水機の効率が低下する。さらに、吸収器への循
環量を直接制御しているため、暖房運転時に吸収器伝熱
管への溶液の散布を停止しようとした場合に、サイクル
循環量が零となってサイクルが成立しなくなり、逆に暖
房運転時に溶液の散布を継続する場合には、溶液濃度を
薄くするために大きな溶液タンクが必要となり、冷温水
機が大型化してコストアップにつながる。
Further, the second prior art does not take into consideration the reduction of the amount of the solution tank that can cope with the low load and low cooling water temperature conditions during the cooling operation, and the absorption chiller-heater becomes large in size. In addition, since the flow rate of the absorbed liquid to the absorber, that is, the cycle circulation amount, is changed according to the liquid level in the absorber, the optimum cycle is obtained under each operating condition where the load and cooling water temperature differ from the rating. I can't control the amount of circulation,
The efficiency of the absorption chiller / heater decreases. Furthermore, since the circulation amount to the absorber is directly controlled, when trying to stop the spraying of the solution to the absorber heat transfer tubes during the heating operation, the cycle circulation amount becomes zero and the cycle cannot be established, On the contrary, when the solution is continuously sprayed during the heating operation, a large solution tank is required to dilute the solution concentration, resulting in an increase in the size of the chiller / heater and an increase in cost.

【0008】本発明の目的は、溶液タンクの容量を小さ
くして、小型で低コストの吸収冷温水機を提供すること
にある。本発明の他の目的は、吸収液タンクの液面高さ
に影響されずにサイクルの溶液循環量を制御することが
でき、定格外の運転条件においても効率の高いサイクル
で運転できる高性能な吸収冷温水機を提供することにあ
る。本発明のさらに他の目的は、暖房運転時に吸収器の
伝熱管及び低温再生器の伝熱管が高温の溶液に接するこ
とがなく、信頼性の高い吸収冷温水機を提供することに
ある。
An object of the present invention is to provide a small-sized, low-cost absorption chiller-heater by reducing the capacity of the solution tank. Another object of the present invention is to control the amount of solution circulation in the cycle without being affected by the liquid level of the absorbing liquid tank, and to operate in a highly efficient cycle even under non-rated operating conditions. It is to provide an absorption chiller-heater. Still another object of the present invention is to provide a highly reliable absorption chiller-heater in which the heat transfer tube of the absorber and the heat transfer tube of the low temperature regenerator do not come into contact with the high temperature solution during the heating operation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明の吸収冷温水機に係る発明の構成は、蒸発器、
吸収器、再生器を備え、前記吸収器において再生器から
送られてきた溶液を散布し、この溶液に蒸発器で蒸発し
た冷媒蒸気を吸収させ、冷媒蒸気を吸収した溶液を一旦
溶液タンクに保持し、冷却水温度及び冷温水負荷の変動
によって溶液タンクの溶液量が変化する吸収冷温水機に
おいて、前記再生器から吸収器に溶液を送る溶液配管
に、溶液タンクに分岐するバイパス配管を設け、このバ
イパス配管に、冷房運転時、溶液タンクの溶液量に応じ
て溶液流量を変化させる流量調整手段を設けるものであ
る。
In order to achieve the above object, the structure of the invention relating to the absorption chiller-heater of the present invention is an evaporator,
Equipped with an absorber and a regenerator, the solution sent from the regenerator is sprayed in the absorber, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, and the solution that has absorbed the refrigerant vapor is temporarily held in the solution tank. However, in the absorption chilled water heater in which the amount of solution in the solution tank changes due to fluctuations in cooling water temperature and cold / hot water load, in the solution pipe for sending the solution from the regenerator to the absorber, a bypass pipe branching to the solution tank is provided, The bypass pipe is provided with flow rate adjusting means for changing the solution flow rate in accordance with the amount of the solution in the solution tank during the cooling operation.

【0010】上記目的を達成するために本発明の吸収冷
温水機に係る他の発明の構成は、蒸発器、吸収器、再生
器を備え、前記吸収器において再生器から送られてきた
溶液を散布し、この溶液に蒸発器で蒸発した冷媒蒸気を
吸収させ、冷媒蒸気を吸収した溶液を一旦溶液タンクに
保持し、冷却水温度及び冷温水負荷の変動によって溶液
タンクの溶液量が変化する吸収冷温水機において、前記
溶液タンクは、冷却水温度の下限値及び冷温水負荷の下
限値の運転条件において必要となる溶液タンクの容量よ
りも小さな容量の溶液タンクとし、前記再生器から吸収
器に溶液を送る溶液配管に、溶液タンクに分岐するバイ
パス配管を設け、このバイパス配管に、溶液タンクの溶
液量に応じて溶液流量を変化させる流量調整手段を設け
るものである。
In order to achieve the above-mentioned object, another aspect of the invention relating to the absorption chiller-heater of the present invention comprises an evaporator, an absorber and a regenerator, and the solution sent from the regenerator in the absorber is Disperse and absorb the refrigerant vapor that has evaporated in the evaporator into this solution, hold the solution that has absorbed the refrigerant vapor in the solution tank, and change the amount of solution in the solution tank due to fluctuations in cooling water temperature and cold / hot water load. In the cold / hot water machine, the solution tank is a solution tank having a capacity smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold / hot water load, and from the regenerator to the absorber. A bypass pipe branching to the solution tank is provided in the solution pipe for feeding the solution, and a flow rate adjusting means for changing the solution flow rate according to the amount of the solution in the solution tank is provided in the bypass pipe.

【0011】詳しくは、前記流量調整手段は、バイパス
配管に設けられ、溶液タンクの液面高さに応じて開度を
変化させて流量を制御するフロート弁とするものであ
る。
More specifically, the flow rate adjusting means is a float valve that is provided in the bypass pipe and controls the flow rate by changing the opening degree according to the liquid level of the solution tank.

【0012】上記目的を達成するために本発明の吸収冷
温水機に係るさらに他の発明の構成は、蒸発器、吸収
器、再生器を備え、前記吸収器において再生器から送ら
れてきた溶液を散布し、この溶液に蒸発器で蒸発した冷
媒蒸気を吸収させ、冷媒蒸気を吸収した溶液を一旦溶液
タンクに保持し、冷却水温度及び冷温水負荷の変動によ
って溶液タンクの溶液量が変化する吸収冷温水機におい
て、前記溶液タンクは、冷却水温度の下限値及び冷温水
負荷の下限値の運転条件において必要となる溶液タンク
の容量よりも小さな容量の溶液タンクとし、前記再生器
から吸収器に溶液を送る溶液配管の途中に、溶液タンク
に分岐するバイパス配管を設け、溶液タンクの溶液量に
応じて溶液流量を変化させるために、バイパス配管に設
けられた流量増減手段と、溶液タンクの液面検知手段
と、この液面検知手段からの信号を基に前記流量増減手
段を制御する制御手段とを備える流量調整手段を設ける
ものである。
[0012] In order to achieve the above-mentioned object, a structure of still another invention relating to the absorption chiller-heater of the present invention comprises an evaporator, an absorber and a regenerator, and the solution sent from the regenerator in the absorber. Is sprayed, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, the solution that has absorbed the refrigerant vapor is temporarily held in the solution tank, and the amount of solution in the solution tank changes due to fluctuations in cooling water temperature and cold / hot water load. In the absorption chiller-heater, the solution tank is a solution tank having a capacity smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold and warm water load, and from the regenerator to the absorber. A bypass pipe branching to the solution tank is provided in the middle of the solution pipe for sending the solution to the solution pipe, and the flow rate adjusting device provided in the bypass pipe is used to change the solution flow rate according to the solution amount in the solution tank. When the liquid level sensing means of the solution tank, in which providing a flow rate adjusting means and control means for controlling the flow rate adjusting unit based on a signal from the liquid level detection means.

【0013】上記目的を達成するために本発明の吸収冷
温水機に係るさらに他の発明の構成は、冷媒を保持する
冷媒タンク、冷媒を循環させる冷媒ポンプ、蒸発器、吸
収器、再生器を備え、前記吸収器において再生器から送
られてきた溶液を散布し、この溶液に蒸発器で蒸発した
冷媒蒸気を吸収させ、冷媒蒸気を吸収した溶液を一旦溶
液タンクに保持し、冷却水温度及び冷温水負荷の変動に
よって溶液タンクの溶液量が変化する吸収冷温水機にお
いて、前記溶液タンクは、冷却水温度の下限値及び冷温
水負荷の下限値の運転条件において必要となる溶液タン
クの容量よりも小さな容量の溶液タンクとし、前記冷媒
ポンプの吐出側配管に、冷媒タンクの冷媒量に応じて冷
媒流量を変化させる流量調整弁を設け、この流量調整弁
の二次側配管に、吸収器の溶液タンクに分岐するブロー
配管を、開閉弁を介して設けるものである。
In order to achieve the above-mentioned object, still another aspect of the present invention relating to an absorption chiller-heater of the present invention comprises a refrigerant tank for holding a refrigerant, a refrigerant pump for circulating the refrigerant, an evaporator, an absorber, and a regenerator. Provided, the solution sent from the regenerator in the absorber is sprinkled, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, the solution absorbing the refrigerant vapor is once held in the solution tank, and the cooling water temperature and In an absorption chiller-heater in which the amount of solution in the solution tank changes due to fluctuations in cold / hot water load, the solution tank is less than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold / hot water load. Also a small capacity solution tank, the discharge side piping of the refrigerant pump, a flow rate adjusting valve for changing the refrigerant flow rate according to the amount of refrigerant in the refrigerant tank is provided, in the secondary side piping of this flow rate adjusting valve, The blow pipe branched into the solution tank Osamuki are those provided via an on-off valve.

