JPS6148064B2 - - Google Patents

Info

Publication number
JPS6148064B2
JPS6148064B2 JP57084741A JP8474182A JPS6148064B2 JP S6148064 B2 JPS6148064 B2 JP S6148064B2 JP 57084741 A JP57084741 A JP 57084741A JP 8474182 A JP8474182 A JP 8474182A JP S6148064 B2 JPS6148064 B2 JP S6148064B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature regenerator
liquid refrigerant
condenser
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57084741A
Other languages
Japanese (ja)
Other versions
JPS58203368A (en
Inventor
Tomihisa Oochi
Sanpei Usui
Kazuo Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8474182A priority Critical patent/JPS58203368A/en
Publication of JPS58203368A publication Critical patent/JPS58203368A/en
Publication of JPS6148064B2 publication Critical patent/JPS6148064B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は空気調和等に多用される水−臭化リチ
ウム系吸収式冷温水機に係り、特に高温再生器に
設けたボイラの排ガスから熱を回収して、冷房、
暖房の熱利用効率の向上に好適な吸収式冷温水機
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water-lithium bromide absorption type water chiller/heater that is frequently used for air conditioning, etc., and in particular recovers heat from the exhaust gas of a boiler installed in a high-temperature regenerator to provide cooling,
The present invention relates to an absorption type water chiller/heater suitable for improving heat utilization efficiency in heating.

従来のこの種冷温水機は第1図に示すように、
蒸発器1、吸収器2、凝縮器3、高温再生器4、
低温再生器5、低温熱交換器6、高温熱交換器
7、循環ポンプ8、溶液スプレエゼクタポンプ
9、冷媒スプレポンプ10、高温再生器4を加熱
するボイラ11からなる。
As shown in Figure 1, this type of conventional water cooler/hot water machine has the following features:
Evaporator 1, absorber 2, condenser 3, high temperature regenerator 4,
It consists of a low temperature regenerator 5, a low temperature heat exchanger 6, a high temperature heat exchanger 7, a circulation pump 8, a solution spray ejector pump 9, a refrigerant spray pump 10, and a boiler 11 that heats the high temperature regenerator 4.

冷房運転転時は、弁14を閉める。高温再生器
4内の水と臭化リチウムの混合溶液(以下、溶液
と略記)はボイラ11の燃焼ガスに加熱されて冷
媒蒸気(水蒸気である)を発生する。発生した冷
媒蒸気は低温再生器5に導かれ、低温再生器5内
の溶液を加熱して自身は凝縮液化して、出口ヘツ
ダ16を経て凝縮器3に供給される。低温再生器
5内の溶液は前記高温再生器4で発生した冷媒蒸
気により加熱され、冷媒蒸気を発生する。該冷媒
蒸気は凝縮器3に導かれて、伝熱管内を流れる冷
却水13により冷却されて凝縮液化され、前記低
温再生器5を加熱して凝縮液化した冷媒とともに
弁25を経て蒸発器1に供給される。蒸発器1に
供給された液冷媒は冷媒スプレポンプ10により
伝熱管群上に散布され、伝熱管内を流れる冷水1
2と熱交換して蒸発気化し、その際の蒸発潜熱を
冷水12から奪うことにより冷水12が冷却さ
れ、冷凍作用を供する。蒸発器1で蒸発した冷媒
蒸気は、吸収器2に導かれる。一方、高温再生器
4で冷媒蒸気を発生して濃縮された溶液(以下、
濃溶液と呼ぶ)と低温再生器5の濃溶液とはそれ
ぞれ高温熱交換器7および低温熱交換器6を経た
後、循環ポンプ8の高圧の溶液で駆動される溶液
エゼクタスプレポンプ9に吸引、昇圧されて吸収
器2の伝熱管群上に散布されて、伝熱管内に流れ
る冷却水13により冷却されるとともに、前記蒸
発器1で蒸発した冷媒蒸気を吸収して稀釈されて
稀溶液となる。吸収器2の稀溶液は循環ポンプ8
により吸引・昇圧されて低温熱交換器6で予熱さ
れて低温再生器5に、また一部は高温熱交換器で
予熱されて高温再生器4に、それぞぞれ供給され
る。以上説明した様に冷房サイクルが構成されて
いた。
When the cooling operation is started, the valve 14 is closed. A mixed solution of water and lithium bromide (hereinafter abbreviated as solution) in the high-temperature regenerator 4 is heated by the combustion gas of the boiler 11 to generate refrigerant vapor (water vapor). The generated refrigerant vapor is led to the low-temperature regenerator 5, heats the solution in the low-temperature regenerator 5, condenses and liquefies itself, and is supplied to the condenser 3 via the outlet header 16. The solution in the low temperature regenerator 5 is heated by the refrigerant vapor generated in the high temperature regenerator 4 to generate refrigerant vapor. The refrigerant vapor is led to the condenser 3, cooled by the cooling water 13 flowing in the heat transfer tube, condensed and liquefied, and then heated to the low temperature regenerator 5 and sent to the evaporator 1 together with the condensed and liquefied refrigerant through the valve 25. Supplied. The liquid refrigerant supplied to the evaporator 1 is sprayed onto the heat exchanger tube group by the refrigerant spray pump 10, and the cold water 1 flowing inside the heat exchanger tubes is
The cold water 12 is cooled by exchanging heat with the cold water 12 to evaporate and vaporize, and the latent heat of evaporation at that time is taken away from the cold water 12, thereby providing a refrigeration effect. Refrigerant vapor evaporated in the evaporator 1 is guided to the absorber 2. On the other hand, the high temperature regenerator 4 generates refrigerant vapor and concentrates the solution (hereinafter referred to as
After passing through a high temperature heat exchanger 7 and a low temperature heat exchanger 6, respectively, the concentrated solution (referred to as a concentrated solution) and the concentrated solution in the low temperature regenerator 5 are sucked into a solution ejector spray pump 9 driven by a high pressure solution of a circulation pump 8. It is pressurized and spread over the heat transfer tube group of the absorber 2, cooled by the cooling water 13 flowing inside the heat transfer tubes, and is diluted by absorbing the refrigerant vapor evaporated in the evaporator 1 to become a dilute solution. . The dilute solution in the absorber 2 is circulated through the circulation pump 8.
The water is sucked and pressurized, preheated by a low temperature heat exchanger 6, and supplied to a low temperature regenerator 5, and a portion is preheated by a high temperature heat exchanger and supplied to a high temperature regenerator 4, respectively. The cooling cycle was configured as explained above.

