JPH0555787B2 - - Google Patents

Info

Publication number
JPH0555787B2
JPH0555787B2 JP1515084A JP1515084A JPH0555787B2 JP H0555787 B2 JPH0555787 B2 JP H0555787B2 JP 1515084 A JP1515084 A JP 1515084A JP 1515084 A JP1515084 A JP 1515084A JP H0555787 B2 JPH0555787 B2 JP H0555787B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
medium
auxiliary boiler
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1515084A
Other languages
Japanese (ja)
Other versions
JPS60162166A (en
Inventor
Tomihisa Oochi
Takafumi Kunugi
Sanpei Usui
Tamio Fukuda
Akira Nishiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1515084A priority Critical patent/JPS60162166A/en
Publication of JPS60162166A publication Critical patent/JPS60162166A/en
Publication of JPH0555787B2 publication Critical patent/JPH0555787B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、多重効用吸収式冷凍装置に係り、特
に省エネルギーに好適な起動時間の短縮をはかつ
た多重効用吸収式冷凍装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a multi-effect absorption refrigeration system, and more particularly to a multi-effect absorption refrigeration system that shortens startup time and is suitable for energy saving.

〔発明の背景〕[Background of the invention]

水を冷媒とし、臭化リチウム水溶液等の塩類溶
液を吸収剤とする吸収式冷凍装置は、従来、配管
等の流路内での吸収剤溶液(以下溶液という)の
結晶析出を防止するため、運転を停止するとき
は、希釈運転を行つて、雰囲気温度におれる結晶
析出温度よりも薄い状態で停止している。
Absorption refrigeration equipment that uses water as a refrigerant and a salt solution such as an aqueous lithium bromide solution as an absorbent has conventionally used the following techniques to prevent crystallization of the absorbent solution (hereinafter referred to as solution) in flow paths such as piping. When the operation is stopped, a dilution operation is performed and the operation is stopped in a state where the temperature is thinner than the crystal precipitation temperature at the ambient temperature.

そのため、起動時には、希釈した分の冷媒を発
生させる必要がある。したがつて、吸収式冷凍装
置の起動に要する時間τは、前記冷媒発生に要す
る熱量QDと外部熱源で与える熱量QGとの比 τ≒QD/QG ……(1) で与えられる。
Therefore, at startup, it is necessary to generate diluted refrigerant. Therefore, the time τ required to start up the absorption refrigeration system is given by the ratio of the amount of heat Q D required to generate the refrigerant and the amount of heat Q G provided by the external heat source, τ≒Q D /Q G ……(1) .

ところで、吸収式冷凍装置の成績係数COPは COP=冷凍能力 QG ……(2) で表わされ、その値が、 二重効用吸収式冷凍装置ではCOP2≒1.2 三重効用吸収式冷凍装置ではCOP3≒1.5〜1.8 程度である。すなわち、外部熱源の熱量QGは、 QG三重効用=0.67〜0.75QG二重効用 ……(3) という関係にある。 By the way, the coefficient of performance COP of an absorption refrigeration system is expressed as COP = Refrigeration capacity Q G ... (2), and the value is COP 2 ≒ 1.2 for a double effect absorption refrigeration system, COP 2 ≒ 1.2 for a triple effect absorption refrigeration system. COP 3 is approximately 1.5 to 1.8. That is, the amount of heat Q G of the external heat source has the following relationship: Q G triple effect = 0.67 to 0.75 Q G double effect (3).

しかも、三重効用吸収式冷凍装置は、二重効用
吸収式冷凍装置よりも、再生器が一個多く備えら
れているため、封入液量が多くなる。
Moreover, since the triple-effect absorption refrigerating apparatus is equipped with one more regenerator than the double-effect absorption refrigerating apparatus, the amount of sealed liquid is larger.

したがつて、QDは QD三重効用>QD二重効用 である。 Therefore, Q D is Q D triple utility > Q D double utility.

すなわち、三重効用吸収式冷凍装置は、二重効
用吸収式冷凍装置と比較して、起動に要する時間
τが25%以上余計にかかるという欠点がある。
That is, the triple-effect absorption refrigerating apparatus has the disadvantage that it takes 25% or more of the time τ required for startup compared to the double-effect absorption refrigerating apparatus.

また、たとえば冷温水機として利用する場合、
単なるボイラーとして利用されるため、冷房能力
に比べ暖房能力が不足する欠点がある。そこで高
温再生器の熱入力を暖房時に多く、冷房時に小さ
くさせる運転方法が考えられるが、高温再生器を
最大熱入力に合わせて大形化しなければならない
という欠点が新たに生じる。
Also, for example, when using it as a hot/cold water machine,
Since it is used simply as a boiler, it has the disadvantage that its heating capacity is insufficient compared to its cooling capacity. Therefore, an operation method can be considered in which the heat input of the high-temperature regenerator is increased during heating and decreased during cooling, but a new drawback arises in that the high-temperature regenerator must be increased in size to match the maximum heat input.

この高温再生器は、水を熱媒とする通常のボイ
ラーに比べ、溶液の腐食性に対する配慮を必要と
するため高価であり、また、封入溶液そのものが
高価である。そのため、高温再生器の熱入力を暖
房時に増大させることは、大幅な価格上昇をとも
なう欠点があつた。
This high-temperature regenerator is more expensive than a normal boiler that uses water as a heat medium because it requires consideration of the corrosivity of the solution, and the sealed solution itself is expensive. Therefore, increasing the heat input of the high-temperature regenerator during heating has the drawback of significantly increasing costs.

また、暖房能力の増大そのものは、三重効用吸
収式冷温水機とは別に補助温水ボイラーを設置す
ることで達成可能であるが、補助温水ボイラーの
設置スペースが増大するという欠点があつた。
In addition, the heating capacity itself can be increased by installing an auxiliary hot water boiler separately from the triple-effect absorption chiller/heater, but this has the disadvantage that the installation space for the auxiliary hot water boiler increases.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の従来技術の欠点を改良するた
めになされたもので、冷房運転における起動時間
の大幅な短縮、暖房運転時の暖房能力の向上を可
能にした多重効用吸収式冷凍装置の提供を、その
目的としている。
The present invention has been made in order to improve the drawbacks of the above-mentioned prior art, and provides a multi-effect absorption refrigeration system that makes it possible to significantly shorten the start-up time during cooling operation and improve the heating capacity during heating operation. is its purpose.

〔発明の概要〕[Summary of the invention]

本発明に係る多重効用吸収式冷凍装置の構成
は、外部熱源を加熱源とする高温の高温再生器
と、その高温再生器で発生した冷却蒸気を後段の
低温の再生器の溶液の加熱源として、それぞれ冷
媒蒸気を発させる低温および中温の複数の再生器
と、凝縮器、蒸発器、吸収器、溶液熱交換器、溶
液循環ポンプなどの機器と、これら吸収サイクル
の作動機器を連結する配管とからなる多重効用吸
収式冷凍装置において、熱媒を加熱する補助ボイ
ラーを、前記低温および中温の複数の再生器の下
方に配設し、当該補助ボイラーでの発生熱媒蒸気
を前記低温および中温の複数の再生器の補助加熱
源となしうるように、前記補助ボイラーと前記低
温および中温の複数の再生器の少なくとも一つを
熱媒配管で接続したものである。
The configuration of the multi-effect absorption refrigeration apparatus according to the present invention includes a high-temperature regenerator using an external heat source as a heating source, and cooling steam generated by the high-temperature regenerator as a heating source for a solution in a subsequent low-temperature regenerator. , multiple low-temperature and medium-temperature regenerators that emit refrigerant vapor, equipment such as condensers, evaporators, absorbers, solution heat exchangers, solution circulation pumps, and piping that connects these absorption cycle operating equipment. In a multi-effect absorption refrigeration system comprising: The auxiliary boiler is connected to at least one of the plurality of low-temperature and medium-temperature regenerators by a heat medium piping so that it can serve as an auxiliary heating source for the plurality of regenerators.

なお、本発明を開発した考え方を付記すると、
次のとおりである。
Additionally, the idea behind developing the present invention is as follows:
It is as follows.