【0014】上記目的を達成するために本発明の吸収冷
温水機に係るさらに他の発明の構成は、冷媒を保持する
冷媒タンク、冷媒を循環させる冷媒ポンプ、蒸発器、吸
収器、再生器を備え、前記吸収器において再生器から送
られてきた溶液を散布し、この溶液に蒸発器で蒸発した
冷媒蒸気を吸収させ、冷媒蒸気を吸収した溶液を一旦溶
液タンクに保持し、冷却水温度及び冷温水負荷の変動に
よって溶液タンクの溶液量が変化する吸収冷温水機の制
御方法において、前記溶液タンクは、冷却水温度の下限
値及び冷温水負荷の下限値の運転条件において必要とな
る溶液タンクの容量よりも小さな容量の溶液タンクと
し、前記冷媒ポンプの吐出側配管に、冷媒タンクの冷媒
量に応じて冷媒流量を変化させる流量調整弁を設け、こ
の流量調整弁の二次側配管に、吸収器の溶液タンクに分
岐するブロー配管を、開閉弁を介して設け、前記開閉弁
は、溶液を冷媒で希釈する希釈運転時に開とし、希釈運
転終了時に閉とするものである。
In order to achieve the above object, still another aspect of the present invention relating to an absorption chiller-heater of the present invention comprises a refrigerant tank for holding a refrigerant, a refrigerant pump for circulating the refrigerant, an evaporator, an absorber and a regenerator. Provided, the solution sent from the regenerator in the absorber is sprinkled, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, the solution absorbing the refrigerant vapor is once held in the solution tank, and the cooling water temperature and In the method for controlling an absorption chiller-heater in which the amount of solution in the solution tank changes according to changes in the cold / hot water load, the solution tank is a solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold / hot water load. A solution tank having a capacity smaller than that of the refrigerant pump, and a flow rate adjusting valve for changing the refrigerant flow rate according to the amount of refrigerant in the refrigerant tank is provided in the discharge side piping of the refrigerant pump. The pipe, blow pipe branched into the solution tank of the absorber, provided via an on-off valve, the on-off valve, the solution is opened upon dilution operation for dilution by the refrigerant, in which the closed upon dilution operation end.

【0015】上記目的を達成するために本発明の吸収冷
温水機に係るさらに他の発明の構成は、蒸発器、吸収
器、高温再生器、低温再生器を備え、前記吸収器におい
て高温再生器及び低温再生器から送られてきた溶液を散
布し、この溶液に蒸発器で蒸発した冷媒蒸気を吸収さ
せ、冷媒蒸気を吸収した溶液を一旦溶液タンクに保持
し、冷却水温度及び冷温水負荷の変動によって溶液タン
クの溶液量が変化する吸収冷温水機において、前記高温
再生器、低温再生器から吸収器に溶液を送る溶液配管
に、溶液タンクに分岐するバイパス配管を設け、このバ
イパス配管に、溶液タンクの溶液量に応じて溶液流量を
変化させる流量調整手段を設け、前記冷媒ポンプの吐出
側配管に、冷媒タンクの冷媒量に応じて冷媒流量を変化
させる流量調整弁を設け、この流量調整弁の二次側配管
に吸収器の溶液タンクに分岐するブロー配管を、開閉弁
を介して設け、前記低温再生器に、この低温再生器の溶
液散布装置に溶液を送る配管から分岐して、低温再生器
の伝熱管より下方に溶液を送るバイパス配管を設け、こ
のバイパス配管に開閉弁を設けるものである。
In order to achieve the above object, still another aspect of the present invention relating to an absorption chiller-heater is provided with an evaporator, an absorber, a high-temperature regenerator, and a low-temperature regenerator, and the absorber has a high-temperature regenerator. And the solution sent from the low temperature regenerator is sprinkled, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, the solution that has absorbed the refrigerant vapor is once held in the solution tank, and the cooling water temperature and cold / hot water load In the absorption chiller-heater in which the amount of solution in the solution tank changes due to fluctuations, the high temperature regenerator, the solution pipe for sending the solution from the low temperature regenerator to the absorber, a bypass pipe branching to the solution tank is provided, and in this bypass pipe, Providing a flow rate adjusting means for changing the solution flow rate according to the amount of solution in the solution tank, the discharge side pipe of the refrigerant pump is provided with a flow rate adjusting valve for changing the refrigerant flow rate according to the amount of refrigerant in the refrigerant tank, Blow piping that branches to the solution tank of the absorber is provided on the secondary side piping of the flow rate control valve of the above through an opening / closing valve, and branched from the piping that sends the solution to the solution spraying device of this low temperature regenerator to the low temperature regenerator. Then, a bypass pipe for sending the solution is provided below the heat transfer pipe of the low temperature regenerator, and an opening / closing valve is provided in the bypass pipe.

【0016】上記目的を達成するために本発明の吸収冷
温水機に係るさらに他の発明の構成は、冷媒を保持する
冷媒タンク、冷媒を循環させる冷媒ポンプ、蒸発器、吸
収器、高温再生器、低温再生器を備え、前記吸収器にお
いて高温再生器及び低温再生器から送られてきた溶液を
散布し、この溶液に蒸発器で蒸発した冷媒蒸気を吸収さ
せ、冷媒蒸気を吸収した溶液を一旦溶液タンクに保持
し、冷却水温度及び冷温水負荷の変動によって溶液タン
クの溶液量が変化する吸収冷温水機の制御方法におい
て、前記高温再生器、低温再生器から吸収器に溶液を送
る溶液配管に、溶液タンクに分岐するバイパス配管を設
け、このバイパス配管に、溶液タンクの溶液量に応じて
溶液流量を変化させる流量調整手段を設け、前記冷媒ポ
ンプの吐出側配管に、冷媒タンクの冷媒量に応じて冷媒
流量を変化させる流量調整弁を設け、この流量調整弁の
二次側配管に吸収器の溶液タンクに分岐するブロー配管
を、開閉弁を介して設け、前記低温再生器に、この低温
再生器の溶液散布装置に溶液を送る配管から分岐し、低
温再生器の伝熱管より下方に溶液を送るバイパス配管を
設け、このバイパス配管に開閉弁を設け、暖房運転時
に、このバイパス配管の開閉弁及び前記ブロー配管の開
閉弁を開とするものである。
In order to achieve the above object, still another aspect of the present invention relating to an absorption chiller-heater of the present invention is a refrigerant tank for holding a refrigerant, a refrigerant pump for circulating the refrigerant, an evaporator, an absorber, a high temperature regenerator. , A low temperature regenerator is provided, and the solution sent from the high temperature regenerator and the low temperature regenerator is sprayed in the absorber, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, and the solution absorbing the refrigerant vapor is once A method for controlling an absorption chiller-heater in which the amount of solution in the solution tank changes depending on fluctuations in cooling water temperature and cold / hot water load, which is held in a solution tank In, provided with a bypass pipe branching to the solution tank, the bypass pipe is provided with flow rate adjusting means for changing the solution flow rate according to the amount of the solution in the solution tank, and on the discharge side pipe of the refrigerant pump, A flow rate adjusting valve that changes the refrigerant flow rate according to the amount of refrigerant in the medium tank is provided, and a blow pipe branching to the solution tank of the absorber is provided in the secondary side pipe of this flow rate adjusting valve through an on-off valve, and the low temperature In the regenerator, a bypass pipe for branching the solution to the solution spraying device of the low temperature regenerator is provided, and a bypass pipe for sending the solution is provided below the heat transfer pipe of the low temperature regenerator. The opening / closing valve of the bypass pipe and the opening / closing valve of the blow pipe are opened.

【0017】上記目的を達成するために本発明の吸収冷
温水機に係るさらに他の発明の構成は、蒸発器、吸収
器、高温再生器、低温再生器を備え、前記吸収器におい
て高温再生器及び低温再生器から送られてきた溶液を散
布し、この溶液に蒸発器で蒸発した冷媒蒸気を吸収さ
せ、冷媒蒸気を吸収した溶液を一旦溶液タンクに保持
し、冷却水温度及び冷温水負荷の変動によって溶液タン
クの溶液量が変化する吸収冷温水機において、前記溶液
タンクは、冷却水温度の下限値及び冷温水負荷の下限値
の運転条件において必要となる溶液タンクの容量よりも
小さな容量の溶液タンクとし、前記高温再生器、低温再
生器から吸収器に溶液を送る溶液配管の途中に、溶液タ
ンクに分岐するバイパス配管を設け、このバイパス配管
に、溶液タンクの溶液量に応じて溶液流量を変化させる
流量調整手段を設け、前記低温再生器に、この低温再生
器の溶液散布装置に溶液を送る配管から分岐し、低温再
生器の伝熱管より下方に溶液を送るバイパス配管を設
け、このバイパス配管に開閉弁を設けるものである。
In order to achieve the above object, still another aspect of the present invention relating to an absorption chiller-heater of the present invention is provided with an evaporator, an absorber, a high temperature regenerator and a low temperature regenerator, wherein the absorber has a high temperature regenerator. And the solution sent from the low temperature regenerator is sprinkled, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, the solution that has absorbed the refrigerant vapor is once held in the solution tank, and the cooling water temperature and cold / hot water load In an absorption chiller-heater in which the amount of solution in the solution tank changes due to fluctuations, the solution tank has a capacity smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold and warm water load. As a solution tank, a bypass pipe branching to the solution tank is provided in the middle of the solution pipe for sending the solution from the high temperature regenerator and the low temperature regenerator to the absorber, and the amount of the solution tank solution is provided in this bypass pipe. A flow rate adjusting means for varying the solution flow rate is provided, and the low temperature regenerator is branched from a pipe for feeding the solution to the solution spraying device of the low temperature regenerator, and a bypass pipe for feeding the solution below the heat transfer pipe of the low temperature regenerator. Is provided, and an opening / closing valve is provided in this bypass pipe.