次に暖房運転について説明する。暖房時は高温
再生器4に配設されたボイラ11により加熱され
た溶液が発生する冷媒蒸気で間接的に吸収器2お
よび凝縮器3内を流れる温水13を加熱する方式
が一般的である。例えば、弁14を開き、弁2
0,21,22,23,24,25と閉じると、
高温再生器4で発生した冷媒蒸気は低温再生器5
内の溶液を加熱し、自身は凝縮液化して再び弁1
4を経て高温再生器4に戻る。低温再生器5で前
記高温再生器4の冷媒蒸気で加熱されて発生した
冷媒蒸気は、凝縮器3の伝熱管内を流れる温水1
3を加熱して、自身は凝縮液化して再び低温再生
器5にバイパス流路(図示せず、冷戻時は閉じて
いる)を経て戻される。以上の様に暖房サイクル
を構成していた。
Next, heating operation will be explained. During heating, it is common to indirectly heat the hot water 13 flowing through the absorber 2 and condenser 3 with refrigerant vapor generated from a solution heated by a boiler 11 disposed in the high-temperature regenerator 4. For example, open valve 14 and open valve 2.
When closing 0, 21, 22, 23, 24, 25,
The refrigerant vapor generated in the high temperature regenerator 4 is transferred to the low temperature regenerator 5.
The solution inside is heated, and it condenses and liquefies itself and returns to valve 1.
4 and returns to the high temperature regenerator 4. The refrigerant vapor generated by being heated by the refrigerant vapor of the high-temperature regenerator 4 in the low-temperature regenerator 5 is converted into hot water 1 flowing through the heat transfer tube of the condenser 3.
3 is heated, it condenses and liquefies itself, and is returned to the low-temperature regenerator 5 via a bypass channel (not shown, closed during cooling). The heating cycle was configured as described above.

以上のような直だき二重効用吸収式冷温水機に
おいて、高温再生器4内の溶液は、約140〜170℃
の温度レベルであり、ボイラ11から排出される
燃焼排気ガスの温度は上記140〜170℃以上の高温
度のまま大気中に捨てられていて、何ら利用され
ていないので効率が充分でなかつた。
In the above-mentioned direct-heating double-effect absorption type water chiller/heater, the solution in the high temperature regenerator 4 is approximately 140 to 170°C.
The combustion exhaust gas discharged from the boiler 11 was dumped into the atmosphere at a high temperature of 140 to 170°C or higher, and was not utilized in any way, resulting in insufficient efficiency.

本発明の目的は、高温再生器4に設けたボイラ
11の燃焼排ガス流路に熱交換器を配設して低温
再生器5の高温の液冷媒を使つて低温再生器5に
熱回収して冷房、暖房の熱利用効率の向上を図る
とともに、前記熱交換器配設による不具合点すな
わち界面活性剤の滞留、凝縮器への冷媒蒸気流
出、凝縮器流出液冷媒の高温度化に伴う熱損失の
増大等の防止を図つた吸収式冷温水機を提供する
ことにある。
An object of the present invention is to provide a heat exchanger in the flue gas flow path of the boiler 11 provided in the high-temperature regenerator 4 and recover heat to the low-temperature regenerator 5 using the high-temperature liquid refrigerant of the low-temperature regenerator 5. In addition to improving the heat utilization efficiency of air conditioning and heating, we aim to eliminate the problems caused by the heat exchanger arrangement, such as retention of surfactant, refrigerant vapor leakage to the condenser, and heat loss due to high temperature of refrigerant liquid effluent from the condenser. An object of the present invention is to provide an absorption type water chiller/heater that is capable of preventing an increase in water.

高温再生器4に設けたボイラ11の燃焼排ガス
流路に熱交換器を配設して低温再生器5の凝縮液
冷媒を一部または全部を供給し、発生した冷媒蒸
気は低温再生器5の加熱に利用するとともに、余
つた液冷媒は冷房時は凝縮器3に、暖房時は高温
再生器4にそれぞれ供給して (i) 熱交換器内の液冷媒液面を適正に保持して、
冷媒蒸気に同伴する液冷媒の流出量を少なくし
て、冷房時該液冷媒が高温再生器4の溶液の濃
縮を阻害しないようにした。
A heat exchanger is disposed in the flue gas flow path of the boiler 11 provided in the high-temperature regenerator 4 to supply part or all of the condensed liquid refrigerant of the low-temperature regenerator 5, and the generated refrigerant vapor is transferred to the low-temperature regenerator 5. In addition to being used for heating, the surplus liquid refrigerant is supplied to the condenser 3 during cooling and to the high-temperature regenerator 4 during heating to (i) maintain an appropriate level of liquid refrigerant in the heat exchanger;
The outflow amount of the liquid refrigerant accompanying the refrigerant vapor is reduced so that the liquid refrigerant does not inhibit the concentration of the solution in the high temperature regenerator 4 during cooling.

(ii) 熱交換器に流入する液冷媒中に含まれる微量
の溶液分が蒸発しないで残ることによる熱交換
器内冷媒の溶液化(沸点上昇をもたらす)を蒸
発量より多い液冷媒を供給して再び液冷媒のま
まで排出させることにより防止した。
(ii) To prevent the refrigerant in the heat exchanger from becoming a solution (causing an increase in the boiling point) due to a small amount of solution contained in the liquid refrigerant flowing into the heat exchanger remaining without evaporating, supplying liquid refrigerant in an amount greater than the amount of evaporation. This was prevented by draining the refrigerant again as a liquid refrigerant.