本発明は、中温再生器と低温再生器の少なくと
も一方を、補助外部熱源でサーモサイフオンリボ
イラの原理により間接的に加熱して、冷房運転に
おける起動立上げ時のサイクル内溶液の濃縮に必
要な熱エネルギーを増大させて、起動立上げ時間
の短縮を図るようにいるとともに、暖房時の暖房
能力の増大を図つたものである。
The present invention indirectly heats at least one of a medium-temperature regenerator and a low-temperature regenerator using an auxiliary external heat source according to the principle of a thermosiphon-only reboiler, thereby providing the required temperature for concentrating the solution in the cycle at the time of startup in cooling operation. This is intended to increase thermal energy to shorten startup time and to increase heating capacity during heating.

すなわち、冷房運転の起動時は、サイクル内溶
液が低温度でるため、まず、溶液を少なくとも沸
点まで加熱する必要がある。
That is, since the solution in the cycle is at a low temperature when starting the cooling operation, it is first necessary to heat the solution to at least the boiling point.

一般に、高温再生器を、主たる外部熱源で加熱
して高温再生器から高温、高圧の冷媒蒸気が発生
されるようになるまでの時間、中温再生器及び低
温再生器は何ら加熱されない。同様に、中温再生
器の低温の溶液が高温再生器の冷媒蒸気により加
熱され、沸騰し、高温、高圧の冷媒蒸気が発生し
て、低温再生器を加熱しなければ、低温再生器は
何ら加熱されない。
Generally, the medium temperature regenerator and the low temperature regenerator are not heated at all during the time period during which the high temperature regenerator is heated by the primary external heat source and high temperature, high pressure refrigerant vapor is generated from the high temperature regenerator. Similarly, if the low temperature solution in the medium temperature regenerator is heated by the refrigerant vapor in the high temperature regenerator and boils, generating high temperature, high pressure refrigerant vapor that does not heat the low temperature regenerator, the low temperature regenerator will not heat up at all. Not done.

そこで、中温再生器および低温再生器を所定の
温度レベルまで加熱する時間を短縮するために
は、上述のような、高温再生器が加熱されてから
中温再生器を加熱し、中温再生器が加熱されてか
ら低温再生器が加熱されるという多重効用冷凍装
置に特有の直列的な熱移動を改革し、高温、中
温、低温など複数の再生器を並列的にも加熱でき
るように、補助ボイラーを配設することを考えた
ものである。
Therefore, in order to shorten the time it takes to heat the medium-temperature regenerator and low-temperature regenerator to a predetermined temperature level, it is necessary to heat the medium-temperature regenerator after the high-temperature regenerator is heated, as described above, and then We have reformed the serial heat transfer characteristic of multi-effect refrigeration equipment, in which the low-temperature regenerator is heated after the heat has been removed, and we have introduced an auxiliary boiler so that multiple regenerators such as high, medium, and low temperatures can be heated in parallel. It was designed to be installed.

上記に加え、前記補助ボイラーの熱エネルギー
を緩房運転時の温水補助加熱源として利用するこ
とを考えたものである。
In addition to the above, the idea is to use the thermal energy of the auxiliary boiler as an auxiliary heating source for hot water during slow room operation.

また、補助ボイラーの、熱媒コスト低減のため
に、前記補助ボイラーの熱媒にサイクル内を循環
する冷媒(水)を利用することを考えた。
Furthermore, in order to reduce the cost of the heating medium of the auxiliary boiler, we considered using a refrigerant (water) circulating within the cycle as the heating medium of the auxiliary boiler.

さらに、設置スペースの削減のために、補助ボ
イラーと低温再生器または中温再生器またはその
両方の熱交換にサーモサイフオンリボイラの原理
を利用して、補助ボイラーの上部に低温再生器ま
たは中温再生器を配設するようにしたものであ
る。
Furthermore, in order to reduce the installation space, the thermosiphon-only reboiler principle is utilized for heat exchange between the auxiliary boiler and the low-temperature regenerator or medium-temperature regenerator or both, and the low-temperature regenerator or medium-temperature regenerator is installed on the top of the auxiliary boiler. It is designed so that .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の各実施例を第1図ないし第7図
を参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 7.

まず、第1図は、本発明の一実施例に係る三重
効用吸収式冷温水機の冷房運転時のサイクル構成
図であり、図中、矢印は、冷媒、熱媒または溶液
の流れを示している。
First, FIG. 1 is a cycle configuration diagram during cooling operation of a triple-effect absorption type water chiller/heater according to an embodiment of the present invention. In the figure, arrows indicate the flow of refrigerant, heat medium, or solution. There is.

一般的な三重効用吸収式冷温水機の主要構成機
器から説明を進める。
We will begin with an explanation of the main components of a typical triple-effect absorption type water chiller/heater.

第1図において、1は外部熱源に係る主加熱源
14で加熱され冷媒蒸気を発生する高温再生器、
2は高温再生器1の発生冷媒蒸気で加熱される中
温再生器、3はその中温再生器2の発生冷媒蒸気
で加熱される低温再生器であり、29,31はそ
れぞれ中温再生器2、低温再生器3の加熱蒸気導
管、30,32はそれぞれ前記の中温再生器2、
低温再生器3の凝縮水導管である。19,20は
減圧用のオリフイスである。
In FIG. 1, 1 is a high-temperature regenerator that is heated by a main heating source 14 related to an external heat source and generates refrigerant vapor;
2 is a medium temperature regenerator heated by the refrigerant vapor generated from the high temperature regenerator 1, 3 is a low temperature regenerator heated by the refrigerant vapor generated from the medium temperature regenerator 2, and 29 and 31 are the medium temperature regenerator 2 and the low temperature regenerator 2, respectively. The heated steam conduits 30 and 32 of the regenerator 3 are respectively connected to the medium temperature regenerator 2,
This is the condensed water conduit of the low temperature regenerator 3. 19 and 20 are orifices for reducing pressure.

4は凝縮器で、低温再生器で発生した冷媒蒸気
を導管33で凝縮器4に導き、その冷媒蒸気を冷
却水16で冷却して凝縮液化させている。
A condenser 4 guides refrigerant vapor generated in the low-temperature regenerator to the condenser 4 through a conduit 33, and cools the refrigerant vapor with cooling water 16 to condense and liquefy it.

5は蒸発器で、凝縮器4における液冷媒を導管
34で蒸発器5に導き、管内を冷水15が流れる
伝熱管群上に冷媒スプレポンプ10で前記液冷媒
を散布し、冷媒を蒸発させるとともに冷水15を
冷却して冷凍能力を提供するものである。
5 is an evaporator, which leads the liquid refrigerant in the condenser 4 to the evaporator 5 through a conduit 34, and sprays the liquid refrigerant with a refrigerant spray pump 10 onto a group of heat transfer tubes through which cold water 15 flows, evaporating the refrigerant and discharging the cold water. 15 to provide refrigeration capacity.

6は吸収器で、蒸発器5で蒸発した冷媒蒸気
を、前記3個の各再生器で濃縮された溶液に吸収
させるものである。吸収器6の伝熱管内を冷却水
16が流通して、前記濃溶液を冷却するととも
に、冷媒蒸気吸収の際の吸収熱を奪う。
An absorber 6 absorbs the refrigerant vapor evaporated in the evaporator 5 into the solution concentrated in each of the three regenerators. Cooling water 16 flows through the heat transfer tube of the absorber 6 to cool the concentrated solution and remove the absorbed heat during absorption of refrigerant vapor.

吸収器6で冷却され、希釈された溶液は、溶液
循環ポンプ11により、高温再生器1、中温再生
器2、低温再生器3へ、それぞれ溶液供給管2
3,24,25で供給され、それぞれ濃縮されて
溶液排出管26,27,28で排出された吸収器
6に戻される。
The solution cooled and diluted in the absorber 6 is sent to the high temperature regenerator 1, medium temperature regenerator 2, and low temperature regenerator 3 through solution supply pipes 2 by a solution circulation pump 11, respectively.
3, 24, and 25, and are concentrated and returned to the absorber 6, which is discharged through solution discharge pipes 26, 27, and 28, respectively.

なお、各再生器の加熱熱量を節約するため、溶
液交換器7,8,9が配設されている。
Note that solution exchangers 7, 8, and 9 are provided in order to save the amount of heating heat of each regenerator.