【0018】上記目的を達成するために本発明の吸収冷
温水機に係るさらに他の発明の構成は、蒸発器、吸収
器、高温再生器、低温再生器を備え、前記吸収器におい
て高温再生器及び低温再生器から送られてきた溶液を散
布し、この溶液に蒸発器で蒸発した冷媒蒸気を吸収さ
せ、冷媒蒸気を吸収した溶液を一旦溶液タンクに保持
し、冷却水温度及び冷温水負荷の変動によって溶液タン
クの溶液量が変化する吸収冷温水機において、前記高温
再生器、低温再生器から吸収器に溶液を送る溶液配管
に、溶液タンクに分岐するバイパス配管を設け、このバ
イパス配管に、溶液タンクの溶液量に応じて溶液流量を
変化させる流量調整手段を設け、前記冷媒ポンプの吐出
側配管に、冷媒タンクの冷媒量に応じて冷媒流量を変化
させる流量調整弁を設け、この流量調整弁の二次側配管
に、吸収器の溶液タンクに分岐するブロー配管を、開閉
弁を介して設けるものである。
In order to achieve the above-mentioned object, still another aspect of the present invention relating to an absorption chiller-heater of the present invention comprises an evaporator, an absorber, a high temperature regenerator, and a low temperature regenerator, wherein the absorber has a high temperature regenerator. And the solution sent from the low temperature regenerator is sprinkled, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, the solution that has absorbed the refrigerant vapor is once held in the solution tank, and the cooling water temperature and cold / hot water load In the absorption chiller-heater in which the amount of solution in the solution tank changes due to fluctuations, the high temperature regenerator, the solution pipe for sending the solution from the low temperature regenerator to the absorber, a bypass pipe branching to the solution tank is provided, and in this bypass pipe, Providing a flow rate adjusting means for changing the solution flow rate according to the amount of solution in the solution tank, the discharge side pipe of the refrigerant pump is provided with a flow rate adjusting valve for changing the refrigerant flow rate according to the amount of refrigerant in the refrigerant tank, Of the secondary pipe of the flow control valve, a blow pipe branched into the solution tank of the absorber, in which is provided via an on-off valve.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は、本発明に係る吸収冷温水機
の実施例の系統図である。吸収冷温水機は基本的には、
蒸発器10、吸収器20、高温再生器30、低温再生器
40、凝縮器50、溶液熱交換器61、62、冷媒ポン
プ71、溶液ポンプ72、73などから構成されてい
る。蒸発器10の下部には冷媒タンク13が配置され、
吸収器20の下部には溶液タンク23が配置されてい
る。また、作動媒体は冷媒として水、吸収媒体として臭
化リチウム水溶液(以下、溶液という)を用いており、
溶液タンク23の容積は冷却水温度の下限値で且つ冷水
負荷の下限値の運転条件において必要となる溶液タンク
の容量よりも小さな容量となっている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an embodiment of an absorption chiller-heater according to the present invention. The absorption chiller / heater is basically
The evaporator 10, the absorber 20, the high temperature regenerator 30, the low temperature regenerator 40, the condenser 50, the solution heat exchangers 61 and 62, the refrigerant pump 71, the solution pumps 72 and 73, and the like. A refrigerant tank 13 is arranged below the evaporator 10,
A solution tank 23 is arranged below the absorber 20. Further, the working medium uses water as a refrigerant, and an aqueous lithium bromide solution (hereinafter referred to as a solution) as an absorbing medium,
The capacity of the solution tank 23 is smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold water load.

【0020】冷房運転時のサイクルの動作は、下記のよ
うになる。蒸発器10内には伝熱管11が配置されてお
り、凝縮器50から冷媒配管52を通って送られてくる
冷媒は、蒸発器10の下部に配置された冷媒タンク13
に一旦保持される。この冷媒は冷媒ポンプ71により冷
媒配管14を通って散布装置12に送られ、伝熱管11
上に散布して伝熱管上で蒸発するときの蒸発潜熱によ
り、伝熱管11内を流れる冷水を冷却して需要側に送水
される。一方、冷媒ポンプの吐出側で冷媒配管14の途
中にはフロート弁15が設置されており、冷媒タンク1
3の液位が低下した場合に弁開度を小さくして冷媒流量
を少なくするか、あるいは冷媒流量を遮断するように動
作し、冷媒ポンプ71のキャビテーションを防止してい
る。また、冷媒配管14の途中には、フロート弁15の
下流側から分岐して溶液タンク23に接続する冷媒ブロ
ー配管16が設置されており、このブロー配管16の途
中に開閉弁17が設けられている。この開閉弁17は通
常の冷房運転中は閉とする。
The operation of the cycle during the cooling operation is as follows. A heat transfer tube 11 is arranged in the evaporator 10, and the refrigerant sent from the condenser 50 through the refrigerant pipe 52 is arranged in a lower portion of the evaporator 10 in a refrigerant tank 13.
Once held. This refrigerant is sent to the spraying device 12 through the refrigerant pipe 14 by the refrigerant pump 71, and the heat transfer pipe 11
Due to the latent heat of vaporization that is spread on the heat transfer tube and evaporates on the heat transfer tube, the cold water flowing in the heat transfer tube 11 is cooled and sent to the demand side. On the other hand, a float valve 15 is installed in the middle of the refrigerant pipe 14 on the discharge side of the refrigerant pump.
When the liquid level of No. 3 decreases, the valve opening is reduced to reduce the refrigerant flow rate, or the refrigerant flow rate is shut off to prevent cavitation of the refrigerant pump 71. A refrigerant blow pipe 16 that branches from the downstream side of the float valve 15 and connects to the solution tank 23 is installed in the middle of the refrigerant pipe 14, and an opening / closing valve 17 is provided in the middle of the blow pipe 16. There is. This on-off valve 17 is closed during normal cooling operation.

【0021】吸収器20内には冷却水が流れる伝熱管2
1が配置されており、高温再生器30及び低温再生器4
0で加熱濃縮された濃溶液が溶液配管24を通って吸収
器20内の散布装置22に送られ、伝熱管21上に散布
される。また、溶液配管24から分岐して溶液タンク2
3内に接続するバイパス配管25が設置されており、こ
のバイパス配管の途中にフロート弁26を設け、溶液タ
ンク23の液面高さが低くなった場合にはバイパス弁2
6の開度が小さくなり、溶液タンク23の液面が高くな
った場合にはバイパス弁26の開度が大きくなるように
制御される。一方、蒸発器10で蒸発した冷媒蒸気は蒸
発器10と吸収器20との間に設置されたエリミネータ
19を通って吸収器内に流れ込み、伝熱管21上を流下
する溶液に吸収される。この時発生する吸収熱は伝熱管
21内を流れる冷却水に冷却される。また、冷媒蒸気を
吸収して濃度が薄くなった溶液は、溶液タンク23に保
持された後、溶液ポンプ72により溶液熱交換器61へ
送られる。
A heat transfer tube 2 through which cooling water flows in the absorber 20.
1 is arranged, the high temperature regenerator 30 and the low temperature regenerator 4
The concentrated solution heated and concentrated at 0 is sent to the spraying device 22 in the absorber 20 through the solution pipe 24 and sprayed on the heat transfer pipe 21. Further, the solution tank 2 is branched from the solution pipe 24.
3 is provided with a bypass pipe 25, a float valve 26 is provided in the middle of this bypass pipe, and when the liquid level of the solution tank 23 becomes low, the bypass valve 2
When the opening degree of 6 decreases and the liquid level of the solution tank 23 increases, the opening degree of the bypass valve 26 is controlled to increase. On the other hand, the refrigerant vapor evaporated in the evaporator 10 flows into the absorber through the eliminator 19 installed between the evaporator 10 and the absorber 20, and is absorbed by the solution flowing down on the heat transfer tube 21. The absorbed heat generated at this time is cooled by the cooling water flowing in the heat transfer tube 21. The solution that has absorbed the refrigerant vapor and has a low concentration is held in the solution tank 23 and then sent to the solution heat exchanger 61 by the solution pump 72.

【0022】この溶液は、溶液熱交換器61で高温再生
器30及び低温再生器40からの溶液と熱交換して温度
上昇した後、溶液の一部は溶液管43を通って低温再生
器40の散布装置42へ送られ、残りは溶液熱交換器5
3で高温再生器30からの溶液と熱交換して温度上昇し
た後、高温再生器30へ送られる。高温再生器30に送
られた溶液は、燃焼器の燃焼ガスや蒸気等の加熱源31
により加熱されて沸騰し、分離された冷媒蒸気が蒸気配
管33を通って低温再生器40に送られる。蒸気配管3
3の途中には、蒸気配管33から分岐して蒸発器10に
接続する蒸気配管34が設けられており、この蒸気配管
34の途中には開閉弁35が設置されている。この開閉
弁35は、冷房運転中は閉、暖房運転中は開とする。一
方、冷媒蒸気を分離して濃縮された溶液は高温再生器3
0の溶液流出部32から流出し、溶液熱交換器62に送
られて、溶液熱交換器61からの溶液と熱交換する。
The solution heat exchanger 61 exchanges heat with the solutions from the high temperature regenerator 30 and the low temperature regenerator 40 to raise the temperature, and then a part of the solution passes through the solution pipe 43 and the low temperature regenerator 40. Of the solution heat exchanger 5
At 3 the heat is exchanged with the solution from the high temperature regenerator 30 to raise the temperature and then sent to the high temperature regenerator 30. The solution sent to the high temperature regenerator 30 is heated by a heating source 31 such as combustion gas or steam of the combustor.
The refrigerant vapor that has been heated and boiled by the above is sent to the low temperature regenerator 40 through the steam pipe 33. Steam piping 3
A steam pipe 34 that branches from the steam pipe 33 and connects to the evaporator 10 is provided in the middle of 3, and an opening / closing valve 35 is installed in the middle of the steam pipe 34. The on-off valve 35 is closed during the cooling operation and opened during the heating operation. On the other hand, the solution concentrated by separating the refrigerant vapor is the high temperature regenerator 3
0 from the solution outflow portion 32, is sent to the solution heat exchanger 62, and exchanges heat with the solution from the solution heat exchanger 61.