(iii) 熱交換器に流入する液冷媒中に含まれる微量
の界面活性剤(たとえばnオクチルアルコー
ル)が蒸発しないで残ることによる熱交換器内
冷媒の界面活性剤化を(ii)と同様にして防止し
た。
(iii) In the same way as in (ii), the refrigerant in the heat exchanger becomes a surfactant due to a small amount of surfactant (for example, n-octyl alcohol) contained in the liquid refrigerant flowing into the heat exchanger remaining without evaporating. This was prevented.

ことを特徴とする。また、上述のように熱交換
器と凝縮器3とを連絡したところ、熱交換器で発
生した冷媒蒸気が液冷媒とともに同伴して凝縮器
3内に流入して熱損失(冷媒蒸気は液冷媒の場合
に比べ約500kcal/Kgだけエンタルピが大きく熱
損失も大きい)となることが判明した。そこで冷
媒蒸気が流出しないように熱交換器内の冷媒液面
に応じて開閉する制御弁(例えばフロート弁)を
前記熱交換器と凝縮器3とを連絡する冷媒導管に
配設したことを特徴とする。さらに、熱交換器内
の液冷媒は、熱交換器と低温再生器5の加熱部と
を連絡するダクトおよび低温再生器5の加熱管5
aの流動圧力損失分だけ、熱交換器に供給される
液冷媒の温度より高温度となつていることが分つ
た。この熱交換器の液冷媒をそのまま凝縮器3に
供給すれば、熱損失が大きい。そこで、吸収器2
から高温再生器4および低温再生器5に送られる
溶液と、前記熱交換器から凝縮器へ送られる液冷
媒とを熱交換させたことを特徴とする 以下、本発明の実施例を図面について説明す
る。第2図ないし第6図において、同一または相
当するものには第1図に示す符号と同一符号を付
し、それらの説明は省略する。第2図および第3
図において30はボイラ11により発生する燃焼
排ガスGの排気路37に配設された熱交換器で、
その熱交換器30は下部ヘツダ31と気分離器を
兼ねた上部ヘツダ32と、そのヘツダ31,32
に連結する多数の伝熱管とそれらの伝熱管に植え
られた多数のフインとから構成されている。下部
ヘツダ31と低温再生器5の液冷媒出口ヘツダ1
6とが冷媒液導管33で連結されている。上部ヘ
ツダ32はその下部で弁34を介して高温再生器
4の気相部と連結され、同じく仕切板38を介し
て液冷媒導管35により凝縮器3と連結されてい
る。また、高温再生器4と低温再生器5の入口蒸
気ヘツダ18とを連結する蒸気管17と、上部ヘ
ツダ32の頂部とが蒸気ダクト36により連絡さ
れている。
It is characterized by Furthermore, when the heat exchanger and the condenser 3 are connected as described above, the refrigerant vapor generated in the heat exchanger flows into the condenser 3 together with the liquid refrigerant, resulting in heat loss (refrigerant vapor is mixed with the liquid refrigerant). It was found that the enthalpy was larger by about 500 kcal/Kg compared to the case of , and the heat loss was also larger. Therefore, in order to prevent refrigerant vapor from flowing out, a control valve (for example, a float valve) that opens and closes depending on the refrigerant liquid level in the heat exchanger is disposed in the refrigerant conduit connecting the heat exchanger and the condenser 3. shall be. Furthermore, the liquid refrigerant in the heat exchanger is transferred to a duct connecting the heat exchanger and the heating section of the low-temperature regenerator 5 and a heating pipe 5 of the low-temperature regenerator 5.
It was found that the temperature was higher than the temperature of the liquid refrigerant supplied to the heat exchanger by the flow pressure loss of a. If the liquid refrigerant in the heat exchanger is supplied as it is to the condenser 3, heat loss will be large. Therefore, absorber 2
Embodiments of the present invention will be described below with reference to the drawings. do. In FIGS. 2 to 6, the same or equivalent parts are given the same reference numerals as those shown in FIG. 1, and their explanation will be omitted. Figures 2 and 3
In the figure, 30 is a heat exchanger disposed in the exhaust path 37 of the combustion exhaust gas G generated by the boiler 11.
The heat exchanger 30 includes a lower header 31, an upper header 32 that also serves as a gas separator, and headers 31, 32.
It consists of a large number of heat transfer tubes connected to the heat transfer tubes and a large number of fins installed in the heat transfer tubes. Lower header 31 and liquid refrigerant outlet header 1 of low temperature regenerator 5
6 are connected by a refrigerant liquid conduit 33. The upper header 32 is connected at its lower part to the gas phase portion of the high temperature regenerator 4 via a valve 34, and is also connected to the condenser 3 via a liquid refrigerant conduit 35 via a partition plate 38. Further, a steam pipe 17 connecting the inlet steam header 18 of the high temperature regenerator 4 and the low temperature regenerator 5 is connected to the top of the upper header 32 by a steam duct 36.

次に上記のような構成からなる本実施例の作用
および効果について説明する。
Next, the operation and effects of this embodiment having the above-described configuration will be explained.