以上のような三重効用吸収式冷温水機におい
て、本実施例の装置では、中温再生器2および低
温再生器3よりも下方に、補助ボイラーに係る真
空蒸気ボイラー12を配設し、中温再生器2およ
び低温再生器3にそれぞれ熱交換器35,36を
配設し、それら熱交換器35,36の入口側を前
記真空蒸気ボイラー(以下補助ボイラーという)
12の蒸気相部とそれぞれ熱媒蒸気導管37,3
8で連通し、前記熱交換器35,36の出口側を
前記補助ボイラー12の液相部にそれぞれ凝縮水
導管39,40によつて連通している。
In the triple-effect absorption type water chiller/heater as described above, in the device of this embodiment, the vacuum steam boiler 12 related to the auxiliary boiler is disposed below the medium-temperature regenerator 2 and the low-temperature regenerator 3, and the intermediate-temperature regenerator 2 and the low-temperature regenerator 3 are respectively provided with heat exchangers 35 and 36, and the inlet sides of the heat exchangers 35 and 36 are connected to the vacuum steam boiler (hereinafter referred to as auxiliary boiler).
12 vapor phase sections and heat medium vapor conduits 37, 3, respectively.
The outlet sides of the heat exchangers 35 and 36 are communicated with the liquid phase portion of the auxiliary boiler 12 through condensed water conduits 39 and 40, respectively.

補助ボイラー12には特に図示して説明するこ
とはしないが、安全弁、温度リレー、圧力スイツ
チ、液面スイツチなどが配設されている。
The auxiliary boiler 12 is provided with a safety valve, a temperature relay, a pressure switch, a liquid level switch, etc., although they are not particularly shown or explained.

補助加熱源13には、灯油、燃料ガスなどの燃
焼熱を用いる。補助ボイラー12の熱媒として
は、水が望ましい。
The auxiliary heating source 13 uses combustion heat of kerosene, fuel gas, or the like. As the heat medium for the auxiliary boiler 12, water is desirable.

このような構成の三重効用吸収式冷温水機の動
作を、まず冷房運転について説明する。
The operation of the triple-effect absorption type water chiller/heater having such a configuration will first be described with respect to cooling operation.

起動時の立上げに際して、冷水15が蒸発器5
の伝熱管内に通水され、冷却水16が凝縮器4、
吸収器6のそれぞれの伝熱管内に通水される。
During start-up, the cold water 15 flows into the evaporator 5.
The cooling water 16 is passed through the heat transfer tubes of the condenser 4,
Water is passed through each heat transfer tube of the absorber 6.

主加熱源14、補助加熱熱源13の燃焼器に点
火されて、高温再生器1の溶液および補助ボイラ
ー12の熱媒(水)が加熱される。補助ボイラー
12内の熱媒は沸騰して蒸発し、中温再生器2の
溶液中に浸漬した熱交換器35、および低温再生
器3の溶液に浸漬した熱交換器36へ、それぞれ
熱媒蒸気導管37,38を介して導かれ、熱交換
して凝縮液化する。その際の凝縮潜熱により、中
温再生器2および低温再生器3の溶液が加熱され
る。なお、中温再生器2の溶液は高温再生器1で
発生した冷媒の凝縮潜熱でも並列的に加熱される
ので、溶液が沸点に立する時間が短縮される。
The combustors of the main heating source 14 and the auxiliary heating heat source 13 are ignited, and the solution in the high-temperature regenerator 1 and the heat medium (water) in the auxiliary boiler 12 are heated. The heat medium in the auxiliary boiler 12 is boiled and evaporated, and the heat medium vapor conduits are respectively transferred to a heat exchanger 35 immersed in the solution of the medium-temperature regenerator 2 and a heat exchanger 36 immersed in the solution of the low-temperature regenerator 3. 37 and 38, and undergoes heat exchange to condense and liquefy. The latent heat of condensation at this time heats the solutions in the medium temperature regenerator 2 and the low temperature regenerator 3. Note that since the solution in the medium temperature regenerator 2 is heated in parallel with the latent heat of condensation of the refrigerant generated in the high temperature regenerator 1, the time for the solution to reach the boiling point is shortened.

前記熱交換器35,36で凝縮した熱媒は、凝
縮水導管39,40を介して下方にある前記補助
ボイラー12に戻される。すなわち、補助ボイラ
ー12と熱交換器35,36とは熱サイフオンの
関係に配設されている。したがつて、まず、中温
再生器2の溶液温度が補助ボイラー12で発生す
る熱媒蒸気の凝縮温度を越えると、熱交換器35
の熱交換は自動的に停止する。なお低温再生器3
の熱交換器36は補助ボイラー12が加熱されて
いると冷房運転中は熱交換が続けられ、補助加熱
源13の熱エネルギーは吸収式冷凍サイクルで単
効用として冷凍能力の増大に寄与される。
The heat medium condensed in the heat exchangers 35 and 36 is returned to the auxiliary boiler 12 located below via condensed water conduits 39 and 40. That is, the auxiliary boiler 12 and the heat exchangers 35 and 36 are arranged in a thermosiphon relationship. Therefore, first, when the solution temperature in the intermediate temperature regenerator 2 exceeds the condensation temperature of the heat medium vapor generated in the auxiliary boiler 12, the heat exchanger 35
heat exchange will stop automatically. In addition, low temperature regenerator 3
The heat exchanger 36 continues to exchange heat during cooling operation when the auxiliary boiler 12 is heated, and the thermal energy of the auxiliary heating source 13 is used as a single effect in the absorption refrigeration cycle and contributes to increasing the refrigeration capacity.

定常運転に達していることが、サイクル内の温
度、圧力のいずれかを検知することによつて確認
されると、補助ボイラー12の補助加熱源13の
燃焼を停止させ、本実施例の装置は高いCOPを
実現する三重効用吸収式冷凍サイクルとして動作
する。
When it is confirmed that steady operation has been reached by detecting either the temperature or pressure within the cycle, the combustion of the auxiliary heat source 13 of the auxiliary boiler 12 is stopped, and the device of this embodiment It operates as a triple-effect absorption refrigeration cycle that achieves high COP.

このように本実施例によれば、冷房運転におけ
る起動立上げ時に、低温再生器3および中温再生
器2を並列的に補助ボイラー12で加熱できるの
で、立上げ時間が短縮される。
As described above, according to this embodiment, the low-temperature regenerator 3 and the medium-temperature regenerator 2 can be heated in parallel by the auxiliary boiler 12 at the time of startup in cooling operation, so the startup time is shortened.

次に上記の装置の暖房運転について第2図を参
照して説明する。
Next, the heating operation of the above device will be explained with reference to FIG. 2.

第2図は、第2図と同じ三重効用吸収式冷温水
機の暖房運転時のサイクル構成図であり、第1図
と同一符号のものは同一部分を示している。
FIG. 2 is a cycle configuration diagram of the same triple-effect absorption type water chiller/heater during heating operation as in FIG. 2, and the same reference numerals as in FIG. 1 indicate the same parts.

暖房運転の場合は、冷却水16の流路から温水
を得るものであり、サイクル内の溶液濃度を低く
するため、高温再生器1および中温再生器2で発
生した冷媒は3方弁18、冷媒バイパス管22を
介して低温再生器3に導かれる。また、蒸発器5
の液冷媒は蒸発器冷媒排出管21、仕切弁17を
経て吸収器6に排出される。
In the case of heating operation, hot water is obtained from the flow path of the cooling water 16, and in order to lower the solution concentration in the cycle, the refrigerant generated in the high temperature regenerator 1 and the medium temperature regenerator 2 is passed through the three-way valve 18, the refrigerant It is led to the low temperature regenerator 3 via the bypass pipe 22. Also, the evaporator 5
The liquid refrigerant is discharged to the absorber 6 through the evaporator refrigerant discharge pipe 21 and the gate valve 17.