【0023】低温再生器40内には伝熱管41が配置さ
れており、管内を高温再生器30からの冷媒蒸気が流れ
る。低温再生器40に送られた溶液は散布装置42から
伝熱管41上に散布され、伝熱管41の内部を流れる蒸
気により加熱されて沸騰し、分離された冷媒蒸気が凝縮
器50に送られる。また、溶液管43の途中に、溶液管
43から分岐して低温再生器の下部に接続するバイパス
配管46が設置されており、このバイパス配管46の途
中に開閉弁47が設けられている。この開閉弁47は、
冷房運転中には閉、暖房運転中には開とする。冷媒蒸気
を分離して濃縮された溶液は溶液管44を通って流出
し、高温再生器30から溶液熱交換器62を通ってきた
溶液と合流した後、溶液ポンプ73により溶液熱交換器
61へ送られる。この溶液は、溶液熱交換器61で吸収
器20からの溶液と熱交換した後、溶液管24を通って
吸収器20の散布装置22へ送られる。一方、低温再生
器40の伝熱管41内で溶液を加熱して凝縮した高温再
生器30からの冷媒は、絞り45を介して凝縮器50に
送られる。
A heat transfer tube 41 is arranged in the low temperature regenerator 40, and the refrigerant vapor from the high temperature regenerator 30 flows in the tube. The solution sent to the low-temperature regenerator 40 is sprayed from the spraying device 42 onto the heat transfer tube 41, heated by the steam flowing inside the heat transfer tube 41 and boiled, and the separated refrigerant steam is sent to the condenser 50. A bypass pipe 46 that branches from the solution pipe 43 and connects to the lower portion of the low temperature regenerator is installed in the middle of the solution pipe 43, and an opening / closing valve 47 is provided in the middle of the bypass pipe 46. This on-off valve 47 is
Closed during cooling operation and open during heating operation. The solution concentrated by separating the refrigerant vapor flows out through the solution pipe 44, joins the solution that has passed through the solution heat exchanger 62 from the high temperature regenerator 30, and then flows to the solution heat exchanger 61 by the solution pump 73. Sent. The solution heat-exchanges with the solution from the absorber 20 in the solution heat exchanger 61, and then is sent to the spraying device 22 of the absorber 20 through the solution pipe 24. On the other hand, the refrigerant from the high temperature regenerator 30 that has heated and condensed the solution in the heat transfer tube 41 of the low temperature regenerator 40 is sent to the condenser 50 via the throttle 45.

【0024】凝縮器50内には伝熱管51が配置されて
おり、吸収器20の伝熱管21からの冷却水が伝熱管5
1内を流れている。低温再生器40からの冷媒蒸気は伝
熱管51上で管内を流れる冷却水に冷却されて凝縮し、
低温再生器40の伝熱管41内で凝縮した液冷媒と混合
して、冷媒配管52を通って蒸発器10に送られ、冷媒
タンク13に保持される。
A heat transfer tube 51 is arranged in the condenser 50, and cooling water from the heat transfer tube 21 of the absorber 20 is transferred to the heat transfer tube 5.
It is flowing in 1. The refrigerant vapor from the low temperature regenerator 40 is cooled and condensed on the heat transfer pipe 51 by the cooling water flowing in the pipe,
It is mixed with the liquid refrigerant condensed in the heat transfer tube 41 of the low temperature regenerator 40, sent to the evaporator 10 through the refrigerant pipe 52, and held in the refrigerant tank 13.

【0025】様々な運転条件でのサイクル濃度や液量の
変化と、これらの変化に伴う制御動作は下記のようにな
る。冷房定格の運転条件においては、溶液が濃縮されて
サイクルを循環する溶液の体積は減少し、溶液タンク2
3内の溶液の液面高さは低くなるため、フロート弁26
は全閉となる。したがって、溶液タンク23へのバイパ
ス量はゼロとなり、高温再生器30及び低温再生器40
からの溶液は全量が吸収器20内の散布装置22に送ら
れる。
The changes in the cycle concentration and the liquid amount under various operating conditions and the control operations associated with these changes are as follows. In the cooling rated operating condition, the solution is concentrated and the volume of the solution circulating in the cycle is reduced.
Since the liquid level of the solution in 3 becomes low, the float valve 26
Will be fully closed. Therefore, the bypass amount to the solution tank 23 becomes zero, and the high temperature regenerator 30 and the low temperature regenerator 40 are
All of the solution from is sent to the sparging device 22 in the absorber 20.

【0026】一方、定格条件より冷房負荷が小さい場合
や冷却水温度が低い場合には、サイクルを循環する溶液
の濃度は薄くなり、溶液の体積は増加する。したがっ
て、溶液タンク23内の液面高さは上昇する。ここで溶
液タンク23の容量は、冷却水温度の下限値で且つ冷水
負荷の下限値の運転条件において必要となる溶液タンク
の容量よりも小さくなっているが、溶液タンク23内の
液面高さが上昇するとフロート弁26の弁が開くように
制御され(制御手段は図示せず)、液面高さが高くなれ
ばなるほどその開度が大きくなってバイパス量が増加
し、結果的に吸収器20内の伝熱管に散布される溶液が
減少する。
On the other hand, when the cooling load is smaller than the rated condition or the cooling water temperature is low, the concentration of the solution circulating in the cycle becomes thin and the volume of the solution increases. Therefore, the liquid level in the solution tank 23 rises. Here, the capacity of the solution tank 23 is smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold water load. Is controlled so that the valve of the float valve 26 opens when the pressure rises (the control means is not shown), and the higher the liquid level, the larger the opening and the bypass amount, and as a result, the absorber. The solution sprayed on the heat transfer tubes in 20 is reduced.

【0027】図2に示すように、吸収器用伝熱管の吸収
性能は、一般に溶液散布量が減少すると低下する傾向が
あり、その結果、熱交換温度差が大きくなって、冷却水
温度が低いにもかかわらず高濃度でサイクルがバランス
する。結局、負荷や冷却水温度が低下しても、従来の吸
収冷温水機に比べて溶液の濃度が高く維持されるため
に、溶液量の増加が抑制され、従来のものに比べて小さ
な溶液タンク容量でサイクルが構成できる。
As shown in FIG. 2, the absorption performance of the absorber heat transfer tube generally tends to decrease as the amount of solution sprayed decreases, and as a result, the heat exchange temperature difference increases and the cooling water temperature decreases. Nevertheless, the cycle balances at high concentration. After all, even if the load or the cooling water temperature drops, the concentration of the solution is kept higher than that of the conventional absorption chiller-heater, so the increase in the amount of solution is suppressed and the solution tank is smaller than the conventional one. A cycle can be configured with capacity.

【0028】冷房停止時には、高温再生器30の加熱源
31が遮断された後も冷媒及び溶液の循環は継続され
て、溶液濃度が薄くなっていく。この時溶液タンク23
の液面高さは上昇して伝熱管21への溶液散布量は減少
していき、最終的には溶液配管24を流れる溶液の全量
がバイパス配管25を流れるようになる。この時点で溶
液の希釈は進まなくなるが、冷媒ブロー配管16の開閉
弁17を開として冷媒を直接溶液タンク23の溶液に混
合して溶液の濃度を低下させる。この冷媒ブロー動作
は、たとえば冷媒タンク13の冷媒液面が低下してフロ
ート弁15が全閉となるまで行われる。この動作により
停止時の溶液濃度は一定の濃度まで希釈され、常温にお
いても結晶しない濃度に安定して希釈できる。従来の吸
収冷温水機では、低冷却水温度条件で、常温での結晶を
防止する必要以上に溶液が希釈されていたが、本実施例
では、常に必要充分な濃度に安定して希釈することがで
きるので、起動時の立ち上がり時間を短縮できるととも
に、溶液濃縮のためのエネルギーを節約できるという効
果もある。
When cooling is stopped, the circulation of the refrigerant and the solution is continued even after the heating source 31 of the high temperature regenerator 30 is shut off, and the solution concentration becomes thin. At this time, the solution tank 23
The liquid level rises and the amount of solution sprayed to the heat transfer tube 21 decreases, and finally the entire amount of the solution flowing through the solution pipe 24 flows through the bypass pipe 25. Although the dilution of the solution does not proceed at this point, the on-off valve 17 of the refrigerant blow pipe 16 is opened to directly mix the refrigerant with the solution in the solution tank 23 to reduce the concentration of the solution. This refrigerant blowing operation is performed until, for example, the refrigerant liquid level in the refrigerant tank 13 is lowered and the float valve 15 is fully closed. By this operation, the solution concentration at the time of suspension is diluted to a certain concentration, and it can be stably diluted to a concentration that does not crystallize even at room temperature. In the conventional absorption chiller-heater, the solution was diluted more than necessary to prevent crystallization at room temperature under low cooling water temperature conditions, but in this example, always dilute stably to a necessary and sufficient concentration. As a result, it is possible to shorten the startup time at startup and save the energy for concentrating the solution.

【0029】冷房起動時には、溶液濃度は希釈されて低
くなっているため溶液タンク23の液面高さは高くなっ
ており、フロート弁26は最大開度になっている。この
ため、溶液配管24を流れる溶液の全量がバイパス配管
25を流れ、伝熱管21には溶液が散布されない。開閉
弁17も閉となっており、吸収器20で溶液が希釈され
ず、高温再生器30及び低温再生器40で溶液が濃縮さ
れるので、急速に溶液濃度は濃くなる。したがって、溶
液タンク23の液面が低下してフロート弁26の開度が
小さくなり、伝熱管21への溶液の散布が開始されて冷
房能力が出るようになる。停止時の希釈動作時に必要以
上に溶液が希釈されることがないこと、また起動運転時
の初期に吸収器内の伝熱管21に溶液を散布せずに溶液
を濃縮することから、定格運転状態になるまでの時間が
短くなり、冷房運転の立ち上がり時間を短縮できる、と
いう効果もある。
At the start of cooling, the solution concentration is diluted and lowered, so that the liquid level of the solution tank 23 is increased and the float valve 26 is at the maximum opening. Therefore, the entire amount of the solution flowing through the solution pipe 24 flows through the bypass pipe 25, and the solution is not scattered on the heat transfer pipe 21. Since the on-off valve 17 is also closed and the solution is not diluted by the absorber 20, and the solution is concentrated by the high temperature regenerator 30 and the low temperature regenerator 40, the solution concentration rapidly increases. Therefore, the liquid level of the solution tank 23 is lowered, the opening degree of the float valve 26 is reduced, and the spraying of the solution to the heat transfer tubes 21 is started, so that the cooling capacity is provided. Since the solution will not be diluted more than necessary during the dilution operation at the time of stop, and the solution will be concentrated without being sprayed to the heat transfer pipes 21 in the absorber at the initial stage of the start-up operation, the rated operation state There is also an effect that the time until it becomes short can be shortened and the rise time of the cooling operation can be shortened.