冷房運転時には仕切弁34を閉状態に、仕切弁
38,21,22,23,24,25を開状態に
セツトする。低温再生器5の加熱管5a内で凝縮
液化した液冷媒は出口ヘツダ16、導管33を経
て熱交換器30を導入され、ボイラ11の燃焼排
気ガスと熱交換して86℃〜96℃の冷媒蒸気を発生
する。この冷媒蒸気はエリミネータ(図示せず)
を経て蒸気ダクト36および蒸気管17に導か
れ、高温再生器4で発生した冷媒蒸気とともに低
温再生器5の入口ヘツダ18を経て加熱管5aに
導かれて凝縮液化し、その際の潜熱の放熱によ
り、低温再生器5内の溶液を加熱して、冷媒蒸気
発生と溶液濃縮の作用を行う。液化した冷媒は再
び出口ヘツダ16、導管33を経て熱交換器30
に導入される。熱交換器30の液冷媒は高温再生
器4で発生した冷媒蒸気量と等しい量だけ凝縮器
3に導管35と仕切弁38とを経て排出される。
したがつて熱交換器30が液冷媒で溢れて、蒸気
ダクト36および蒸気管17を経て液冷媒が高温
再生器4に溢流して、溶液の濃縮作用を阻害する
という不具合を防止できた。高温再生器4で発生
した冷媒蒸気中には、吸収器2の熱伝達を促進さ
せる作用がある界面活性剤(例えばnオクチルア
ルコール)の蒸気および微細な溶液ミストが含ま
れている。該界面活性剤は一般に冷媒(水)より
沸点の高い高級アルコール系を用いている。熱交
換器30では高温再生器4よりも低温で冷媒蒸気
が発生するため、前記界面活性剤が滞留するが、
液冷媒とともに凝縮器3に導管35により排出さ
れる。したがつて、熱交換器30内の界面活性剤
濃度および溶液の濃度は極めて低く、これら不純
分による沸点上昇はほとんど起らない。したがつ
て、熱交換器30の圧力レベルは高温再生器4と
ほぼ同一であるのに対して、被加熱媒体の温度レ
ベルは、60〜70℃低く、ボイラ11の排気ガスと
十分熱交換可能な温度レベルにある。以上のよう
にしてボイラ11の排気ガスの熱は、低温再生器
5の溶液に回収され、溶液の濃縮と冷媒発生に使
われるので、吸収式冷温水機の冷凍能力の増大に
寄与する。
During cooling operation, the gate valve 34 is set to a closed state, and the gate valves 38, 21, 22, 23, 24, and 25 are set to an open state. The liquid refrigerant condensed and liquefied in the heating pipe 5a of the low-temperature regenerator 5 is introduced into the heat exchanger 30 via the outlet header 16 and the conduit 33, where it exchanges heat with the combustion exhaust gas of the boiler 11 and becomes a refrigerant at 86°C to 96°C. Generates steam. This refrigerant vapor is transferred to an eliminator (not shown).
The refrigerant vapor generated in the high-temperature regenerator 4 is guided through the inlet header 18 of the low-temperature regenerator 5 to the heating tube 5a, where it is condensed and liquefied, and the latent heat is radiated at that time. As a result, the solution in the low temperature regenerator 5 is heated to generate refrigerant vapor and concentrate the solution. The liquefied refrigerant passes through the outlet header 16 and the conduit 33 again to the heat exchanger 30.
will be introduced in The liquid refrigerant in the heat exchanger 30 is discharged to the condenser 3 via the conduit 35 and the gate valve 38 in an amount equal to the amount of refrigerant vapor generated in the high temperature regenerator 4 .
Therefore, it was possible to prevent the heat exchanger 30 from overflowing with liquid refrigerant and the liquid refrigerant flowing into the high-temperature regenerator 4 via the steam duct 36 and the steam pipe 17, thereby inhibiting the solution concentration action. The refrigerant vapor generated in the high-temperature regenerator 4 contains the vapor of a surfactant (for example, n-octyl alcohol) that has the effect of promoting heat transfer in the absorber 2 and fine solution mist. The surfactant is generally a higher alcohol type having a higher boiling point than the refrigerant (water). In the heat exchanger 30, refrigerant vapor is generated at a lower temperature than in the high-temperature regenerator 4, so the surfactant remains;
It is discharged together with the liquid refrigerant into the condenser 3 via a conduit 35. Therefore, the concentration of the surfactant and the concentration of the solution in the heat exchanger 30 are extremely low, and these impurities hardly cause an increase in the boiling point. Therefore, while the pressure level of the heat exchanger 30 is almost the same as that of the high-temperature regenerator 4, the temperature level of the heated medium is 60 to 70 degrees Celsius lower, allowing sufficient heat exchange with the exhaust gas of the boiler 11. temperature level. As described above, the heat of the exhaust gas from the boiler 11 is recovered into the solution of the low-temperature regenerator 5 and used for concentrating the solution and generating refrigerant, thus contributing to an increase in the refrigerating capacity of the absorption type water chiller/heater.

通常、上記低温再生器5および高温再生器4の
溶液温度はそれぞれ80〜90℃、および130〜160℃
であり、ボイラ11の排ガス温度は約200℃であ
る。熱交換器30の冷媒の沸点は低温再生器5の
溶液温度より高い86〜96℃であり、熱交換器30
で熱交換後の排ガス温度レベルを約100℃にする
ことは容易である。これから、おおよそボイラ1
1の熱入力の約5%が熱回収でき、その結果回収
熱量の70〜80%の冷凍能力の増大が図られる。す
なわち、熱入力をベースとする成績係数を約4%
向上でき、省エネルギーが図れる効果が得られ
る。
Usually, the solution temperatures in the low temperature regenerator 5 and high temperature regenerator 4 are 80 to 90°C and 130 to 160°C, respectively.
The exhaust gas temperature of the boiler 11 is approximately 200°C. The boiling point of the refrigerant in the heat exchanger 30 is 86 to 96°C, which is higher than the solution temperature in the low temperature regenerator 5.
It is easy to make the exhaust gas temperature level after heat exchange about 100℃. From now on, approximately boiler 1
Approximately 5% of the heat input of 1 can be recovered, and as a result, the refrigerating capacity can be increased by 70 to 80% of the recovered heat. In other words, the coefficient of performance based on heat input is approximately 4%.
It is possible to improve energy efficiency and achieve the effect of saving energy.