主加熱源14の熱量は、冷凍能力の56%〜67%
程度であるから、補助熱源を冷凍能力の30〜50%
程度にすれば、暖房能力と冷凍能力を同じ程度に
できる。すなわち、高温再生器1に与えられた主
加熱源14の熱エネルギーは、溶液中の冷媒に沸
騰と凝縮により、凝縮器4の伝熱管内を流れる温
水16に伝えられる。また、補助ボイラー12に
与えられた補助加熱源13の熱エネルギーは、熱
媒の沸騰と凝縮により、低温再生器3の熱交換器
36を介して低温再生器3の溶液に伝えられ、さ
らに低温再生器3の溶液の沸騰により冷媒蒸気に
与えられ、その冷媒蒸気の凝縮器4における凝縮
により、伝熱管内を流れる温水16に与えられ
る。
The heat amount of the main heating source 14 is 56% to 67% of the refrigeration capacity.
Since the auxiliary heat source is about 30-50% of the refrigerating capacity
If you keep it to a certain level, you can make the heating capacity and refrigeration capacity the same. That is, the thermal energy of the main heating source 14 given to the high-temperature regenerator 1 is transferred to the hot water 16 flowing through the heat transfer tube of the condenser 4 by boiling and condensing the refrigerant in the solution. In addition, the thermal energy of the auxiliary heating source 13 given to the auxiliary boiler 12 is transferred to the solution of the low temperature regenerator 3 via the heat exchanger 36 of the low temperature regenerator 3 by boiling and condensation of the heat medium, and is further transferred to the solution of the low temperature regenerator 3. The boiling of the solution in the regenerator 3 gives the refrigerant vapor, and the condensation of the refrigerant vapor in the condenser 4 gives the hot water 16 flowing through the heat transfer tubes.

このようにして、暖房能力を増大させることが
できる。
In this way, heating capacity can be increased.

第1,2図に示した実施例では、中温再生器2
と低温再生器3に、熱媒を凝縮させる熱交換器3
5,36を配設し、その下方に補助ボイラー12
を配設して、サーモサイフオンの原理で、中温再
生器2および低温再生器3の溶液を加熱するよう
にしたので、次の効果がある。
In the embodiment shown in FIGS. 1 and 2, the medium temperature regenerator 2
and a heat exchanger 3 that condenses the heat medium into the low temperature regenerator 3.
5 and 36 are installed, and the auxiliary boiler 12 is installed below it.
Since the solutions in the medium temperature regenerator 2 and the low temperature regenerator 3 are heated using the thermosiphon principle, the following effects can be obtained.

(1) 最低凝縮温度が低温再生器3の溶液の沸点
で、100℃以下であるため、熱媒に安価な水を
使つても補助ボイラー12が真空下で作動する
ため、安全であり、かつ防食技術的に見て、補
助ボイラー12の温度が80℃程度なので、酸露
点腐食も回避でき、薄肉軽量の補助ボイラー1
2とすることができ、安価な装置が提供でき
る。
(1) Since the minimum condensation temperature is the boiling point of the solution in the low temperature regenerator 3, which is 100°C or lower, the auxiliary boiler 12 operates under vacuum even if inexpensive water is used as a heat medium, so it is safe and In terms of anti-corrosion technology, the temperature of the auxiliary boiler 12 is around 80°C, so acid dew point corrosion can be avoided, and the auxiliary boiler 1 is thin and lightweight.
2, and an inexpensive device can be provided.

(2) 補助ボイラー12を低温再生器および中温再
生器2の下方に設置しなければならないため、
冷温水機の据付面積の増大を図る必要がない。
(2) Since the auxiliary boiler 12 must be installed below the low temperature regenerator and medium temperature regenerator 2,
There is no need to increase the installation area of the water cooler/heater.

(3) 熱媒循環径路か閉回路であるため、故障時の
対策が容易である。
(3) Since the heat medium circulation path is a closed circuit, it is easy to take measures in the event of a failure.

なお、中温再生器2に配設した熱交換器35を
外した場合、冷房運転立上げ時間の短縮効果がわ
ずかに小さくなるだけであり、簡略化された装置
を提供できる効果がある。
Note that when the heat exchanger 35 disposed in the medium-temperature regenerator 2 is removed, the effect of shortening the cooling operation start-up time is only slightly reduced, and there is an effect that a simplified device can be provided.

また、低温再生器3に配設した熱交換器36を
外した場合、補助ボイラー12の熱媒に水および
水溶液を使うと熱媒凝縮圧力が大気圧を越え、補
助ボイラー12は真空蒸気ボイラーとならなくな
る不具合がある。そこで熱媒に有機溶剤等の沸点
が100℃以上で、圧力が大気圧力以下のものを利
用すれば、同等の効果を得ることができる。冷房
運転中も動作させると、補助熱媒13の補助ボイ
ラー12に与えられた熱エネルギーは二重効用サ
イクルとして、成績係数およそ1.2で冷凍能力増
大に寄与する。この場合、補助熱源13としては
燃焼器で生成される燃焼ガスだけでなく、140〜
150℃以上の排蒸気、排ガス等も利用できる。こ
の場合も、補助ボイラー12を中温再生器2の下
方に設置してサーモサイフオンの原理で、熱媒循
環を行なわせるので、特別に熱媒循環ポンプ等が
不要で、簡素化された装置を提供できる効果が得
られる。
Furthermore, when the heat exchanger 36 installed in the low-temperature regenerator 3 is removed, if water or an aqueous solution is used as the heat medium in the auxiliary boiler 12, the heat medium condensation pressure will exceed atmospheric pressure, and the auxiliary boiler 12 will become a vacuum steam boiler. There is a problem where it disappears. Therefore, the same effect can be obtained by using an organic solvent with a boiling point of 100°C or higher and a pressure of lower than atmospheric pressure as the heating medium. When operated during cooling operation, the thermal energy given to the auxiliary boiler 12 by the auxiliary heating medium 13 forms a double-effect cycle and contributes to an increase in refrigeration capacity with a coefficient of performance of approximately 1.2. In this case, the auxiliary heat source 13 is not only the combustion gas generated in the combustor, but also 140~
Exhaust steam, exhaust gas, etc. over 150℃ can also be used. In this case as well, the auxiliary boiler 12 is installed below the medium-temperature regenerator 2 and the heat medium is circulated using the thermosiphon principle, so a special heat medium circulation pump or the like is not required, and a simplified device can be used. You can get the effects that you can.

次に、本発明の他の実施例を第3図を参照して
説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

第3図は、本発明の他の実施例に係る三重効用
吸収式冷温水機の冷房運転時のサイクル構成図で
あり、図中、第1図と同一符号のものは同等部分
を示している。
FIG. 3 is a cycle configuration diagram during cooling operation of a triple-effect absorption type water chiller/heater according to another embodiment of the present invention, in which the same symbols as in FIG. 1 indicate equivalent parts. .

なお、本図では熱交換器7,8,9は図示する
ことを省略している。
Note that the heat exchangers 7, 8, and 9 are omitted from illustration in this figure.

第3図の実施例の三重効用吸収式冷温水機は、
吸収器6の希溶液を循環ポンプ11で高温再生器
1と低温再生器3へ並列的に供給し、低温再生器
3から中温再生器2へ補助循環ポンプ45により
直列的に供給されるようになつている点が先の第
1,2図の実施例と異なるところである。
The triple effect absorption type water chiller/heater of the embodiment shown in Figure 3 is as follows:
The dilute solution in the absorber 6 is supplied in parallel to the high temperature regenerator 1 and the low temperature regenerator 3 by the circulation pump 11, and is supplied in series from the low temperature regenerator 3 to the medium temperature regenerator 2 by the auxiliary circulation pump 45. This embodiment differs from the previous embodiments shown in FIGS. 1 and 2 in that it is curved.

ただし、本発明の適用にあたり、このような三
重効用吸収式冷温水機のサイクル構成の変更は障
害とならない。
However, in applying the present invention, changing the cycle configuration of such a triple effect absorption type water chiller/heater does not pose an obstacle.

第3図の実施例では、補助ボイラー12の熱媒
にサイクル内循環冷媒(水)を利用していること
が、先の例にくらべ大きく異なる点であり、その
実現のため、次のように構成されている。
The embodiment shown in FIG. 3 differs greatly from the previous example in that the refrigerant (water) circulated within the cycle is used as the heat medium for the auxiliary boiler 12. To achieve this, the following steps are taken. It is configured.