【0030】暖房運転においては、蒸気配管34の開閉
弁35、冷媒ブロー配管16の開閉弁17、低温再生器
のバイパス配管46の開閉弁47を開とし、伝熱管21
及び伝熱管51には冷却水を流さずに運転を行う。高温
再生器30からの冷媒蒸気が蒸気配管34を通って蒸発
器10に流れ込み、伝熱管11上で凝縮して管内を流れ
る温水を加熱し、需要側に供給される。凝縮した冷媒液
は伝熱管11を流下して、冷媒タンク13に一旦保持さ
れる。冷媒タンク13の冷媒液は冷媒ポンプ71により
冷媒配管14から冷媒ブロー配管16、開閉弁17を通
って溶液タンク23に送られ、溶液タンク23内の溶液
に混合されて溶液を希釈する。溶液タンク23内の溶液
は希釈されて濃度が低くなっているので、溶液タンク2
3の液面は上昇してフロート弁26は最大開度まで開い
ており、低温熱交換器61から溶液配管24を通って吸
収器20に送られる溶液は、全量がバイパス配管25を
通って直接溶液タンク23に流れ込む。したがって、温
度の高い溶液が吸収器20内の伝熱管21に散布される
ことがなく、高温の溶液のアタックによる伝熱管21の
穴開き等を防止することができる。
In the heating operation, the opening / closing valve 35 of the steam pipe 34, the opening / closing valve 17 of the refrigerant blow pipe 16, and the opening / closing valve 47 of the bypass pipe 46 of the low temperature regenerator are opened to open the heat transfer pipe 21.
The heat transfer tube 51 is operated without flowing cooling water. The refrigerant vapor from the high temperature regenerator 30 flows into the evaporator 10 through the vapor pipe 34, condenses on the heat transfer pipe 11 to heat the hot water flowing in the pipe, and is supplied to the demand side. The condensed refrigerant liquid flows down through the heat transfer tube 11 and is temporarily held in the refrigerant tank 13. The refrigerant liquid in the refrigerant tank 13 is sent from the refrigerant pipe 14 through the refrigerant blow pipe 16 and the opening / closing valve 17 to the solution tank 23 by the refrigerant pump 71, and is mixed with the solution in the solution tank 23 to dilute the solution. Since the solution in the solution tank 23 is diluted to have a low concentration, the solution tank 2
The liquid level of 3 rises, the float valve 26 is opened to the maximum opening degree, and the total amount of the solution sent from the low temperature heat exchanger 61 to the absorber 20 through the solution pipe 24 directly passes through the bypass pipe 25. It flows into the solution tank 23. Therefore, the solution having a high temperature is not scattered on the heat transfer tubes 21 in the absorber 20, and it is possible to prevent the heat transfer tubes 21 from being pierced due to the attack of the high temperature solution.

【0031】溶液タンク23の溶液は、溶液ポンプ72
により低温熱交換器61を通って一部は低温再生器40
に、残部は高温熱交換器62を通って高温再生器30に
送られる。高温再生器30に送られた溶液は燃焼器の燃
焼ガスや蒸気等の加熱源31により加熱されて沸騰し、
分離された冷媒蒸気が蒸気配管33、蒸気配管34を通
って蒸発器10に送られる。一方、冷媒蒸気を分離して
濃縮された溶液は溶液流出部32から流出し、高温溶液
熱交換器62に送られて、低温溶液熱交換器61からの
溶液と熱交換する。
The solution in the solution tank 23 is stored in the solution pump 72.
Through the low-temperature heat exchanger 61, part of which is the low-temperature regenerator 40.
Then, the rest is sent to the high temperature regenerator 30 through the high temperature heat exchanger 62. The solution sent to the high temperature regenerator 30 is heated by a heating source 31 such as combustion gas or steam of a combustor to boil,
The separated refrigerant vapor is sent to the evaporator 10 through the vapor pipe 33 and the vapor pipe 34. On the other hand, the solution concentrated by separating the refrigerant vapor flows out from the solution outlet 32, is sent to the high temperature solution heat exchanger 62, and exchanges heat with the solution from the low temperature solution heat exchanger 61.

【0032】一方、低温再生器40に送られた溶液は、
溶液管43からバイパス配管46を通って低温再生器4
0の下部に送られ、この溶液はそのまま溶液管44を通
って流出し、高温再生器30からの溶液と合流して、溶
液ポンプ73により低温溶液熱交換器61に送られる。
したがって、高温の溶液は低温再生器40内の伝熱管4
1に散布されることがなく、高温溶液のアタックによる
伝熱管41の穴開き等を防止することができる。
On the other hand, the solution sent to the low temperature regenerator 40 is
Low temperature regenerator 4 from solution pipe 43 through bypass pipe 46
The solution is sent to the lower part of 0, flows out through the solution pipe 44 as it is, merges with the solution from the high temperature regenerator 30, and is sent to the low temperature solution heat exchanger 61 by the solution pump 73.
Therefore, the high temperature solution is transferred to the heat transfer tube 4 in the low temperature regenerator 40.
Therefore, it is possible to prevent the heat transfer tube 41 from being opened due to the attack of the high temperature solution.

【0033】低温溶液熱交換器61に送られた溶液は溶
液管24からバイパス配管25を通って、吸収器20の
下部の溶液タンク23に送られる。
The solution sent to the low temperature solution heat exchanger 61 is sent from the solution pipe 24 through the bypass pipe 25 to the solution tank 23 below the absorber 20.

【0034】以上説明したように本実施例によれば、冷
却水温度の下限値で且つ冷水負荷の下限値の運転条件に
おいて必要となる溶液タンクの容量よりも小さな容量の
溶液タンクを設置し、高温再生器と低温再生器とから吸
収器に送られる溶液配管の途中に、前記溶液タンクに分
岐するバイパス配管を設け、このバイパス配管の途中に
溶液タンクの溶液量に応じて溶液流量を変化させるフロ
ート弁を設置したので、負荷が小さく冷却水温度が低い
条件においても溶液タンクの溶液量が増加せずに運転を
行うことができ、コンパクトな吸収冷温水機を提供する
ことができる。
As described above, according to this embodiment, a solution tank having a capacity smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold water load is installed, A bypass pipe branching to the solution tank is provided in the middle of the solution pipe sent from the high-temperature regenerator and the low-temperature regenerator to the absorber, and the solution flow rate is changed in the middle of the bypass pipe according to the amount of the solution in the solution tank. Since the float valve is installed, the operation can be performed without increasing the amount of solution in the solution tank even under the condition that the load is small and the cooling water temperature is low, and a compact absorption chiller-heater can be provided.

【0035】また、上記フロート弁は高温再生器及び低
温再生器から吸収器に送られる配管からバイパスして、
吸収器下部の溶液タンクに流通するバイパス配管に設け
られているので、吸収サイクル全体の溶液循環量は上記
フロート弁の開度にかかわりなく効率の高い最適な循環
量に制御することができ、高効率な吸収冷温水機を提供
することができる。
Further, the float valve is bypassed from the pipes sent from the high temperature regenerator and the low temperature regenerator to the absorber,
Since it is provided in the bypass pipe that circulates in the solution tank at the bottom of the absorber, the solution circulation amount of the entire absorption cycle can be controlled to a highly efficient optimal circulation amount regardless of the opening degree of the float valve. It is possible to provide an efficient absorption chiller-heater.

【0036】さらに、暖房運転時には吸収器から低温再
生器に送られる配管から分岐して低温再生器の下部に接
続するバイパス配管に設けた開閉弁を開とするので、低
温再生器に送られた溶液は上記バイパス配管を通って低
温再生器下部に流れ込み、低温再生器内の伝熱管に散布
されることがなく、高温の溶液のアタックによる伝熱管
の穴開き等を防止することができるので、信頼性の高い
吸収冷温水機を提供することができる。
Further, during heating operation, since the opening / closing valve provided in the bypass pipe connected to the lower part of the low temperature regenerator is branched off from the pipe sent from the absorber to the low temperature regenerator, it is sent to the low temperature regenerator. The solution flows into the lower part of the low temperature regenerator through the bypass pipe and is not sprayed to the heat transfer tubes in the low temperature regenerator, so that it is possible to prevent punching of the heat transfer tubes due to the attack of the high temperature solution. It is possible to provide a highly reliable absorption chiller-heater.

【0037】次に、本発明の他の実施例を図3を用いて
説明する。図1の実施例と異なる点は、吸収器20内の
散布装置22への溶液配管24から分岐して溶液タンク
23内に接続するバイパス配管25に、フロート弁に替
えて流量調整弁27を設置するとともに、溶液タンク2
3内に液面センサー28を設置し、この液面センサー2
3からの信号を基に前記流量調整弁27の開度を調整す
る制御装置29を設置した点である。その他の構成は、
図1の実施例と同様である。
Next, another embodiment of the present invention will be described with reference to FIG. A difference from the embodiment of FIG. 1 is that a bypass valve 25 branching from a solution pipe 24 to a spraying device 22 in an absorber 20 and connected to a solution tank 23 is provided with a flow rate adjusting valve 27 instead of a float valve. Solution tank 2
The liquid level sensor 28 is installed in the 3 and the liquid level sensor 2
3 is that a controller 29 for adjusting the opening degree of the flow rate adjusting valve 27 based on the signal from No. 3 is installed. Other configurations are
This is similar to the embodiment of FIG.