暖房運転時には、仕切弁34を開状態に、仕切
弁38,21,22,23,24,25を閉状態
にセツトする。低温再生器5の加熱管5a内で凝
縮液化した液冷媒は出口ヘツダ16、導管33を
経て熱交換器30に導入され、ボイラ11の燃焼
排気ガスと熱交換して冷媒蒸気を発生する。ま
た、余つた液冷媒は弁34を介して高温再生器4
の気相部に戻される。この冷媒蒸気はエリミネー
タ(図示せず)を経て蒸気ダクト36および蒸気
管17に導かれ、高温再生器4で発生した冷媒蒸
気とともに低温再生器の入口ヘツダ18を経て加
熱管5aに導かれて凝縮液化し、その際の潜熱の
放熱により、低温再生器5内溶液を加熱して冷媒
蒸気を発生させる。低温再生器5で発生した冷媒
蒸気は凝縮器3に導かれ、伝熱管内を流れる温水
13を加熱して凝縮液化し、再び低温再生器5に
戻される。以上のようにして、ボイラ11の排気
ガスの熱が温水に回収される。
During heating operation, the gate valve 34 is set to an open state, and the gate valves 38, 21, 22, 23, 24, and 25 are set to a closed state. The liquid refrigerant condensed and liquefied in the heating pipe 5a of the low-temperature regenerator 5 is introduced into the heat exchanger 30 via the outlet header 16 and the conduit 33, where it exchanges heat with the combustion exhaust gas of the boiler 11 to generate refrigerant vapor. Further, the remaining liquid refrigerant is passed through the valve 34 to the high temperature regenerator 4.
is returned to the gas phase. This refrigerant vapor is led to the steam duct 36 and steam pipe 17 through an eliminator (not shown), and is led to the heating pipe 5a through the inlet header 18 of the low temperature regenerator together with the refrigerant vapor generated in the high temperature regenerator 4, where it is condensed. The solution in the low temperature regenerator 5 is heated by the radiation of latent heat during liquefaction, and refrigerant vapor is generated. The refrigerant vapor generated in the low-temperature regenerator 5 is guided to the condenser 3, heats the hot water 13 flowing in the heat transfer tube, condenses and liquefies it, and is returned to the low-temperature regenerator 5 again. As described above, the heat of the exhaust gas from the boiler 11 is recovered into hot water.

熱回収の効果は冷房時と異なり、回収した熱量
の全量がその効果であり、およそ5%の省エネル
ギーが図れる。
The effect of heat recovery is different from that during cooling, and the effect is based on the entire amount of heat recovered, resulting in approximately 5% energy savings.

次に、本発明の他の実施例を第4図により説明
する。本実施例と前述の実施例とは、 低温再生器5の出口水室16と熱交換器30と
を仕切弁39を介して接続し、また、熱交換器3
0と蒸気管17とを仕切弁40を介して接続する
とともに、従来のサイクルが持つている冷媒流路
系即ち、仕切弁20を介して凝縮器3と出口水室
16とを接続する系と高温再生器4の気相部と出
口水室16とを接続する系とが残されたままであ
るところが、異なる。以上のようにしたので、仕
切弁40,39,34を閉じることにより、排熱
回収用熱交換器30を冷温水機の主サイクルから
切離すことが容易になる。したがつて既設の冷温
水機への熱回収用熱交換器30の設置も容易にで
きるという利点がある。なお、不凝縮性ガスは、
出口水室16に滞留するので、抽気管45が配設
されている。
Next, another embodiment of the present invention will be described with reference to FIG. This embodiment and the embodiments described above are such that the outlet water chamber 16 of the low-temperature regenerator 5 and the heat exchanger 30 are connected via a gate valve 39, and the heat exchanger 3
0 and the steam pipe 17 via the gate valve 40, and the refrigerant flow path system of the conventional cycle, that is, the system that connects the condenser 3 and the outlet water chamber 16 via the gate valve 20. The difference is that the system connecting the gas phase part of the high temperature regenerator 4 and the outlet water chamber 16 remains. As described above, by closing the gate valves 40, 39, and 34, it becomes easy to disconnect the exhaust heat recovery heat exchanger 30 from the main cycle of the water cooler/heater. Therefore, there is an advantage that the heat recovery heat exchanger 30 can be easily installed in an existing water cooler/heater. In addition, non-condensable gas is
Since the water remains in the outlet water chamber 16, a bleed pipe 45 is provided.

つぎに、動作を説明する。冷房時は仕切弁2
0,21,22,23,24,25,38,3
9,40を開状態に、仕切弁14,34を閉状態
にセツトする。低温再生器5の凝縮液冷媒は出口
水室16より、一部は仕切弁20を経て凝縮器3
へ、残りは仕切弁39を経て熱交換器30へ供給
される。熱交換器30で発生した冷媒蒸気は仕切
弁40、ダクト36、蒸気管17、入口水室18
を経て高温再生器4で発生した冷媒蒸気とともに
低温再生器5に供給され溶液を加熱する。また、
余つた液冷媒は仕切弁38、導管35を経て凝縮
器3に送られる。なお、前記導管35の液冷媒の
取出し口は、下部ヘツダ31に取付けても熱交換
器30の冷媒液面は適当にバランスした位置に維
持される。適当にバランスした位置とは熱交換器
30の液ヘツドとダクト36、蒸気管17、伝熱
管5aの圧力降下が、冷媒液導管33の液ヘツド
とその流動圧力降下を考慮したバランス点であ
る。
Next, the operation will be explained. Gate valve 2 during cooling
0, 21, 22, 23, 24, 25, 38, 3
9 and 40 are set in the open state, and the gate valves 14 and 34 are set in the closed state. The condensed refrigerant of the low-temperature regenerator 5 is supplied from the outlet water chamber 16, and a portion passes through the gate valve 20 to the condenser 3.
The remainder is supplied to the heat exchanger 30 via the gate valve 39. The refrigerant vapor generated in the heat exchanger 30 is transferred to the gate valve 40, duct 36, steam pipe 17, and inlet water chamber 18.
The solution is then supplied to the low-temperature regenerator 5 together with the refrigerant vapor generated in the high-temperature regenerator 4 to heat the solution. Also,
The remaining liquid refrigerant is sent to the condenser 3 via the gate valve 38 and the conduit 35. Note that even if the liquid refrigerant outlet of the conduit 35 is attached to the lower header 31, the refrigerant liquid level of the heat exchanger 30 is maintained at an appropriately balanced position. A properly balanced position is a point where the pressure drop between the liquid head of the heat exchanger 30 and the duct 36, the steam pipe 17, and the heat transfer tube 5a is balanced with the liquid head of the refrigerant liquid conduit 33 and its flow pressure drop taken into account.