(1) 補助ボイラー12の発生熱媒蒸気を、低温再
生器3の冷媒配管における加熱蒸気導管31側
に、熱媒蒸気導管38′を介して導いている。
(1) The heat medium vapor generated by the auxiliary boiler 12 is guided to the heating steam pipe 31 side of the refrigerant piping of the low temperature regenerator 3 via the heat medium vapor pipe 38'.

(2) 低温再生器3からの凝縮水排出管32′を、
補助ボイラー12の凝縮水導管40′に接続し
た。
(2) Connect the condensed water discharge pipe 32' from the low-temperature regenerator 3,
It was connected to the condensate water conduit 40' of the auxiliary boiler 12.

(3) 補助ボイラー12から凝縮水排出管46を、
三方弁18、オリフイス19を介して凝縮器4
に接続するとともに、その三方弁18と低温再
生器3とを冷媒バイパス管22′で連通した。
(3) Connect the condensed water discharge pipe 46 from the auxiliary boiler 12,
Condenser 4 via three-way valve 18 and orifice 19
The three-way valve 18 and the low temperature regenerator 3 were connected to each other through a refrigerant bypass pipe 22'.

このような構成の三重効用吸収式温水機によれ
ば、次の効果が得られる。
According to the triple effect absorption type water heater having such a configuration, the following effects can be obtained.

(1) 低温再生器3の溶液の沸点は約80℃であり、
補助ボイラー12は真空作動ボイラーとなるた
め、軽量、小形にできる。
(1) The boiling point of the solution in the low temperature regenerator 3 is approximately 80℃,
Since the auxiliary boiler 12 is a vacuum-operated boiler, it can be made lightweight and compact.

(2) 低温再生器3に配設された伝熱管部を補助ボ
イラー12で発生した冷媒蒸気の凝縮熱交換器
として機能しうることから、先の例において熱
交換器36を別に設ける必要がなく、コンパク
トな装置にすることができる。先の第1,2図
の実施例では、定格運転時に熱交換器35,3
6は遊休しており、デツドスペースとなつてい
たが、本実施例では前記熱交換器35,36を
それぞれ中温再生器2の加熱用伝熱管および低
温再生器3の加熱用伝熱管と共用されているた
め、常時有効に利用されている。
(2) Since the heat exchanger tube section installed in the low-temperature regenerator 3 can function as a condensing heat exchanger for the refrigerant vapor generated in the auxiliary boiler 12, there is no need to separately provide the heat exchanger 36 in the previous example. , it can be made into a compact device. In the embodiment shown in FIGS. 1 and 2 above, the heat exchangers 35 and 3 are closed during rated operation.
6 is idle and serves as a dead space, but in this embodiment, the heat exchangers 35 and 36 are shared with the heating heat exchanger tubes of the medium-temperature regenerator 2 and the low-temperature regenerator 3, respectively. Therefore, it is always effectively utilized.

(3) 第3図に示すように、低温再生器3、中温再
生器2、補助ボイラー12と積み重ねた配置が
なされるので、配置スペースを節約できる。
(3) As shown in Fig. 3, the low temperature regenerator 3, medium temperature regenerator 2, and auxiliary boiler 12 are arranged in a stacked manner, so that the arrangement space can be saved.

次に、本発明のさらに他の実施例を第4図を参
照して説明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第4図は、本発明のさらに他の実施例に係る三
重効用吸収式冷温水機のサイクル構成図である。
図中、第1図、第3図と同一符号のものは先の例
と同等機能の部分であるから、その説明を省略す
る。
FIG. 4 is a cycle configuration diagram of a triple effect absorption type water chiller/heater according to still another embodiment of the present invention.
In the figure, parts with the same reference numerals as those in FIGS. 1 and 3 have the same functions as in the previous example, so their explanation will be omitted.

第4図の三重効用吸収式冷温水機は、吸収器6
の希溶液を循環ポンプ11で高温再生器1と中温
再生器2へ並列的に供給し、低温再生器3への中
温再生器2から直列的に供給されるようになつて
いる。
The triple effect absorption chiller/heater shown in Figure 4 has an absorber 6.
The dilute solution is supplied in parallel to the high temperature regenerator 1 and the medium temperature regenerator 2 by the circulation pump 11, and is supplied in series from the medium temperature regenerator 2 to the low temperature regenerator 3.

第4図の実施例では、次の第1図、第3図で説
明した実施例と次の点が特に異なつている。
The embodiment shown in FIG. 4 differs from the embodiments described in FIGS. 1 and 3 in the following points.

すなわち、中温再生器2の冷媒配管における加
熱蒸気導管29側と、補助ボイラー12の熱媒蒸
気導管38′とを、仕切弁51を備えた熱媒蒸気
導管50で接続した点が異なつている。
That is, the difference is that the heated steam conduit 29 side of the refrigerant piping of the medium temperature regenerator 2 and the heat medium steam conduit 38' of the auxiliary boiler 12 are connected by a heat medium steam conduit 50 equipped with a gate valve 51.

仕切弁51は、補助ボイラー12の圧力を検知
して自動的に開閉できるものである。
The gate valve 51 can detect the pressure of the auxiliary boiler 12 and automatically open and close.

このように構成したので、冷房運転の起動時に
は、前記仕切弁51を開いて、中温再生器2の溶
液の加熱に補助ボイラー12で発生した冷媒蒸気
を利用することができ、起動時間を短縮できる効
果が得られる。なお、低温再生器3の溶液か定格
作動温度に近づいたことを検知して、前記仕切弁
51を閉じ、高温再生器1からの発生冷媒蒸気が
補助ボイラー12および低温再生器3の加熱蒸気
導管31に逆流しないように制御する。
With this configuration, when starting the cooling operation, the gate valve 51 can be opened and the refrigerant vapor generated in the auxiliary boiler 12 can be used to heat the solution in the medium temperature regenerator 2, thereby shortening the startup time. Effects can be obtained. When it is detected that the solution in the low temperature regenerator 3 approaches the rated operating temperature, the gate valve 51 is closed, and the refrigerant vapor generated from the high temperature regenerator 1 is transferred to the auxiliary boiler 12 and the heated steam conduit of the low temperature regenerator 3. 31 so that it does not flow backwards.

ここで、仕切弁51を閉めるタイミングとして
は、 (1) タイマー (2) サイクル各部温度上昇の検出 (3) 熱媒蒸気導管50の蒸気流動方向をパドル、
差圧計等を使つて検出 などにより開閉を制御できるものである。
Here, the timing to close the gate valve 51 is as follows: (1) Timer (2) Detection of temperature rise in each part of the cycle (3) The direction of steam flow in the heat medium steam conduit 50 is adjusted by paddle,
Opening and closing can be controlled by detection using a differential pressure gauge, etc.

なお、暖房運転時には、前記熱媒蒸気導管50
は冷媒蒸気のバイパス管として利用でき、高温再
生器1の発生冷媒蒸気を低温再生器3の加熱蒸気
導管31に直接供給できるので、高温再生器1を
冷房運転時に比べ著しく、低温、低圧力で運転で
きる。
Note that during heating operation, the heat medium vapor conduit 50
can be used as a bypass pipe for refrigerant vapor, and the refrigerant vapor generated by the high-temperature regenerator 1 can be directly supplied to the heated steam conduit 31 of the low-temperature regenerator 3, so the high-temperature regenerator 1 can be operated at a significantly lower temperature and pressure than during cooling operation. I can drive.

したがつて、高温再生器1は、 (1) 構成材料の腐食劣化は温度が低い程、小さい
ので、寿命が伸びる。
Therefore, the high temperature regenerator 1 has the following characteristics: (1) The lower the temperature, the smaller the corrosion deterioration of the constituent materials, so the lifespan is extended.

(2) 加熱熱源14の熱をより低い温度まで回収で
きるので、ボイラー効率が向上する。
(2) Since the heat of the heating heat source 14 can be recovered to a lower temperature, boiler efficiency is improved.

という効果がある。There is an effect.

次に、本発明のさらに他の実施例を第5図を参
照して説明する。
Next, still another embodiment of the present invention will be described with reference to FIG.