【0038】本実施例によれば、液面センサーの信号に
より流量調整弁の開度を制御するようにしているので、
液面高さに応じて流量調整弁の開度を最適に制御するこ
とが可能となり、効率の高い吸収冷凍サイクルを構成で
きるという効果がある。
According to this embodiment, the opening of the flow rate adjusting valve is controlled by the signal from the liquid level sensor.
The opening degree of the flow rate adjusting valve can be optimally controlled according to the liquid level height, and there is an effect that a highly efficient absorption refrigeration cycle can be configured.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、溶
液タンクの容量が小さく、小型で低コストの吸収冷温水
機を提供できる。また、本発明によれば、再生器から吸
収器に送られる溶液配管から分岐して、吸収器下部の溶
液タンクに流通するバイパス配管に流量調整手段を設け
て、吸収器内の伝熱管に散布する溶液量を制御するよう
にしたので、吸収サイクル全体の溶液循環量は上記流量
調整手段の制御にかかわりなく効率の高い最適な循環量
に制御することができ、高効率な吸収冷温水機を提供す
ることができる。
As described above, according to the present invention, it is possible to provide a small-sized, low-cost absorption chiller-heater having a small solution tank capacity. Further, according to the present invention, the flow pipe is branched from the solution pipe sent from the regenerator to the absorber, and a flow rate adjusting means is provided in the bypass pipe flowing into the solution tank in the lower part of the absorber so that the heat transfer pipe in the absorber is sprayed. Since the amount of solution to be controlled is controlled, the solution circulation amount of the entire absorption cycle can be controlled to a highly efficient optimum circulation amount regardless of the control of the flow rate adjusting means, and a highly efficient absorption chiller-heater can be provided. Can be provided.

【0040】さらに本発明によれば、低温再生器の溶液
散布装置に溶液を送る配管の途中に、この溶液を低温再
生器の伝熱管より下部あるいは低温再生器の溶液出口配
管に分岐するバイパス配管を設け、このバイパス配管の
途中に弁手段を設置し、この弁手段を冷房運転時は閉、
暖房運転時は開とするように制御したので、暖房運転時
に低温再生器の伝熱管が高温の溶液に接することがな
く、安価な伝熱管を用いて信頼性の高い吸収冷温水機を
提供することができる。
Further, according to the present invention, a bypass pipe for branching the solution from the heat transfer pipe of the low temperature regenerator to the lower part of the heat transfer pipe of the low temperature regenerator or the solution outlet pipe of the low temperature regenerator is provided in the middle of the pipe for sending the solution to the solution spraying device of the low temperature regenerator. The valve means is installed in the middle of the bypass pipe, and the valve means is closed during the cooling operation.
Since it was controlled to open during heating operation, the heat transfer tube of the low temperature regenerator does not come into contact with the high temperature solution during heating operation, and an inexpensive heat transfer tube is used to provide a highly reliable absorption chiller-heater. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る吸収冷温水機の実施例の系統図で
ある。
FIG. 1 is a system diagram of an embodiment of an absorption chiller-heater according to the present invention.

【図2】吸収器用伝熱管の吸収性能を示す図である。FIG. 2 is a diagram showing absorption performance of a heat transfer tube for an absorber.

【図3】本発明に係る吸収冷温水機の他の実施例の系統
図である。
FIG. 3 is a system diagram of another embodiment of the absorption chiller-heater according to the present invention.

【符号の説明】[Explanation of symbols]

10…蒸発器、13…冷媒タンク、20…吸収器、23
…溶液タンク、24…溶液配管、25…バイパス配管、
26…フロート弁、30…高温再生器、40…低温再生
器、50…凝縮器、61、62…溶液熱交換器、71…
冷媒ポンプ、72、73…溶液ポンプ。
10 ... Evaporator, 13 ... Refrigerant tank, 20 ... Absorber, 23
... solution tank, 24 ... solution piping, 25 ... bypass piping,
26 ... Float valve, 30 ... High temperature regenerator, 40 ... Low temperature regenerator, 50 ... Condenser, 61, 62 ... Solution heat exchanger, 71 ...
Refrigerant pumps, 72, 73 ... Solution pumps.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000221834 東邦瓦斯株式会社 愛知県名古屋市熱田区桜田町19番18号 (72)発明者 西口 章 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 藤居 達郎 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 三宅 聡 茨城県土浦市神立町603番地 株式会社日 立製作所産業機械システム事業部内 (72)発明者 佐久間 貴洋 茨城県土浦市神立町603番地 株式会社日 立製作所産業機械システム事業部内 (72)発明者 松前 和則 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 山田 研治 大阪府大阪市此花区北港白津1丁目1番3 号 大阪瓦斯株式会社内 (72)発明者 小沢 裕治 愛知県東海市新宝町507番地の2 東邦瓦 斯株式会社内 Fターム(参考) 3L093 AA05 BB11 BB22 BB29 BB37 BB42 BB48 CC00 DD06 DD09 DD10 EE02 EE09 EE21 EE22 GG04 GG05 HH03 HH04 HH08 HH15 JJ02 JJ04    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 000221834             Toho Gas Co., Ltd.             19-18 Sakurada-cho, Atsuta-ku, Nagoya-shi, Aichi (72) Inventor Akira Nishiguchi             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Tatsuro Fujii             502 Kintatemachi, Tsuchiura City, Ibaraki Japan             Tate Seisakusho Mechanical Research Center (72) Inventor Satoshi Miyake             603 Jinmachi-cho, Tsuchiura-shi, Ibaraki Japan Co., Ltd.             Tate Manufacturing Industrial Machinery Systems Division (72) Inventor Takahiro Sakuma             603 Jinmachi-cho, Tsuchiura-shi, Ibaraki Japan Co., Ltd.             Tate Manufacturing Industrial Machinery Systems Division (72) Inventor Kazunori Matsumae             1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas             Within the corporation (72) Inventor Kenji Yamada             1-3 1-3 Kitakko Shiratsu, Konohana-ku, Osaka City, Osaka Prefecture             No. within Osaka Gas Co., Ltd. (72) Inventor Yuji Ozawa             2 Toho tiles at 507 Shintakucho, Tokai City, Aichi Prefecture             Within the corporation F-term (reference) 3L093 AA05 BB11 BB22 BB29 BB37                       BB42 BB48 CC00 DD06 DD09                       DD10 EE02 EE09 EE21 EE22                       GG04 GG05 HH03 HH04 HH08                       HH15 JJ02 JJ04