暖房時には、仕切弁20,21,22,23,
24,25,38を閉状態に、仕切弁14,3
4,39,40を開状態にセツトする。出口水室
16の液冷媒の一部は仕切弁14を経て高温再生
器4に戻る。残りの液冷媒は導管33、仕切弁3
9を経熱交換器30に導入され、ボイラ11の排
ガスと熱交換して冷媒蒸気を発生する。発生した
冷媒蒸気は、ダクト36、仕切弁40を経て、蒸
気管17、入口ダクト18を経て、高温再生器4
で発生した冷媒蒸気とともに低温再生器5に供給
され、低温再生器5内の溶液を加熱する。また、
余つた液冷媒は仕切弁34を経て高温再生器4に
戻される。以上のようにしてボイラ11の排気ガ
スの熱を低温再生器5の溶液に回収される。
During heating, the gate valves 20, 21, 22, 23,
24, 25, 38 in the closed state, the gate valves 14, 3
4, 39, and 40 are set in the open state. A portion of the liquid refrigerant in the outlet water chamber 16 returns to the high temperature regenerator 4 via the gate valve 14. The remaining liquid refrigerant is transferred to the conduit 33 and the gate valve 3.
9 is introduced into the transthermal exchanger 30, where it exchanges heat with the exhaust gas of the boiler 11 to generate refrigerant vapor. The generated refrigerant vapor passes through the duct 36, the gate valve 40, the steam pipe 17, and the inlet duct 18, and then reaches the high temperature regenerator 4.
The solution is supplied to the low-temperature regenerator 5 together with the refrigerant vapor generated in the low-temperature regenerator 5, and the solution in the low-temperature regenerator 5 is heated. Also,
The remaining liquid refrigerant is returned to the high temperature regenerator 4 via the gate valve 34. As described above, the heat of the exhaust gas from the boiler 11 is recovered into the solution in the low temperature regenerator 5.

効果については、前述の通りである。 The effects are as described above.

ただし、導管35を経由して、熱交換器30で
発生した冷媒蒸気の一部(1%程度)が凝縮器3
に排出される。それによる熱損失を防止する手段
として、次の方法がある。以下、第5図を使つて
この発明を説明する。
However, a portion (about 1%) of the refrigerant vapor generated in the heat exchanger 30 is transferred to the condenser 3 via the conduit 35.
is discharged. The following methods can be used to prevent heat loss caused by this. This invention will be explained below using FIG. 5.

熱交換器30にフロート室42をせき43を介
して接続し、フロート弁41を介して導管35、
仕切弁38を介して凝縮器3と接続している。フ
ロート弁41はフロート室42の冷媒液面が低下
すると閉じられ冷媒蒸気が導管35に排出されな
いので、蒸気流出による熱損失がなく、より熱回
収による効果を高めることができる。また、熱交
換器30の液面が冷媒の沸とうにより波出つてい
るのに対して、フロート室42はせき43を溢れ
た液冷媒で満たされるので、フロート弁41が異
常に振動したりすることがなく、フロート弁41
の耐久上好都合である。
A float chamber 42 is connected to the heat exchanger 30 via a weir 43, and a conduit 35 is connected via a float valve 41.
It is connected to the condenser 3 via a gate valve 38. The float valve 41 is closed when the refrigerant liquid level in the float chamber 42 decreases, and refrigerant vapor is not discharged into the conduit 35, so there is no heat loss due to vapor outflow, and the effect of heat recovery can be further enhanced. Furthermore, while the liquid level in the heat exchanger 30 is undulating due to boiling of the refrigerant, the float chamber 42 is filled with the liquid refrigerant that overflows the weir 43, causing the float valve 41 to vibrate abnormally. float valve 41
This is advantageous in terms of durability.

ところで、前述の如く、熱交換器30内の液冷
媒は、低温再生器5の出口水室16の液冷媒にく
らべ、流路の圧力降下および冷媒のヘツド分だけ
温度レベルが約2〜3℃高い。従つて凝縮器3に
供給される液冷媒のエンタルピが大きく、熱回収
による熱効率の向上が十分でない。そこで、第6
図のように構成して、さらに熱効率の向上を図つ
た。
By the way, as mentioned above, the temperature level of the liquid refrigerant in the heat exchanger 30 is about 2 to 3 degrees Celsius compared to the liquid refrigerant in the outlet water chamber 16 of the low-temperature regenerator 5 due to the pressure drop in the flow path and the refrigerant head. expensive. Therefore, the enthalpy of the liquid refrigerant supplied to the condenser 3 is large, and thermal efficiency cannot be sufficiently improved by heat recovery. Therefore, the 6th
The structure shown in the figure was used to further improve thermal efficiency.