第5図は、本発明のさらに他の実施例に係る三
重効用吸収式冷温水機のサイクル構成図であり、
図中、第1,3,4図と同一符号のものは、先の
実施例と同等機能の部分であるから、その説明を
省略する。
FIG. 5 is a cycle configuration diagram of a triple effect absorption type water chiller/heater according to still another embodiment of the present invention,
In the figure, the same reference numerals as those in FIGS. 1, 3, and 4 are parts having the same functions as those in the previous embodiment, so the explanation thereof will be omitted.

第5図の実施例では、第3,4図で説明した実
施例と、補助ボイラー12の蒸気相部に温水を流
通させる伝熱管、すなわち温水熱交換器47を配
設したことが特に異なつているところである。
The embodiment shown in FIG. 5 differs from the embodiments described in FIGS. 3 and 4 in that a heat exchanger tube, that is, a hot water heat exchanger 47, is provided to flow hot water into the steam phase of the auxiliary boiler 12. This is where I am.

これによつて、冷房運転中も冷凍能力の低下な
しに約80℃の温水48を取り出すことができる。
As a result, hot water 48 at about 80° C. can be taken out without reducing the refrigerating capacity even during cooling operation.

なお、温水熱交換器47を、第5図のように補
助ボイラー12のシエル内に設置すると、凝縮水
は直ちにボイラー12の液面に流下する。
Note that when the hot water heat exchanger 47 is installed in the shell of the auxiliary boiler 12 as shown in FIG. 5, the condensed water immediately flows down to the liquid level of the boiler 12.

しかし、特に図示して説明しないが、温水熱交
換器を熱媒蒸気導管38′の途中に設置すること
も考えられるが、この場合は、凝縮水排出管を設
けて凝縮水を補助ボイラー12の液相部に戻すこ
とが望ましい。
However, although not specifically shown or explained, it is also conceivable to install a hot water heat exchanger in the middle of the heat medium steam conduit 38'; It is desirable to return it to the liquid phase.

次に、本発明のさらに他の実施例を第6図およ
び第7図を参照して説明する。
Next, still another embodiment of the present invention will be described with reference to FIGS. 6 and 7.

第6図は、本発明のさらに他の実施例に係る三
重効用吸収式冷温水機の冷房運転時のサイクル構
成図、第7図は、第6図の装置の暖房運転時のサ
イクル構成図であり、図中の矢印は、冷媒、熱媒
または溶液の流れを示している。図中、第1,2
図と同一符号のものは同等機能の部分であるか
ら、その説明を省略する。
FIG. 6 is a cycle configuration diagram during cooling operation of a triple effect absorption type water chiller/heater according to still another embodiment of the present invention, and FIG. 7 is a cycle configuration diagram during heating operation of the apparatus shown in FIG. 6. The arrows in the figure indicate the flow of refrigerant, heat medium, or solution. In the figure, 1st and 2nd
Components with the same reference numerals as those in the drawings have the same function, so their explanation will be omitted.

第6,7図において、1Aは高温再生器で、外
部熱源に係る燃焼器53(主加熱源14)で管内
を流れる溶液を加熱する貫流形熱交換器54と、
その加熱溶液から冷媒蒸気を分離する気液分離器
55とで構成された形式のものである。
In FIGS. 6 and 7, 1A is a high-temperature regenerator, which includes a once-through heat exchanger 54 that heats the solution flowing inside the tube with a combustor 53 (main heat source 14) related to an external heat source;
This type is constructed with a gas-liquid separator 55 that separates refrigerant vapor from the heated solution.

2Aはは中温再生器、3Aは低温再生器、4A
は凝縮器、5Aは蒸発器、6Aは吸収器、9Aは
低温側の溶液熱交換器、12Aは補助ボイラーで
ある。
2A is medium temperature regenerator, 3A is low temperature regenerator, 4A
5A is a condenser, 5A is an evaporator, 6A is an absorber, 9A is a solution heat exchanger on the low temperature side, and 12A is an auxiliary boiler.

吸収器6Aで生成された希溶液は、溶液循環ポ
ンプ11により、高温再生器1Aにおける貫流形
熱交換器54は、中温再生器2A、低温再生器3
Aへ、それぞれ溶液供給管23,24,25で供
給され、それぞれ濃縮されて溶液排出管26,2
7,28で吸収器6Aに戻される。
The dilute solution generated in the absorber 6A is transferred by the solution circulation pump 11 to the once-through heat exchanger 54 in the high-temperature regenerator 1A, the medium-temperature regenerator 2A, and the low-temperature regenerator 3.
A is supplied through solution supply pipes 23, 24, 25, respectively, and is concentrated and sent to solution discharge pipes 26, 2, respectively.
7 and 28, it is returned to the absorber 6A.

52は、前記溶液供給管23に設けた補助循環
ポンプであり、60は、前記溶液排出管26,2
7,28の濃溶液を吸収器6Aの伝熱管群上に散
布するための補助循環ポンプである。
52 is an auxiliary circulation pump provided in the solution supply pipe 23, and 60 is an auxiliary circulation pump provided in the solution discharge pipe 26, 2.
This is an auxiliary circulation pump for dispersing concentrated solutions of Nos. 7 and 28 onto the heat transfer tube group of the absorber 6A.

本実施例では、排ガス熱交換器55を前記貫流
形熱交換器54の燃焼排気ガス流路に設置し、そ
の冷媒入口端56を気液分離器55の溶液タンク
57底部および中温再生器2Aの凝縮水導管30
に連通させるとともに、前記排ガス熱交換器55
の冷媒蒸気出口端58を溶液タンク57に連通さ
せて気液分離器55の蒸気部と中温再生器2Aの
加熱蒸気導管29を連通させ、さらに溶液タンク
57の液相部と低温再生器3Aの加熱蒸気導管3
1とをオリフイス20を介して連通している。
In this embodiment, an exhaust gas heat exchanger 55 is installed in the combustion exhaust gas passage of the once-through heat exchanger 54, and its refrigerant inlet end 56 is connected to the bottom of the solution tank 57 of the gas-liquid separator 55 and to the intermediate temperature regenerator 2A. Condensed water conduit 30
and the exhaust gas heat exchanger 55.
The refrigerant vapor outlet end 58 of the solution tank 57 is communicated with the vapor section of the gas-liquid separator 55 and the heated vapor conduit 29 of the medium temperature regenerator 2A, and the liquid phase section of the solution tank 57 and the low temperature regenerator 3A are communicated with each other. Heating steam conduit 3
1 through an orifice 20.

したがつて、高温再生器1Aの主加熱源14か
ら低温の液冷媒で熱回収できるので、ボイラー効
率を向上できるという効果が得られる。
Therefore, heat can be recovered from the main heating source 14 of the high-temperature regenerator 1A with the low-temperature liquid refrigerant, resulting in the effect of improving boiler efficiency.

また、第6,7図の実施例では、補助ボイラー
12Aを、中温再生器2Aの下部に設置し、補助
ボイラー12Aの上部シエルと中温再生器2Aの
下部シエルとを共通部材にして一体構成とし、熱
交換器35Aを構成させた点が、前述の各実施例
と異なつている。
In addition, in the embodiment shown in FIGS. 6 and 7, the auxiliary boiler 12A is installed below the medium temperature regenerator 2A, and the upper shell of the auxiliary boiler 12A and the lower shell of the medium temperature regenerator 2A are made into a common member and are integrally constructed. This embodiment differs from the previous embodiments in that the heat exchanger 35A is configured.

さらにまた、溶液熱交換器9Aに、補助ボイラ
ー12Aの凝縮水排出管46を通過させて、凝縮
水排出管46の液冷媒と、吸収器6Aから溶液循
環ポンプ11により排出される希溶液とを熱交換
する液冷媒回収熱交換器61を構成した点も、前
述の各実施例と異なつている。
Furthermore, the liquid refrigerant in the condensed water discharge pipe 46 and the dilute solution discharged from the absorber 6A by the solution circulation pump 11 are passed through the condensed water discharge pipe 46 of the auxiliary boiler 12A to the solution heat exchanger 9A. This embodiment also differs from the previous embodiments in that the liquid refrigerant recovery heat exchanger 61 for heat exchange is configured.