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】蒸発器、吸収器、再生器を備え、前記吸収
器において再生器から送られてきた溶液を散布し、この
溶液に蒸発器で蒸発した冷媒蒸気を吸収させ、冷媒蒸気
を吸収した溶液を一旦溶液タンクに保持し、冷却水温度
及び冷温水負荷の変動によって溶液タンクの溶液量が変
化する吸収冷温水機において、 前記再生器から吸収器に溶液を送る溶液配管に、溶液タ
ンクに分岐するバイパス配管を設け、 このバイパス配管に、冷房運転時、溶液タンクの溶液量
に応じて溶液流量を変化させる流量調整手段を設けるこ
とを特徴とする吸収冷温水機。
1. An evaporator, an absorber, and a regenerator are provided, and the solution sent from the regenerator is sprinkled in the absorber, and the refrigerant vapor evaporated in the evaporator is absorbed in the solution, and the refrigerant vapor is absorbed. The solution is held in a solution tank once, and in an absorption chiller-heater in which the amount of solution in the solution tank changes due to fluctuations in cooling water temperature and cold / hot water load, in the solution pipe that sends the solution from the regenerator to the absorber, the solution tank An absorption chiller-hot water machine characterized in that a bypass pipe branching to is provided, and the bypass pipe is provided with flow rate adjusting means for changing the solution flow rate according to the amount of the solution in the solution tank during the cooling operation.
【請求項2】蒸発器、吸収器、再生器を備え、前記吸収
器において再生器から送られてきた溶液を散布し、この
溶液に蒸発器で蒸発した冷媒蒸気を吸収させ、冷媒蒸気
を吸収した溶液を一旦溶液タンクに保持し、冷却水温度
及び冷温水負荷の変動によって溶液タンクの溶液量が変
化する吸収冷温水機において、 前記溶液タンクは、冷却水温度の下限値及び冷温水負荷
の下限値の運転条件において必要となる溶液タンクの容
量よりも小さな容量の溶液タンクとし、 前記再生器から吸収器に溶液を送る溶液配管に、溶液タ
ンクに分岐するバイパス配管を設け、 このバイパス配管に、溶液タンクの溶液量に応じて溶液
流量を変化させる流量調整手段を設けることを特徴とす
る吸収冷温水機。
2. An evaporator, an absorber, and a regenerator are provided, and the solution sent from the regenerator is sprinkled in the absorber, and the refrigerant vapor evaporated in the evaporator is absorbed in the solution, and the refrigerant vapor is absorbed. In the absorption chiller-heater in which the solution is once held in the solution tank and the amount of the solution in the solution tank changes due to fluctuations in the cooling water temperature and the cold-hot water load, the solution tank is a lower limit of the cooling water temperature and A solution tank with a capacity smaller than the capacity of the solution tank required in the lower limit operating condition, and a solution piping for sending the solution from the regenerator to the absorber is provided with a bypass piping branched to the solution tank. An absorption chiller-heater having flow rate adjusting means for changing the solution flow rate according to the amount of solution in the solution tank.
【請求項3】前記流量調整手段は、バイパス配管に設け
られ、溶液タンクの液面高さに応じて開度を変化させて
流量を制御するフロート弁であることを特徴とする請求
項1もしくは2に記載の吸収冷温水機。
3. The flow rate adjusting means is a float valve which is provided in the bypass pipe and controls the flow rate by changing the opening degree according to the liquid surface height of the solution tank. 2. The absorption chiller-heater according to 2.
【請求項4】蒸発器、吸収器、再生器を備え、前記吸収
器において再生器から送られてきた溶液を散布し、この
溶液に蒸発器で蒸発した冷媒蒸気を吸収させ、冷媒蒸気
を吸収した溶液を一旦溶液タンクに保持し、冷却水温度
及び冷温水負荷の変動によって溶液タンクの溶液量が変
化する吸収冷温水機において、 前記溶液タンクは、冷却水温度の下限値及び冷温水負荷
の下限値の運転条件において必要となる溶液タンクの容
量よりも小さな容量の溶液タンクとし、 前記再生器から吸収器に溶液を送る溶液配管の途中に、
溶液タンクに分岐するバイパス配管を設け、 溶液タンクの溶液量に応じて溶液流量を変化させるため
に、バイパス配管に設けられた流量増減手段と、溶液タ
ンクの液面検知手段と、この液面検知手段からの信号を
基に前記流量増減手段を制御する制御手段とを有する流
量調整手段を設けることを特徴とする吸収冷温水機。
4. An evaporator, an absorber, and a regenerator are provided, and the solution sent from the regenerator is sprinkled in the absorber, and the refrigerant vapor evaporated in the evaporator is absorbed in the solution, and the refrigerant vapor is absorbed. In the absorption chiller-heater in which the solution is once held in the solution tank and the amount of the solution in the solution tank changes due to fluctuations in the cooling water temperature and the cold-hot water load, the solution tank is a lower limit of the cooling water temperature and A solution tank having a capacity smaller than the capacity of the solution tank required in the lower limit operating condition, and in the middle of the solution pipe for sending the solution from the regenerator to the absorber,
A bypass pipe that branches off to the solution tank is provided, and in order to change the solution flow rate according to the amount of solution in the solution tank, the flow rate adjusting means provided in the bypass pipe, the liquid level detection means of the solution tank, and this liquid level detection An absorption chiller-heater comprising: a flow rate adjusting means having a control means for controlling the flow rate increasing / decreasing means based on a signal from the means.
【請求項5】冷媒を保持する冷媒タンク、冷媒を循環さ
せる冷媒ポンプ、蒸発器、吸収器、再生器を備え、前記
吸収器において再生器から送られてきた溶液を散布し、
この溶液に蒸発器で蒸発した冷媒蒸気を吸収させ、冷媒
蒸気を吸収した溶液を一旦溶液タンクに保持し、冷却水
温度及び冷温水負荷の変動によって溶液タンクの溶液量
が変化する吸収冷温水機において、 前記溶液タンクは、冷却水温度の下限値及び冷温水負荷
の下限値の運転条件において必要となる溶液タンクの容
量よりも小さな容量の溶液タンクとし、 前記冷媒ポンプの吐出側配管に、冷媒タンクの冷媒量に
応じて冷媒流量を変化させる流量調整弁を設け、 この流量調整弁の二次側配管に、吸収器の溶液タンクに
分岐するブロー配管を、開閉弁を介して設けることを特
徴とする吸収冷温水機。
5. A refrigerant tank for holding a refrigerant, a refrigerant pump for circulating the refrigerant, an evaporator, an absorber, and a regenerator are provided, and the solution sent from the regenerator is sprayed in the absorber.
An absorption chiller-heater that absorbs the refrigerant vapor that has evaporated in the evaporator into this solution, temporarily holds the solution that has absorbed the refrigerant vapor in the solution tank, and changes the amount of solution in the solution tank due to fluctuations in cooling water temperature and cold / hot water load. In the above, the solution tank is a solution tank having a capacity smaller than the capacity of the solution tank required in the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold / hot water load, and in the discharge side pipe of the refrigerant pump, the refrigerant A flow rate adjusting valve that changes the refrigerant flow rate according to the amount of refrigerant in the tank is provided, and a blow pipe branching to the solution tank of the absorber is provided in the secondary side pipe of this flow rate adjusting valve through an on-off valve. Absorption chiller / heater.
【請求項6】冷媒を保持する冷媒タンク、冷媒を循環さ
せる冷媒ポンプ、蒸発器、吸収器、再生器を備え、前記
吸収器において再生器から送られてきた溶液を散布し、
この溶液に蒸発器で蒸発した冷媒蒸気を吸収させ、冷媒
蒸気を吸収した溶液を一旦溶液タンクに保持し、冷却水
温度及び冷温水負荷の変動によって溶液タンクの溶液量
が変化する吸収冷温水機の制御方法において、 前記溶液タンクは、冷却水温度の下限値及び冷温水負荷
の下限値の運転条件において必要となる溶液タンクの容
量よりも小さな容量の溶液タンクとし、 前記冷媒ポンプの吐出側配管に、冷媒タンクの冷媒量に
応じて冷媒流量を変化させる流量調整弁を設け、 この流量調整弁の二次側配管に、吸収器の溶液タンクに
分岐するブロー配管を、開閉弁を介して設け、 前記開閉弁は、溶液を冷媒で希釈する希釈運転時に開と
し、希釈運転終了時に閉とすることを特徴とする吸収冷
温水機の制御方法。
6. A refrigerant tank for holding a refrigerant, a refrigerant pump for circulating the refrigerant, an evaporator, an absorber, and a regenerator, wherein the solution sent from the regenerator is dispersed in the absorber,
An absorption chiller-heater that absorbs the refrigerant vapor that has evaporated in the evaporator into this solution, temporarily holds the solution that has absorbed the refrigerant vapor in the solution tank, and changes the amount of solution in the solution tank due to fluctuations in cooling water temperature and cold / hot water load. In the control method, the solution tank is a solution tank having a capacity smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the cooling water temperature and the lower limit value of the cold / hot water load, and the discharge side pipe of the refrigerant pump. In addition, a flow rate adjusting valve that changes the refrigerant flow rate according to the amount of refrigerant in the refrigerant tank is provided, and a blow pipe branching to the solution tank of the absorber is provided in the secondary side pipe of this flow rate adjusting valve via an on-off valve. The method for controlling an absorption chiller-heater, wherein the on-off valve is opened during a dilution operation for diluting a solution with a refrigerant and closed at the end of the dilution operation.
【請求項7】蒸発器、吸収器、高温再生器、低温再生器
を備え、前記吸収器において高温再生器及び低温再生器
から送られてきた溶液を散布し、この溶液に蒸発器で蒸
発した冷媒蒸気を吸収させ、冷媒蒸気を吸収した溶液を
一旦溶液タンクに保持し、冷却水温度及び冷温水負荷の
変動によって溶液タンクの溶液量が変化する吸収冷温水
機において、 前記高温再生器、低温再生器から吸収器に溶液を送る溶
液配管に、溶液タンクに分岐するバイパス配管を設け、 このバイパス配管に、溶液タンクの溶液量に応じて溶液
流量を変化させる流量調整手段を設け、 前記冷媒ポンプの吐出側配管に、冷媒タンクの冷媒量に
応じて冷媒流量を変化させる流量調整弁を設け、 この流量調整弁の二次側配管に吸収器の溶液タンクに分
岐するブロー配管を、開閉弁を介して設け、 前記低温再生器に、この低温再生器の溶液散布装置に溶
液を送る配管から分岐して、低温再生器の伝熱管より下
方に溶液を送るバイパス配管を設け、 このバイパス配管に開閉弁を設けることを特徴とする吸
収冷温水機。
7. An evaporator, an absorber, a high temperature regenerator and a low temperature regenerator are provided, and the solution sent from the high temperature regenerator and the low temperature regenerator is sprinkled in the absorber, and the solution is evaporated by the evaporator. Absorption of refrigerant vapor, holding the solution that has absorbed the refrigerant vapor in the solution tank once, in the absorption chilled water heater in which the amount of solution in the solution tank changes due to changes in cooling water temperature and cold / hot water load, the high temperature regenerator, low temperature A bypass pipe branching into a solution tank is provided in the solution pipe for sending the solution from the regenerator to the absorber, and a flow rate adjusting means for changing the solution flow rate according to the amount of the solution in the solution tank is provided in the bypass pipe. A flow rate adjusting valve that changes the refrigerant flow rate according to the amount of refrigerant in the refrigerant tank is provided in the discharge side piping of this, and the blow piping that branches to the solution tank of the absorber is opened in the secondary side piping of this flow rate adjusting valve. A bypass pipe is provided to the low temperature regenerator, which is branched from a pipe for feeding the solution to the solution spraying device of the low temperature regenerator, and which supplies the solution below the heat transfer pipe of the low temperature regenerator. An absorption chiller-heater characterized by having an on-off valve in the pipe.
【請求項8】冷媒を保持する冷媒タンク、冷媒を循環さ
せる冷媒ポンプ、蒸発器、吸収器、高温再生器、低温再
生器を備え、前記吸収器において高温再生器及び低温再
生器から送られてきた溶液を散布し、この溶液に蒸発器
で蒸発した冷媒蒸気を吸収させ、冷媒蒸気を吸収した溶
液を一旦溶液タンクに保持し、冷却水温度及び冷温水負
荷の変動によって溶液タンクの溶液量が変化する吸収冷
温水機の制御方法において、 前記高温再生器、低温再生器から吸収器に溶液を送る溶
液配管に、溶液タンクに分岐するバイパス配管を設け、 このバイパス配管に、溶液タンクの溶液量に応じて溶液
流量を変化させる流量調整手段を設け、 前記冷媒ポンプの吐出側配管に、冷媒タンクの冷媒量に
応じて冷媒流量を変化させる流量調整弁を設け、 この流量調整弁の二次側配管に吸収器の溶液タンクに分
岐するブロー配管を、開閉弁を介して設け、 前記低温再生器に、この低温再生器の溶液散布装置に溶
液を送る配管から分岐し、低温再生器の伝熱管より下方
に溶液を送るバイパス配管を設け、 このバイパス配管に開閉弁を設け、 暖房運転時に、このバイパス配管の開閉弁及び前記ブロ
ー配管の開閉弁を開とすることを特徴とする吸収冷温水
機の制御方法。
8. A refrigerant tank for holding a refrigerant, a refrigerant pump for circulating the refrigerant, an evaporator, an absorber, a high-temperature regenerator, and a low-temperature regenerator, which are fed from the high-temperature regenerator and the low-temperature regenerator. Solution is sprayed, the refrigerant vapor evaporated in the evaporator is absorbed in this solution, the solution that has absorbed the refrigerant vapor is temporarily held in the solution tank, and the amount of solution in the solution tank changes depending on the cooling water temperature and cold / hot water load fluctuations. In the method of controlling the absorption chiller-heater that changes, in the solution pipe for sending the solution from the high temperature regenerator and the low temperature regenerator, a bypass pipe branching into a solution tank is provided, and in this bypass pipe, the solution amount of the solution tank A flow rate adjusting means for changing the solution flow rate according to the flow rate is provided, and a discharge side pipe of the refrigerant pump is provided with a flow rate adjusting valve for changing the refrigerant flow rate according to the refrigerant amount in the refrigerant tank. Blow piping that branches into the solution tank of the absorber in the secondary side piping of the adjustment valve is provided via an on-off valve, and the low temperature regenerator is branched from the pipe that sends the solution to the solution spraying device of the low temperature regenerator. A bypass pipe for sending a solution is provided below the heat transfer pipe of the low temperature regenerator, and an opening / closing valve is provided in the bypass pipe, and the opening / closing valve of the bypass pipe and the opening / closing valve of the blow pipe are opened during heating operation. A method of controlling an absorption chiller-heater.
【請求項9】蒸発器、吸収器、高温再生器、低温再生器
を備え、前記吸収器において高温再生器及び低温再生器
から送られてきた溶液を散布し、この溶液に蒸発器で蒸
発した冷媒蒸気を吸収させ、冷媒蒸気を吸収した溶液を
一旦溶液タンクに保持し、冷却水温度及び冷温水負荷の
変動によって溶液タンクの溶液量が変化する吸収冷温水
機において、 前記溶液タンクは、冷却水温度の下限値及び冷温水負荷
の下限値の運転条件において必要となる溶液タンクの容
量よりも小さな容量の溶液タンクとし、 前記高温再生器、低温再生器から吸収器に溶液を送る溶
液配管の途中に、溶液タンクに分岐するバイパス配管を
設け、 このバイパス配管に、溶液タンクの溶液量に応じて溶液
流量を変化させる流量調整手段を設け、 前記低温再生器に、この低温再生器の溶液散布装置に溶
液を送る配管から分岐し、低温再生器の伝熱管より下方
に溶液を送るバイパス配管を設け、 このバイパス配管に開閉弁を設けることを特徴とする吸
収冷温水機。
9. An evaporator, an absorber, a high temperature regenerator, and a low temperature regenerator are provided, and the solution sent from the high temperature regenerator and the low temperature regenerator is sprinkled in the absorber, and the solution is evaporated by the evaporator. In an absorption chiller-heater that absorbs refrigerant vapor and temporarily holds the solution that has absorbed the refrigerant vapor in a solution tank, and the amount of solution in the solution tank changes due to fluctuations in cooling water temperature and cold / hot water load, wherein the solution tank is cooled. A solution tank having a capacity smaller than the capacity of the solution tank required under the operating conditions of the lower limit value of the water temperature and the lower limit value of the cold / hot water load, and a solution pipe for sending the solution from the high temperature regenerator or the low temperature regenerator to the absorber. A bypass pipe branching to the solution tank is provided on the way, and a flow rate adjusting means for changing the solution flow rate according to the amount of the solution in the solution tank is provided in the bypass pipe. An absorption chiller-heater characterized by branching from a pipe for sending the solution to the solution spraying device of the hot regenerator, and providing a bypass pipe for sending the solution below the heat transfer pipe of the low temperature regenerator, and providing an opening / closing valve on the bypass pipe. .
【請求項10】蒸発器、吸収器、高温再生器、低温再生
器を備え、前記吸収器において高温再生器及び低温再生
器から送られてきた溶液を散布し、この溶液に蒸発器で
蒸発した冷媒蒸気を吸収させ、冷媒蒸気を吸収した溶液
を一旦溶液タンクに保持し、冷却水温度及び冷温水負荷
の変動によって溶液タンクの溶液量が変化する吸収冷温
水機において、 前記高温再生器、低温再生器から吸収器に溶液を送る溶
液配管に、溶液タンクに分岐するバイパス配管を設け、 このバイパス配管に、溶液タンクの溶液量に応じて溶液
流量を変化させる流量調整手段を設け、 前記冷媒ポンプの吐出側配管に、冷媒タンクの冷媒量に
応じて冷媒流量を変化させる流量調整弁を設け、 この流量調整弁の二次側配管に、吸収器の溶液タンクに
分岐するブロー配管を、開閉弁を介して設けることを特
徴とする吸収冷温水機。
10. An evaporator, an absorber, a high temperature regenerator and a low temperature regenerator are provided, and the solution sent from the high temperature regenerator and the low temperature regenerator is sprinkled in the absorber, and the solution is evaporated by the evaporator. Absorption of refrigerant vapor, holding the solution that has absorbed the refrigerant vapor in the solution tank once, in the absorption chilled water heater in which the amount of solution in the solution tank changes due to changes in cooling water temperature and cold / hot water load, the high temperature regenerator, low temperature A bypass pipe branching into a solution tank is provided in the solution pipe for sending the solution from the regenerator to the absorber, and a flow rate adjusting means for changing the solution flow rate according to the amount of the solution in the solution tank is provided in the bypass pipe. A flow rate adjusting valve that changes the refrigerant flow rate according to the amount of refrigerant in the refrigerant tank is provided in the discharge side piping of the, and a blow piping that branches to the solution tank of the absorber is provided in the secondary side piping of this flow rate adjusting valve. , An absorption chiller-heater characterized by being provided via an on-off valve.
JP2001321469A 2001-10-19 2001-10-19 Absorption chiller / heater and control method thereof Expired - Lifetime JP3920619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321469A JP3920619B2 (en) 2001-10-19 2001-10-19 Absorption chiller / heater and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001321469A JP3920619B2 (en) 2001-10-19 2001-10-19 Absorption chiller / heater and control method thereof