第6図において、第2図に示した実施例と異な
る点は、熱交換器30と凝縮器3とを連絡する導
管35が、吸収器2から低温再生器6に循環ポン
プ8により圧送される溶液と熱交換する熱交換器
44を配設した点にある。該熱交換器44の作用
は熱交換器30から排出される高温の液冷媒の顕
熱を溶液に熱回収して、もつて凝縮器3より冷却
水13にすてられる熱エネルギーを少なくして、
冷房運転時の熱利用効率を高めるものである。
In FIG. 6, the difference from the embodiment shown in FIG. A heat exchanger 44 is provided to exchange heat with the solution. The action of the heat exchanger 44 is to recover the sensible heat of the high temperature liquid refrigerant discharged from the heat exchanger 30 into a solution, thereby reducing the thermal energy wasted from the condenser 3 to the cooling water 13. ,
This improves heat utilization efficiency during cooling operation.

なお、熱交換器30より導管35へ排出される
液冷媒に冷媒蒸気が混入する場合も、溶液に熱回
収できる。
Note that even if refrigerant vapor is mixed into the liquid refrigerant discharged from the heat exchanger 30 to the conduit 35, heat can be recovered to the solution.

以上説明したように、第1の発明に於いて、ボ
イラの燃焼ガスの排気路に熱交換器を配設して低
温再生器の高温の液冷媒を供給して、低温再生器
の溶液にサーモサイフオン(冷媒の沸とうと凝縮
により熱移動させる)の原理で熱回収できるよう
に構成するとともに、余つた液冷媒を冷房時は凝
縮器に、暖房時は高温再生器に戻すように構成し
たので、 (1) 前記熱交換器内の液冷媒が、溶液化、界面活
性剤化しないので、冷媒の沸点上昇が起らず、
熱回収温度をほぼ一定に維持できる。
As explained above, in the first invention, a heat exchanger is disposed in the combustion gas exhaust path of the boiler to supply a high temperature liquid refrigerant to the low temperature regenerator, so that the solution in the low temperature regenerator is heated to a high temperature. It is configured to recover heat based on the principle of siphon (heat is transferred by boiling and condensing the refrigerant), and the excess liquid refrigerant is returned to the condenser during cooling and to the high-temperature regenerator during heating. (1) Since the liquid refrigerant in the heat exchanger does not become a solution or a surfactant, the boiling point of the refrigerant does not increase;
The heat recovery temperature can be maintained almost constant.

(2) 冷、暖房時にサイクルに熱回収できるので、
熱交換器の利用効率が高く、投入資金当りの省
エネルギー効果が大きい。
(2) Heat can be recovered into the cycle during cooling and heating, so
The heat exchanger has a high usage efficiency, and the energy saving effect per invested capital is large.

また、第2の発明を併用することにより、 (3) 冷房時、熱交換器30で発生した冷媒蒸気の
凝縮器への吹き抜けが防止できるので、その分
熱利用効率が向上する。
Further, by using the second invention in combination, (3) during cooling, it is possible to prevent the refrigerant vapor generated in the heat exchanger 30 from blowing through to the condenser, so that the heat utilization efficiency is improved accordingly.

さらに、第3の発明を併用することにより、 (4) 冷房時、熱交換器30で加熱された高温の液
冷媒の顕熱を溶液に熱回収してから凝縮器に送
るように構成したので、前記液冷媒の顕熱分だ
け熱利用効率が向上する。
Furthermore, by using the third invention in combination, (4) during cooling, the sensible heat of the high temperature liquid refrigerant heated by the heat exchanger 30 is recovered into a solution and then sent to the condenser. , the heat utilization efficiency is improved by the sensible heat of the liquid refrigerant.

という効果がある。There is an effect.

なお、低温再生器5の液冷媒出口ヘツダ16か
ら熱交換器30へ導入される液冷媒と、熱交換器
30から凝縮器3へ排出される液冷媒とを熱交換
させることも考えられる。これは、出口水室16
から熱交換器30へ導入される液冷媒が前記熱交
換器30から凝縮器3へ排出される液冷媒と比べ
て、温度が低いことによる。したがつて、冷媒蒸
気が凝縮器3へ排出されて効率が低下することを
軽減できる効果がある。
It is also conceivable to exchange heat between the liquid refrigerant introduced from the liquid refrigerant outlet header 16 of the low-temperature regenerator 5 to the heat exchanger 30 and the liquid refrigerant discharged from the heat exchanger 30 to the condenser 3. This is the outlet water chamber 16
This is because the temperature of the liquid refrigerant introduced into the heat exchanger 30 from the heat exchanger 30 is lower than that of the liquid refrigerant discharged from the heat exchanger 30 to the condenser 3. Therefore, there is an effect of being able to reduce the reduction in efficiency due to refrigerant vapor being discharged to the condenser 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の吸収式冷温水機の構成図、第2
図は本発明の一実施例の構成図、第3図は第2図
の部分詳細説明図、第4図、第5図、第6図は本
発明の他の実施例の構成図である。 1……蒸発器、5……吸収器、3……凝縮器、
4……高温再生器、5……低温再生器、30……
熱交換器、42……フロートボツクス、41……
フロート弁、44……冷媒顕熱回収用熱交換器、
45……抽気配管。
Figure 1 is a configuration diagram of a conventional absorption type water chiller/heater, Figure 2
The figure is a block diagram of one embodiment of the present invention, FIG. 3 is a partial detailed explanatory diagram of FIG. 2, and FIGS. 4, 5, and 6 are block diagrams of other embodiments of the present invention. 1... Evaporator, 5... Absorber, 3... Condenser,
4...High temperature regenerator, 5...Low temperature regenerator, 30...
Heat exchanger, 42...Float box, 41...
Float valve, 44... Heat exchanger for refrigerant sensible heat recovery,
45...Air bleed piping.