このように、中温再生器2Aと補助ボイラー1
2Aとを積み重ねて、熱交換器35Aを構成させ
るようにしたので、起動時に補助ボイラー12A
を補助加熱源13で加熱して熱媒蒸気を発生させ
ると、熱交換器35Aで凝縮して、凝縮潜熱によ
り中温再生器2A内溶液を加熱できる。熱交換器
35Aで凝縮した凝縮水は補助ボイラー12Aに
流下する。また、中温再生器2Aが高温になる
と、凝縮が行なわれなくなり、、自動的に熱交換
が停止される。なお、中温再生器2Aの底シエル
の保温が真空蒸気で行われるので、保温材の節約
ができるという付随的な効果もある。
In this way, the medium temperature regenerator 2A and the auxiliary boiler 1
Since the heat exchanger 35A is configured by stacking the 2A and 2A, the auxiliary boiler 12A is
When heated with the auxiliary heating source 13 to generate heat medium vapor, it is condensed in the heat exchanger 35A, and the latent heat of condensation can heat the solution in the intermediate temperature regenerator 2A. The condensed water condensed in the heat exchanger 35A flows down to the auxiliary boiler 12A. Further, when the medium temperature regenerator 2A reaches a high temperature, condensation is no longer performed and heat exchange is automatically stopped. Incidentally, since the bottom shell of the medium temperature regenerator 2A is kept warm by vacuum steam, there is an additional effect that the heat insulating material can be saved.

本発明の目的である起動時間の短縮が達成でき
ることは言うまでもなく明らかである。
It goes without saying that the purpose of the present invention, which is to shorten the start-up time, can be achieved.

また、前記補助ボイラー12Aから排出される
凝縮液に係る液冷媒は約80℃であり、その顕熱を
液冷媒回路熱交換器61で、溶液の予熱に利用し
ているので、凝縮器4から放熱される熱量を少な
くすることができ、省エネルギーが図れるととも
に、冷房運転起動時の溶液の加熱をより効果的に
できるもので、所期の目的である起動時間の短縮
が達成できる。
Further, the temperature of the liquid refrigerant related to the condensate discharged from the auxiliary boiler 12A is approximately 80°C, and the sensible heat thereof is used for preheating the solution in the liquid refrigerant circuit heat exchanger 61. The amount of heat radiated can be reduced, saving energy, and the solution can be heated more effectively when the cooling operation is started, thereby achieving the desired goal of shortening the startup time.

以上述べた各実施例によれば、補助ボイラー1
2,12Aを、低温再生器3,3Aおよび中温再
生器2,2Aよりも下方に配設してサーモサイフ
オンの原理により、低温再生器3,3Aまたは中
温再生器2,2A、もしくはその両方を間接的に
加熱するようにしたので、次のような効果が得ら
れる。
According to each embodiment described above, the auxiliary boiler 1
2, 12A is arranged below the low temperature regenerators 3, 3A and the medium temperature regenerators 2, 2A, and the low temperature regenerators 3, 3A, the medium temperature regenerators 2, 2A, or both are activated by the thermosiphon principle. Since it is heated indirectly, the following effects can be obtained.

(1) 冷房運転時の起動立上げ時間を大幅に短縮で
きる。
(1) Start-up time during cooling operation can be significantly reduced.

すなわち、短縮時間をΔτとすれば、 Δτ≒τ0 −τ0
補助ボイラー入熱量/補助ボイラー入熱量+高温再生器
入熱量 が得られる。ここにτ0は、高温再生器1,1A
のみで起動するのに要する起動立上げ時間であ
る。
In other words, if the shortened time is Δτ, Δτ≒τ 0 −τ 0
Auxiliary boiler heat input/auxiliary boiler heat input + high temperature regenerator heat input can be obtained. Here, τ 0 is the high temperature regenerator 1, 1A
This is the start-up time required to start up with only one unit.

(2) 暖房運転時の能力が、補助ボイラー12,1
2Aの入熱量分にほぼ等しい程度に増大する。
(2) The capacity during heating operation is auxiliary boiler 12, 1.
It increases to an extent almost equal to the amount of heat input of 2A.

(3) 高圧再生器1,1Aを冷凍能力に合わせて小
形化でき、かつ、補助ボイラー12,12Aを
中温再生器2,2Aまたは低温再生器3の下方
に設置するので、設置スペースが節約でき、コ
ンパクトな装置を提供できる。
(3) Since the high-pressure regenerators 1 and 1A can be downsized according to the refrigeration capacity, and the auxiliary boilers 12 and 12A are installed below the medium-temperature regenerators 2 and 2A or the low-temperature regenerator 3, installation space can be saved. , can provide a compact device.

なお、前記の各実施例は、三重効用吸収式冷温
水機の例を説明したが、本発明は、それに限るも
のではなく、同等の効果が期待できる製品に係る
多重効用吸収式冷凍装置の範囲で汎用的なもので
ある。
Although each of the above embodiments describes an example of a triple effect absorption type water chiller/heater, the present invention is not limited thereto, and the scope of the present invention is a multiple effect absorption type refrigerating device related to a product that can be expected to have the same effect. It is a general-purpose item.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、冷房運転
における起動時間の大幅な短縮、暖房運転時の暖
房能力の向上を可能にした多重効用吸収式冷凍装
置を提供することができる。
As described above, according to the present invention, it is possible to provide a multi-effect absorption refrigeration system that can significantly shorten the startup time during cooling operation and improve the heating capacity during heating operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る三重効用吸
収式冷温水機の冷房運転時のサイクル構成図、第
2図は第1図の装置の暖房運転時のサイクル構成
図、第3図は本発明の他の実施例に係る三重効用
吸収式冷温水機の冷房運転時のサイクル構成図、
第4図は本発明のさらに他の実施例に係る三重効
用吸収式冷温水機のサイクル構成図、第5図は本
発明のさらに他の実施例に係る三重効用吸収式冷
温水機のサイクル構成図、第6図は本発明のさら
に他の実施例に係る三重効用吸収式冷温水機の冷
房運転時のサイクル構成図、第7図は第6図の装
置の暖房運転時のサイクル構成図である。 1,1A……高温再生器、2,2A……中温再
生器、3,3A……低温再生器、4,4A……凝
縮器、5,5A……蒸発器、6,6A……吸収
器、7,8,9,9A……溶液熱交換器、10…
…冷媒スプレポンプ、11……溶液循環ポンプ、
12……補助ボイラー、13……補助加熱源、1
4……主加熱源、23,24,25……溶液供給
管、26,27,28……溶液排出管、29,3
1……加熱蒸気導管、30,32……凝縮水導
管、33……冷媒蒸気導管、35,35A,36
……熱交換器、37,38,38′……熱媒蒸気
導管、39,40,40′……凝縮水導管、46
……凝縮水排出管、47……温水熱交換器、50
……熱媒蒸気導管、51……仕切弁、45,5
2,60……補助循環ポンプ、61……液冷媒回
収熱交換器。
FIG. 1 is a cycle configuration diagram during cooling operation of the triple effect absorption type water chiller/heater according to an embodiment of the present invention, FIG. 2 is a cycle configuration diagram during heating operation of the device shown in FIG. 1, and FIG. is a cycle configuration diagram during cooling operation of a triple effect absorption type water chiller/heater according to another embodiment of the present invention,
FIG. 4 is a cycle configuration diagram of a triple effect absorption type water chiller/heater according to yet another embodiment of the present invention, and FIG. 5 is a cycle configuration diagram of a triple effect absorption type water chiller/heater according to yet another embodiment of the present invention. Figure 6 is a cycle configuration diagram during cooling operation of a triple-effect absorption type water chiller/heater according to still another embodiment of the present invention, and Figure 7 is a cycle configuration diagram during heating operation of the device shown in Figure 6. be. 1,1A...High temperature regenerator, 2,2A...Medium temperature regenerator, 3,3A...Low temperature regenerator, 4,4A...Condenser, 5,5A...Evaporator, 6,6A...Absorber , 7, 8, 9, 9A...solution heat exchanger, 10...
... Refrigerant spray pump, 11 ... Solution circulation pump,
12... Auxiliary boiler, 13... Auxiliary heating source, 1
4... Main heating source, 23, 24, 25... Solution supply pipe, 26, 27, 28... Solution discharge pipe, 29, 3
1... Heating steam conduit, 30, 32... Condensed water conduit, 33... Refrigerant vapor conduit, 35, 35A, 36
... Heat exchanger, 37, 38, 38' ... Heat medium vapor conduit, 39, 40, 40' ... Condensed water pipe, 46
... Condensed water discharge pipe, 47 ... Hot water heat exchanger, 50
... Heat medium vapor conduit, 51 ... Gate valve, 45,5
2, 60...Auxiliary circulation pump, 61...Liquid refrigerant recovery heat exchanger.