Publications (2)

Publication Number Publication Date
JP2003130486A true JP2003130486A (en) 2003-05-08
JP3920619B2 JP3920619B2 (en) 2007-05-30

Family

ID=19138681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321469A Expired - Lifetime JP3920619B2 (en) 2001-10-19 2001-10-19 Absorption chiller / heater and control method thereof

Country Status (1)

Country Link
JP (1) JP3920619B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106983A (en) * 2006-10-25 2008-05-08 Hitachi Appliances Inc Absorption type heat pump
KR100981976B1 (en) 2008-03-26 2010-09-13 산요덴키가부시키가이샤 Absorption water chiller-heater
KR101622045B1 (en) * 2014-11-10 2016-05-17 주식회사 신성엔지니어링 Absorption Heat Pump
JP2016173196A (en) * 2015-03-17 2016-09-29 日立アプライアンス株式会社 Absorption type refrigerating machine
JP2021032472A (en) * 2019-08-23 2021-03-01 荏原冷熱システム株式会社 Turbo refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51153801U (en) * 1975-06-02 1976-12-08
JPS58130972A (en) * 1983-01-17 1983-08-04 株式会社日立製作所 Absorption type refrigerator
JPS602858A (en) * 1983-06-20 1985-01-09 株式会社荏原製作所 Absorption refrigerator
JPS61159060A (en) * 1984-12-28 1986-07-18 株式会社荏原製作所 Double effect absorption refrigerator
JPS62213663A (en) * 1986-03-13 1987-09-19 株式会社日立製作所 Heating operation method of absorption type air conditioner
JPH0518627A (en) * 1991-07-09 1993-01-26 Hitachi Ltd Absorption type cold and hot water apparatus
JPH0599530A (en) * 1991-10-03 1993-04-20 Hitachi Ltd Absorption type cooling or heating device
JPH062982A (en) * 1992-06-17 1994-01-11 Hitachi Ltd Absorption room cooling/heating system and controlling method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51153801U (en) * 1975-06-02 1976-12-08
JPS58130972A (en) * 1983-01-17 1983-08-04 株式会社日立製作所 Absorption type refrigerator
JPS602858A (en) * 1983-06-20 1985-01-09 株式会社荏原製作所 Absorption refrigerator
JPS61159060A (en) * 1984-12-28 1986-07-18 株式会社荏原製作所 Double effect absorption refrigerator
JPS62213663A (en) * 1986-03-13 1987-09-19 株式会社日立製作所 Heating operation method of absorption type air conditioner
JPH0518627A (en) * 1991-07-09 1993-01-26 Hitachi Ltd Absorption type cold and hot water apparatus
JPH0599530A (en) * 1991-10-03 1993-04-20 Hitachi Ltd Absorption type cooling or heating device
JPH062982A (en) * 1992-06-17 1994-01-11 Hitachi Ltd Absorption room cooling/heating system and controlling method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106983A (en) * 2006-10-25 2008-05-08 Hitachi Appliances Inc Absorption type heat pump
KR100981976B1 (en) 2008-03-26 2010-09-13 산요덴키가부시키가이샤 Absorption water chiller-heater
KR101622045B1 (en) * 2014-11-10 2016-05-17 주식회사 신성엔지니어링 Absorption Heat Pump
JP2016173196A (en) * 2015-03-17 2016-09-29 日立アプライアンス株式会社 Absorption type refrigerating machine
JP2021032472A (en) * 2019-08-23 2021-03-01 荏原冷熱システム株式会社 Turbo refrigerator
JP7265963B2 (en) 2019-08-23 2023-04-27 荏原冷熱システム株式会社 turbo chiller

Also Published As

Publication number Publication date
JP3920619B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
US6487874B2 (en) Absorption refrigerator
JP2003130486A (en) Absorption chilled or hot-water machine and method of controlling the machine
JPH074769A (en) Single and double effect absorption refrigerating device
JP2002349987A (en) Absorption refrigeration unit
JP4315855B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
JP4279917B2 (en) Absorption refrigerator
KR100493598B1 (en) Absorption Type Refrigerator
JP2003287314A (en) Absorption refrigerating machine
JP2883372B2 (en) Absorption chiller / heater
JP4073219B2 (en) Absorption chiller / heater
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JPH0555787B2 (en)
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3434280B2 (en) Absorption refrigerator and its operation method
JP2002277091A (en) Absorption refrigerator and method for operating the same
JP3824441B2 (en) Absorption refrigeration equipment
JP3429905B2 (en) Absorption refrigerator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JPH08159595A (en) Absorption refrigerator
JP3735744B2 (en) Cooling operation control method for absorption air conditioner
JP2001208443A (en) Absorption freezer
JP2002181402A (en) Absorption refrigerator
JP2000161812A (en) Control device of absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070215

R150 Certificate of patent or registration of utility model

Ref document number: 3920619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250