Claims (1)

【特許請求の範囲】 1 ボイラを有する高温再生器、加熱器を有する
低温再生器、凝縮器、吸収器、蒸発器、高温熱交
換器、低温熱交換器およびポンプを備え、これら
が作動的に連絡された吸収式冷温水機において、
高温再生器を出た後の燃焼ガスの排気路に、熱交
換器を設け、この熱交換器の入口側と低温再生器
の加熱管の出口側とを連絡する冷媒液導管を有
し、熱交換器の出口側と低温再生器の加熱管の入
口側とを連絡する蒸気ダクトを有し、熱交換器と
凝縮器とを連絡する液冷媒導管および、熱交換器
と高温再生器とを連絡する導管を有し、熱交換器
の液冷媒を冷房運転時は液冷媒導管を介して凝縮
器に、暖房運転時は導管を介して高温再生器に選
択的に供給する弁を有することを特徴とする吸収
式冷温水機。 2 前記熱交換器と凝縮器とを連絡する液冷媒導
管に、前記熱交換器の液冷媒液面に応じて開閉す
る制御弁を有することを特徴とする特許請求の範
囲第1項記載の吸収式冷温水機。 3 前記熱交換器から凝縮器へ供給される液冷媒
と、前記吸収器から低温再生器または高温再生器
に供給される溶液とを熱交換させる熱交換器を有
することを特徴とする特許請求の範囲第1項また
は第2項に記載の吸収式冷温水機。
[Claims] 1. A high-temperature regenerator with a boiler, a low-temperature regenerator with a heater, a condenser, an absorber, an evaporator, a high-temperature heat exchanger, a low-temperature heat exchanger, and a pump, all of which are operable. In the absorption type water chiller/heater that was contacted,
A heat exchanger is provided in the exhaust path of the combustion gas after leaving the high temperature regenerator, and a refrigerant liquid conduit is provided to connect the inlet side of the heat exchanger and the outlet side of the heating tube of the low temperature regenerator. It has a steam duct that connects the outlet side of the exchanger and the inlet side of the heating pipe of the low-temperature regenerator, a liquid refrigerant conduit that connects the heat exchanger and the condenser, and a liquid refrigerant conduit that connects the heat exchanger and the high-temperature regenerator. It is characterized by having a valve that selectively supplies the liquid refrigerant of the heat exchanger to the condenser through the liquid refrigerant conduit during cooling operation and to the high temperature regenerator through the conduit during heating operation. Absorption type water chiller/heater. 2. The absorber according to claim 1, wherein the liquid refrigerant conduit connecting the heat exchanger and the condenser has a control valve that opens and closes depending on the liquid refrigerant level in the heat exchanger. Type cold/hot water machine. 3. A heat exchanger for exchanging heat between the liquid refrigerant supplied from the heat exchanger to the condenser and the solution supplied from the absorber to the low-temperature regenerator or the high-temperature regenerator. The absorption type water chiller/heater according to item 1 or 2.
JP8474182A 1982-05-21 1982-05-21 Absorption type cold and hot water machine Granted JPS58203368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8474182A JPS58203368A (en) 1982-05-21 1982-05-21 Absorption type cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8474182A JPS58203368A (en) 1982-05-21 1982-05-21 Absorption type cold and hot water machine

Publications (2)

Publication Number Publication Date
JPS58203368A JPS58203368A (en) 1983-11-26
JPS6148064B2 true JPS6148064B2 (en) 1986-10-22

Family

ID=13839115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8474182A Granted JPS58203368A (en) 1982-05-21 1982-05-21 Absorption type cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS58203368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148067U (en) * 1984-09-29 1986-03-31 國夫 宮嶋 pesticide spraying hose
JPH0315147Y2 (en) * 1984-09-29 1991-04-03
JP2010281462A (en) * 2009-06-02 2010-12-16 Kawasaki Thermal Engineering Co Ltd Absorption water chiller/heater using ultra-low temperature waste heat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652217A (en) * 1979-10-03 1981-05-11 Toto Denki Kogyo Kk Management device for grouting
JPS571739A (en) * 1980-06-06 1982-01-06 Furukawa Electric Co Ltd:The Device for taking out product in injection molding machine for coating resin layer around outer periphery of sleeve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5652217A (en) * 1979-10-03 1981-05-11 Toto Denki Kogyo Kk Management device for grouting
JPS571739A (en) * 1980-06-06 1982-01-06 Furukawa Electric Co Ltd:The Device for taking out product in injection molding machine for coating resin layer around outer periphery of sleeve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148067U (en) * 1984-09-29 1986-03-31 國夫 宮嶋 pesticide spraying hose
JPH0315147Y2 (en) * 1984-09-29 1991-04-03
JP2010281462A (en) * 2009-06-02 2010-12-16 Kawasaki Thermal Engineering Co Ltd Absorption water chiller/heater using ultra-low temperature waste heat

Also Published As

Publication number Publication date
JPS58203368A (en) 1983-11-26

Similar Documents

Publication Publication Date Title
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP5384072B2 (en) Absorption type water heater
JP2000121196A (en) Cooling/heating system utilizing waste heat
JPS6148064B2 (en)
JP5785800B2 (en) Vapor absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
JP4315855B2 (en) Absorption refrigerator
JP3578207B2 (en) Steam heating type double effect absorption refrigerator / cooler / heater, power generation / cooling / heating / hot water supply system using the same, and system control method thereof
JP3281228B2 (en) Absorption type cold / hot water unit
JPS6122225B2 (en)
JP2000088391A (en) Absorption refrigerating machine
JPH0658186B2 (en) Double-effect absorption chiller / heater
JP2865305B2 (en) Absorption refrigerator
JPS6311570Y2 (en)
JP4073219B2 (en) Absorption chiller / heater
JPS6022253B2 (en) absorption refrigerator
JPH0350373Y2 (en)
JPS5829424Y2 (en) absorption cold water machine
JPH0354378Y2 (en)
JPS6342290Y2 (en)
JPH03105171A (en) Absorption type water cooling and heating machine
JPS62218771A (en) Air cooling type absorption cold and hot water unit
JPH0355744B2 (en)
JPS58198659A (en) Multiple-effect absorption type cold and hot water machine
JPS5817390B2 (en) Heat recovery type absorption chiller/heater