Claims (1)

【特許請求の範囲】 1 外部熱源を加熱源とする高温の高温再生器
と、その高温再生器で発生した冷媒蒸気を後段の
低温の再生器の溶液の加熱源として、それぞれ冷
媒蒸気を発生させる低温および中温の複数の再生
器と、凝縮器、蒸発器、吸収器、溶液熱交換器、
溶液循環ポンプなどの機器と、これら吸収サイク
ルの作動機器を連結する配管とからなる多重効用
吸収式冷凍装置において、熱媒を加熱する補助ボ
イラーを、前記低温および中温の複数の再生器の
下方に配設し、当該補助ボイラーでの発生熱媒蒸
気を前記低温および中温の複数の再生器の補助加
熱源となしうるように、前記補助ボイラーと前記
低温および中温の複数の再生器の少なくとも一つ
とを配管で接続したことを特徴とする多重効用吸
収式冷凍装置。 2 特許請求の範囲第1項記載のものにおいて、
冷凍サイクル内の液冷媒を補助ボイラーの熱媒と
なしうるように、低温再生器における冷媒配管の
凝縮水導管側を前記補助ボイラーに接続させ、前
記補助ボイラーで発生した熱媒蒸気の蒸気導管
を、前記低温再生器における冷媒配管の加熱蒸気
導管側に接続するとともに、前記補助ボイラーの
凝縮水排出管を凝縮器に接続したものである多重
効用吸収式冷凍装置。 3 特許請求の範囲第2項記載のものにおいて、
補助ボイラーと、中温再生器における冷媒配管の
加熱蒸気導管側とを、仕切弁を具備した熱媒蒸気
導管で接続したものである多重効用吸収式冷凍装
置。 4 特許請求の範囲第2項記載のものにおいて、
補助ボイラーの凝縮水排出管の液冷媒と、吸収器
から溶液循環ポンプにより排出される希溶液とを
熱交換する液冷媒回収熱交換器を配設したもので
ある多重効用吸収式冷凍装置。 5 特許請求の範囲第1項または第2項記載のも
ののいずれかにおいて、中温再生器と補助ボイラ
ーとを一体シエル構造に形成するとともに、上部
に中温再生器、下部に補助ボイラーを配設し、補
助ボイラーで発生した熱媒蒸気で、直接に中温再
生器のシエルの一部または全部を加熱するように
構成したものである多重効用吸収式冷凍装置。 6 特許請求の範囲第1項または第2項のものの
いずれかにおいて、補助ボイラーにおける熱媒を
発生する気相部に、温水を流通させる伝熱管を配
設したものである多重効用吸収式冷凍装置。
[Scope of Claims] 1. A high-temperature regenerator using an external heat source as a heating source, and refrigerant vapor generated in the high-temperature regenerator as a heating source for a solution in a subsequent low-temperature regenerator, respectively, to generate refrigerant vapor. multiple low and medium temperature regenerators, condensers, evaporators, absorbers, solution heat exchangers,
In a multi-effect absorption refrigeration system consisting of equipment such as a solution circulation pump and piping that connects these absorption cycle operating equipment, an auxiliary boiler that heats the heat medium is placed below the plurality of low-temperature and medium-temperature regenerators. the auxiliary boiler and at least one of the plurality of low-temperature and medium-temperature regenerators, so that the heat medium vapor generated in the auxiliary boiler can serve as an auxiliary heating source for the plurality of low-temperature and medium-temperature regenerators; A multi-effect absorption refrigeration system characterized by connecting the two with piping. 2. In what is stated in claim 1,
In order to use the liquid refrigerant in the refrigeration cycle as a heating medium for the auxiliary boiler, the condensed water conduit side of the refrigerant piping in the low-temperature regenerator is connected to the auxiliary boiler, and the steam conduit for the heat medium vapor generated in the auxiliary boiler is connected to the auxiliary boiler. . A multi-effect absorption refrigeration system, which is connected to the heated steam conduit side of the refrigerant piping in the low-temperature regenerator, and the condensed water discharge pipe of the auxiliary boiler is connected to the condenser. 3 In what is stated in claim 2,
A multi-effect absorption refrigeration system in which the auxiliary boiler and the heated steam conduit side of the refrigerant piping in the medium-temperature regenerator are connected by a heat medium steam conduit equipped with a gate valve. 4 In what is stated in claim 2,
A multi-effect absorption refrigeration system equipped with a liquid refrigerant recovery heat exchanger that exchanges heat between the liquid refrigerant in the condensed water discharge pipe of the auxiliary boiler and the dilute solution discharged from the absorber by the solution circulation pump. 5. In either of claims 1 or 2, the intermediate temperature regenerator and the auxiliary boiler are formed into an integral shell structure, and the intermediate temperature regenerator and the auxiliary boiler are disposed in the upper part and the auxiliary boiler in the lower part, A multi-effect absorption refrigeration system that is configured to directly heat part or all of the shell of a medium-temperature regenerator using heat medium steam generated in an auxiliary boiler. 6. A multi-effect absorption refrigeration system as set forth in either Claim 1 or 2, in which a heat transfer tube for circulating hot water is disposed in a gas phase part that generates a heat medium in an auxiliary boiler. .
JP1515084A 1984-02-01 1984-02-01 Multiple effect absorption type refrigerator Granted JPS60162166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1515084A JPS60162166A (en) 1984-02-01 1984-02-01 Multiple effect absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1515084A JPS60162166A (en) 1984-02-01 1984-02-01 Multiple effect absorption type refrigerator

Publications (2)

Publication Number Publication Date
JPS60162166A JPS60162166A (en) 1985-08-23
JPH0555787B2 true JPH0555787B2 (en) 1993-08-17

Family

ID=11880771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1515084A Granted JPS60162166A (en) 1984-02-01 1984-02-01 Multiple effect absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPS60162166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029524A1 (en) * 2002-09-27 2004-04-08 Ebara Corporation Absorption refrigerator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205136A (en) * 1992-03-11 1993-04-27 Martin Marietta Energy Systems, Inc. Triple-effect absorption refrigeration system with double-condenser coupling
JP4553523B2 (en) * 2001-07-31 2010-09-29 三洋電機株式会社 Absorption refrigerator
JP2003106700A (en) * 2001-09-28 2003-04-09 Daikin Ind Ltd Absorption type refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004029524A1 (en) * 2002-09-27 2004-04-08 Ebara Corporation Absorption refrigerator

Also Published As

Publication number Publication date
JPS60162166A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
JPS61110852A (en) Absorption heat pump/refrigeration system
CN1144987C (en) Absorbing refrigerator
JP4885467B2 (en) Absorption heat pump
JPH0555787B2 (en)
US5941094A (en) Triple-effect absorption refrigeration system having a combustion chamber cooled with a sub-ambient pressure solution stream
KR100512827B1 (en) Absorption type refrigerator
KR101059514B1 (en) Ammonia Water Absorption Cooling System Using Exhaust Gas Residual Heat
KR20040047393A (en) Drink hot water heating apparatus of absorption refrigerator
KR100493598B1 (en) Absorption Type Refrigerator
JP2003130486A (en) Absorption chilled or hot-water machine and method of controlling the machine
KR100484425B1 (en) Double effect model direct connection absorbtion type refrigerator
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JPH06235558A (en) Absorption type heat pump
JP3429906B2 (en) Absorption refrigerator
JPH08313108A (en) Absorbing type refrigerating machine using exhaust heat of engine
JPS60117065A (en) Heat recovery device for absorption cold and hot water machine
JPS6148064B2 (en)
JPS6135897Y2 (en)
KR100516998B1 (en) Double effect model direct connection absorbtion type refrigerator
JP2785154B2 (en) Single effect absorption refrigerator
JPS6138787B2 (en)
JPH08159595A (en) Absorption refrigerator
JP2004132553A (en) Triple effect absorption refrigerator
JPH0355744B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees